Excited-State Molecular Dynamics

Gerrit Groenhof

Department of Chemistry & Nanoscience center University of Jyväskylä Finland

Non-Adiabatic Molecular Dynamics

Gerrit Groenhof

Department of Chemistry & Nanoscience center University of Jyväskylä Finland

nuclear dynamics in more than one electronic state transitions between electronic states!

adiabatic & non-adiabatic chemisty

example: radiation damage in DNA

Radiation damage: UV absorption in DNA

thymine dimerization

cell dead?

mutation?

Radiation damage: UV absorption in DNA

thymine dimerization

cell dead?

mutation?

David R.Yarkony:

"Non-adiabatic processes are at the center of any approach to efficiently harvest solar energy"

"Biological systems have developed elegant protein-chromophore systems for harvesting and utilizing visible and higher-energy photons"

experiment

provides data

time-resolved spectroscopy (pump-probe)

UV/vis, IR/midIR, x-ray, ...

theory

provides concepts

explain

predict

computation & simulation provides data (predictions) like experiment (in my view) fills gaps in time & length scale

preview excited state quantum chemistry

electronic excitation

multi-configuration methods

CASSCF, CASPT2, ...

limited to small systems (up to 40 atoms)

preview QM/MM (see also Bernd)

hybrid quantum mechanics/molecular mechanics on the fly QM/MM MD simulations

computational photochemistry

goals

- mechanistic details
- interpretation of measurements
- control photoreactivity

biological systems

Our ultimate goal

arteficial molecular machines

Light driven molecular motors

design principle

Light driven molecular motors

chiral over-croweded alkenes

catching the photo-isomerizations in the act

improve isomerization quantum yield (towards 100%)

catching the photo-isomerizations in the act

improve isomerization quantum yield (towards 100%)

starting dynamics from S_0 transition states

improve overall rate (into picosecond regime)

starting dynamics from S_0 transition states

improve overall rate (into picosecond regime)

Get inspired by nature

e.g. photo-isomerization in photoactive yellow protein

learn & mimic the effect of the protein environment

Get inspired by nature

e.g. photo-isomerization in photoactive yellow protein learn & mimic the effect of the protein environment

Get inspired by nature

photo-isomerization in photoactive yellow protein

learn & mimic the effect of the protein environment

however....

still too complex, even in our simulations

all dishes served with examples!!!

Born-Oppenheimer Approximation central to chemistry separation slow (nuclear) and fast (electronic) motion light electrons: QM (HF, DFT, ...), classical (MM) heavy nuclei: QM (wavepacket/grid), classical (MD) crux: nuclei move on single electronic PES large energy gap between electronic states derivation of Born-Oppenheimer terms couple nuclear motion on different electronic PES break down of Born-Oppenheimer approximation small energy gap between electronic states near surface crossings (degeneracies) radiationless transition adiabatic and diabatic electronic states

molecular Schrödinger equation

$$H\Psi = i\hbar \frac{\partial}{\partial t}\Psi \qquad \quad H\Psi = E\Psi$$

molecular Hamilton operator

NN

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

with

$$\begin{split} T_N &= -\frac{1}{2} \sum_{i}^{N_N} \frac{\hbar^2}{M_i} \nabla_{\mathbf{R}}^2 \\ T_e &= -\frac{\hbar^2}{2m_e} \sum_{i}^{n_e} \nabla_{\mathbf{r}}^2 \\ U(\mathbf{r}, \mathbf{R}) &= \frac{e^2}{4\pi\epsilon_0} \left(\sum_{I}^{N_N} \sum_{J>I}^{N_N} \frac{Z_I Z_J}{|\mathbf{R}_A - \mathbf{R}_B|} - \sum_{I}^{N_N} \sum_{k}^{n_e} \frac{Z_I}{|\mathbf{r}_k - \mathbf{R}_B|} + \sum_{j}^{n_e} \sum_{k>j}^{n_e} \frac{1}{|\mathbf{r}_k - \mathbf{r}_j|} \right) \end{split}$$

molecular Hamilton operator

 $H = T_N + T_e + U(\mathbf{r}, \mathbf{R})$

step I: clamped nuclei

separation of fast and slow degrees of freedom

 $T_N = 0$

always possible, not an approximation!

wrong choice: strong coupling between 'fast' and 'slow' motions

consider only electronic degrees of freedom

 $H^e = T_e + U(\mathbf{r}, \mathbf{R})$

electronic Schrödinger equation in field of fixed nuclei $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

 $i \ge 1$: CI, SA-CASSCF, MRCI

electronic Schrödinger equation in field of fixed nuclei $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

electronic potential energy surface (PES)

electronic Schrödinger equation in field of fixed nuclei

diagonalize electronic Hamiltonian

 $H^e \psi_i(\mathbf{r}; \mathbf{R}) = V_i(\mathbf{R}) \psi_i(\mathbf{r}; \mathbf{R})$

solution form orthogonal basis (or can be made so)

adiabatic electronic states

$$\langle \psi_i | \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(\mathbf{r}; \mathbf{R})^* \psi_j(\mathbf{r}; \mathbf{R}) d\mathbf{r} = \delta_{ij}$$

electronic Schrödinger equation in field of fixed nuclei

diagonalize electronic Hamiltonian

 $H^e \psi_i(\mathbf{r};\mathbf{R}) = V_i(\mathbf{R})\psi_i(\mathbf{r};\mathbf{R})$

solution form orthogonal basis

adiabatic electronic states

$$\langle \psi_i | \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(\mathbf{r}; \mathbf{R})^* \psi_j(\mathbf{r}; \mathbf{R}) d\mathbf{r} = \delta_{ij}$$

Born representation: expansion in electronic basis

expansion coefficients are nuclear wavefunctions

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r};\mathbf{R}),$$

no approximations so far!

molecular wavefunction in Born representation

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r}; \mathbf{R}),$$
$$H^{e} \psi_{i}(\mathbf{r}; \mathbf{R}) = V_{i}(\mathbf{R}) \psi_{i}(\mathbf{r}; \mathbf{R})$$

molecular hamiltonian

$$H = T_N + T_e + U(\mathbf{r}, \mathbf{R}) = T_N + H^e(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t} \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} \langle \psi_i | H | \psi_j \rangle \chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t} \sum_{j} \langle \psi_i | \psi_j \rangle \chi_j(\mathbf{R})$$

using short-hand notation

$$H_{ij}(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | H | \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$
$$= \langle \langle \psi_i(\mathbf{r}; \mathbf{R}) | T_N | \psi_j(\mathbf{r}; \mathbf{R}) \rangle + V_i(\mathbf{R}) \delta_{ij}$$

coupled differential equations

$$\sum_{j} H_{ij}(\mathbf{R}) \chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t} \chi_i(\mathbf{R})$$

elements of nuclear kinetic energy matrix

$$\langle \psi_i | T_N | \psi_j \rangle = \frac{-\hbar^2}{2M_k} \langle \psi_i | \nabla_{\mathbf{R}}^2 | \psi_j \rangle$$

$$= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \nabla_{\mathbf{R}} \cdot \nabla_{\mathbf{R}} | \psi_j \rangle \right)$$

 $= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \nabla_{\mathbf{R}} | [\nabla_{\mathbf{R}} \psi_j] \rangle + \langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \rangle \nabla_{\mathbf{R}} \right)$

$$= \frac{-\hbar^2}{2M_k} \left(\left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}}^2 \psi_j \right] \right\rangle + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right] \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right\rangle \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right| \left[\left| \nabla_{\mathbf{R}} \psi_j \right| \right] \nabla_{\mathbf{R}} + \left\langle \psi_i \right$$

 $\langle \psi_i | [\nabla_{\mathbf{R}} \psi_j] \rangle \nabla_{\mathbf{R}} + \langle \psi_i | \psi_j \rangle \nabla_{\mathbf{R}}^2$

$$= \frac{-\hbar^2}{2M_k} \left(\langle \psi_i | \left[\nabla_{\mathbf{R}}^2 \psi_j \right] \rangle + 2 \langle \psi_i | \left[\nabla_{\mathbf{R}} \psi_j \right] \rangle \nabla_{\mathbf{R}} + \langle \psi_i | \psi_j \rangle \nabla_{\mathbf{R}}^2 \right)$$

$$= \frac{-\hbar^2}{2M_k} (G_{ij} + 2\mathbf{F}\nabla_{\mathbf{R}}) + T_N$$

$$= T_N \delta_{ij} - \Lambda_{ij}$$

substitute and multiply from left by $\langle \psi_i |$ and integrate

$$\sum_{j} H_{ij}(\mathbf{R}) \chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t} \chi_i(\mathbf{R})$$

collect all couplings in special operator $H_{ij}(\mathbf{R}) = [T_N + V_i(\mathbf{R})] \,\delta_{ij} - \Lambda_{ij}$

coupled equations

coupling between nuclear wavepackets on different electronic PES coupling due to nuclear kinetic energy operator operating on electrons kind of resonance with energy exchange

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t}\chi_i(\mathbf{R})$$
coupled equations

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t}\chi_i(\mathbf{R})$$

non-adiabatic coupling operator matrix elements

$$\Lambda_{ij}(\mathbf{R}) = \sum_{k} \frac{\hbar^2}{2M_k} \left[2\mathbf{F}_{ij}^k(\mathbf{R}) \nabla_{\mathbf{R}_k} + G_{ij}^k(\mathbf{R}) \right]$$

with elements

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) |
abla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R})
angle$$
non-adiabatic coupling vector

$$G_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r}; \mathbf{R}) | \nabla_{\mathbf{R}_k}^2 \psi_j(\mathbf{r}; \mathbf{R}) \rangle$$
 scalar coupling inversely proportional to nuclear mass!

small terms due to mass difference, but...

Sunday, December 16, 2012

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

using the following relation

$$\nabla_{\mathbf{R}} H^{e}(\mathbf{r};\mathbf{R})\psi_{j}(\mathbf{r};\mathbf{R}) = \nabla_{\mathbf{R}} V_{j}(\mathbf{R})\psi_{j}(\mathbf{r};\mathbf{R})$$

and some lines of algebra to show that

Hellman-Feynmann term

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

... coupling inversely proportional to energy gap!

Sunday, December 16, 2012

non-adiabatic coupling matrix element

$$\mathbf{F}_{ij}^k(\mathbf{R}) = \langle \psi_i(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_k} \psi_j(\mathbf{r};\mathbf{R}) \rangle$$

no diagonal elements

$$\mathbf{F}_{ii}^k(\mathbf{R}) = 0$$

because

$$\nabla_{\mathbf{R}} \langle \psi_i | \psi_i \rangle = 0$$

$$\langle \nabla_{\mathbf{R}} \psi_i | \psi \rangle + \langle \psi_i | \nabla_{\mathbf{R}} \psi_i \rangle = 0$$

$$\langle \psi_i | \nabla_{\mathbf{R}} \psi \rangle + \text{c.c} = 0$$

nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t}\chi_i(\mathbf{R})$$

coupling between nuclear wavepackets on different PES

Born-Oppenheimer approximation: $\Lambda = \Lambda_{ii}$

$$[T_N + V_i(\mathbf{R}) + \Lambda_{ii}] \chi_i(\mathbf{R}) = i\hbar \frac{\partial}{\partial t} \chi_i(\mathbf{R})$$

nuclear wavepackets restricted to single electronic PES $\Psi_i^{\text{tot}}(\mathbf{R}, \mathbf{r}) = \chi_i(\mathbf{R})\psi_i(\mathbf{r}; \mathbf{R})$

co-ordinate .

energy

co-ordinate

adiabatic approximation: $\Lambda=0$

$$[T_N + V_i(\mathbf{R})] \chi_i(\mathbf{R}) = i\hbar \frac{\partial}{\partial t} \chi_i(\mathbf{R})$$

mostly used in quantum chemistry

nuclear Schrödinger in Born representation

$$[T_N + V_i(\mathbf{R})]\chi_i(\mathbf{R}) - \sum_j \Lambda_{ij}\chi_j(\mathbf{R}) = i\hbar \frac{\partial}{\partial t}\chi_i(\mathbf{R})$$

using atomic units and scaled coordinates

$$T_N = -\frac{1}{M} \nabla_{\mathbf{R}}^2$$
$$\Lambda_{ij} = \frac{1}{2M} \left(2\mathbf{F}_{ij} \cdot \nabla_{\mathbf{R}} + G_{ij} \right) \right)$$

$$\mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \qquad G_{ij} = \langle \psi_i | \nabla_{\mathbf{R}}^2 \psi_j \rangle$$

using atomic units and scaled coordinates

$$T_N = -\frac{1}{2M} \nabla_{\mathbf{R}}^2$$
$$\Lambda_{ij} = \frac{1}{2M} \left(2\mathbf{F}_{ij} \cdot \nabla_{\mathbf{R}} + G_{ij} \right)$$

$$\mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \qquad G_{ij} = \langle \psi_i | \nabla_{\mathbf{R}}^2 \psi_j \rangle$$

using the relation

$$\mathbf{G} = \nabla_{\mathbf{R}} \cdot \mathbf{F} + \mathbf{F} \cdot \mathbf{F}$$

one arrives (after some frustration) at

$$\left[-\frac{1}{2M}\left(\nabla_{\mathbf{R}} + \mathbf{F}\right)^{2} + \mathbf{V}\right]\boldsymbol{\chi} = i\frac{\partial}{\partial t}\boldsymbol{\chi}$$

Sunday, December 16, 2012

nuclear Schrödinger in vector notation

$$\left[-\frac{1}{2M}\left(\nabla_{\mathbf{R}} + \mathbf{F}\right)^{2} + \mathbf{V}\right]\boldsymbol{\chi} = i\frac{\partial}{\partial t}\boldsymbol{\chi}$$

dressed kinetic energy operator

$$\tilde{T}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

non local & non diagonal

couples nuclear dynamics on multiple electronic PES

induces radiationless transitions!

potential energy operator

local & diagonal

no coupling

non-adiabatic coupling vector

$$\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{j} - V_{i}}$$

inversely proportional with gap!

break down of adiabatic approximation!

non-adiabatic dynamics

multiple surfaces

branching

interference/coherence

photochemistry

intersection between adiabatic surfaces

adiabatic electronic basis

diagonal & local potential matrix $\langle \psi_i | H^e | \psi_j \rangle = \delta_{ij} V_j$

non-diagonal & non-local nuclear kinetic energy matrix

$$\langle \psi_i | T_N | \psi_j \rangle = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \left\langle \psi_i | \nabla_{\mathbf{R}} | \psi_j \right\rangle \right)^2$$

coupling in F

diabatic representation

non-diagonal & local potential matrix $\langle \varphi_i | H^e | \varphi_j \rangle = W_{ij}$ coupling in W

diagonal nuclear kinetic energy matrix

$$\langle \varphi_i | T_N | \varphi_j \rangle = -\frac{\delta_{ij}}{2M} \nabla_{\mathbf{R}}^2$$

Sunday, December 16, 2012

diabatic electronic basis

electronic character preserved

adiabatic electronic basis

electronic character mixed

diabatic representation

non-diagonal & local potential matrix

 $\langle \varphi_i | H^e | \varphi_j \rangle = W_{ij}$

diagonal nuclear kinetic energy matrix

$$\langle \varphi_i | T_N | \varphi_j \rangle = -\frac{\delta_{ij}}{2M} \nabla_{\mathbf{R}}^2$$

molecular Hamiltonian

$$H_{ij} = T_N \delta i j + W_{ij}$$

molecular Schrödinger equation

$$\sum_{j} H_{ij} \chi_{j} = T_{N} \chi_{i} + \sum_{j} W_{ij} \chi_{j} = i \frac{\partial}{\partial t} \chi_{i}$$
$$\mathbf{H} \boldsymbol{\chi} = [T_{N} \mathbf{I} + \mathbf{W}(\mathbf{R})] \boldsymbol{\chi} = i \frac{\partial}{\partial t} \boldsymbol{\chi}$$

construction of diabatic basis

unitary transformation for each nuclear configuration

$$\varphi_i(\mathbf{r}; \mathbf{R}) = \sum_j \psi_j(\mathbf{r}; \mathbf{R}) U_{ji}(\mathbf{R})$$

construction of diabatic Hamiltoniar

potential matrix

$$\mathbf{W} = \mathbf{U}^T \mathbf{V} \mathbf{U}$$

kinetic energy (diagonal)

 $T_N \mathbf{I} = \mathbf{U}^{\mathbf{T}} \tilde{\mathbf{T}}_{\mathbf{N}} \mathbf{U}$

construction of diabatic basis

unitary transformation for each nuclear configuration

$$\varphi_i(\mathbf{r};\mathbf{R}) = \sum_j \psi_j(\mathbf{r};\mathbf{R}) U_{ji}(\mathbf{R})$$

construction of diabatic Hamiltonian

kinetic energy (diagonal) $T_N^d \mathbf{1} = \mathbf{U}^{\dagger} \tilde{\mathbf{T}}_N \mathbf{U}$

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

construction of diabatic Hamiltonian

dressed kinetic energy operator

$$\tilde{\mathbf{T}}_N = -\frac{1}{2M} \left(\nabla_{\mathbf{R}} + \mathbf{F} \right)^2 \qquad \mathbf{F}_{ij} = \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle$$

transformation should nullify non-adiabatic coupling

$$\langle \varphi_i | \nabla_{\mathbf{R}} \varphi_j \rangle = \sum_k \sum_l U_{ik}(\mathbf{R}) \langle \psi_k | \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) \psi_l \rangle$$

 $= \sum_{k} \sum_{l} \left[U_{ik} (\mathbf{R} \langle \psi_k | \psi_l \rangle \nabla_{\mathbf{R}} U_{lj}(\mathbf{R}) + U_{ik}(\mathbf{R}) \langle \psi_k | \nabla_{\mathbf{R}} | \psi_l \rangle U_{lj}(\mathbf{R}) \right]$

$$= \sum_{k} U_{ik} \nabla_{\mathbf{R}} U_{kj} + \sum_{k} \sum_{l} U_{ik}(\mathbf{R}) \langle \psi_{k} | \nabla_{\mathbf{R}} | \psi_{l} \rangle U_{lj}(\mathbf{R})$$

find U such that

$$\mathbf{U^T}\mathbf{F}\mathbf{U} + \mathbf{U^T}\nabla_{\mathbf{R}}\mathbf{U} = \mathbf{0}$$

Born-Oppenheimer Approximation derivation separation between fast and slow degrees of freedom nuclei move on single adiabatic PES ignore non-adiabatic coupling breakdown small energy gap between electronic PES at intersections infinitenon-adiabatic coupling nuclear displacement couple different adiabatic states highly complicated nuclear wavefunction switch to diabatic basis only electronic coupling unitary transformation

surface crossings

funnels for photochemical reactions

conditions for crossing

adiabatic representation

two coordinates needed to locate intersection

two coordinates needed to lift degeneracy

topology of intersection

double cone

2N-8 dimensional hyperline

properties of intersection

Berry phase

singularity due to separation between electronic and nuclear motion

compensated by nuclear wavefunction (complicated!)

photoisomerization in bacteriorhodopsin

excited state decay via S_1/S_0 conical intersection

CASSCF/OPLS & diabatic hopping

photoisomerization in bacteriorhodopsin excited state decay via S₁/S₀ conical intersection

CASSCF/OPLS & diabatic hopping

adiabatic surfaces

 $H^e \psi_i(\mathbf{r};\mathbf{R}) = V_i(\mathbf{R})\psi_i(\mathbf{r};\mathbf{R})$

can cross (are degenerate)

 $V_i(\mathbf{R}) = V_j(\mathbf{R})$

break-down of Born-Oppenheimer

non-adiabatic coupling becomes infinite! $\mathbf{F}_{ij}^{k}(\mathbf{R}) = \frac{\langle \psi_{i}(\mathbf{r};\mathbf{R}) | \nabla_{\mathbf{R}_{k}} H^{e} | \psi_{j}(\mathbf{r};\mathbf{R}) \rangle}{V_{i} - V_{i}}$

switch to diabatic basis

no non-adiabatic coupling

back to adiabatic basis by diagonalizing ${\bf W}$

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

construct mixed diabatic/adiabatic basis at ${\bm R}_0$

via unitary transformation

 $\{\varphi_2,\varphi_1,\psi_3,...,\psi_n\}$

orthonormal

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \quad \langle \varphi_I | \varphi_J \rangle = \delta_{IJ} \quad \langle \varphi_I | \psi_j \rangle = 0$$

diabatic and adiabatic energies for two lowest states

$$E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$$

adiabatic wavefunctions

$$\psi_1 = c_{11}\varphi_1 + c_{12}\varphi_2 \qquad \psi_2 = c_{21}\varphi_1 + c_{22}\varphi_2$$

Sunday, December 16, 2012

degeneracy between two electronic states at \mathbf{R}_0 $V_1(\mathbf{R}_0) = V_2(\mathbf{R}_0)$

transformation to mixed diabatic/adiabatic basis at ${f R}_0$

diabatic electronic energies $E_1(\mathbf{R}_0) = E_2(\mathbf{R}_0) = V_1(\mathbf{R}_0) = V_1(\mathbf{R}_0)$ $\mathbf{W}(\mathbf{R}_0) = \mathbf{V}(\mathbf{R}_0)$ $W_{ij} = H_{ij} = \langle \varphi_i | H^e | \varphi_j \rangle$ $\mathbf{W}(\mathbf{R}_0) = \begin{pmatrix} H_{11}(\mathbf{R}_0) & H_{12}(\mathbf{R}_0) \\ H_{12}(\mathbf{R}_0) & H_{22}(\mathbf{R}_0) \end{pmatrix}$

degeneracy between two electronic states at \mathbf{R}_0

diabatic electronic energies

$$\mathbf{W}(\mathbf{R_0}) = \begin{pmatrix} H_{11}(\mathbf{R_0}) & H_{12}(\mathbf{R_0}) \\ H_{12}(\mathbf{R_0}) & H_{22}(\mathbf{R_0}) \end{pmatrix}$$

adiabatic electronic energies

diagonalize W

$$V_1(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) - \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$
$$V_2(\mathbf{R_0}) = \left(\frac{H_{11} + H_{22}}{2}\right) + \sqrt{\left(\frac{H_{11} - H_{22}}{2}\right)^2 + H_{12}^2}$$

degeneracy (crossing) if

$$H_{11} = H_{22} \wedge H_{12} = 0$$

independent: 2 coordinates required to locate degeneracy

degeneracy preserved in N-8 remaining internal coordinates

topology of intersection expand W around \mathbf{R}_0 $\mathbf{W}(\mathbf{R} - \mathbf{R}_0) = \mathbf{W}^{(0)} + \mathbf{W}^{(1)} + \mathbf{W}^{(2)} + ...$

zeroth order term

$$\mathbf{W}^{(0)} = \frac{E_A + E_B}{2} \mathbf{1} + \begin{pmatrix} -\frac{E_B - E_A}{2} & 0 \\ 0 & \frac{E_B - E_A}{2} \end{pmatrix}$$

offset, set to zero for convenience $\mathbf{W}^{(0)} = \mathbf{0}$

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta$$

$$\Delta \mathbf{R} = \mathbf{R}_0 - \mathbf{R}$$

Sunday, December 16, 2012

topology of intersection

first order term

$$\mathbf{W}^{(1)} = \begin{pmatrix} \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} + \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} H_{12} \cdot \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} + H_{22}}{2} \right) \cdot \Delta \mathbf{R} - \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{22}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta \mathbf{R} & \nabla_{\mathbf{R}} \left(\frac{H_{11} - H_{12}}{2} \right) \Delta$$

average gradient vector

$$\mathbf{s} = \nabla_{\mathbf{R}} \frac{H_{11} + H_{22}}{2} |\mathbf{R}_0|$$

gradient difference vector

$$\mathbf{g} = \nabla_{\mathbf{R}} \frac{H_{11} - H_{22}}{2} |\mathbf{R}_0|$$

derivative coupling vector

$$\mathbf{h} = \nabla_{\mathbf{R}} H_{12} |\mathbf{R}_0|$$

Sunday, December 16, 2012

topology of intersection

keeping only terms to first order

 $\mathbf{W}(\Delta \mathbf{R}) \approx \mathbf{W}^{(0)} + \mathbf{W}^{(1)}$

set zeroth order term to zero (just an offset)

$$\mathbf{W}(\Delta \mathbf{R}) pprox \left(egin{array}{ccc} \mathbf{s} \cdot \Delta \mathbf{R} + \mathbf{g} \cdot \Delta \mathbf{R} & \mathbf{h} \cdot \Delta \mathbf{R} \\ \mathbf{h} \cdot \Delta \mathbf{R} & \mathbf{s} \cdot \mathbf{\Delta R} - \mathbf{g} \cdot \mathbf{\Delta R} \end{array}
ight)$$

diagonalize to get adiabatic PES

$$V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$$
$$V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$$

topology of intersection eigenvalues of W $V_1(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} - \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$ $V_2(\Delta \mathbf{R}) = \mathbf{s} \cdot \Delta \mathbf{R} + \sqrt{(\mathbf{g} \cdot \Delta \mathbf{R})^2 + (\mathbf{h} \cdot \Delta \mathbf{R})^2}$ double cone in branching space (g-h space) adiabatic surfaces touch at tip average gradient projected on g-h gives tilt of cone \boldsymbol{g} Sr

back to adiabatic basis

degeneracy requires (to first order) that

 $\mathbf{g} \cdot \Delta \mathbf{R} = 0 \wedge \mathbf{h} \cdot \Delta \mathbf{R}$

independent: accidental same-symmetry intersection

two coordinate need to change to locate intersection

single degree of freedom: non-crossing rule in diatomics

degeneracy lifted in branching space

degeneracy maintained in 3N-8 remaining degree of freedom

back to adiabatic basis

degeneracy lifted in branching space

 $\mathbf{x}_1 = \|\mathbf{g}\| \quad \mathbf{x}_2 = \|\mathbf{h}\|$

degeneracy maintained in 3N-8 remaining degree of freedom

tri-atomics: hypothetical example

average gradient (s)determines tilt of double cone peaked

photoreactivity $\mathbf{s} \cdot \mathbf{g} pprox \mathbf{0} \quad \mathbf{s} \cdot \mathbf{h} pprox \mathbf{0}$ sloped photostability $\mathbf{s} \cdot \mathbf{g} > \mathbf{0}$ all are 3N-8 dimensional hyperlines impossible to hit compare point in plane possible to get near

coupling strong enough for transition

they are everywhere!

Berry phase

adiabatic wavefunctions

$$\begin{split} \psi_2 &= c_{21}\varphi_1 + c_{22}\varphi_2 & \psi_1 = c_{11}\varphi_1 + c_{12}\varphi_2 \\ \text{small displacement in 2D branching space (diabatic basis)} \\ \mathbf{x}_1 &= \|\mathbf{g}\| \quad \mathbf{x}_2 = \|\mathbf{h}\| \end{split}$$

polar coordinates

$$x_2 = R\sin\theta \quad x_1 = R\cos\theta \quad R = \sqrt{x_1^2 + x_2^2}$$

assume zero tilt angle

$$W \approx \begin{pmatrix} x_1 & x_2 \\ x_2 & -x_1 \end{pmatrix} = \begin{pmatrix} R\cos\theta & R\sin\theta \\ R\sin\theta & -R\cos\theta \end{pmatrix}$$

adiabatic energies

$$V_2 = R \quad V_1 = -R$$

adiabatic eigenfunctions

$$\psi_1 = \sin \frac{\theta}{2} \varphi_1 - \cos \frac{\theta}{2} \varphi_2 \qquad \psi_2 = -\sin \frac{\theta}{2} \varphi_1 + \cos \frac{\theta}{2} \varphi_2$$

Berry phase

adiabatic wavefunctions

$$\psi_1 = \sin \frac{\theta}{2} \varphi_1 - \cos \frac{\theta}{2} \varphi_2 \qquad \psi_2 = -\sin \frac{\theta}{2} \varphi_1 + \cos \frac{\theta}{2} \varphi_2$$

rotate 360° around apex in branching space

 $\psi_1(\theta + 2\pi) = +\sin\left[\frac{\theta}{2} + \pi\right]\varphi_1 + \cos\left[\frac{\theta}{2} + \pi\right]\varphi_2$

$$= -\sin\left[\frac{\theta}{2}\right]\varphi_{1} + \cos\left[\frac{\theta}{2}\right]\varphi_{2}$$
$$= -\psi_{1}(\theta)$$
$$\psi_{1} \qquad S_{1}$$

g

 Ψ_2

. **φ+**π

 S_0

h

 Ψ_1

singularity in electronic wavefunctions separation of nuclear and electronic coordinate

Berry phase

adiabatic wavefunctions

$$\psi_1 = \sin \frac{\theta}{2} \varphi_1 - \cos \frac{\theta}{2} \varphi_2 \qquad \psi_2 = -\sin \frac{\theta}{2} \varphi_1 + \cos \frac{\theta}{2} \varphi_2$$

rotate 360° around apex in branching space

 $\psi_2(\theta + 2\pi) = -\sin\left[\frac{\theta}{2} + \pi\right]\varphi_1 + \cos\left[\frac{\theta}{2} + \pi\right]\varphi_2$

 Ψ_1

 S_0

Berry phase

adiabatic wavefunctions

$$\psi_1 = \sin \frac{\theta}{2} \varphi_1 - \cos \frac{\theta}{2} \varphi_2 \qquad \psi_2 = -\sin \frac{\theta}{2} \varphi_1 + \cos \frac{\theta}{2} \varphi_2$$

rotate 180° around apex in branching space

$$\psi_2(\theta + \pi) = -\sin\left[\frac{\theta + \pi}{2}\right]\varphi_1 + \cos\left[\frac{\theta + \pi}{2}\right]\varphi_2$$

$$= \cos \left[\frac{\theta}{2}\right] \varphi_1 - \cos \left[\frac{\theta}{2}\right] \varphi_2$$

$$= -\psi_1(\theta)$$

singularity in electronic wavefunctions
separation of nuclear and electronic coordinate

 S_0

Berry phase

adiabatic wavefunctions

$$\psi_1 = \sin \frac{\theta}{2} \varphi_1 - \cos \frac{\theta}{2} \varphi_2 \qquad \psi_2 = -\sin \frac{\theta}{2} \varphi_1 + \cos \frac{\theta}{2} \varphi_2$$

rotate 180° around apex in branching space $\psi_1(\theta + \pi) = \sin\left[\frac{\theta + \pi}{2}\right]\varphi_1 - \cos\left[\frac{\theta + \pi}{2}\right]\varphi_2$

singularity in electronic wavefunctions separation of nuclear and electronic coordinate used for diabatic surface hopping

Conical Intersection

- summary
 - adiabatic states can become degenerate
 - two independent conditions
 - two coordinates to find/lift degeneracy: branching coordinates
 - degeneracy maintained in remaining degrees of freedom
 - conical intersection
 - Berry phase
 - modelling nuclear dynamics near conical intersection non-adiabatic molecular dynamics

- incorporating electronic transitions
 - regions of non-adiabatic coupling
 - break down of Born-Oppenheimer approximation
 - conical intersections
- quantum dynamics
 - diabatic & adiabatic basis

classical molecular dynamics with electronic transitions

- only non-adiabatic quantum effects
- no barrier tunneling
- no zero-point energy

time-evolution of electrons and nuclei

Born Representation (no approximation)

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r};\mathbf{R}),$$

quantum mechanics for nuclear degrees of freedom

pre-computed potential energy surfaces low dimensional systems: $N_{\rm grid}^{\rm Dim}$ computations

time-evolution of electrons and nuclei

Born Representation (no approximation)

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r};\mathbf{R}),$$

quantum mechanics for nuclear degrees of freedom

pre-computed potential energy surfaces low dimensional systems: $N_{\rm grid}^{\rm Dim}$ computations

time-evolution of electrons and nuclei

Born Representation (still correct)

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r};\mathbf{R}),$$

classical mechanics for nuclear degrees of freedom on-the-fly: compute forces (and/or hessians) at each timestep high dimensional systems: $N_{\rm steps}$

time-evolution of electrons and nuclei

Born Representation (still correct)

$$\Psi(\mathbf{r},\mathbf{R}) = \sum_{j} \chi_{j}(\mathbf{R}) \psi_{j}(\mathbf{r};\mathbf{R}),$$

classical mechanics for nuclear degrees of freedom on-the-fly: compute forces (and/or hessians) at each timestep high dimensional systems: $N_{\rm steps}$

molecular dynamics with electronic transitions

Ehrenfest dynamics

no detailed balance

incorrect asymptotic limit: mixed state

fewest switches surface hopping (FSSH)

ensemble method

artificial coherence

ad hoc energy (& momentum) conservation

full multiple spawning (FMS)

frozen gaussian wavepacket

centroid to evaluate forces and Hessian

multiple trajectories spawned

diabatic hopping

approximate diabatic surfaces

energy & momentum conserved

Ehrenfest dynamics

time-dependent Schrödinger equation for electrons

expansion in adiabatic electronic basis

$$\phi(\mathbf{r}, t; \mathbf{R}) = \sum_{j} c_{j}(t) \psi_{j}(\mathbf{r}; \mathbf{R})$$

classical nuclei

$$\frac{\partial^2}{\partial t^2} \mathbf{R} = -\nabla_{\mathbf{R}} V^{tot}(\mathbf{R}, t)$$

total energy expression

$$E = \langle \phi(\mathbf{r}, t; \mathbf{R}) | H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle + \sum_i \frac{1}{2} M_i \left(\frac{\partial \mathbf{R}_i}{\partial t} \right)^2$$

electronic & nuclear potential energy

nuclear kinetic energy

conservation of energy

$$\frac{dE}{dt} = 0$$

Ehrenfest dynamics

conservation of energy

to derive equations of motion

$$\frac{d}{dt} \left[\langle \phi(\mathbf{r}, t; \mathbf{R}) | H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle + \sum_i \frac{1}{2} M_i \left(\frac{\partial \mathbf{R}_i}{\partial t} \right)^2 \right] = 0$$

using

$$\frac{d}{dt} = \frac{\partial}{\partial \mathbf{R}} \frac{\partial \mathbf{R}}{\partial t}$$

to arrive at

 $\langle \frac{\partial}{\partial t} \phi(\mathbf{r}, t; \mathbf{R}) | H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle + \langle \phi(\mathbf{r}, t; \mathbf{R}) | \nabla_{\mathbf{R}} H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle \frac{\partial \mathbf{R}}{\partial t}$

 $+\langle \phi(\mathbf{r},t;\mathbf{R})|H_e(\mathbf{R})|\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})\rangle + \sum_i M_i \frac{\partial^2 \mathbf{R}_i}{\partial t^2} \frac{\partial \mathbf{R}_i}{\partial t} =$

Ehrenfest dynamics

conservation of energy

 $\langle \frac{\partial}{\partial t} \phi(\mathbf{r}, t; \mathbf{R}) | H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle + \langle \phi(\mathbf{r}, t; \mathbf{R}) | \nabla_{\mathbf{R}} H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle \frac{\partial \mathbf{R}}{\partial t}$

 $+\langle \phi(\mathbf{r},t;\mathbf{R})|H_e(\mathbf{R})|\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})\rangle + \sum_i M_i \frac{\partial^2 \mathbf{R}_i}{\partial t^2} \frac{\partial \mathbf{R}_i}{\partial t} = 0$

using time-dependent Schrödinger equation

C.C.

$$H_e\phi = i\hbar\frac{\partial}{\partial t}\phi$$

to arrive at

 $i\hbar\langle \frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})|\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})\rangle + \langle\phi(\mathbf{r},t;\mathbf{R})|\nabla_{\mathbf{R}}H_{e}(\mathbf{R})|\phi(\mathbf{r},t;\mathbf{R})\rangle\frac{\partial\mathbf{R}}{\partial t}$

 $-i\hbar \langle \frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})|\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})\rangle + \sum_{i} M_{i} \frac{\partial^{2}\mathbf{R}_{i}}{\partial t^{2}} \frac{\partial\mathbf{R}_{i}}{\partial t} =$

Ehrenfest dynamics

conservation of energy

 $i\hbar\langle \frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})|\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})\rangle + \langle\phi(\mathbf{r},t;\mathbf{R})|\nabla_{\mathbf{R}}H_{e}(\mathbf{R})|\phi(\mathbf{r},t;\mathbf{R})\rangle\frac{\partial\mathbf{R}}{\partial t}$

$$-i\hbar\langle\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})|\frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R})\rangle + \sum_{i}M_{i}\frac{\partial^{2}\mathbf{R}_{i}}{\partial t^{2}}\frac{\partial\mathbf{R}_{i}}{\partial t} = 0$$

$$\left[\langle\phi(\mathbf{r},t;\mathbf{R})|\nabla_{\mathbf{R}}H_{e}(\mathbf{R})|\phi(\mathbf{r},t;\mathbf{R})\rangle + \mathbf{M}\frac{\partial^{2}\mathbf{R}}{\partial t^{2}}\right]\frac{\partial\mathbf{R}}{\partial t} = 0$$

equations of motion

Newtonian dynamics with Hellmann-Feynman forces

$$\mathbf{M}\frac{\partial^2 \mathbf{R}}{\partial t^2} = -\langle \phi(\mathbf{r}, t; \mathbf{R}) | \nabla_{\mathbf{R}} H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle$$

time-dependent Schrödinger equation along classical trajectory

$$i\hbar \frac{\partial}{\partial t}\phi(\mathbf{r},t;\mathbf{R}) = H^e(\mathbf{R})\phi(\mathbf{r},t;\mathbf{R})$$

Sunday, December 16, 2012

Ehrenfest dynamics

equations of motion for electronic wavefunction

electronic wavefunction

$$\phi(\mathbf{r}, t; \mathbf{R}) = \sum_{j} c_{j}(t) \psi_{j}(\mathbf{r}; \mathbf{R})$$

time-dependent Schrödinger equation along classical trajectory $\mathbf{R}(t)$

$$i\hbar \frac{\partial}{\partial t}\phi(\mathbf{r}, t, \mathbf{R}) = H^e(\mathbf{R})\phi(\mathbf{r}, t, \mathbf{R})$$

time-dependence explicit in coefficients

$$i\hbar \frac{\partial}{\partial t} \sum_{j} c_j(t) \psi_j(\mathbf{r}; \mathbf{R}) = H^e(\mathbf{R}) \sum_{j} c_j(t) \psi_j(\mathbf{r}; \mathbf{R})$$

multiply by adiabatic state *i* and integrate over electronic coordinates

$$i\hbar\sum_{j}\frac{\partial c_{j}}{\partial t}\langle\psi_{i}|\psi_{j}\rangle + i\hbar\sum_{j}c_{j}\langle\psi_{i}|\frac{\partial}{\partial t}\psi_{j}\rangle = \sum_{j}c_{j}\langle\psi_{i}|H^{e}|\psi_{j}\rangle$$

Sunday, December 16, 2012

Ehrenfest dynamics

quantum dynamics for electrons

multiply by adiabatic state i and integrate

$$i\hbar\sum_{j}\frac{\partial c_{j}}{\partial t}\langle\psi_{i}|\psi_{j}\rangle + i\hbar\sum_{j}c_{j}\langle\psi_{i}|\frac{\partial}{\partial t}\psi_{j}\rangle = \sum_{j}c_{j}\langle\psi_{i}|H^{e}|\psi_{j}\rangle$$

again, use

$$\frac{d}{dt} = \frac{\partial}{\partial \mathbf{R}} \frac{\partial \mathbf{R}}{\partial t}$$

and orthogonality of adiabatic basis to arrive at

$$\frac{\partial c_i}{\partial t} = -\frac{i}{\hbar} V_i c_i(t) - \sum_j c_j(t) \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t}$$

coupled first-order differential equations

Ehrenfest dynamics

mixed quantum/classical dynamics

time-dependent electronic wavefunction

$$\phi(\mathbf{r}, t; \mathbf{R}) = \sum_{j} c_{j}(t) \psi_{j}(\mathbf{r}; \mathbf{R})$$

classical nuclei

equations of motion

Newtonian dynamics with Hellmann-Feynman forces

$$\mathbf{M}\frac{\partial^2 \mathbf{R}}{\partial t^2} = -\langle \phi(\mathbf{r}, t; \mathbf{R}) | \nabla_{\mathbf{R}} H_e(\mathbf{R}) | \phi(\mathbf{r}, t; \mathbf{R}) \rangle$$

coupled first-order differential equations

$$\frac{\partial c_i}{\partial t} = -\frac{i}{\hbar} V_i(\mathbf{R}) c_i(t) - \sum_j c_j(t) \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t}$$

Ehrenfest dynamics

density matrix notation

$$\rho_{ij}(t) = c_i(t)c_j^*(t)$$

populations of electronic states: diagonal $\rho_{kk}(t)$

time evolution (Liouville-Von Neumann)

$$\begin{aligned} \frac{\partial}{\partial t}\rho_{kl} &= c_l^* \frac{\partial}{\partial t} c_k + c_k \frac{\partial}{\partial t} c_l^* \\ &= -c_k c_l^* \frac{i}{\hbar} V_k - c_l^* \sum_j c_j \langle \psi_k | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t} \\ &+ c_k c_l^* \frac{i}{\hbar} V_l - c_k \sum_j c_j^* \langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle^* \cdot \frac{\partial \mathbf{R}}{\partial t} \end{aligned}$$

Ehrenfest dynamics

density matrix notation

time-evolution

$$\frac{\partial}{\partial t}\rho_{kl} = -c_k c_l^* \frac{i}{\hbar} V_k - \sum_j c_j c_l^* \langle \psi_k | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t}$$

$$+c_k c_l^* \frac{i}{\hbar} V_l - \sum_j c_k c_j^* \langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle^* \cdot \frac{\partial \mathbf{R}}{\partial t}$$

adiabatic basis

$$\nabla_{\mathbf{R}} \langle \psi_l | \psi_j \rangle = 0$$

$$\langle \nabla_{\mathbf{R}} \psi_l | \psi_j \rangle + \langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle = 0$$

$$\langle \nabla_{\mathbf{R}} \psi_l | \psi_j \rangle = -\langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle$$

complex conjugate of non-adiabatic coupling vector

$$\langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle^* \quad = \quad \langle \nabla_{\mathbf{R}} \psi_j | \psi_l \rangle$$

$$= -\langle \psi_j | \nabla_{\mathbf{R}} \psi_l \rangle$$

Ehrenfest dynamics

density matrix notation

time-evolution

$$\frac{\partial}{\partial t}\rho_{kl} = -c_k c_l^* \frac{i}{\hbar} V_k - \sum_j c_j c_l^* \langle \psi_k | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t} + c_k c_l^* \frac{i}{\hbar} V_l - \sum_j c_k c_j^* \langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle^* \cdot \frac{\partial \mathbf{R}}{\partial t}$$

using that in the adiabatic basis

$$\langle \psi_l | \nabla_{\mathbf{R}} \psi_j \rangle^* = \langle \nabla_{\mathbf{R}} \psi_j | \psi_l \rangle$$
$$= -\langle \psi_j | \nabla_{\mathbf{R}} \psi_l \rangle$$

one arrives at

$$\frac{\partial}{\partial t}\rho_{kl} = -c_k c_l^* \frac{i}{\hbar} V_k - \sum_j c_j c_l^* \langle \psi_k | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t} + c_k c_l^* \frac{i}{\hbar} V_l + \sum_j c_k c_j^* \langle \psi_j | \nabla_{\mathbf{R}} \psi_l \rangle \cdot \frac{\partial \mathbf{R}}{\partial t}$$

Ehrenfest dynamics

density matrix notation

time-evolution

$$\frac{\partial}{\partial t}\rho_{kl} = -c_k c_l^* \frac{i}{\hbar} V_k - \sum_j c_j c_l^* \langle \psi_k | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t} + c_k c_l^* \frac{i}{\hbar} V_l + \sum_j c_k c_j^* \langle \psi_j | \nabla_{\mathbf{R}} \psi_l \rangle \cdot \frac{\partial \mathbf{R}}{\partial t}$$

rearranging

$$\frac{\partial}{\partial t}\rho_{kl} = -\frac{i}{\hbar} \left[V_k - V_l \right] \rho_{kl} + \sum_j \left[\rho_{kj} \mathbf{F}_{jl} - \rho_{jl} \mathbf{F}_{kj} \right] \cdot \frac{\partial \mathbf{R}}{\partial t}$$

some more rearranging, and in different notation

$$i\hbar\dot{\rho}_{kl} = \sum_{l}\rho_{jl}\left\{\left[V_{j}\delta_{kj} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{kj}\right] - \rho_{kj}\left[V_{j}\delta_{jl} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{jl}\right]\right\}$$

where I used

$$\left[V_k - V_l\right]\rho_{kl} = \sum_j \left[\rho_{jl}V_j\delta_{kj} - \rho_{kj}V_j\delta_{jl}\right]$$

Sunday, December 16, 2012

Ehrenfest dynamics

density matrix notation

$$\rho_{ij}(t) = c_i(t)c_j^*(t)$$

populations of electronic states

$$\rho_{kk}(t)$$

Liouville-Von Neumann equation

$$i\hbar\dot{\rho}_{kl} = \sum_{l}\rho_{jl}\left\{\left[V_{j}\delta_{kj} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{kj}\right] - \rho_{kj}\left[V_{j}\delta_{jl} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{jl}\right]\right\}$$

Newton equation

 $\mathbf{M}\ddot{\mathbf{R}} = -\langle \phi | \nabla_{\mathbf{R}} H | \phi \rangle$

$$= -\sum_{i} \sum_{j} c_{i}^{*}(t) c_{j}(t) \langle \psi_{i} | \nabla_{\mathbf{R}} H | \psi_{j} \rangle$$

 $= -\sum_{i} \sum_{j} \rho_{ji}(t) \langle \psi_{i} | \nabla_{\mathbf{R}} H | \psi_{j} \rangle = \sum_{i} \rho_{ii} \langle \psi_{i} | \nabla_{\mathbf{R}} H | \psi_{i} \rangle$

Ehrenfest dynamics

mixed electronic state

mixing due to non-adiabatic coupling

Ehrenfest dynamics

- mixed electronic state
 - mixing due to non-adiabatic coupling
 - wrong asymptotic limit

no detailed balance: energy flows into electronic wavefunction

Ehrenfest dynamics

asymptotic limit

surface hopping

- classical propagation of nuclei on single adiabatic PES
- stochastic hops between electronic state
 - classical ensemble ('swarm') reproduce quantum populations

surface hopping

electronic dynamics

primary wavefunction in adiabatic basis

$$\phi(\mathbf{r}, t; \mathbf{R}) = \sum_{j} c_{j}(t) \psi_{j}(\mathbf{r}; \mathbf{R})$$

time-evolution

$$\frac{\partial c_i}{\partial t} = -\frac{i}{\hbar} V_i c_i(t) - \sum_j c_j(t) \langle \psi_i | \nabla_{\mathbf{R}} \psi_j \rangle \cdot \frac{\partial \mathbf{R}}{\partial t}$$

nuclear dynamics

classical dynamics on single adiabatic potential energy surface

$$\mathbf{M}\frac{\partial^2}{\partial t^2}\mathbf{R} = -\langle \psi_i | \nabla_{\mathbf{R}} | \psi_i \rangle$$

make random hops between adiabatic surfaces according to $p_i(t) = |c_i(t)|^2$

average ensemble of trajectories to get quantum probabilities

surface hopping

electronic dynamics

primary wavefunction in adiabatic basis

$$\phi(\mathbf{r}, t; \mathbf{R}) = \sum_{j} c_{j}(t) \psi_{j}(\mathbf{r}; \mathbf{R})$$

density matrix evolution

$$i\hbar\dot{\rho}_{kl} = \sum_{l}\rho_{jl}\left\{\left[V_{j}\delta_{kj} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{kj}\right] - \rho_{kj}\left[V_{j}\delta_{jl} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{jl}\right]\right\}$$

nuclear dynamics

classical dynamics on single adiabatic potential energy surface

$$\mathbf{M}\frac{\partial^2}{\partial t^2}\mathbf{R} = -\langle \psi_i | \nabla_{\mathbf{R}} | \psi_i \rangle$$

make random hops between adiabatic surfaces according to $p_i(t) = \rho_{ii}(t)$

average ensemble of trajectories to get quantum probabilities

surface hopping

basic algorithm

hopping probabilities?

population-based surface hopping

naive algorithm

stochastic hop with probabilities

 $p_{i \to j}(t) \propto \rho_{jj}(t)$

coherent propagation electronic wavefunction: keep hopping

simulation time

fewest switches surface hopping (Tully) minimize the number of switches from state l to kduring small time interval

 $\delta \rho_{kk} \approx \dot{\rho}_{kk} \delta t$

 $\delta \rho_{ll} \approx -\delta \rho_{kk} \delta t$

time-derivative of density matrix

$$\frac{\partial}{\partial t}\rho_{kl} = -\frac{i}{\hbar} \left[V_k - V_l \right] \rho_{kl} + \sum_j \left[\rho_{kj} \mathbf{F}_{jl} - \rho_{jl} \mathbf{F}_{kj} \right] \cdot \frac{\partial \mathbf{R}}{\partial t}$$

fewest switches surface hopping (Tully)

minimize the number of switches from state l to k

time-derivative of density matrix

$$\frac{\partial}{\partial t}\rho_{kl} = -\frac{i}{\hbar} \left[V_k - V_l \right] \rho_{kl} + \sum_j \left[\rho_{kj} \mathbf{F}_{jl} - \rho_{jl} \mathbf{F}_{kj} \right] \cdot \frac{\partial \mathbf{R}}{\partial t}$$

diagonal elements (populations)

$$\frac{\partial}{\partial t}\rho_{kk} = \sum_{j} \left[\rho_{kj}\mathbf{F}_{jk} - \rho_{jk}\mathbf{F}_{kj}\right] \cdot \frac{\partial \mathbf{R}}{\partial t}$$

using again that in adiabatic basis

$$\mathbf{F}_{kj}^* = -\mathbf{F}_{jk}$$

we arrive at

$$\frac{\partial}{\partial t}\rho_{kk} = -\sum_{j} 2\Re\left\{\rho_{jk}\mathbf{F}_{kj}\right\} \cdot \frac{\partial \mathbf{R}}{\partial t} = \sum_{j} b_{kj}$$

Sunday, December 16, 2012

fewest switches surface hopping (Tully)

minimize the number of switches from state l to k

during small time interval (trajectory is on *l*)

$$\delta \rho_{kk} \approx \dot{\rho}_{kk} \delta t = b_{kl} \delta t \qquad b_{kl} = -2\Re \left\{ \rho_{lk} \mathbf{F}_{kl} \right\} \cdot \dot{\mathbf{R}}$$
$$\delta \rho_{ll} \approx -\delta \rho_{kk} = -b_{kl} \delta t$$

number of hops from l to k must exceed number hops from k to l

$$N_{l \to k}^{\text{hops}} - N_{k \to l}^{\text{hops}} = N_{\text{ens}} b_{kl} \delta t$$

minimal number of hops if

$$N_{k \to l}^{\text{hops}} = 0$$

then

$$p_{l \to k} = \frac{N_{\text{ens}} b_{kl}}{N_{\text{ens}} \rho_{ll}} \delta t = \frac{b_{kl}}{\rho_{ll}} \delta t \quad p_{l \to k} = \max \left[0, \frac{b_{kl}}{\rho_{ll}} \Delta t \right]$$
MD timester

fewest switches surface hopping

basic algorithm

stochastic hop with probabilities

$$p_{l\to k} = \max\left[0, \frac{b_{kl}}{\rho_{ll}}\Delta t\right] \qquad b_{kl} = -2\Re\left\{\rho_{lk}\mathbf{F}_{kl}\right\} \cdot \dot{\mathbf{R}}$$

coherent propagation of electronic wavefunction

fewest switches surface hopping

- conservation of energy after hopping
- adjust velocity parallel to non-adiabatic coupling vector
 - non-adiabatic force does (pos/neg) work to bring about transition

non-adiabatic force should change in momentum of nuclei

$$\dot{\mathbf{R}}_{i}^{\text{new}} = \dot{\mathbf{R}}_{i} - \gamma_{kj} \frac{\mathbf{F}_{kj}^{i}}{M_{i}}$$

kinetic energy after hopping

$$\sum_{i} \frac{1}{2} M_{i} (\dot{\mathbf{R}}_{i}^{\text{new}})^{2} = \sum_{i} \frac{1}{2} M_{i} \dot{\mathbf{R}}_{i}^{2} + (V_{k} - V_{j})$$
$$\sum_{i} \frac{1}{2} M_{i} \left(\dot{\mathbf{R}}_{i} - \gamma_{kj} \frac{\mathbf{F}_{kj}^{i}}{M_{i}} \right)^{2} = \sum_{i} \frac{1}{2} M_{i} \dot{\mathbf{R}}_{i}^{2} + (V_{k} - V_{j})$$

fewest switches surface hopping

conservation of energy after hopping

adjust velocity parallel to non-adiabatic coupling vector

$$\sum_{i} \frac{1}{2} M_i \left(\dot{\mathbf{R}}_i - \gamma_{kj} \frac{\mathbf{F}_{kj}^i}{M_i} \right)^2 = \sum_{i} \frac{1}{2} M_i \dot{\mathbf{R}}_i^2 + (V_k - V_j)$$

$$\sum_{i} \frac{1}{2} M_{i} \left(\dot{\mathbf{R}}_{i}^{2} - 2\gamma_{kj} \frac{\mathbf{F}_{kj} \cdot \dot{\mathbf{R}}_{i}}{M_{i}} + \gamma_{kj}^{2} \frac{|\mathbf{F}_{kj}^{i}|^{2}}{M_{i}^{2}} \right) = \sum_{i} \frac{1}{2} M_{i} \dot{\mathbf{R}}_{i}^{2} + (V_{k} - V_{j})$$

fewest switches surface hopping

conservation of energy after hopping

adjust velocity parallel to non-adiabatic coupling vector

$$\sum_{i} \frac{1}{2} M_{i} \left(\mathbf{R}_{i}^{2} - 2\gamma_{kj} \frac{\mathbf{F}_{kj} \cdot \dot{\mathbf{R}}_{i}}{M_{i}} + \gamma_{kj}^{2} \frac{|\mathbf{F}_{kj}^{i}|^{2}}{M_{i}} \right) = \sum_{i} \frac{1}{2} M_{i} \dot{\mathbf{R}}_{i}^{2} + (V_{k} - V_{j})$$
$$\sum_{i} \frac{1}{2} \gamma_{kj}^{2} \frac{|\mathbf{F}_{kj}^{i}|^{2}}{M_{i}} - \sum_{i} \gamma_{kj} \mathbf{F}_{kj}^{i} \cdot \dot{\mathbf{R}}_{i} - (V_{k} - V_{j}) = 0$$

introducing some definitions to make the thing readable

$$a_{kj}\gamma_{kj}^2 - b_{kj}\gamma_{kj} - (V_k - V_j) = 0$$

fewest switches surface hopping

conservation of energy after hopping

adjust velocity parallel to non-adiabatic coupling vector

$$a_{kj}\gamma_{kj}^2 - b_{kj}\gamma_{kj} - (V_k - V_j) = 0$$

solution

$$\gamma_{kj} = \begin{cases} \frac{b_{kj} + \sqrt{b_{kj}^2 + 4a_{kj}[V_k(\mathbf{R}) - V_j(\mathbf{R})]}}{2a_{kj}} &, b_{kj} < 0\\ \frac{b_{kj} - \sqrt{b_{kj}^2 + 4a_{kj}[V_k(\mathbf{R}) - V_j(\mathbf{R})]}}{2a_{kj}} &, b_{kj} \ge 0 \end{cases}$$

Sunday, December 16, 2012
fewest switches surface hopping

- coherent propagation
 - artificial coherence far from non-adiabatic region
 - problematic for new encounters
- washing out coherence
 - (i) reset density matrix after hop

$$\rho_{kk} = 1 \land \rho_{ij} = 0$$

fewest switches surface hopping

- coherent propagation
 - artificial coherence far from non-adiabatic region
 - problematic for new encounters

washing out coherence

- (i) reset density matrix after hop
- (ii) damp off-diagonal elements of density matrix (Tully)

$$i\hbar\dot{\rho}_{kl} = \sum_{l} \rho_{jl} \left\{ \left[V_{j}\delta_{kj} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{kj} \right] - \rho_{kj} \left[V_{j}\delta_{jl} - i\hbar\dot{\mathbf{R}}\cdot\mathbf{F}_{jl} \right] \right\}$$

$$-i\hbar\zeta(1-\delta_{kl})\rho_{kl}$$

"friction'

fewest switches surface hopping

- coherent propagation
 - artificial coherence far from non-adiabatic region
 - problematic for new encounters

washing out coherence

- (i) reset density matrix after hop
- (ii) damp off-diagonal elements of density matrix (Tully)
- (iii) damp coefficients (Truhlar, Granucci/Persico)

$$c'_{k} = c_{k} \exp\left[-\frac{\Delta t}{\tau_{km}}\right]$$
$$c'_{m} = c_{m} \sqrt{\left[\frac{1 - \sum_{k \neq m} |c'_{k}|^{2}}{|c_{m}|^{2}}\right]}$$
$$\tau_{km} = \frac{\hbar}{|V_{k} - V_{m}|} \left(1 + \frac{C}{E_{kin}}\right)$$

diabatic hopping

Landau-Zener model

one dimensional surface crossing: staying on diabatic surface

$$P_{1\to 0} = \exp\left[-\frac{1}{4}\pi\xi\right]$$

Massey parameter

$$\xi = \frac{\Delta E}{\hbar \mathbf{F}_{01} \partial Q / \partial t}$$

$$\mathbf{F}_{01} = \langle \psi_0 | \nabla_Q \psi_1 \rangle$$

probability of diabatic hop

interatomic distance

diabatic hopping

Landau-Zener model

one dimensional surface crossing

$$P_{1\to 0} = \exp\left[-\frac{1}{4}\pi\xi\right]$$

Massey parameter

$$\xi = \frac{\Delta E}{\hbar \mathbf{F}_{01} \partial Q / \partial t} \qquad \mathbf{F}_{01} = \langle \psi_0 | \nabla_Q \psi_1 \rangle$$

using

$$\langle \psi_0 | \frac{\partial}{\partial t} \psi_1 \rangle = \langle \psi_0 | \nabla_Q \psi_1 \rangle \frac{\partial}{\partial t} Q$$

to rewrite Massey parameter

$$\xi = \frac{\Delta E}{\hbar \langle \psi_0 | \partial / \partial t \psi_1 \rangle}$$

diabatic hopping

Landau-Zener model

one dimensional surface crossing

$$P_{1\to 0} = \exp\left[-\frac{1}{4}\pi\xi\right]$$

Massey parameter

$$\xi = \frac{\Delta E}{\hbar \langle \psi_0 | \partial / \partial t \psi_1 \rangle}$$

surface hopping algorithm

compute probability at every step to decide on hopping

how to compute the denominator?

 $\langle \psi_0 | \partial / \partial t \psi_1 \rangle$

diabatic hopping

computing denominator $\langle \psi_0 | \partial / \partial t \psi_1 \rangle$

at any time we have

 $\psi_1(t)$ and $\psi_0(t)$

during integration step these states mix due to non-adiabatic coupling

$$\psi_0(t + \Delta t) = \psi_0(t) + \beta \psi_1(t)$$

$$\psi_1(t + \Delta t) = \psi_1(t) - \beta \psi_0(t)$$

numerical differentiation (finite differencing)

$$\frac{\partial}{\partial t}\psi_1(t) \approx \frac{\psi_1(t+\Delta t) - \psi_1(t)}{\Delta t} = -\frac{\beta\psi_0}{\Delta t}$$
$$\frac{\partial}{\partial t}\psi_1 \approx -\frac{\beta}{\Delta t}$$

we also have that

$$\langle \psi_0(t) | \psi_1(t + \Delta t) \rangle = -\beta$$

diabatic hopping

computing denominator $\langle \psi_0 | \partial / \partial t \psi_1 \rangle$

numerical differentiation (finite differencing)

$$\langle \psi_0 | \frac{\partial}{\partial t} \psi_1 \rangle \approx -\frac{\beta}{\Delta t}$$

since

$$\langle \psi_0(t) | \psi_1(t + \Delta t) \rangle = -\beta$$

we can use the following approximation

$$\langle \psi_0 | \frac{\partial}{\partial t} \psi_1 \rangle \approx \psi_0(t) | \psi_1(t + \Delta t) \rangle / \Delta t$$

in principle hopping everywhere

in practice hopping restricted at intersection seam

diabatic hopping

- practical algorithm
 - restrict hopping to the seam: stay on 'diabatic' surface
 - monitor energy gap
 - upon passing seam in simulation we have from the Berry phase

Non-adiabatic molecular dynamics comparing diabatic hopping with fewest switches photoisomerization of protonated Schiff base aim a: find out if initial conditions determine outcome aim b: control outcome aim c: compare hopping algorithms

simulations

CASSCF(4,4)/6-31G*, diabatic & fewest switches surface hopping

QY: 44.6%/42.4%	
average lifetime: 5.8 fs/75.2 fs	
QY: 35.5%/34.8%	QY (both): 19.9 %/22.8%
average lifetime: 139.5 fs/83.7 fs	average lifetime: 60.2 fs/54.6 fs
Sunday, December 16, 2012	

excited-state	excited-state
QY: 44.6%/42.4%	0 fs
average lifetime: 5.8 fs/75.2 fs	
excited-state	excited-state
QY: 35.5%/34.8%	QY (both): 19.9 %/22.8%
average lifetime: 139.5 fs/83.7 fs	average lifetime: 60.2 fs/54.6 fs
Sunday, December 16, 0010	

excited-state	excited-state
QY: 44.6%/42.4%	0 fs
average lifetime: 5.8 fs/75.2 fs	
excited-state	excited-state
QY: 35.5%/34.8%	QY (both): 19.9 %/22.8%
average lifetime: 139.5 fs/83.7 fs	average lifetime: 60.2 fs/54.6 fs
Sunday, December 16, 0010	

excited-state	excited-state
QY: 44.6%/42.4%	0 fs
average lifetime: 5.8 fs/75.2 fs	
excited-state	excited-state
QY: 35.5%/34.8%	QY (both): 19.9 %/22.8%
average lifetime: 139.5 fs/83.7 fs	average lifetime: 60.2 fs/54.6 fs
Sunday, December 16, 0010	

excited-state	excited-state
QY: 44.6%/42.4%	0 fs
average lifetime: 5.8 fs/75.2 fs	
excited-state	excited-state
QY: 35.5%/34.8%	QY (both): 19.9 %/22.8%
average lifetime: 139.5 fs/83.7 fs	average lifetime: 60.2 fs/54.6 fs
Sunday, December 16, 0010	

classical/quantum dynamics

- electrons: time-dependent Schrödinger equation
- nuclei: Newton equation
- Ehrenfest dynamics
 - mean field: state-averaged adiabatic surface
- surface hopping
 - diabatic hopping
 - Tully's fewest switches surface hopping

main problem: accuracy of PES

excited state electronic structure

excited state electronic structure response based single reference methods time-dependent HF time-dependent DFT **Runge-Gross theorem** eom-coupled cluster multi-configuration methods full and truncated CI MCSCF CASSCF, RASSCF multi-reference approaches MRCI(SD) CASPT2 quantum Monte Carlo

response based single reference methods		
time-dependent HF		
time-dependent DFT	gradients	
Runge-Gross theorem	non-adiabatic coupling	
eom-coupled cluster		
multi-configuration methods		
full and truncated CI	gradients	
MCSCF	non-adiabatic coupling	
CASSCF, RASSCF	S ₁ /S ₀ degeneracy	
multi-reference approaches	gradients	
MRCI(SD)	non-adiabatic coupling	
CASPT2	S ₁ /S₀ degeneracy	
quantum Monte Carlo	S ₁ /S ₀ degeneracy	

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant (Pauli principle)

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \overline{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \overline{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \overline{\phi}_{n/2}(\mathbf{r}_n) \right]$

molecular orbitals

$$\hat{f}\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Fock operator

$$f_{ij} = \langle \phi_i(\mathbf{r}_1) | h(\mathbf{r}_1) | \phi_j(\mathbf{r}_1) \rangle + \sum_k \left\langle \phi_i(\mathbf{r}_1) \phi_k(\mathbf{r}_2) \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_1 - \mathbf{r}_2|} \right| \phi_k(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \right\rangle$$

basisset

$$\phi_{i}(\mathbf{r}_{1}) = \sum_{\alpha} c_{i\alpha} \chi_{\alpha}(\mathbf{r}_{1}) \qquad \text{density matrix}$$

$$\hat{f} = h + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma} \left\langle \chi_{\sigma} \left| \frac{2 - \hat{p}_{12}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \right| \chi_{\lambda} \right\rangle \qquad P_{\mu\nu} = 2 \sum_{a}^{\frac{1}{2}n_{e}} c_{\mu a} c_{\nu a}^{*}$$

iterative self-consistent solution procedure

restricted Hartree Fock in nutshell

one particle, mean field theory

Slater determinant

 $\psi_0(\mathbf{r}) = \det \left[\phi_1(\mathbf{r}_1) \bar{\phi}_1(\mathbf{r}_2) \phi_2(\mathbf{r}_3) \bar{\phi}_2(\mathbf{r}_4) \dots \phi_{n/2}(\mathbf{r}_{n-1}) \bar{\phi}_{n/2}(\mathbf{r}_n) \right]$

electron-electron correlation

static correlation

large separation of electrons in pair

near degeneracies: different spatial wavefunctions

multi-configuration SCF

dynamic correlation

short distance: cusp

not so dependent on orbitals/density

perturbation theory

simple distinction not always possible

configuration interaction

functions of one electron

expansion in one-electron functions

$$\phi(x_1) = \sum_i a_i \chi_i(x_1)$$

functions of two electrons

expansion in one-electron functions, keeping second electron fixed

$$\phi(x_1, x_2) = \sum_{i} a_i(x_2) \chi_i(x_1)$$

expansion of coefficients in one-electron functions

$$a(x_2) = \sum_j b_{ij} \chi_j(x_2)$$

so that

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} b_{ij} \chi_i(x_1) \chi_j(x_2)$$

configuration interaction

functions of two electrons

Pauli principle

$$\phi(x_1, x_2) = -\phi(x_2, x_1)$$

antisymmetric superposition

$$\phi(x_1, x_2) = \sum_{i} \sum_{j>i} b_{ij} \left[\chi_i(x_1) \chi_j(x_2) - \chi_j(x_1) \chi_i(x_2) \right]$$

in determinants

$$\phi(x_1, x_2) = \sum_{i} \sum_{j} \frac{1}{\sqrt{2}} b_{ij} \det \left[\chi_i(x_1) \chi_j(x_2) \right]$$

in general

n-electron wavefunction

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

full configuration interaction

exact solution (within finite basisset)

$$\Psi_{i} = \sum_{j} C_{ij} \psi_{j} = C_{i0} \psi_{0} + \sum_{ra} C_{ia}^{r} \psi_{a}^{r} + \sum_{\substack{a < b \\ r < s}} C_{iab}^{rs} \psi_{ab}^{rs} + \dots$$

truncated configuration interaction

ClSingles

excited states (higher roots)

no correlation in ground state

ClSinglesDoubles

stronger correlation in ground state

ClSinglesDoublesTriples

stronger correlation in excited states than in ground state

too expensive: number of configurations blows up

Sunday, December 16, 2012

. . .

excited state electronic structure truncated configuration interaction ClSingles, Double, Triples ... systematic number of configurations blows up multi-configuration SCF multiple configurations $\Psi_i = \sum_{j}^M C_{ij} \psi_j.$ Slater free to choose, not black box! optimize both CI and MO coefficients basis for higher level methods **MultiReferenceCl** single excitations double excitations $\Phi = \sum_{I} \left(K_{I} \Psi_{I} + \sum_{i,a} K_{Iia} \Psi_{Iia} + \sum_{i,a,j,b} K_{Iiajb} \Psi_{Iiajb} + \dots \right)$ i,a,j,ba root in MCSCF

of Slaters in each configuration in root

excited state electronic structure truncated configuration interaction ClSingles, Double, Triples ... systematic number of configurations blows up multi-configuration SCF multiple configurations $\Psi_i = \sum_j C_{ij} \psi_j.$ free to choose, not black box! optimize both CI and MO coefficients basis for higher level methods **MultiReferenceCl**

$$\Phi = \sum_{I} (K_{I}\Psi_{I} + \sum_{i,a} K_{Iia}\Psi_{Iia} + \sum_{i,a,j,b} K_{Iiajb}\Psi_{Iiajb} + \dots)$$
perturbation theory: CASPT2

multi-configuration SCF

- multiple configurations
 - free to choose
 - not black box

Complete Active Space SCF

select orbitals for full CI

CASSCF

recovers static correlation

near degeneracy

excited states

optimize second root in CI

problem: need expectation values involving both states

 $\langle \psi_{S_0} | \nabla_{\mathbf{R}} H | \psi_{S_1} \rangle$

problem: root flipping

state average CASSCF

same molecular orbitals for all states

optimize the weighted average energy

$$E^{\rm SA} = \sum_{i} \omega_i E_i$$

average density matrix

SA-CASSCF

same molecular orbitals for all states

sometimes orbitals change drastically upon excitation wavefunction is not variational minimum

$$\nabla_{\mathbf{R}} E = \nabla_{\mathbf{R}} \langle \psi | H | \psi \rangle$$
$$= \langle \nabla_{\mathbf{R}} \psi | H | \psi \rangle + \langle \psi | \nabla_{\mathbf{R}} H | \psi \rangle + \langle \psi | H | \nabla_{\mathbf{R}} \psi$$

$$\begin{split} \langle \nabla_{\mathbf{R}} \psi | H | \psi \rangle &= \langle \nabla_{\mathbf{c}_{\mathrm{MO}}} \psi | H | \psi \rangle \nabla_{\mathbf{R}} \mathbf{c}_{\mathrm{MO}} + \\ & \langle \nabla_{\mathbf{c}_{\mathrm{CI}}} \psi | H | \psi \rangle \nabla_{\mathbf{R}} \mathbf{c}_{\mathrm{CI}} + \end{split}$$

SA-CASSCF

quantities for surface hopping

expression for non-adiabatic coupling

$$\mathbf{F}_{ij}(\mathbf{R}) = \frac{\mathbf{h}_{ij}(\mathbf{R})}{V_i - V_j} + \sum_{a,b} c_{ia}^*(\mathbf{R}) c_{jb}(\mathbf{R}) \langle \psi_a | \nabla_{\mathbf{R}} \psi_b \rangle$$

$$\mathbf{h}_{ij}(\mathbf{R}) = \mathbf{C}_{i}^{\dagger}(\mathbf{R}) \nabla_{\mathbf{R}} \mathbf{H}^{\mathrm{cf}} \mathbf{C}_{j}(\mathbf{R})$$
$$\nabla_{\mathbf{R}} H_{ab}^{\mathrm{cf}}(\mathbf{R}) = \nabla_{\mathbf{R}} \langle \psi_{a} | H^{e}(\mathbf{r}, \mathbf{R} | \psi_{b} \rangle$$

expression for diabatic hop

$$\langle \psi_1(t) | \psi_2(t + \Delta t) \rangle = \mathbf{C}_1^t \cdot \mathbf{C}_2^{t + \Delta t}$$

Validation of quantum chemistry method effect of level of theory on S_1 surface isolated pCK⁻ chromophore SA-CASSCF(6,6)/3-21G SJS, seam single-bond twist energy excited state Stoled I delon allow trans single bond torsion S./S, seam conical intersection FC region energy twisted double-bond twist Stoled I delormation. double bond torsion rans ground state

Validation of quantum chemistry method

effect of level of theory on $S_{\rm I}$ surface

isolated pCK⁻ chromophore

level of theory	SB barrier (kJ/mol)	DB barrier(kJ/mol)
CASSCF(6,6)/3-21G	0.0	3.810
CASSCF(12,11)/6-31G(d)	0.007	9.442
CASSCF(12,11)/aug-cc-pVDZ	2.175	5.665
CASPT2/aug-cc-pVDZ	0.778	28.592
EOM-CCSD/aug-cc-pVDZ	3.859	14.698

consistent: PES seem qualitative correct

competing processes: barrier heights critical for branching!

Acknowledgements

Mike Robb IC London

funding

Martial Boggio-Pasqua (Toulouse, Fr.)

Nanoscale Photonic Imaging

Maike Clemens (Göttingen)

Carl Burmeister (Göttingen)

Fabian Knoch (Göttingen)

Universite

le Toulous

Lela Vukovic (Chicago)

Université Paul Sabatier

TOULOUSE III

