

rimary structure	
near sequence of amino-acids	
1 KIRNFVVPGK CASVDRNIKUW AEQTPINRNSY AGWYQFALT 51 VRNEYSDGK OFVIKSTGIA VDGNLLKMG KLYPNIFGEP HLSIDYENSF 101 AAPLVILETD YSNYACLYSC IDYNFGYHSD FSFIFSRSAN LADQYVKKCE 151 AAFKNINVDT TRFVKTVQGS SCPYDTOKTV	

3D structure	and function	
Primary structu linear sequence	ire of amino-acids	
1 KIPNEVVPGK CASVDR 51 VRNEVSFDGK QEVIK 101 AAPLVILETD YSNYA 151 AAFKNINVDT TREVK	NKLW AEQTPNRNSY AGVWYQFALT TGIA VOGNILKRNG KLYPNPFGEP HLSIDYENSF CLYSC IDYNFGYHSD FSFIFSRSAN LADQYVKKCE TVQGS SCPYDTQKTV	
Secondary stru	icture	
local organizatio	n stabilized by H bonds	
Parallel β pleated sheet	Antiparallel § pleated sheet Right-handed is belix	
Early folding	events: femto to microseconds	
Institute for Molecul	es and Materials / FELIX Facility	Radboud University Niimegen

rimary struct near sequence 1 KIPNFVVPGK CASVDR 51 VRNEYSFOGK OFVIR 101 AAPLVILETD YSNY 151 AAFKNINVDT TRFV	UIP 2 of amino-acids NNLW ACOTININSY ACOMPORAT STGA YOOMLYNN ACOMPOSED STGA YOOMLYNN SPFFSRSAN LADQYVKKCE (KLYSC IDWRGYLSD FSFFSRSAN LADQYVKKCE (KLYSC IDWRGYLSD FSFFSRSAN LADQYVKKCE CHOGS SCHOLDTARTY	Tertiary struc 3 dimensional	t ure form "native protein
econdary structure coal organization	Jacture on stabilized by H bonds	5 heices 9 beta standa 22 reverse turns (1 disulfee bonds)	The function can only be carried out if the protein is in its native structure
Early folding	events: femto to microseconds	folding in 30	structure: ~ 1 sec

at 37°C
to
to

Cooling molecules

As you know... Biological processes take place at room temperature or in our case at 37°C s you know.

Question:

Why do we -spectroscopists- want to cool down molecules (or ions) to temperatures down to a few Kelvin??

Radboud University Nijmegen

Answer: To be able to analyze the spectra !!

Institute for Molecules and Materials / FELIX Facility

Cooling molecules	
Besides simplifying the spectra, what are the effects of cooling of large biomolecules Biomolecules are large, floppy molecules that can adapt several conformations	
Institute for Molecules and Materials / FELIX Facility Radboud University Nijmegen	

Spect	roscopy						
Interaction	n of molecules / at	oms with electro	omagnetic radiat	ion			
	Ned Citype Radio	LONGR LONGR 1 10-1 10-2 11 LONGR 1 10-1 10-2 11 LONGR 1 0-1 10-2 11 LONGR 1 0-1 10-2 11 LONGR 1 0-1 10-2 11 LONGR LONGR 1 0-1 10-2 11 LONGR 1 0-1 10-2 11 LONGR 2 0-1 10-1 10-2 11 LONGR 2 0-1 10-1 10-2 11 LONGR 2 0-1 10-1 10-2 11 LONGR 2 0-1 10-1 10-1 10-1 10-1 10-1 10-1 10-1	Inferred Vent IMARE-LENGTH immers IMARE-LENGTH immers IMARE-LENGTH immers Immers	T	Utraviolet) + 10 + 10 + 10 + 10 +	Start General Bay 9-0018	
	unity	microwave	IR			Vis/UV	1
	wavelength	1 m - 1 mm	1 mm - 750 nm		750 nm	i - 390 nm / 390 -100 nm	1
	Wavenumbers (cm ⁻¹)	10 ⁻² - 10	10 - 104			10 ⁴ - 10 ⁶]
	Frequency (Hz)	300 MHz - 300 GHz	300 GHz - 405 TH	Ηz	405 T	Hz - 790 THz - 30 PHz	
	Energy (J)	10 ⁻²⁵ - 10 ⁻²²	10 ⁻²² - 10 ⁻¹⁹			10 ⁻¹⁹ - 10 ⁻¹⁷]
	Energy (eV)	1,24 µeV - 1,24 meV	1,24 meV - 1,7 e	v	1,7	eV - 3,3 eV - 124 eV	
Institute	for Molecules and M	aterials / FELIX F	acility		1	Radboud University Nijn	negen 💮

Modern experiment	al approach	
Laser desorption	Jet cooling	UV (or IR) spectroscopy
	desception putter prime sample sample	51 50 R2PI
✔ (1) Pick them up	✓ (2) Put them together	(3) Hold them up against the light
Institute for Molecules and Material	s / FELIX Facility	Radboud University Nijmegen

Experimental Method: Molecula	r Beam
laser desorption: Creation gaseous molecules Cooling neutral molecule	es Spectroscopic Techniques: Mass selective IR / UV excitation Detection
Assobiant late Straine train	economic and a summer to be an intervention of the summer to be an interventity of the summer to be an
Institute for Molecules and Materials / FELIX Facility	Radboud University Nijmegen

The experiment	
laser desorption: Creation gaseous molecules Cooling neutral mole	n: Spectroscopic Techniques: Mass selective IR / UV excitation Detection
Mass spectrum	
Institute for Molecules and Materials / FELIX Facility	Radboud University Nijmegen

SPECS:	FELIX:	FLARE:	FELICE:
e-beam energy spectral range	50/45 – 15 MeV 2.7 - 150 micron 3600 - 66 cm ⁻¹ 120 - 2 THz 450 - 8 meV	15 – 10 MeV 100 - 1500 micron 100 - 6 cm ⁻¹ 3 – 0.25 THz 12 – 0.75 meV	50/45 – 18 MeV 5 - 100 micron 2000 - 100 cm ⁻¹ 60 - 3 THz 250 - 12 meV
pulse structure rep. rate micropulse energy macropulse energy peak power polarisation	micro / macropulse 25 MHz/1 GHz@10 Hz 1- 20 μJ ≤ 100 mJ @ 1 GHz ≤ 100 MW linear	micro / macropulse 3 GHz/20 MHz@10 Hz ≈ 5 µJ ≤ 100 mJ @ 1 GHz ≤ 10 MW linear	micro / macropulse 16 MHz/1GHz@10 H max. 1 mJ max. 5 J @ 1 GHz < 5 GW linear
spectral bandwidth (FWHM) continuous tunability	0.2 - 5% 200 - 300%	≤ 1%* * spectral mode ≤10 ⁻⁴ ? %	0.4 - 3% 200 - 300 %

