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Outline:

e Preamble: Born-Oppenheimer approximation

e \What are non-covalent interactions?
Quantum mechanical derivation

e How to compute intermolecular force fields ab initio?

e How to test intermolecular force fields?
Van der Waals molecules, spectra

e Illustration: ab initio force field for water, applications

e Molecular collisions, scattering resonances



Useful concepts:

e Molecular force fields (MM calculations)

e Interatomic / intermolecular forces (potential energy surfaces)
e Forces on atoms in solids

e Equilibrium structure, force constants of a molecule

e Chemical reaction paths (from QM calculations)

Exist only in the Born-Oppenheimer approximation



Born-Oppenheimer (adiabatic) approximation

Step 1:
Solve electronic Schrodinger equation
He ¢(r; R) = Ee(R) ¢(r; R)

for nuclei fixed at positions R.
Involves neglect of nuclear kinetic energy 1n.

Step 2:
Solve nuclear Schrodinger equation

[Th + Ee(R)] x(R) = Ex(R)

with potential energy surface Ee(R)
= vibrations, rotations, (phonons, librations),
chemical reaction dynamics, molecular collisions.



Alternative for step 2

Molecular dynamics (MD):
solve nuclear motions classically on potential surface Ee(R).



Derivation of the Born-Oppenheimer approximation

Exact (non-relativistic) Hamiltonian

H=Th+Te+ V(r,R)

with
h° 5 h° 5
Te = — —V and Th = — VA
%:Qm ! EA:QMA
Z aZe?
V(r,R) =
AEB R4 — Rp| Z |rz RA| Ey |I‘Z—I‘]|

Electronic Hamiltonian (with the nuclei fixed at positions R)

He =Te+ V(r,R)



The total Schrodinger equation reads
HWV(r,R)=FEWV(r,R)

Expand the total wave function
W(r,R) =) ¢p(r;R)xi(R)
k
in solutions ¢, (r; R) of the electronic Schrodinger equation

He ¢ (r; R) = ER(R) ¢ (r; R)

and substitute it into the total Schrodinger equation.

Multiply by the function ¢./(r; R) from the left and integrate over the
electronic coordinates r. The electronic Hamiltonian He is diagonal

(Pr(r; R)[Helgp(r; R)) (r) = S Ex(R)

and the electronic wave functions are orthogonal

(P (T R) |91 (ri R)) (py) = s



This yields a set of coupled eigenvalue equations for the nuclear
wave functions

[Th + Ep(R) — E] xpw(R) =D [Fnlp xx(R)
k
Coupling between different electronic states £/, k

[Fn]ir (R) = (¢ (x; R)[Th| ¢x(r; R)) (p) — Th Opry,

occurs through the nuclear Kinetic energy operator Tn.

When this coupling is neglected one obtains the Born-Oppenheimer
nuclear Schrodinger equation for electronic state £/

[Th + E(R)] xi(R) = Expr(R)



The (non-adiabatic) coupling terms are
2

[Fnlp, (R) = =)

¥y 206001(V adk) ey - Va+ (0l (VA0)) )

They are small because of the large nuclear masses M4 in the de-
nominator.

In the first term one may write

<¢’|V 7He|¢>r
(T )y = Pl ey

which shows that the coupling is small only when the electronic
energies E.(R) and E./(R) are well separated. This is normally the
case, and the Born-Oppenheimer approximation holds.

For certain geometries R the energies E.L(R) and E.(R) may be
equal: two (or more) electronic states are degenerate. The Born-
Oppenheimer approximation breaks down.



Breakdown of the Born-Oppenheimer approximation

Examples:

e Open-shell systems: radicals, molecules in excited states

Degeneracies at symmetric structures
= Jahn-Teller, Renner-Teller distortions

(Conical) intersections of different potential surfaces
important in photochemistry

e Metals



Jahn-Teller effect in Benzene™

- Bzg Degenerate ground state Eq
o —E,, r
IP =9.21eV
l_T l_ E,, Sixfold symmetry distorted
l T by Jahn-Teller coupling with

A2u

normal modes of epg Symmetry

7 molecular orbitals



Potential surfaces

Two adiabatic potentials
corresponding to the Elg state
as functions of the two vg

ep, NOrmal mode coordinates

Red circle shows the vibrational zero-point level

= dynamic Jahn-Teller effect



Conical intersection
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non-adiabatic coupling prevents UV radiation damage in DNA

Fast non-radiative transition to ground state through



Metals
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For metals

Interatomic potential

Energy

Distance R

= electron-phonon (non-adiabatic) coupling



How were intermolecular forces discovered?

Han-sur-Lesse, December 2012 —p. 1



Equation of state of a gas

ldeal gas
pV = kT

Non-ideal gas (Van der Waals, 1873)

e ) (v 1) s

repulsion = b (eigenvolume)

attraction = « (reduced pressure)



Virial expansion (density p=1/V)
p=KkT [p+ Bao(T)p* + B3(T)p’ + .. ]

with

Bo(T) = —%/OOO [exp (-A%R)> - 1] ATR*dR

AFE(R) Is the interaction energy between two
atoms/molecules as function of their distance R

Han-sur-Lesse, December 2012 — p. 3



Intermolecular forces
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920 /1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920 /1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)

1927
Heitler & London: Quantum mechanics (QM)
= covalent bonding for singlet Hy (S = 0)

= exchange repulsion for triplet Hy (S = 1)
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920 /1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)

1927
Heitler & London: Quantum mechanics (QM)
= covalent bonding for singlet Hy (S = 0)

= exchange repulsion for triplet Hy (S = 1)

1927/ 1930
Wang, London: QM =- dispersion forces (attractive)

Han-sur-Lesse, December 2012 — p. 4



QM derivation of intermolecular forces

correspondence with classical electrostatics
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QM derivation of intermolecular forces

correspondence with classical electrostatics

Intermezzo:

(Time-independent) perturbation theory

Han-sur-Lesse, December 2012 —p. 5



Schrodinger equation H® = E® not exactly solvable.
Perturbation theory = Approximate solutions £, and &,
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Schrodinger equation H® = E® not exactly solvable.
Perturbation theory = Approximate solutions £, and &,

Find simpler Hamiltonian H© for which H©®(0) = g0)(0)
IS solvable, with solutions E,io) and <I>](€0)

“Perturbation” HY = g — H©)

Write H(\) = HO + XH(1)  (switch parameter \)

|~

|
O Y g
g0 29 g

=
TS
A
&
&=
=
o
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Expand

B\ = BV 4 EW 4+ 2E® 4
dr(\) = o0 a0l 4220 4
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Expand
B\ = BV 4 EW 4+ 2E® 4
dr(\) = o0 a0l 4220 4

Substitution into H(\)®x(\) = Er(A) P ()\) and equating
each power of )\ yields, after some manipulations

Used to calculate perturbation corrections of E,go)

Han-sur-Lesse, December 2012 — p. 7



First perturbation correction of <I>,(€O)

MU @ |HY | 9,”) o
0 0 t
& B -B
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First perturbation correction of <I>,(€O)

o0 _ N~ (B THD o) )
=2 20 _ g
itk kT

The second order energy may also be written as

EP = (2 | HO | o))

Han-sur-Lesse, December 2012 — p. 8



Molecule in electric field

External potential V(r) =V (z,y, 2)
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Molecule in electric field

External potential V(r) =V (z,y, 2)

Particles i with charge ¢; (nuclei ¢; = Z,e, electrons ¢; = —¢)
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Molecule in electric field

External potential V(r) =V (z,y, 2)

Particles i with charge ¢; (nuclei ¢; = Z,e, electrons ¢; = —¢)

Hamiltonian # = H© 4+ g()
with free molecule Hamiltonian H(©)
and perturbation

1=1 1=1

Han-sur-Lesse, December 2012 — p. 9



Multipole (Taylor) expansion

% oV oV
e =vore(5), v (), o (50), 0

with electric field F' = (F, F,, F,) = —grad V

Vir)=V(x,y,2) =Vo—r-Fy+ ...
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Multipole (Taylor) expansion

% oV oV
e =vore(5), v (), o (50), 0

with electric field F' = (F, F,, F,) = —grad V
Vir)=V(x,y,2) =Vo—r-Fy+ ...
Perturbation operator

H(l):qV()—p,-F()—l—...

n n
with total charge ¢ = Z ¢; and dipole operator p = Z GiTi
1=1 1=1
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First order perturbation energy (for ground state k£ = 0)

EVN = (o | 5O o))
= (@} \_M.Fﬁ...\@g%

= (30 | u| o0y Fy+...
= —(p) -Fy+...
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First order perturbation energy (for ground state k£ = 0)

gD = (o |HD o)
= (@} \_M.Fﬁ...\@g%
— (o | p oy Fy+. ..
= —(p) -Fy+...

Energy of permanent dipole ( ) In field Fy.

Same as classical electrostatics, with dipole ( u ).
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Second order perturbation energy

for neutral molecule (¢ = 0) and field in z-direction

i.e., Fy = (0,0, Fy) and HV = —, F

B

Han-su

o) | HO |8 )@ | HO) | 2f)
0 0
BV — O
S (00 [ | 0080 e | B)) |
. EY — BV "
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Second order perturbation energy
for neutral molecule (¢ = 0) and field in z-direction

i.e., Fy = (0,0, Fy) and HV = —, F

o - gL [ HO 00 (00| HY o)
o (0) (0)
By — B,
170 0 ?
ool (0 e |9 |
70 By~ E” :

with polarizability
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o L] 2 ) (2 | e | 2
0 0
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N —QZ Ve | 2 (0 | e | 2
i#0 E( _E(g

The polarizability «,, can also be obtained from the induced

dipole moment. The total dipole moment is

() + o) | . | @) + @) ) =

(o | | @) +2( 00 |y ) B ) + (B | iy | B
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N :22 Ve | 2 (0 | e | 2
120 Ez( _E(g

The polarizability «,, can also be obtained from the induced

dipole moment. The total dipole moment is

() + o) | . | @) + @) ) =

(o | | @) +2( 00 |y ) B ) + (B | iy | B

The (first order) induced dipole moment p;,4 IS the second
term. With the first order wave function

(1) (o | HO | o)) (0)
ey = Z 0 0 ;
o Eé ) B
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and HY) = — ., F, this yields

pind = 2( Py | pz | 57 )
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and HY) = — ., F, this yields
pina = 2( 00 | p- \ o5 )

Fo

Vs |2 ) ( @)
- 2 20 _ o
i0 0

As In classical electrostatics: 1,9 = aFp, with the same
formula for the polarizability o, as above.
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and HY) = — ., F, this yields

tmd = X <I>60> e \ o) )

O s | 20 )( B

(
170 Ez E()

As In classical electrostatics: 1,9 = aFp, with the same
formula for the polarizability o, as above.

For arbitrary molecules the direction of the induced dipole

moment u;,q IS Not parallel to Fy. The polarizability « is a
second rank tensor with non-zero elements ay,,, etc.
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and HY) = — ., F, this yields

pina = 2000 |y | @)

O 109 y( &
= QZ ( Fo

( 0)
170 Ez E()

As In classical electrostatics: 1,9 = aFp, with the same
formula for the polarizability o, as above.

For arbitrary molecules the direction of the induced dipole

moment u;,q IS Not parallel to Fy. The polarizability « is a
second rank tensor with non-zero elements ay,,, etc.

For isotropic systems (atoms, freely rotating molecules)
a Is diagonal and o, = ayy = a,, = .

Han-sur-Lesse, December 2012 — p. 14



Long range interactions between two molecules

Molecules A and B at distance R with no overlap of their
wave functions. Particles: € A and j € B.
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Long range interactions between two molecules

Molecules A and B at distance R with no overlap of their
wave functions. Particles: € A and j € B.

Hamiltonian H = H( + 1) with free molecule Hamiltonian
HO = g4 + HB and interaction operator

p =Yy

icA jeB Y
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Long range interactions between two molecules

Molecules A and B at distance R with no overlap of their
wave functions. Particles: € A and j € B.

Hamiltonian H = H( + 1) with free molecule Hamiltonian
HO = g4 + HB and interaction operator

p =Yy

icA jeB Y

n
Same as H") = "¢;V(r;) in previous section with
1=1
molecule A in electric potential V(r;) =
jeB

9
Tz'j
of molecule B.
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Multipole expansion of the interaction operator

B X
i
r.
Z J Z
>
R
y

T, = (wi,yi,zi), ’I“j m— (wj,yj,zj), R = (0,0,R)

Tij =T —T; T+ R and Tij = |’I°@'j|
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A double Taylor expansion in (z;,y;, z;) and (x;, y;, 2;) of

—1/2
e [(5’33' — 2:)” + (y5 — %i)° + (2 — 2 + R)?
]

at (LIZZ', Yi s Zz) — (O, 0, O) and (xj, Yj, Z]’) = (O, 0, O) ylelds

i_i ﬁ_ﬁ+xixj+yiyj—22izj+
T4 R R? R? R3

This expansion converges when |r;| + |r;| < R.
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Substitution into H) gives, after some rearrangement

A B__ A B _ o A B
H(l) _ quB 4 :u?qB B QA,LLZB X Py Uy T Moy By — 205 Wy
R R? R? RS
with the total charges ¢ =>» ¢ ¢ =Y g
icA jeB

and the dipole operators p =Y gr; P =Y g
i€A jEB
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Substitution into H) gives, after some rearrangement

g 7 pdd” P med ey - 20
R TR R R3
with the total charges ¢ =>» ¢ ¢ =Y g
icA jEB
and the dipole operators p =Y gr; P =Y g
i€A jEB

This operator HV) includes the electrostatic interactions
between the charges and dipole moments of the molecules
A and B. Higher (quadrupole) interactions are neglected.

Han-sur-Lesse, December 2012 — p. 18



Alternative forms of the dipole-dipole interaction operator
are

pppd +pguy = 2lp? A B =3t T P

R3 R3 R3

with the interaction tensor

Tow Tiy Tre 1 0 0
T=| T, T,, T, |=10 1 0
Tow Thy T, 0o 0 =2

This tensor can also be expressed in more general
coordinates.

Han-sur-Lesse, December 2012 — p. 19



The solutions of the Schrodinger equations of the free

molecules A4 and B are
AxA  pAxA
H <I>k1 = Ek1®k1

B&B B B
H (I)k'z — Ekgq)k'z
and of the unperturbed problem

HO9O _ gOg0

K
with <I>§g) = @7 7 and eigenvalues Eg)

A B
= b, + By

Han-su

r-Lesse, December 2012 — p. 20



Proof
HOoY = (HA+ HP) ol ol
= (HA)) @, + @, (H2))
= (Bi, + Ei) 0, @



Proof

HOoY = (HA+ HP) ol ol
= (HA)) @, + @, (H2))
= (Bi, + Ei) 0, @

Perturbation operator (repeated)

A_B A

T R A . e

) —

R+R2 R2+ R3

Each term factorizes in A and B operators !

Han-su
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The first order energy Is

B = (o | HY o)) = (efef | HY | ofef )
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The first order energy Is
B = (o | HY o)) = (efef | HY | ofef )

With the multipole expansion of H1) one can separate
Integration over the coordinates (z;, v;, z;) and (x;,y;, 2;5)
of the particles i € A and j € B and obtain

g _ad®  (p)e”  (pd)  (ph) T (p7)
0

R R Rm R3
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The first order energy Is
B = (o | HY o)) = (efef | HY | ofef )

With the multipole expansion of H1) one can separate
Integration over the coordinates (z;,y;, ;) and (x;,y;, ;)
of the particles i € A and j € B and obtain
g _ad®  (p)e”  (pd)  (ph) T (p7)
0

R R Rm R3

the same as in classical electrostatics, with the permanent
multipole moments ( u# ) = ( &3 | u | &4 ) and
(p?)=(27 | p”| 2f )
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The second order energy is

(2) (o) | HO | o y( ol | HD | o )
Eq :Z 0 0
P

The index K that labels the excited states of the system is a

composite index K = (k1, k2). The summation over K # 0
can be split into three sums, with

ki1 #0, ko =0 Molecule A excited
k1 =0, ko #0 Molecule B excited
k1£0, ko #£0 Both molecules excited

Han-sur-Lesse, December 2012 — p. 23



The first term of Eéz) IS

2

k170

(gl | HY | o of y( ool | HY | 0f0f )
E;;l—Egll
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The first term of Eéz) IS

Z<<I>A<I>B\H o of (ool | HY | dgldf )
E;;l—Egll

k170

The operator H(1) is term-by-term factorizable and the
Integrals In this expression can be separated. For example

(@ | pd | of Y (0F | uf | 0F )
R3
(g | pgt | B Y pd)
R3
Furthermore, one may use the orthogonality relation
(@ | 72 ) =0.

<(I)A(I)O"LLZ'LLZ ’(I) > _
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The transition dipole moments ( 7' | 12! | @3 ), with the

summation over k; # 0, occur in the formula for the
polarizability o
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The transition dipole moments ( 7' | 12! | @3 ), with the

summation over k; # 0, occur in the formula for the
polarizability o

If one assumes that the polarizability is isotropic,

g, = oy, = af, = o, one finds for the first term

AgB)?  2a4¢B (1B )
oRE T T R
aA((pB )2+ (Wl ) +4(u)?)

2RY

0}

EP(pol. A) = —
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Also this results agree with classical electrostatics. The

electric field of the point charge ¢” at the center of molecule
Als

R2

and the electric field of the permanent dipole moment

(pu”)is
F<_<u§> () 2<u§>>
B R3 R RS

QB
F = (F,,F, F,) = (0 0, ——)

The second order interaction energy E(()z)(pol. A) is simply

the polarization energy —§a 4F?2 of molecule A in the
electric field of the charge and dipole of molecule B.
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Analogously, we find for the second term, which includes
a summation over the excited states £k, of molecule B

A\2 B A A B
(2) o (@)e” 2¢7 (i )
Ey”(pol. B) = VT 25
A A A
((pe Y2+ (pg ) +4( s )?)a”

2RY

This is the classical energy of polarization of molecule B
In the field of A.
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The third term contains the summation over the excited
states of both molecules. All interaction terms with the
charges ¢4 and ¢? cancel, because of the orthogonality

relation ( ®¢' | ®;1 ) = 0. Only the dipole-dipole term of H
IS left and we obtain
E? (disp)
S >1 (05df | HY | o o8 V(o of | HY | of'df )
- (Eg — E) + (Ep — E)

1720 g 20

2

:_R_GYY ‘<(I)64‘NA‘(D7<41>'T'<(D(?’NJB‘(DEQM
(Ey, — Eg) + (BEf — EF)

k10 ka0
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This term, the dispersion energy, has no classical
equivalent; it is purely guantum mechanical.

It is proportional to R~°.
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This term, the dispersion energy, has no classical
equivalent; it is purely guantum mechanical.

It is proportional to R~°.
It can be easily proved that each of the three second order

terms is negative. Therefore, the induction and dispersion
energies are always attractive.

Han-sur-Lesse, December 2012 — p. 29



This term, the dispersion energy, has no classical
equivalent; it is purely guantum mechanical.
It is proportional to R~°.

It can be easily proved that each of the three second order
terms is negative. Therefore, the induction and dispersion
energies are always attractive.

For neutral, non-polar molecules the charges ¢4, ¢ and

permanent dipole moments ( u ), ( u? ) are zero, and the
dispersion energy is the only second order interaction.

Han-sur-Lesse, December 2012 — p. 29



Terms with higher powers of R~! occur as well. They
originate from the quadrupole and higher multipole
moments that we neglected.
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Terms with higher powers of R~! occur as well. They
originate from the quadrupole and higher multipole
moments that we neglected.

An approximate formula, due to London, that is often used
to estimate the dispersion energy is

3adaf JAIB

2) /1
Eé)(dlsp)z— SRS AL [B

This formula is found If one assumes that all the excitation
energies E{} — E4' and E — EJ are the same, and are

equal to the ionization energies 74 and 5.

Han-sur-Lesse, December 2012 — p. 30



Summary of long range interactions

The interactions between two molecules A and B can be
derived by means of QM perturbation theory.
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Summary of long range interactions

The interactions between two molecules A and B can be
derived by means of QM perturbation theory.

The first order energy equals the classical electrostatic
(Coulomb) interaction energy between the charges and
dipole moments of the molecules. It may be attractive or
repulsive, depending on the (positive or negative) charges
and on the orientations of the dipole moments. The dipolar
terms average out when the dipoles are freely rotating.

Han-sur-Lesse, December 2012 — p. 31



The second order energy consists of three contributions.
The first two terms correspond to the classical polarization
energies of the molecules in each other’s electric fields.
The third term is purely QM. All the three contributions are
attractive. They start with R—* terms when the molecules
have charges and with =% terms when they are neutral.
The dispersion energy, with the leading term proportional
to R=%, occurs also for neutral molecules with no
permanent dipole moments.
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The second order energy consists of three contributions.
The first two terms correspond to the classical polarization
energies of the molecules in each other’s electric fields.
The third term is purely QM. All the three contributions are
attractive. They start with R—* terms when the molecules
have charges and with =% terms when they are neutral.
The dispersion energy, with the leading term proportional
to R=%, occurs also for neutral molecules with no
permanent dipole moments.

All of these terms can be calculated when the wave
functions @}, ®7 and energies E;., Ef of the free

molecules A and B are known, but one should somehow
approximate the infinite summations over excited states
k1 and ko that occur in the second order expressions.
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Interactions in the overlap region
Heitler and London (Valence Bond) wave functions for Ho
1sa(r1)1sg(re) £ 1sg(r1)1sa(re)
with the plus sign for the singlet spin (S = 0) function
a(1)5(2) — 5(1)a(2)

and the minus sign for the triplet spin (S = 1) functions

a(l)a(2)
a(1)8(2) + 6(1)a(2)
5(1)5(2)

The total electronic wave function is antisymmetric (Pauli)
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Interaction energy AE(R) = Fy, — 2Ey

Triplet S =1) -
Q(R) = “Coulomb integral”
> J(R) = “exchange integral”
| S®=(1sallsp)
Singlet (S = 0) (f+ <2 = overlap integral
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Interaction is dominated by the exchange integral J(R),
which is negative, so that the exchange interaction is
attractive (covalent bonding) in the singlet state and
repulsive in the triplet state.
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Interaction is dominated by the exchange integral J(R),
which is negative, so that the exchange interaction is
attractive (covalent bonding) in the singlet state and
repulsive in the triplet state.

For He, there is only one (singlet) state and the interaction

energy AE(R) Is purely repulsive: exchange (or Pauli)
repulsion or steric hindrance.

Han-sur-Lesse, December 2012 — p. 35



Molecular orbital picture
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Molecular orbital picture
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Covalent Exchange
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H—H interaction

He,

Exchange
repulsion

He—He interaction

Han-sur-Lesse, December 2012 — p. 36



Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.

Han-sur-Lesse, December 2012 — p. 37



Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.

In combination with attractive long range interactions
(proportional to R~") this gives rise to a minimum in AE(R).
This, so-called, non-covalent bonding is much weaker than
covalent bonding, except when A and B are (atomic or
molecular) ions with opposite charges (cf. Na™CI™).

Han-sur-Lesse, December 2012 — p. 37



Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.

In combination with attractive long range interactions
(proportional to R~") this gives rise to a minimum in AE(R).
This, so-called, non-covalent bonding is much weaker than
covalent bonding, except when A and B are (atomic or
molecular) ions with opposite charges (cf. Na™CI™).

Binding (merely by the attractive dispersion energy) is

weakest when both molecules are neutral and non-polar:
pure Van der Waals interactions.

Han-sur-Lesse, December 2012 — p. 37



A special type of interactions between polar molecules is

hydrogen bonding:

X—H---Y

exchange

repulsion

Van der Waals

Binding energy AE

hydrogen bonding

dispersion

electrostatic (dipole—dipole, etc.)
induction (dipole—induced dipole, etc.)

dispersion

Distance R

No special (HOMO-LUMO, charge-transfer, or weak
covalent bonding) interactions are needed !

Han-sur-Lesse, December 2012 — p. 38



Exercise:

H ,
'/
I/ / H
Q/(H ¥ ___2BA "/__58
62° 57° O
7 2.75 A \ H
———————— —I- \

Compute the equilibrium angles of HF—-HF at R = 2.75 A

and H,O-H-,0 at R = 2.95 A from the dipolar and
guadrupolar interactions only.

Han-sur-Lesse, December 2012 — p. 39



Non-covalent interactions and hydrogen bonding, in
particular, are very important in biology. Alpha helices and
beta sheets in proteins are stabilized by intra- and
Inter-molecular hydrogen bonds, and the double stranded
structure of DNA is held together by hydrogen bonds
between the base pairs.

Han-sur-Lesse, December 2012 — p. 40



Non-covalent interactions and hydrogen bonding, in
particular, are very important in biology. Alpha helices and
beta sheets in proteins are stabilized by intra- and
Inter-molecular hydrogen bonds, and the double stranded
structure of DNA is held together by hydrogen bonds
between the base pairs.

It is essential that a hierarchy of interactions exists with
binding energies varying over several orders of magnitude.
Interactions in biological systems must be sufficiently strong
to maintain stable structures, but not so strong that they
prevent rearrangement processes (DNA replication, for
Instance).

Han-sur-Lesse, December 2012 — p. 40



Non-covalent force fields computed ab initio

e Supermolecule calculations

e Symmetry-adapted perturbation theory (SAPT)



Supermolecule calculations
AE =E g — Ej— Ep

Requirements:

1. Include electron correlation, intra- and inter-molecular
(dispersion energy = intermolecular correlation)

2. Choose good basis, with diffuse orbitals (and “bond functions’)
especially to converge the dispersion energy

3. Size consistency. Currently best method: CCSD(T)

4. Correct for basis set superposition error (BSSE) by computing
FE, and Eg in dimer basis



Symmetry-adapted perturbation theory (SAPT)

Combine perturbation theory with antisymmetrization A (Pauli) to
include short-range exchange effects.

Advantages:
1. AFE calculated directly.

2. Contributions (electrostatic, induction, dispersion, exchange)
computed individually. Useful in analytic fits of potential sur-
face.

Advantage of supermolecule method:

Easy, use any black-box molecular electronic structure program



Problems in SAPT:

1. Pauli: AH = HA.
Antisymmetrizer commutes with total Hamiltonian H = H(0) -+
HD but not with H) and H(1) separately.
Has led to different definitions of second (and higher) order
energies.

2. Free monomer wavefunctions CDg‘l and CDkBQ not exactly known.
Use Hartree-Fock wave functions and apply double perturbation
theory to include intra-molecular correlation, or use CCSD wave

functions of monomers = Many-body SAPT.

Program packages:
- SAPT2 for pair potentials

- SAP T3 for 3-body interactions



Most difficult: dispersion interactions

First ab initio calculation of He—He binding curve:

Phys. Rev. Letters, 25 (1970)

— H.F. Schaefer, D.R. McLaughlin, F.E. Harris, and B.J. Alder
page 988: D, =12.0 K

— P. Bertoncini and A. C. Wahl
page 991: D, =114 K

Present value:
D, = 11.01 K=7.65cm™ 1
~ 0.1 kJ/mol =~ 1073 eV = 3.5 x 10~° Hartree



Can one use DFT methods?
Reviews by Johnson & Dilabio, Zhao & Truhlar

Many different functionals tested with different basis sets

type dimer mean error in Deg

Rg2, (CHa)2, _ 0
Van der Waals (CoHo)a, (benzene)s 40 - 200 %

CH4—HF,

. . . ) o

dipole-induced dipole H,O—benzene, etc, 15 - 100 %
dipole-dipole (H2CO)o, etc. 10 - 40 %
hydrogen bonded (NH3)2, (H20)2, 3 -20%

(HCOOH),, etc.

e Some VdW dimers, (benzene), for example, not bound
e BIO971 best, B3LYP worst

e Often best results without BSSE correction, or smaller basis sets
= Right for wrong reason



Basic problems with DFT

1. Exchange repulsion

— Incorrect asymptotic behavior of one-electron potential:
v(r) — exp(—ar) instead of —1/r

— In intermolecular Coulomb energy no self-term present
self-exchange = spurious attraction

2. Dispersion

— Intrinsically non-local:
cannot be described by local LDA or semi-local GGA methods



DFT with dispersion explicitly included

vdW-DF: M. Dion, H. Rydberg, E. Schroder, D.C. Langreth, B.I. Lundqgvist,
Phys. Rev. Lett. 92 (2004) 246401

Ar—Ar interaction

\ / SAPT(DFT)/PBEQ -
\ / SAPT(DFT)/B97-2---e--
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I
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o
o

T
P
N\

N

From: R. Podeszwa and K. Szalewicz, Chem. Phys. Lett. 412 (2005) 488



DFT4+D methods

e Compute interaction energy with ‘'standard’” DFT

e Add atom-atom Cpr~"™ long range dispersion terms with n =
o,...

e Switch between short range correlation contained in DFT and
the long range terms with a smooth (parameterized) switch
function

e Parameters from atomic electron densities, polarizabilities, etc.
(Becke & Johnson, Tkatchenko & Scheffler)

e Empirically optimized parameters (Yang, Grimme)



Alternative: SAPT-DFT

Implemented by G. Jansen et al. (Essen) and K. Szalewicz et al.
(Delaware)

e First order SAPT energy (electrostatic + exchange) computed
with monomer densities and density matrices from Kohn-Sham

DFT

e Second-order SAPT energy (induction, dispersion 4+ exchange)
from (time-dependent) coupled perturbed Kohn-Sham response

functions

Only Hartree-Fock like expressions from Many-Body SAPT needed
= better scaling



Caution !

e SAPT-DFT requires XC potential that is good in inner region
and has correct —1/r behavior for r — oo

e Coupled time-dependent DFT must be used for (frequency-
dependent) density-density polarizabilities a(r,r’, w)

Both groups, K. Szalewicz (Delaware) and G. Jansen (Essen),
further improved efficiency by implementation of density fitting.



Ar—Ar interaction
From: R. Podeszwa and K. Szalewicz, Chem. Phys. Lett. 412 (2005) 488
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A. HeBelmann, G. Jansen, M. Schiitz, J. Chem. Phys. 122 (2005) 014103

(benzene),
1512 GTOs (aug-cc-pVQZ), extrapolation to basis set limit

e K
2P~ SR

MP?2 _14.4 ~15.1 ~20.3  kJ/mol
CCSD(T) —6.7 ~11.8 ~11.4
DF-SAPT-DFT ~7.6 ~11.9 ~12.7

standard DF T unbound metastable unbound



Adenine-Thymine (G. Jansen et al.)
DF-SAPT-DFT up to aug-cc-pVQZ level
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Pair interactions

In water trimer
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Many-body interactions (per hydrogen bond)
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How to test non-covalent force fields?



Molecular beam spectroscopy of Van der Waals molecules

high J resolution

supersonic
expansion

| / molecular beam
\ very cold

nozzle skimmer

laser § beam



Experimental Set-Up

Power

&4 o
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W.L. Meerts, Molecular and Laser Physics, Nijmegen



Intermolecular potential

ﬂ

Cluster (Van der Waals molecule)
quantum levels,
l.e.,
eigenstates of
nuclear motion Hamiltonian

ﬂ

Van der Waals spectra




Nuclear motion Hamiltonian H =7 + V for “normal”
(= semi-rigid) molecules

e Single equilibrium structure

e small amplitude vibrations

Use rigid rotor/harmonic oscillator model
For (harmonic) vibrations

e Wilson GF-matrix method = frequencies, normal coordinates

Rigid rotor model = fine structure (high resolution spectra)



Nuclear motion Hamiltonian H =T + V for weakly bound
complexes (Van der Waals or hydrogen bonded)

e Mmultiple equivalent equilibrium structures
(= global minima in the potential surface V)

e small barriers = tunneling between minima

e large amplitude (VRT) motions:
vibrations, internal rotations, tunneling
(more or less rigid monomers)

e curvilinear coordinates
= complicated kinetic energy operator T



Method for molecule-molecule dimers
H>O—H->O, NH3—NH3, CgHg—CgHg, etc.

Hamiltonian
R2 02 (J —ja—3B)°

R V(R, w4,
uF R + PP + V(R,wy,wR)

H=T4+Tp -

Monomer Hamiltonians (X = A, B):

Tx = Ax (jx)2 + Bx (ix)2 + Cx (jx)>

Basis for bound level calculations

XTL(R) D%}((aaﬁao)* Z DQA) (WA)*D%_?%B(WB)*<jAamA;jBamB |jAB7K>

mak A
ma,mpg



Wave function expansion
Vi (R,wa,wp,©,P) =) |i)cy
i
yields matrix eigenvalue problem

Hck:Ekck with HZ]=<’L|H|]>

dimension < 300000 for water dimer

Lanczos/Davidson iterative methods
= lowest 20 eigenvalues E; and eigenvectors c;

Start with trial vectors m,go)

Calculate Hm,go) = w,gl)
Calculate H:i:,g”_l) = a:lg”)

Iterate until w}({n) converged = ¢, By



The permutation-inversion (PI) symmetry group

For semi-rigid molecules

Use Point Group of Equilibrium Geometry to describe the (normal
coordinate) vibrations

N.B. This point group is isomorphic to the PI group, which con-
tains all “feasible” permutations of identical nuclei, combined with
inversion E*.

Molecule Point group PI group

C2y {£,E* (12),(12)"}

{E,(123), (132),
(12)%, (13)%,(23)"}




Example: H,O

PI operation frame rotation point group operation

(12) R.(m) = Cyp; Co,
E* Ry(m) = Cyy oz reflection
(12)* Ry(m) = Co, oy. reflection

permutation = frame rotation 4+ point group rotation

permutation-inversion = frame rotation + reflection

Hence: PI-group ~ point group



For “floppy” molecules/complexes

e Mmultiple equivalent minima in V

e |low Dbarriers: tunneling between these
minima is ‘‘feasible’ .

= additional ‘feasible’” PIlI-operations

Example NHj

PI<C3’U) —
semi-rigid NHsz {E,(123),(132),
(12)%,(13)*,(23)*}

i, + inversion PI(D3gp) =
tunneling PI(C3,) ® {FE, E*}
(umbrella Also (12),(13), (23)
up < down) and E* are feasible

observable tunneling

Additional feasible PI-operations < L .
splittings in spectrum



For HoO—H->O

PI group Gi16 = {E, P12} ® {E, P34} ® {E, Pap} ® {E, E*}

Equilibrium geometry has Cs symmetry

= 8-fold tunneling splitting of rovib levels



Illustration:

ADb initio water potential

— Tested by spectroscopy on dimer and trimer

— Used in MD simulations for liquid water

R. Bukowski, K. Szalewicz, G.C. Groenenboom, and A. van der Avoird,
Science, 315, 1249 (2007)



Polarizable water pair potential: CC-pol

e From CCSD(T) calculations in aug-cc-pVTZ 4+ bond function
basis

e Extrapolated to complete basis set (CBS) limit at MP2 level

e 2510 carefully selected water dimer geometries

e Estimated uncertainty < 0.07 kcal/mol
(same as best single-point calculations published)



CC-pol: Analytic representation

e Site-site model with 8 sites (5 symmetry distinct) per molecule
— Coulomb interaction,
— dispersion interaction,

— exponential ‘overlap’ terms: first-order exchange repulsion,
second-order exchange induction 4+ dispersion

e EXxtra polarizability site for induction interaction

e Long range R~ ™ contributions computed by perturbation theory,
subtracted before fit of short range terms

e Good compromise between accuracy of reproducing computed
points (rmsd of 0.09 kcal/mol for AE < 0) and simplicity needed
for molecular simulations



Water cluster spectra (far-infrared, high-resolution)
from Saykally group (UC Berkeley)

Used for test of potential:

Pair N Dimer N Dimer
potential VRT levels spectrum
Pair 4+ 3-body Trimer Trimer

potential VRT levels spectrum




Water dimer tunneling pathways

Acceptor Tunneling

Donor-Acceptor Interchange Tunneling

Donor (Bifurcation) Tunneling

Cocq e opim g i3



Water dimer
tunneling

levels

(J = K = 0)

Acceptor

tunneling

Interchange

tunneling

—

Bifurcation

tunneling



cm

201

(HZO)2 levels computed from various potentials (J=K=0)

R. S. Fellers et al., J. Chem. Phys. 110, 6306 (1999)

IN

+= 4

+

Experiment

m @ > m

ASP-W

N

RN

ASP-S

IN

>I

>

~— E

A,

NEMO3

MCY



H>O dimer
tunneling levels
from CC-pol-8s
potential (2008
Szalewicz et al.)
and

experiment

Acceptor tunneling

a(K=0) + a(K=1) = 15.33 (ab initio) Y
13.92 (experiment) }
0.44
Rotational constants 0.41
A=A-(B+C)/2= 7.54
7.59
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0.411

0.71 .
B' A
¥ 185 E'E
-------- -~ Jak=1)* 11
82 4< '/ 2’A; .
E_ ‘ _ + E ,E
A~ 0.55 2B,
2 0.54
+
Bl
E+
A+

J=K=1 J=K=2



D>O dimer
tunneling levels
from CC-pol-8s
potential

and

experiment

Acceptor tunneling

a(K=0) a(K=1) a(K=2)

2.04 0.64 1.48
1.77 0.62 131

(ab initio)
(experiment)

Rotational constants

A=A- (B+C)/2 = 4.20

4.17
B+C = 0.361
0.362
0.039
0.036
A
............................... . "!
ak=1) !
) 0.035 A
B, 0.033
E_
A
B¥
1
B
1
J=K=0 J=K=1

0.028
0.027

]
a(K=2)y
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J=K=2
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Donor-Acceptor Interchange Tunneling
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Intermolecular

vibrations

H-bond
torsion

Acceptor
twist

Acceptor
wag

0O-0O Stretch

In-plane
bend

Out-of-plane
bend
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D->O dimer
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vibrations
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Second virial

coefficient

of water vapor
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Water trimer tunneling pathways

Torsional tunneling (flipping)




Water trimer
tunneling

levels
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H->,O trimer torsional levels
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D>O trimer torsional levels
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MD simulations of liquid water, T = 298 K
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Conclusions
e CC-pol pure ab initio

e Predicts dimer spectra better than semi-empirical potentials fit-
ted to these spectra

e Second virial coefficients in excellent agreement with experiment
o CC-pol + 3-body potential gives good trimer spectrum

e Simulations of liquid water with CC-pol 4+ N-body forces predict
the neutron and X-ray diffraction data equally well as the best
empirical potentials fitted to these data

e Important role of many-body forces in liquid water
Nearly tetrahedral coordination:

3.8 hydrogen bonds, only 2.8 with pure pair potential



General conclusion

CC-pol, with the accompanying many-body interaction
model, provides the first water force field that recovers

the dimer, trimer, and liquid properties well



Resonances (quasi-bound states)

IN Molecular collisions



Why are resonances important?

See: D. W. Chandler, J. Chem. Phys, 132, 110901 (2010)

on shape/orbiting resonances:

— Long life time of collision complex
— Enable recombination reactions A + B — AB
— Probe long range behavior of the potential

Early (1972-1979) observations in scattering for H-Hg by Scoles
et al. and for H-X, Ho-X with X = Ar, Kr, Xe by Toennies et al.

(E>8cm™D)
Also observed in dimer spectra, e.g. for He-HF by Nesbitt et al.

Anomalous line broadening seen in Ar-CH4 by Roger Miller,
due to resonances, explained by calculations of AvdA et al.



Difficult to observe resonances in molecular (crossed)

beam scattering experiments

e Collision energies too high

e Difficult to scan the collision energy

e Energy spread too large = too much averaging



New possibilities:

Stark-decelerated molecular beams = velocity-tuning and state-selection

potential energy

Gerard Meijer, Berlin



Crossed beam setups

1 0 elvin

Q-

Detection laser

Bas van de Meerakker, Gerard Meijer: Berlin/Nijmegen



Textbook example of scattering resonances

Square well potential
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Scattering wave function at energy E

2 A et sin(koz) for 0 < o < a, with kg = \/2m(E + Vp)
v = | |
e—tkr 4 oi(kz+2¢)  for q < x, with £k = +v/2mFE

Match functions and log-derivatives at * = a

Phase shift

k T
= arctan |— tan (k — —
P [ko ( oa)] 5
Weight in well region

kQ
2 pr—
k2 4+ Vpy cos?(kpa)

Life time
_1op  Op
w0k OE

T



0.3

0.2

0.1

< (92 N i o

L / Yiys aseyd

ll9m ur apnyjduwy

10

18w a7

0.3

0.2

0.1

E/Vo



Molecule-molecule collisions, theory

e Use same Hamiltonian as in bound state calculation on dimers

e Use same angular basis

e Instead of using radial basis, solve coupled differential equations in
R by propagator method (log-derivative, Numerov, Airy, etc.)



Time independent quantum scattering theory

Channels, molecule-molecule (asymptotic, uncoupled)

| ) =|vajamaka )| vpipmpkp )
Plane wave in center-of-mass frame

. B2 L2 -
W'[r)zw =|n >ean.Ra E = > 4+ en, kn=knk
L4

Expansion in spherical waves for large R

Ji(knR—L%) _ _—i(knR—L3)

R

) 21T —
efnll = =2 5™ v, (R)

. i"Yp 0, (k)*
’Lkn LML



Coupled channels method

Expand wave function in ynLﬂ1L>::|7z>YLNQ(ﬁD
1
\UnLML:E Z |n/L/Mi>Un/L/M£;nLML(R)
n’L’M’L
Substitution into Schrodinger equation
he 4 d?
—— R "—R+AH—-FE|WV =0
( > adR2 + ) nLM;

yvields matrix problem

U'(R) =W(R)U(R)
Coupling matrix

2p
Wi nom; (R) = §< n'L'Mp |AH — E| nLMy, )



Coupled-channel calculations

e Solve coupled channel equations U"(R) = W(R)U(R)
by propagation

e Match U(R) to asymptotic form = S-matrix

e Calculate cross sections, integral and differential

o S-matrix eigenvalues e'¥i = phase shifts ¢,

e Eigenphase sum ¢ = Zgoj, jumps by m at resonances
10p 6_@

e Resonance life time 71 = — =
v o0k OF



Shape / orbiting resonances

Centrifugal barrier

V(R) + L(L+1) / (2 u R?)




Feshbach resonances (multichannel)

Atom-diatom (j = diatom rotation, b = rotational constant)
|

\

V(R,0) + b j(j+1)

\

V(R,0)



Example 1

OH-X scattering with X = He, Ne, Ar, Kr, Xe



OH-X cross sections
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More OH-X
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Example 2

NH3-He scattering



NH3z monomer

Inversion tunneling (umbrella up <« down)

semi-rigid NHs3 PI(C3,) symmetry

+ inversion PI(D3p) symmetry
tunneling also E* feasible




Rotation-inversion Hamiltonian

Hpy = Hyot + Hipy

Hyot = —hQ Ji + jy2 + iz
2 | Izz(p) Iyy(ﬂ) I22(p)
W ~12 90 1 1/2 0

Hiy = =5 9(0) "2 5 1,,0(0) 9(0) /2 5 4 Viny (0)

Moments of inertia (g = 3m;1_lemN>
Lz (p) = Iyy(p) = 3mpriy (55in? p+ ¢ cos?p)

I..(p) = 3mHT§|HSin2p
Iop(p) = 3mH7ﬁH (COS2 p 4+ (sin? p)

Metric tensor diagonal, determinant

9(p) = Izz(p) Iyy(p) I22(p) Lpp(p)



Potential Vih,(p) and vibration-inversion levels v%
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Stark effect in para-NHs;

11

Energy

11

Electric field

| 11~ ) state (low-field seeking) can be decelerated

= Scattering with velocity-tuned, pure | 11~ ) para-NH3 or ND3



NH3-He potential surface

e Hodges and Wheatley, J. Chem. Phys. 114, 8836 (2001)

e New potential calculated by CCSD(T)-F12 method in our group

Re(ag) De(cm™1)
‘ Hodges 6.13 33.45
ours 6.09 35.08




NH3-He potential

Expanded in spherical harmonics

V(R,p,0,¢) = > vpy(R,p)Yra(6, )
LM

vrv (R, p) expressed analytically in R, p

Correct R~™ dependence for each L
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Coupled-channel calculations for NH3-He

e NHs inversion explicitly included (basis vo = 0%, 1%)

e Apply full PI(D3;) symmetry (of collision complex)
para NH3-He has E’, E” symmetries, parity =+
do

o Calculate cross sections o3+, 11—, e} phase shifts



Elastic and inelastic cross

Cross sections (Az)

sections, orbiting resonances
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Bound state calculations with Rmax = 20, 25, 30 ag

-R<20 R<25 R<30
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-R<20 R<25 R<30



Phase shift, life times
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Our potential

Cross sections (A2)
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Elastic and inelastic cross sections, Feshbach resonances
400 | | ‘
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Inelastic cross sections, Feshbach and shape resonances
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22" channel open
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Scattering wave functions at E = 24.36 cm~1 (J =2, E/ symmetry)
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Scattering wave functions at E = 37.28 cm~1 (J = 3, E” symmetry)
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Conclusions

e Good agreement between theory and velocity-tuned
experiments for OH-X scattering, with X = He, Ne, Ar, Kr, Xe

e Many orbiting and Feshbach resonances found in NH3-He
scattering between O and 120 cm—1

e Life times much larger than normal collision times

e Feshbach resonances should be experimentally observable
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