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Basic Theory

Dirac (1929)

The general theory of quantum mechanics is now almost
complete, the imperfection that still remain being in
connection with the exact fitting in of the theory with
relativistic ideas. These give rise to difficulties only when
high speed particles are involved, and are therefore of
no importance in the consideration of atomic and
molecular structure and ordinary chemical reactions in
wich it is, indeed, usually sufficiently accurate if one
neglects relativity variation of mass with velocity and
assumes only Coulomb forces between the various
electrons and atomic nuclei.

The fundamental laws necessary for the mathematical
treatment of large parts of physics and the whole of
chemistry are thus fully known, and the difficulty lies only
in the fact that application of these laws leads to
equations that are too complex to be solved.
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Visible Relativistic Effects

e Non-relativistic gold is silver

o The 5d-6s transition is shifted from the UV to the visible part of the spectrum
by relativistic effects

Non-Relativistic
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Visible Relativistic Effects

e Phosphoresence
o Singlet-triplet transitions and intersystem crossing is allowed due to
spin-orbit coupling: spin is not a good quantum number !

Atomic Oxygen Emission Spectrum
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The hydrogenic atom

The exact non-relativistic energy

The exact relativistic energy

Spin-orbit couping : |j=1z%s




Nonrelativistic

Relativistic
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2 T
1s
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Lecture 1: Basic theory, qualitative discussion

e Relativistic Quantum Theory
o Special relativity
e The Dirac equation
o Relation to quantumelectrodynamics
o Treatment of the electron-electron interaction

e Relativistic Effects in Chemistry
o Orbital radii and energies
o Reaction energies
o Molecular structure

e Day 2: Approximate Hamiltonians, Frozen cores and ECPS

e Day 3: Wave function methods for accurate calculations
Relativistic effects on molecular properties
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Galilean transformation

e Consider 2 coordinate systems that move relative to each
other with a velocity v in the x-direction

e Galilean transformation leaves distance invariant

Xx=x+vt ”12=\/(x1_x2)2+()’1_)’2)2+(zl_Z2)2
y=y = =)+ (0 -3 ) + (2 - 2)
7=7 o=

12 12

e Simple addition of velocities, no speed limit

dx d(x"+vt) dx
dt dt dt

+v=w+v

W =

© L. Visscher, 2011



In a galaxy far far away.....

e Two rotating double stars A and B

e Does their light reach earth at different times ?
e Do we observe one star at two positions ?

e NO -> The speed of light (c) does not depend on the motion
of the emitting stars

e Is there some immobile substance (ether) that transmits the
radiation? NO -> Need better transformation of coordinates
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Special relativity

e Measurement of ¢ gives a constant value that is
independent of the motion of the coordinate system

!
_To _ T
!/

ly I

2.2 2 2.2 2
Ct,—r,=ct;-r, =0

C

e Define a new transformation to satisty this condition

! /
X = }/(X + Vi ) <+—— Scaling factor
_ !
Y Y No dependence on y and z because
7= Z' motion is in the x-direction
[ = (x(l" + /j’x’) <+<—— (General expression for t
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L orentz transformation

e Substitute this ansatz in the unprimed equations and solve
2
Vo V
OC=}/=(1——2)1/2 /3=_2
C C

e Il orentz transformation

x=)/(x’+vt') | (V'l")(y—l) |
y=y' r=r +v v2 + Vi
=7 Gleneralize tcg (V "
(/ v r) ='}/(f,+ 2 )
I=y|t +—X C
C

e Time and spatial coordinates transform into each other
e 4-dimensional space-time coordinate system
e Nonrelativistic limit (¢ — o) gives Galileo transformation
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Special relativity

Postulate 1: All inertial frames are equivalent

Postulate 2: The laws of physics have the same form in
all inertial frames

Postulates hold for electromagnetism (Maxwells relations)

Postulates do not hold for Newtonian mechanics (invariant
under Galilean transformations, not under Lorentz

transformations)
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Relativistic Quantum Mechanics

e 1905:STR

e Einstein : “E = mc?”
e 1926 : QM

e Schrodinger equation

e 1928 : RQM

e Dirac equation

e 1949 :QED

e TOmonaga, Schwinger &
Feynman
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Non-relativistic quantization 1

The nonrelativistic Hamilton function

2

H=T+V=§—m+q¢(r)

Quantization



Non-relativistic quantization 2

The nonrelativistic Hamilton function

7772

H=T+V=%+q¢(r)

JT=P- qA < Mechanical (;t) and canonical momentum (p)
Principle of minimal electromagnetic coupling

Quantization

H—ih : p——ihV
o

Hy(r,1) = ihizp(r,z)
ot
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Spin and non-relativistic quantization 1

We can, however, also write the the Hamilton function as

2 — —_ —
(O.ﬂ;) €. =€, =€ =1
E=qg¢p+ {
2m €y =€, =&, =-
OO0 . = (S + ig..k()’k <« Kronecker delta and Levi-Civita tensor,
o Y Y Summation over repeated indices
Quantization

2m
~ B’ n 2 n 7 n .
=q¢—%(o V)2+2q—m(o A)2+%[(0 V).(o A)L
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Spin and non-relativistic quantization 2

(c-u)(o-v)=(uv)+io-(uxv)

V X A( )f(l') V X (f(l')A( )) <— Aliis a multiplicative operator
= (Vf(r)) x A(r) + F(r)V x A(r) < chain rule

= _A % (%f(r)) + Bf(r)<—Use definition of B

A\ aN

ﬁ=f+q&§+iQA°V+q?A2 —%O’B <——in atomic units



Spin in NR quantum mechanics

The Pauli Hamiltonian in two-component form

2
—%V2+q¢+iqA-V+2q—mA2—%BZ —%(Bx—iBy)
q . . q2 2 g
-—(B.+iB ——V +qgo+igA-V+—A"+=B
2( +iB)) y 7V tartid om 2°¢

Second derivatives w.r.t. position, first derivative w.r.t. time
Linear in scalar, quadratic in vector potential
— Can not be Lorentz-invariant

® Ad hoc introduction of spin.The anomalous g-factor (ratio

of 2 between magnetic moment and intrinsic angular
momentum) is not explained

® No interaction between angular momenta due to the
orbital and spin : spin-orbit coupling is relativistic effect

© L. Visscher, 2011



Relativistic quantization 1

Take the classical relativistic energy expression

2 4, 2 27?2 ! 2 1 . |
E _q¢ = [m cC +C°T ] E =mc <+—— Without EM-fields

Quantization recipe gives

in
ot

=qgoy + \/mzc4 + o’ Y

After series expansion of the square root this could provide
relativistic corrections to the Schrodinger Equation

Disadvantage : Difficult to define the square root operator

in terms of a series expansion (A and p do not commute).
Not explored much.
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Relativistic quantization 2

Eliminate the square root before quantization
(E - q¢)2 =m’c* +c’n’
Quantization

2
02 -ab) w=(mc 5y

Klein-Gordon Equation

© Lorentz invariant
® No spin

® flp*(r)I/J(l‘)dl‘ = f(t) «—— Charge is conserved, particle number is not

The KG-equation can be used for spinless particles
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Relativistic quantization 3

Define a new type of “square root”

E-q¢=Pmc’+co-n

[ai,aj:L =20, A |a.B].=0 A p*=1
Quantization
iha—w = ([J’mc2 +co T+ qqAS)lp
ot

The Dirac equation

Suitable for relativistic description of electrons
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The Dirac equation

([J’ch2 +cO- T+ qu)lp(r,t) =ih &w;:’t)

© First derivatives with respect to time and position
© Linear in scalar and vector potentials

© Lorentz invariant (should be proved !)

Alpha and Beta are conventionally represented by
the following set of 4-component matrices

0 o, 0 o 0 o), (I 0
ax:(o o)ay=oy 0] ““lo. 0 /3_(0 —1)

X <
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Densities
e Charge density

p(r.r) = gy (e (e

« Current density
. _ + : C .
J (r,t) =q (r,t) col w(r,t) «—— ca is the relativistic velocity operator

« Continuity relation

ap(r,t)
ot

+V-j(r,)=0
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Time-independent Dirac equation

The nuclei do not move with relativistic speeds with
respect to each other

Take a stationary frame of reference (clamped-
nucleus approximation)

Separate the time and position variables
f]lp(r,t) = ih P, 1)
ot
Y(r,t) =P(r)d(1)

<—— Time dependent Dirac equation

I/’\I‘P(I’) =F lP(l’) <—— Time independent Dirac equation

(I)(t) _ eEt/ih
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The Dirac Hamiltonian

H=pmc*+co &t +qo

[ mc? + qo 0 CIT, c(m, - iny)\
0) me’ +qgo c(m, +im,) ~CTT,
] CITT, c(r, —im,) —mc” + q¢ 0
\c(m, +im) —Cot, 0 —mc* +qe |

Four component wave function
1) Spin doubles the components

2) Negative energy solutions: E < -mc?
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Free particle Dirac equation

e Take simplestcase:p=0and A =0
e Use plane wave trial function

(a,
ar| @2 . | |
qj(r) = <—— Non-relativistic functional form with constants a,
a, that are to be determined
ay
(E — m02 ) a, — chkza3 — chk_a4 =0 <—— After insertion into time-independent

Dirac equation

(E - mcz)a2 —chk,a; +chk.a, =0

—chk,a, —chk_a, + (E + mcz)a3 =0 k =k +ik

—chk, a, + chk_a, + (E + mcz)a4 =0
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Free particle Dirac equation

e Two doubly degenerate solutions
(E2 -m’c* - czhzkz) =0

E, = mPct + PRk

E = —\/mzc4 +chk?

e Compare to classical energy expression

E= ‘/mzc4 +c'p

e Quantization (for particles in a box) and prediction of
negative energy solutions
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Free particle Dirac equation
e Wave function for E = E,

chk chk

Z . _ +
> 0 Gy =4

a,=0; a;=aqa, 5

E, + mc E, +mc

h‘k‘ =Ep<<Mmc|~— For particles moving with “nonrelativistic” velocities

P P
a; =da, ~ d,
mc +\/m ¢t +c’ p 2mc
a, ~a, P
2mc

e Upper components are the “Large components”
e Lower components are the “Small components”
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Free particle Dirac equation

e Wave function forE = E_

chk, .
E —mc -2mc
Chk, P,
E —mc -2mc

e Role of large and small components is reversed
e Charge conjugation symmetry

e Can we apply the variational principle ?

¢ Variational Collapse
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Dirac sea of electrons

All negative energy
solutions are filled

The Pauli principle
forbids double
occupancy

Holes in the filled sea
show up as particles
with positive charge :

5 f positrons (discovered in
1933)

o Infinite background
charge
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Quantum Electro Dynamics

e Introduce a m-dimensional Fock space F(m)
o States are defined by the occupation number vector n

n)=|n,,n,,....n,)
n =0,1

e IThe vacuum has all n=0

0,0,...,0)

‘VCZC> =

o We use an orthonormal basis
(nlk) = 6nk

(vac|vac) =1
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Second Quantization

e Second quantized operators
o Creation operator

a. nl,...,ni,...,nm>=0 (n,=1)

nl,...,l,...,nm> (n,=0)

a, nl,...,ni,...,nm>=Ci

0,...,1,...,0)

a. VCZC> =

e Annihilation operator
>= C;

a; | Ny y...,l;,..., nl,...,O,...,nm> (n,=1)

m

a,|n,....n,....n, ) =0 (n,=0)

a;|vac)=0

o Define all operators in terms of these elementary operators

n
- At A
Q= Eleaka,
KiI=1
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Fock space Hamiltonian

Positive and negative energy solutions define a Fock space Hamiltonian

H =H"+H" " +H "+ H
EEE™ EEE~
N ++ _ /\T A N _ /\T A
H" = H,6 a,a, H = EHaﬁaaaﬁ
Pq a.p
EEE" EEE~
ry +—:pair creation _ At oA
e S S,
p (04
EEE™ EEE"Y

ry —+: pair annihilation _ At oA
o P
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Renormalization

Subtract energy from the occupied negative energy
states

I:‘IQED _ IA{Total _EO _ I:ITotal _< ‘ﬁTotal‘ >

Re-interpretation

SN A~
a,=>o, a, = bp
al=b, a,=b
Norma| Ordered Hamiltonian Due to the anticommutation relation
electrons pos. l positrons

H2EP Eﬂqu;bq+22 +H,bb,)- EHaﬁIQQISﬁ
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Quantum Electro Dynamics

e Positive energy for positrons

E(p0e) ={...; Lo JHOP). L)
Neg. Pos. positmnNeg. Pos.
states
= ...,1 ........ ‘— EH bT ............ >=—Ey2mc2
Y

e Total charge is also redefined

QQED = —e<vac\]§7 QED \vac>

vac

electron positron
states states

=—e<vac‘ E b;bp — EbTb ‘vac
p
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Dressed particles

The QED Hamiltonian depends on the positive and
negative energy solutions of the Dirac equation. The
Dirac equation depends on the external potential

Common choices

o Free particle solutions (Feynman,1948)
o Fixed external potential (Furry,1951)
o External + some mean-field potential (“fuzzy”)

Particles in one representation are quasiparticles
(dressed with ep-pairs) in another representation

Different no-pair approximations possible
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Electron-electron interaction
e Quantize also the EM-field

| Y=|p - states ;e - states; photons)

PAIQED,full — I’\{e+p + f{photons_l_ I’\{e+p,ph0t0m

e Electron-electron interaction is automatically retarded
by the finite velocity of light

e Corrections to the Dirac equation and the
instantaneous Coulomb interaction can be derived

o Feynman (NP 1965) diagrams
* Breit interaction (1929) (Order c2)
« Vacuum Polarization + Self Energy = Lamb shift (NP 1955) (c3)
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Electron-electron interaction

e Three terms up to order ¢

gCoulomb—Breit (1,2) 1

F2

1

2
C I,

_ﬁ(cal Y, )(eat, ¥, ),

coyca,

e Coulomb, Gaunt and retardation terms

e First correction describes the current-current interaction
e Second correction describes retardation
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The hydrogenic atom

Starting point for the LCAO approach

Like the S.E. the D.E. can be solved exactly by
separating the radial and angular variables (various
textbooks, e.g. Dyall & Faegri, Reiher & Wolf)

(

\

, Z
mec- ——
r

co-p

\
co'p

Z

2
v

Knowing the properties of the exact solutions helps
In devising basis set approaches and in
understanding the chemical bonding in the
relativistic regime
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Hydrogenic orbitals

e Write orbitals as product of radial and angular (2-spinor

functions)

W Bk

e Solutions to the radial equation

nK

P.(r)= N:Ke"}‘rry(ﬂ(r) + Fz(r))

0, (r)=Nue™r' (F(r) - Fy(r))

Large component

Small component

an(”) _ Nfle_(m)rrmF(r) Nonrelativistic
[ 0 1 1 2 2 3 3
J 1/2 1/2 3/2 3/2 5/2 5/2 712
K -1 1 -2 2 -3 3 -4
$112 P P32 dy) ds Jsn Jan
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Nonrelativistic

Relativistic

3 3_"' 3d_-—+
%p,
2 T
1s
continuum
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Relativity and the periodic table

Explore key information about the chemical elements through this periodic table

(Group || 1 |2 | [3 ] 45| 6| 7| 8] 910f11]12]13]214]15]16]|17] 18]
. [ b
s Pocember 1, 2071 BB

2

*Lanthanoids ............

- ..
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Orbital stabilisation

ns - orbital energy au

0.20

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.12

H, Li, Na, K, Rb, Cs, Fr, 119

—— nonrelativistic /'

—=— relativistic

\\

20

40 60 80 100 120

Nuclear Charge

140
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Orbital destabilization and spin-orbit splitting

B, Al, Ga, In, TI, 113

Zn, Cd, Hg, 112

o o O o
—_ N w AN

np - orbital energy au

o
o

Group 13

e

—e—nonrelativistic

- relativistic
-=—relativistic

o

50 100 150
Nuclear Charge

Group 12

o
©

O
0

N

©
\]

DN

o
o

\\.

©
u

nd - orbital energy au

©
N

——nonrelativistic \

- relativistic

-=—relativistic

o
w

50 100
Nuclear Charge

150
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Orbital contraction

e [Ihe outermost s-orbital becomes more compact

Alkali metals

7.5
7.0 /
6.5

6.0 /// \\
5 5.5
©
£
r 5.0
: /
(2]
S 45 //
4.0 f
3.5

3.0 —— nonrelativistic
- relativistic
2.5 ‘ ‘ ‘ : ‘ ‘
0 20 40 60 80 100 120 140

Nuclear Charge
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Orbital expansion

e The outermost p- and d-orbitals expand

Group 13
5.0
4.5 A
® 4.0 —
=
A 3.5 1
W
23.0 =
/ ——nonrelativistic
2.5 —=—relativistic
l ——relativistic
2.0 ‘
0 50 100

Nuclear charge

150

Group 12

n
o

—
o0

L

—_
(o))

i

///

nd <r> in au
N

—
(N

/

o

/

—+—nonrelativistic
-=—relativistic
——relativistic

o

o
N
o

70
Nuclear Charge

120
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Ln-An contraction

Lanthanide contraction

Actinide contraction

-k — | |
oA 2.20 & —~-5f- -

0 - T AN

1.10 ‘ 4f - 200 \ -=5f

- +~4f (nonrel) g“ N +5f (nonrel)

£ 8 N

s ~—

Yoo \\\E\EEEE

0.70

89 91 93

95 . 97
Atomic Number

57 5I9 6I1 6)itomi§I:5Num€IIZer 6I9 7I1

e Ln-An contraction is partly caused by relativistic
effects

e Trend expected from the atomic calculations is

iIndeed seen in calculations on LnF, AnF, LnH; and
AnH; molecules.
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Scalar Relativistic Effects

e Spectroscopy
o Energy levels are shifted (s down, f up)

e Molecular structure
o S-orbitals more compact, f-orbitals expand
o bond distances are shorter

e Other

o Polarizability decreases systems with outermost s and p

o Retardation of electron-electron interaction (weakening of
van der Waals interaction to r’ dependence)
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Spin-Orbit coupling

e Spectroscopy
o Energy levels are split
e Spin selection rules are broken

e Molecular structure

o The hybridization that occurs when chemical bonds are
formed makes the effects on structure usually only relevant

when comparing to high-precision experiments

« But: bonds to heavy and “superheavy” elements can be
qualitatively different if SOC is included

e Thermochemistry, reaction barriers
o Lowering of open shell states (atomization energies)

o Coupling between singlet and triplet surfaces, intersystem
crossing
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Atomization energies

 Example: Halogen molecules

 Molecular energy is hardly affected by SO-
coupling (SO quenching)

e First order perturbation theory

Nonrelativistic Relativistic
o Ou1i2"
] ] 1] x
" l J-'39,3/2
T 1 Mg 17— ‘
1) 1) i
] -
O =™ 1% Og,1/2 H



Atomization energies

e Atomic asymptotes are lowered by SO-coupling

e First order perturbation theory

Nonrelativistic

2p

| so-split

e

Relativistic

2
I:)3/2

t

o

P12 P32 P32
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Relativistic effect on atomization energies (kcal/mol)

F2 Cl2 Br2 12 At2

A\
N\

—~HF = HF+G ~ MP2 — CCSD — CISD -»- CCSD(T)

Relativistic effect on atomization energies is well-
reproduced by correcting only the asymptote
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Relativistic effect on harmonic frequencies (cm7)

F2 Cl2 Br2 12 At2

10

O = I \

10 S~

\

30 \\
\

-50

—~HF = HF+G ~ MP2 — CCSD — CISD -»- CCSD(T)

Bond weakening due to admixture of the antibonding sigma
orbital. This is also due to spin-orbit coupling.
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Relativistic effect on equilibrium distances (A)

0.08 /
0.06 / /
A

0.02

0 —
F2 Cl2

-0.02

~HF = HF+G ~ MP2 ~ CCSD — CISD -+ CCSD(T)

Important and slightly method dependent for 6p elements
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Example: Hydrogen halides
SO-coupling 1s mostly quenched in the molecule

Atomization energies

First order perturbation theory

Strong sigma-p1 mixing in ultra-relativistic H117

Nonrelativistic

T2

Relativistic
Oy
I
=
O1/2 T l

© L. Visscher, 2011
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Atomization Energies

aug-pVTZ
~ HF HCI HBr HI HAt
o
O | |
£ 0r=
©
O
< -5
—&—HF

3 —B— HF+G

10 + MP2
c
. CCSD
E 15 + —X— CISD
» —&— CISD+Q
L 504 —+— CCSD(T)
[72)
2
©
TJ _25
2

SO-coupling : a good estimate for atomization energies
can be obtained by correcting only the asymptote
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Vibrational Frequencies

Relativistic shift in e (cm-1)

-250

-50 T

-100 71

-150 7

-200 7T

aug-pVTZ

HF HCI

—o—HF
—B— HF+G
MP?2
CCSD
—X— CISD
—&— CISD+Q
—+— CCSD(T)

Bond weakening due to loss of sigma-character in
bonding orbital. HAt requires inclusion of scalar and
SO-effects in the calculation of the frequency.
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Bond Lengths

aug-pVTZ
HF HCl HBr HI HAt
0.012
g 0010 |
0.008 {
o | ——HF
_ 0006 . HEaG
0.004 + : MP2
£
£ 0.002 CCSD
[}
, 0.000 B —%— CISD
2 0002 | —8—(CISD+Q
g 0 —+— CCSD(T)
S -0.004 |
S
& -0.006 +
-0.008

Competition between scalar and spin-orbit effects
Total effect is small (< 0.01 A) and can be neglected
for most practical cases.
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The extra dimension

Hamiltonian

A

Dirac-Coulomb-Breit

Basisset

Complete

NR
Method

)
Hartree-Fock Full CI

Minimal

Development of relativistic
molecular electronic structure

oL vtsh@@py




Expansion of the energy expression

e Ihe exact Hydrogen energy expression

N 2

E =mc*/ |1+ Zic S

2
\ n—j—;+\/(j+1/2)2—z

2
c

1
(1+x)_2=1—lx+§x2—...
2 8

e Can be expanded to

Z6
4
C

E=mc2—Z2+ Z <é— "

-+ 0
on* 2ntct 4 .1




Approximate Hamiltonians

Find 2-component operators that describe these scalar relativistic
and spin-orbit coupling energy corrections in molecular systems

Start by decoupling the large and small component equations

Vy' +co-py’ = Ey*
co-py" + (V —2mcz)qjs = Fy°

Rewrite the lower equation as

PR

By
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Approximate Hamiltonians

e Substitute in the upper equation

(o DK(E)op) +V fu )= By ()

2m

e Unnormalized Elimination of the Small Component (ESC)

e The full spinor is normalized to 1, so the large component only must
have a norm < 1

o Large component spinors are not orthogonal to each other (only the full
spinors)

e Exact relation: is used as starting point for approximations
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Pauli Hamiltonian K(E,r)=(1—

e Crudest approximation : K(E,r) ~ ]

<Lﬁ(a° p)(o- p)+ v}qf(r) _ By (r)

(2

< 217_ + V}qﬁ(r) = Ey"“(r)  Schrodinger equation
m

e Take K=1 but include also a magnetic field

{L(G. )0 w)+ V}qﬁ(r) = Ey"(r) Pauli equation

2m
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Breit-Pauli Hamiltonian

e Find an operator that normalizes the wave function : W =K o'p "
. 2mc
Y =Ny
N = \/1+ 12 —(o-p)K*(o-p)
dm°c

e Multiply the UESC equation by N-

N‘l{zl—m(a- p)K(Ex)(o-p)+ V}N‘leL(r) = N"Ey*(r)

N'l{ﬁ(a- p)K(E.r)(o-p)+ V}N_ll/}(l') = EN"y(r)
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Breit-Pauli Hamiltonian

e Use series expansions and keep terms up to order ¢

A - [1 r— (o pK(o p)r/z

4m-c
— 1 _— 1 . 2 .
=1 8m2c2(0 p)K*(o-p)+...
2 5 E-V\
=1-8p2 _+0(c™) 3 =(1‘sz2
m ¢
N 1 -
=t Lo p D)

2

P 4
=1- + O(c
Am*c? ()
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Breit-Pauli Hamiltonian

Expansion of K

K(E,r)=l+wr=l (£~ V)+0(c )

2mc? 2mc?

Substitute everything and keep only terms to order ¢

]g,-llv N %(G. p)K(o- p)lﬁf'lw = ENy
m

1

. B +(op)V(op)-Tp" - [ V],

V+T + - Y=
4dm°c
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Breit-Pauli Hamiltonian

e The energy dependent term on the lhs is cancelled by the rhs

(o-p)V(o-p)-Tp" - ;[p%vl

2 2
dm-c

HY =T+V +

e Further simplify the equation using

(a-p)v(a-p)=(pp/p+%{2 +io-(pV)xp
] =L )iy

e Result: The Breit-Pauli equation

pV p’ N io-(pV)xp

HY =T+V - -
8m’c? 8m’c? 4m*c?

Darwin Mass-Velocity  Spin-Orbit
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Expectation values for the hydrogen atom

4
< HDarwin >= Z3 5 (l — O)

> <+— Positive: reduces nuclear attraction
nc

<HP™" =0 (I>0)

<+—— Qperator is delta-function for V = -Z/r

~ MV Z4 3 n
<H" >= nte? 3 Z - 1 ( <—— Always negative: decreases kinetic energy
[+ —
2 J
~ z* l
<H >= j=1+1/2
2n°c? 121+ 1)(1+1) ( )
Splitting larger for small n and/or | and large Z
< ﬁSO S— Z4 _l _1

_ =1-1/2
2w i) )
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Approximate relativistic Hamiltonians

Can we improve upon the Breit-Pauli Hamiltonian ?

A short wish list :

It should describe the scalar relativistic effects

It should describe the spin-orbit coupling effect

It should be variationally stable

Interpretation: comparison with Schrodinger picture
Implementation: easy integrals, efficient coding
Errors should be small and systematically improvable

2L o o

It should be well-named....

~
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Regular Approximation

e What did we do wrong ? Check the expansion parameter

-1

(E-V)| .

2

(E-V)

2

1+ +0(c™)

K(Erx)=
( r) 2mc

e E should be small relative to 2mc?
o Orbital energies vary over a range of -0.1 to 5,000 au
o Twice the rest mass energy is 37,558 au
o This difference should be large enough

e V should be small relative to 2mc?
o The potential is dominated by the nuclear attraction close to the nuclei

Z
V-2

r

e Taker=10%auand Z=6 (carbon) : V = 60,000 au
o Is this inside the nucleus ? No : the nuclear radius is 4.7 10-° au for C.
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O order regular approximation: ZORA

e Can we find a better expansion parameter ? Yes !

K(Ex)=

(E-V)

1+ >

-1 -1 -1
st st
2mc 2mc” -V

2mc

e E should be small relative to 2mc? - V
o V is negative which improves the expansion close to the nuclei

e Zeroth order in this expansion

{2171(0' p)(l e )_1(0' p)+ V}WORA (r) = Ey”*(r)

© Zeroth order equation does describe SO-coupling and scalar
relativistic corrections

® Gauge dependence of the energy V—o>V+C E—E+C-

o Affects ionization energies, structures

EC

2mc

2

Gauge independence can be achieved in various ways
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Approximations to K(E,r) for the 1s orbital of Fm9%*

1.4

Exact
1.2 -

T —

Nonrelativistic

0.8 1

K(E 1)

0.6 1

0.4 -

0.2 1

0 T T T T T T T
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000

r (au)
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Approximations to K(E,r) for the 7s orbital of Fm?9+

K(E 1)

1.4

1.2 A

0.8 1

0.6

0.4 -

0.2 1

Nonrelativistic

Exact

0
0.00001

0.0001 0.001

0.01

0.1

r (au)

10

100

1000
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Y,
%,
2

W

O

Uranium atom

1s orbital

0 —

10°

10"

10°

Scientific Computing & Modelling
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Uranium atom

05— 7s orbital
— DIRAC
o4<4  mummm= ZORA
— NR
c::; 0.3 =
=Y
Z
0.2 =
0.1 - Picture change: nodes absent in Dirac density / .
0.0 —— s / / ‘ "I
10-5 10-4 10-3 10-1 100 10]

Scientific Computing & Modelling
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Four-component methods
e ldea

o Expand Dirac equation in basis set

« Use kinetic balance condition to prevent “variational
collapse”

e Advantages-Disadvantages

© No approximations made
© Matrix elements over the operators are easily evaluated

® Many more two-electron integrals
® The Fock matrix is twice as large

© No picture change

© L. Visscher, 2011



e Use different expansion sets for the large and small

Basis set expansion

component parts of the wave function

- 3{1)

e Kinetic balance condition

0L o O]

mc

L

v=1]

(1) ax"(r) %" 1)

e Recovers the non-relativistic limit

[ xk ()

TXA dl'— EfX

TLL - _

I
5

o-p) (op)

pru dl'foM

<—— Resolution of identity

© L. Visscher, 2011
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Self Consistent Field: Hartree-Fock

occupied
orbitals

Construct Fock operator F =Bc’+ca-p+V+ YJ,-K,
;

Find eigensolutions Fy(r,) = ey(r))

Check convergence et ={yp} 2

HF Kinetic Potential Elec.Rep.
Compute energy EX =BT +E tE

ccupied occupied occupied
bitals orbitals

0
or 1rtas
E" = Y<il pc’+ca-pli>+ Y<il Vlis+= Y<il J,-K li>
2 & o
L]

i i
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Fock operator

V+YJ,-K, c(op)- DK,
F = J J
c(op)-YK, V-2c"+)J -K,
\ J j /
J(r) = f ! (5)y) () +v) () (r) dr, =f p;(r) dr,
Kyyr (r) =K v, (n)+ K7y (n)
M) ) )
Kp;(x) = K y; (r)+ Ky (r)
_ fsz (rz)ws( )drzw f S( )drz%s(l'l)

P
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Choice of expansion functions

e Large component
o Atoms: Slaters or Gaussians

o Molecules: Spherical, Cartesian or Hermite
Gaussians

e Small component

e Same type as large component
o Should fulfill kinetic balance relation

s ok oyt
{xs}={(0 p)xr} {sz}:{ f;if ’ 2‘;’ ’ ;CZP}

Restricted KB Unrestricted KB
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Kinetic Balance realizations

(6-P)NG-p)=p*={(6" D"} C{x'}

Scalar functions 2-spinor functions
Large component s>g>>&<f\ T f I’ ? ‘1 ‘1 fi
Small component s p d f g psdp fdg

Typically 4-5 times... Exactly 4 times ...

...as many basisfunctions as in NR calculation

Conventional integral code Specialized integral code

© L. Visscher, 2011



The small component density

e [he large component wave function resembles the
non-relativistic wave function

e EXxact relation between large and small component
wave functions

P* = 2_—;(1 + Ezgzv)_ o (Vy")

e Small component wave function is related to the first
derivative of large component wave function

e The small component density is an
embarrassingly local quantity !

© L. Visscher, 2011



Electron Density of Urany!

Small component




Modified Dirac equation

e Define an auxilliary function such that

Y = - (G' p)qu <« Relation holds by definition
mc

e [ransform the Dirac equation accordingly

|4 T L 1 0) L
dmc? ¢ 2mc” ¢

e Separate scalar and spin-dependent part and
neglect the spin-dependent terms if desired



Direct perturbation theory

e Consider the modified Dirac equation

% T L 1 0 L
(o-p)V(o-p) (UJ _E T (l/} )
d Amc? ~The" 0 2mc? ¢

e Non-relativistic limit is related to the Lévy-Leblond equation
Voo TYw) _ w0y Vo (ep)|vt)_ pufl OYw'
T -T\¢*| — \0 o)l¢" (o-p) -2m |y 0 0)\y*
e Define perturbation theory with as first order perturbations

HO _ 0 0 G0 _ 0O O
0 -Vc™ 0 ¢

© L. Visscher, 2011




Foldy-Wouthuysen transformations

e Define energy-independent unitary transformation to
decouple the large and small component equations

UH"U'Uy, = EUy;

HFW _ UI’_‘IDU-l _ H+ 0
0 H
FW
" = Uy =(w6 ) Picture change
( 1 R
T > T » v
i (1+X X)1 (1+ X" X) f( X=2LK(0.p)
mc
T\ o T\ o
\—(1+XX)2X (1+XX)2 /

e EXxact operator expressions are only known for the free
particle problem

© L. Visscher, 2011



Douglas-Kroll-Hess method

e Idea

« Transform “bare-nucleus Hamiltonian” with the known free-particle
transformation matrix, followed by additional transformations to reduce size of
remaining off-diagonal elements to some order in the potential

e Assumptions

o The transformation is based on the Furry picture: potential does not include
mean-field of electrons

o The conventional implementations neglect the transformation of the two-electron
interaction and often also the SO-coupling terms

e Advantages-Disadvantages
Method is variationally stable

Slight modification of existing code required (replacement of one-electron
nuclear attraction integrals), fast implementation

Good results in practice, significant improvement over Breit-Pauli
Complicated operators, matrix elements can not be calculated analytically
Two-electron terms are hard to evaluate

Interactions with external field need to be represented by transformed operators
(picture change)

DO OO
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Douglas-Kroll-Hess method

e | he second-order Hamiltonian
H(H HY'
H)Y H),

e The Douglas-Kroll-Hess Hamiltonian

HP =E,+A(V+(cP,)V(oP,))A, + WEW, + %WIZEP ¥ %Elez

E = \/mzc“ + Czpz <—— Free particle energy operator
p

P 2F

p

2
A =\/Ep+2mc <—— Kinematical factor

cop _ ARV(p.p)A, -AV(p.p)R,A,

Ep+Ep,

R =
P Ep+mc2

=a-P W,

p

© L. Visscher, 2011



Iterative decoupling schemes

e Write Foldy-Wouthuysen decoupling transformation (U) as product of
normalization (V) and decoupling (W)

e ;zvz)‘li (4 5(*)2)_;{(*
—(1+ )A()A(T)_Zf( (1+ )A()A(T)_z

1

) (1+)A(TX) 2 0 1 X'
0 (eRR)EXO

e The decoupling requirement provides equations for X

SL

(WE W)™ =0
W hSX - Xt - XhSX =0 Quadratic equation for X

© L. Visscher, 2011



Iterative decoupling schemes

e All Foldy-Wouthuysen transformed solutions should only have two non-zero

components
L X'\wr i) (6, O
-X 1\l yf) \o ¢
) - Xyl =0
R <—— Linear equations for X
Y+ Xy =0

e Equation for X can be solved if all analytical solutions of the Dirac equation can
be written in a simple form. This was possible in the free-particle case .

e For atoms and molecules the potential operator is too complicated to work with
the exact solutions, but it is possible to derive iterative decoupling schemes
(Barysz, Reiher, Hirao) that provide nearly exact (but very complicated) operator
expressions based on solutions of the hydrogenic atom.

© L. Visscher, 2011



eXact 2-Component (X2C) theory

|dea: Decouple a matrix representation of the Dirac equation

1.

2.

Define a 4-component basis and compute matrix
elements over the one-electron operators

Find exact solution to the Dirac equation in this
matrix representation

Use the eigenvectors to construct an exact
decoupling operator in matrix form

Transform all other one-electron operators to this
decoupled representation

Add two-electron Coulomb operator in unmodified
form (accept picture change error for this operator)

© L. Visscher, 2011



Exact two-component theory

A matrix representation of the Dirac matrix is formed and diagonalized:
eigenvectors gives access to the exact decoupling matrix X in this basis

hLL hLS yL yL e 0 yL yL
H LA S g LR
Write the equations for X in matrix form

y, - Xy, =0
y"+ X'y’ =0

Manipulate to get an equation of the form AX = B that can be solved by
Cholesky decomposition (A is Hermitian and positive definite)

vy e =[yeyH]

See llias & Saue (JCP 126 (2006) 064102) for details

© L. Visscher, 2011



Matrix-based X2C approaches

Fully equivalent to the matrix Dirac equation in the
no-pair approximation

2-component picture is easily compared to the non-
relativistic Schrodinger picture

Errors made by neglecting corrections to the 2-
electron operators are small

The necessary diagonalization and other matrix
manipulations are done before the SCF procedure

Decoupling from molecular Hartree-Fock solutions:
molecular mean-field (X2C-MMF) approach

4-component property matrices can be readily
transformed to the 2-c picture

© L. Visscher, 2011



12,000 -

10,000 -

8,000 -

6,000 -

4,000 -

2,000 -

0

X2C: computational efficiency

H Correlation |~
W 4-index - CPU-timesin s

= HF

4DCG*

4DCG™

SO-spitting in cm”

2500

2000 //‘

1500
O ——4DCG*
O — —2DCGM(Umol)
500 ;(“/ —==2DCGA(Unuc)
2DCGO(Unuc)
0 T T T T 1

0 500 1000 1500 2000 2500

EXxp.

2DCGM(Umol) 2DCGA(Unuc)

Errors in SO relative to *DCG* (cm-")

FO 1.38 1.35
CIO 0.80 0.75
BrO 0.97 0.73
I0 1.22 0.61
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Valence-Only approaches

All-electron calculations are not always feasible or necessary

Hierarchy of approximations for “core” electrons

Correlate the core electrons at a lower level of theory (e.g. MP2)
Include core electrons only at HF level of theory

Use atomic orbitals for core electrons (Frozen Core)

Model frozen core by a Model Potential (AIMP)

Model frozen core by a Effective Core Potential (ECP or NLPP)
Model frozen core by a Local Pseudopotential (LPP)

U o

Error correction and additional features
Estimate higher order correlation effects in another basis set

Use a core polarization potential

Include valence relativistic effects in RECP
Can be used in density-only DFT calculations

© L. Visscher, 2011

S o



Frozen Core approximation

Consider the Fock operator

occupied
Nuclel orbitals

_ Jkinetic _ E _+ E(Jj _Kj)

J

Identify localized (atomic) core orbitals and partition |z, =7, -Z

Nuclez Nuclei core valence

F = pfmerie E—+EEJ K"+ EJV—KV

Nuclei Z valence Nuclei Zcore core Nuclei core
. A
F=hkmetlc_ E: A + E:Jv_Kv-l' E + E J - E EKC
A rA % A A c

VCoqumb \Y

Exchange

Coulomb potential goes to zero at large distance, contains correction
due to imperfect screening of nuclei at short distance

Exchange potential depends on the overlap with the frozen atomic
orbitals: short range

Approximation made: atomic core orbitals are not allowed to change
upon molecule formation, other orbitals stay orthogonal to these AOs

IsScher,



Core polarization and overlap

Polarizability of the core can modeled by a classical core
polarization potential (see also book Il, formula 41.9)

1
Vé})P = ——EfZaAfA «—— Field from the electrons and the other nuclei
" \ at the position of core A

Polarizability of core A
Need a cut-off factor in the field since the multipole expansion is
only valid outside the core

Can be extended to model core-correlation and core-valence
correlation as well

The overlap between cores is assumed to be zero : the Paul
repulsion and Coulomb attraction between neighboring cores

should be small
For “large core” calculations this requires a correction

© L. Visscher, 2011



Ab Initio Model Potentials

Replace the exact, non-local, frozen core potential by a model
potential plus a projection operator

core core

A A core A A A A
VFrozen core E (Jc - ZA ) - EKC =~ VCoul + VExch + PCore
c

c

c ;= ECA R P Density fit of spherical density, can be done to
o arbitrary precision

primitive
core basison A

Viw=-2 2Ir)S

r,S,t,u

)5 (ul

T
\ |

Resolution of identity with non-orthogonal functions

core

Fée = 200) A

| Level shift that shifts the core solutions to high energies
© L. Visscher, 2011




Ab Initio Model Potentials

© No freely adjustable parameters
© Core solutions present but shifted to the virtual space

© Relativistic effects can be included in the reference
Fock operator
o Cowan-Griffin Hamiltonian (scalar)
o Wood-Boring Hamiltonian (spin-orbit)
o Douglas-Kroll-Hess Hamiltonian
e X2C Hamiltonian

© Can also be used to generate “no-valence” MPs
o Improves description of ions in crystals
o May require iterative generation scheme

o Good results for e.g. calculations of lanthanide spectra by
Seijo and coworkers

© Keeps nodal structure of the valence orbitals

© L. Visscher, 2011



Nodal structure

— 6s orbital
— 1s orbital
— 2s orbital
— 3s orbital
—4s orbital
— 5s orbital

Radon ZORA-LDA TZP

-1 05 0 05 1 15 2 25
r (A)

10.00
8.00
6.00
4.00
2.00
0.00
-2.00
-4.00
-6.00
-8.00
-10.00
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Valence density

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

Radon ZORA-LDA TZP

— 6s density
— 6s integrated density

S

ol T~

0.00 0.50 1.00 1.50 2.00 2.50

r (R)

3.00
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Valence orbitals

Radon ZORA-LDA TZP

[ [ |
—— 6s orbital ‘ ‘ ‘ \
— 1s orbital | \ \ “

— 2s orbital | |
— 3s orbital |
~ 4s orbital |

—— 5s orbital

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20
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Pseudo orbitals

Radon ZORA-LDA TZP

0.80
—— 6s orbital 0.60
—— 65 pseudo orbital

0.40

Aln .

NN

-0.40
Matching point Matching point 060
T T T T T T T T T T T -0.80
25 -2 -15 -1 -5 ©0 05 1 15 2 25 3
r (A)
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Pseudopotentials in DFT

Easier to consider pseudo-orbitals in Density Functional Theory

(]A“ _ Zs +J, [PA] + VXC[PA ])‘/&-A (r) - giAwiA (l’) Reference atomic calculation
T

(T+ Vi ! (r) = 'y (r)

Orbitals are solution of a local effective potential

s A VzwA (r)
V:ﬁ (l‘) =€ - + Potential can be constructed if the orbitals are known
2y (r)
(f‘ + VAPP)(]&;“ (r) =&l (r) Equation that is to be fulfilled by the pseudo-orbital
2 A
7 PP _ A \ ¢i (l‘) Construction of the pseudopotential
A (l‘) =& A
297 (r)

PP depends on a specific € and ¢
Representation in terms of grid in r
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Nonlocal normconserving pseudopotentials

Define a local and a nonlocal potential

~ L SNL\| A\ Al LA V' takes care of the long range (screened) nuclear
(T T Va4 (1‘) + VA ) ¢i > =& ¢i > attraction, is identical to Vef for r > R
A\ _ (A _T _ YL A
‘Xl > - (g’ r-v, (r)) ¢ > Wavefunction that is only non-zero for r < R
A A
A NL ‘Xi ><Xi VNL serves to model short range repulsive interactions,
VA = Al LA is zero forr> R
<Xi ¢; >

To use more than one pseudo orbital one can introduce a generalized
norm-conserving condition Q that should be fulfilled

0. = <wA wA> _ <¢A ¢A> _ Makes sure orthonormality of the original orbitals is
i YT R R also obeyed by the pseudo-orbitals
y NL -1, A A Al A
V, = EBij Xi ><Xj ‘ Bij = <¢1 Xj>
i,j
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PPs in plane-wave expansions

* Required in condensed matter DFT calculations that employ a plane-
wave basis. Need to smoothen (soften) wave function and potentials as

much as possible.

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism

David Vanderbilt
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 23 January 1990)

y(r)

1.0
r (a.u.)

FIG. I. Oxygen 2p radial wave function (solid line), and cor-
responding pseudo-wave-functions generated using HSC (dotted

line) and current (dashed line) methods.

© L. Visscher, 2011

Abandon normalization
condition and work with
generalized eigenvalue
problem.

The more complicated
formalism pays off since the
number of plane-wave
basis functions can be
drastically reduced

Common to also
“pseudoize” the lowest
solutions of a given

symmetry (e.g. 2p)



Effective Core Potentials

In molecular LCAO calculations it is sufficient to reduce the basis set
used to describe the valence orbitals

C><C‘ Phillips and Kleinman : shift core orbitals to make them
degenerate with the valence orbitals

F,=F + Y (e ~¢)

C

{I/Jv} — {lpv} Make nodeless pseudo-orbital by mixing core and valence spinors
L-1
Vliozen core( + E E‘lml fl T <lm[ ‘ Scalar
=0 m,
L-1 1+1/2
Viiozen core( rA + E E E‘ l]m]>fl;4 (rA )<l]m] ‘ Spln—Orblt
1=0 j=|1-1/2|m;=-1

These nonlocal pseudopotentials are determined via a fitting procedure
that optimizes the potential for each /-value. Takes care of Coulomb
and Exchange and core-valence orthogonality.
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Shape consistent ECPs

e American school” : Christiansen, Ermler, Pitzer
e French school” : Barthelat, Durand, Heully, Teichteil

e Make nodeless pseudo-orbitals that resemble the
true valence orbitals in the bonding region

1/%(") s iijv (l’) _ {wv(r) (r = R) Original orbital in the outer region

) (” < R) Smooth polynomial expansion in the inner region

BN
—~
-

o Fit is sometimes done to the large component of Dirac wave
function (picture change error)

o Creating a normalized shape consistent orbital necessarily
mixes in virtual orbitals

o Intermolecular overlap integrals are well reproduced
o Gives rather accurate bond lengths and structures

© L. Visscher, 2011



ECPs and electron correlation

e Integrals are calculated over pseudospinors
e Consider the MP2 valence energy expression

occupied virtual
MP2 E E l] H ab
ab E+E —€E,—E,

<lj H ab>pseud0 <l] H ab>0r1glnal O

pseudo pseudo

original original
i a > 81’ ga

o Orbital energy spectrum is compressed and in particular the intra-atomic 2-
electron integrals will be different from the reference all-electron calculation

o Absolute correlation energy may be overestimated relative to correlation
calculations done with the unmodified orbitals

o Example : for Pt the radial maximum of the 5d is very close to a node of the
6s. Pseudoizing the 6s will remove this node and overestimate the
correlation energy. Remedy : takes also the 5s in the valence

© L. Visscher, 2011



Energy consistent ECPs

“German school” : Stoll, Preuss, Dolg

Initially semi-empirical, later ab initio approach that tries to
reproduce the low-energy atomic spectrum (using correlated
calculations)

Lowlying
Levels

2
. PP R
min E w,(E, - E, ef”e”ce)

1

Provides good accuracy for many elements and bonding
situations

Difference in correlation energy due to the nodeless valence
orbitals is automatically included in the fit

Small cores may still be necessary to obtain stable results
Cheap core description allows for good valence basis sets
Available in many program packages (a.k.a. “SDD”)
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ECPs and molecular properties

e Valence electric and/or magnetic properties (multipoles,
polarizabilities, circular dichroisms, etc.)

o Unmodified operators can be used

e NMR shielding and spin-spin couplings

o ECPs are valid for the neighboring atoms, not for the ones
for which the shielding or couplings are to calculated

e Reconstruction of original wave function

o Allows calculation of core properties or excitations (mostly
applied in solid-state approaches, but some molecular
applications have also been reported)

e Spin-Orbit coupling between states

e Apply SOC-operator that is derived for the ECP that is
employed (usually AREP and SOREP)

© L. Visscher, 2011



How to include an SO-operator in Cl (CC)

1. First order quasi-degenerate perturbation theory (inclusion after Cl step)
© Can also be used with unbound operators (Pauli form)
© Is computationally efficient (one step procedure)
© Offers convenient (conventional) interpretation scheme
@ Important couplings to excited states may be missed

2. Limited variational theory (inclusion in Cl step)
© Unbound operators (Pauli form) are acceptable
© Does only increase the ClI effort, no influence on HF and MO-transformation
© Interpretation is non-conventional
@ Accuracy is limited when orbital relaxation effects are important

3. Variational theory (inclusion in SCF step)
@ Can only be used with bound operators
@ Is computationally demanding (symmetry change already in SCF)
© Interpretation is non-conventional
© Should be the most accurate theory
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2-Step treatment of SO-coupling

e Use the proper spin-orbit integrals !

o 2-electron integrals usually not explictly considered: atomic
mean field integrals (AMFI)

o ECPs: come with SO-operators suitable for evaluation over
pseudo-orbitals

e Basis for perturbative treatment

o CI/CASSCEF: select limited set of wave functions and form
effective Hamiltonian. Diagonalization of this small matrix
provides the final wave function

o CASPT2: shift diagonal matrix elements of effective Hamiltonian
matrix by adding PT2 correction prior to the diagonalization

© L. Visscher, 2011



Relativistic electron correlation

Many-Body Perturbation Theory

o Integral-direct implementation of MP2
Configuration Interaction

o Full Cl to about 10,000 determinants

o Direct Cl to about 5,000,000 determinants

o Spinfree Cl to 1,000,000,000 determinants
Coupled Cluster

o CCSD(T) to a few million amplitudes

o Fockspace (MR) CCSD (EA, IE.EE)
Multi-Configuration Self Consistent Field

o Cl to about a few million determinants

Computational bottlenecks
o Transformation of 2-e. integrals to the molecular spinor basis
e Memory use in the Cl and CC modules

© L. Visscher, 2011



Second quantization

e Hamilton operator

2m,
H = EZQE +—EG§§ Exs
PO PQRS

e Fock operator

ﬁ=E(Z}g+U}Q))E5 = FPQES =E‘9PE}I>J

. occe. I
o Mean field UY = E Ve (Vi =GRy - Gog )
I
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Many-Body Perturbation Theory

e Perturbation

A A~ o~ ]
H =H-F=—Y Vg, Egs EU,?EQ
4 PORS
e First order energy

~ (0lF1']0) = = 2 o (O[Ez$|0) - 2U3<0|E§|0>

PQRS

=—EV1§’<0IE |0)- EU(OIEIIO)— EVZIJ



Many-Body Perturbation Theory

e Second order energy

. 1AW 1 v
B = 2 010y () " By e

e Definitions

A—
81 —81_8A

AB
Eyy =& +&; —€4 —€p

scher, 2011



Direct Configuration Interaction

e Write wave function as linear combination of determinants

N
- E‘/’Ocui
u

e Define sigma and error vector

0" =Hec{"

4" = o ~Eel"

e Obtain sigma vector directly from MO-integrals

(n) E C(n)

EZ%)V&D(M v
PO

© L. Visscher, 2011
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Coupling Coefficients

Without SOC use of spin-adapted schemes is
possible. Distinguish between spin-conserving and
non-conserving excitations.

Insert resolution of identity to work with one-electron
coupling coefficients

Vs (V) = ye(wA)y $(Av)-7s (u.v)8%
A

Use graphical techniques to index determinants and
evaluate coupling coefficients (+/-1 or 0)

Use Abelian point group symmetry if possible

© L. Visscher, 2011



Kramers-restricted CI

e Rewrite Hamiltonian in terms of Kramers’ pairs

H = Ez‘fxp +%§Z§X” Ez‘fx”
E G X24(0,0) + 2 G XP(1) + = 2 G X2 (-~

PQ’”S pqrs pqrs
LS GRRION +1 D GREIR)+ LY G

pqrs pqrs pqrs

e Block Cl-vector by counting the number of “unpaired”
electrons

e Use modified non-relativistic Cl algorithms

© L. Visscher, 2011



Kramers-restricted CI

e X-operators are defined as linear combinations of the original
excitation operators, e.g.

X/(0)=E! +E]
X'(0,0)= EXY + E}Y + E7 + ELy
XP(0,1)=EN -E¢ -El' +Ey

v P4 ppa _ o pPs _ B
X,y (1)=Ers _Es'l'Erq _qu

e Reduces memory that is needed for the algorithm
e Facilitates approximations and use of spin-orbitals

© L. Visscher, 2011



Coupled Cluster

e Write wave function in exponential form
T
g)=¢'|0)

e CCSD : Restriction to single & double excitations

- A A AB 12 AB
I'= EETI E; + E ETIJ £y
I A I<J A<B
e Energy expression (l,J : occupied, A, B virtual)

CcCSD I A lIJ AB
ECP=NET + Y Vi
IA I<J,A<B

© L. Visscher, 2011



The CCSD equations

e Equations for T, and T, amplitudes

- ZEFKTATC + E HATS - E HEXTA + E HX(T2C+ TATC) +

AK AK CD KL AC
+EV1C K E VCDTIK - E VIC Tgr =0

K.C<D K<L ,C

Vit P ST - SVITE ) - B SGITY - SV
C K K C

E A{;LT?(I;J'F E BAB f]D [J AB(E H%KTJBC EVAKTCTB)

K<L C<D
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The CCSD intermediates

e Intermediates used in T, and T, equations

C C KL_AD K _ K KL_CD
Hy =Fy - E Ven Tke Hp =Fp + E Ven T
K<L.,D L.C<D
He =Fe EVCD
Gy=Hy =Y FeTg + Y Vip Ty G =H +YFRT +Y VT,
K KD K KC

C C CD CD
AgL = VlfL + B, E VIIELTJ + 2 V(,{{DL TIJD Byg =Vsg — P ABE VCD TK
C

C<D

Hil = Vi + SVET) - ZVa'T? EVé%( - 1"1})
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Evaluation of the <vv||vv> integral contribution

Contribution to be evaluated

Sy’ < D BT
C<D
Use point group symmetry

[[®L,erL. T, =1

d FAB = FCD = rIJ

Write contraction as BLAS DGEMM or ZGEMM

FCD = FIJ

S(AB.IJ)= Y B(AB.CD)x TAU(CD.1J)

CD

Parallelize over integral batches

all nodes

S(AB.IT)= Y §"*(AB.LJ)=

node

all nodes Tcp=Typ
E EB(AB,CD)XTAU(CD,IJ)

node CD on node
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Kramers-restricted CC

e For closed shells systems one can define

]-;a — 7’;767* 7’;67 — _Yga*

—k — * — .k — .k
b ab ab b b b b b
T =T4 T =T¢ T; =Tl]" Tl;‘ =—T§

U lj I 1]

e Rewrite equations in terms of unique quantities
o Reduction of factor 2 in number of amplitudes
o Reduction by factor 8 in number of operations necessary

e Comparison with optimal spinfree algorithm
o KRCCSD is max. 32 times more expensive than NR SR-CCSD
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Fock Space Coupled Cluster

Single reference CC Fock space CC
W) =el ) W)= Qw)
E|W)=H|¥) =H|¥)
E<e’ |9") = He' |¥") ECQ|W)) = HO|w?)
EC =(W°|He" |w*) HY = PHQ = PHQP

The states in the model space correspond to

o Annihilation of an electron from an active occupied orbital
(1h,0e) sector lonization energy

e Creation of an electron in an active virtual orbital
(Oh, 1e) sector Electron Affinity

o Creation and excitation of an electron: Excitation energy

Intruder states may require introdugtion, of, buffer space (IH-FSCC)



High accuracy: relativity and electron correlation

e “Best” method depends on system studied

e Closed shells and simple open shells
o Use a size-extensive economical method (include SOC for p-block elements)

e Complicated open shells, bond breaking
e CASSCF/PT2, MRCI or MR-CC
e SOC-inclusive methods for heavier elements

e Use “best practice” and experience from calculations on light elements
o Combine methods: structure optimization // energies

o Check basis set dependence (DZ -> TZ -> QZ, DZ -> aug-DZ)
o Check frozen core approximations (Large Core -> Small Core)
e Check Hamiltonian (NR -> X2C -> 4C)

e Some examples...

© L. Visscher, 2011



Sample applications

Accurate calculations on diatomic molecules
Can mercury loose 4 electrons ?
The unrivaled precision of aluminum

Can TD-DFT handle uranium ?



Spin-orbit splitting in atmospheric molecules

* VValence iso-electronic systems O,~, FO, CIO
e Breit interaction and correlation should be included
for accurate results

Fine structure splittings XO molecules

350
E 200 | x CIO —— Experiment
n
1 m DCG-Hartree-
(1
= 250 | Fock
=
= = m x DCG-CCSD
2 200 T
E s / "N Fo o DCG-CCSD-T

4—02—
150 1 ‘ ‘ ‘
150 200 250 300 350 400
Experimental FSS (cm ™)
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Groundstate of thalliumhydride

K. Faegri Jr.. and L. Visscher, Theor. Chem Acc. 105 (2001) 265.

e Goal : Provide benchmark values for this standard testcase
e Hamiltonian : Dirac-Coulomb-(Gaunt)
e Correlation space : up to 36 electrons (6s, 6p; 4f, 5s, 5p, 5d)

Method and Re Ke Q) De
# electrons corr. (pm) (N/m) (cm-1) (eV)
MP2* 14 186.2 121 1437 1.83
DC-CCSD(T)* 14 188.5 111 1376 2.07
DC-CCSD(T) 14 1876 113.3 1385 2.00
DC-CCSD(T) 20 1874 1121 1378 1.98
DC-CCSD(T) 36 187.4 111.1 1371 1.98

DCG-CCSD(T) 36 187.7 111.9 1376 2.06
experiment 186.8 114.4 1391 2.06

*Seth, Schwerdtfeger and Faegri (1999) calculations with contracted basis sets.

© L. Visscher, 2011



Dipole moment of HI

Relativistic effects

=

<

E —e—NR CCSD(T)
g —=—SF CCSD(T)

£ —+—DC CCSD(T)
% —u—eXp.

S

=

Be ware of error cancellation: basis set incompleteness &
relativity errors have different signs in this case

isscher, 2011



Basis set convergence

dipole moment (au)

NR CCSD(T) for different basis

——26s20p14d2f
—o—26s520p15d2f
—=—726s20p15d2f1g
—»—27521p16d4{2g1h
—a—28s22p17d5f3g2h

:i_;/
0.22 -
0.21 -
\ L .
\’\e,.ze ! . —
0.19 -
‘ ‘ 048 ‘ ﬁ
-0.6 -04 -0.2 0 0.2 04

(R-Re)
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Nuclear-electron interaction

e A

Electronic structure e
Decomposition in nuclear

calculations
moments
B = [Vy(r)p,(r)dr Ey = [V.(R)py(R)dR
Z, |
Vy(r) = R, V(R)=V,(R,) -E,(R,)R - 5R ‘F,(Ry)'R
N e—aN(R—RN)2
VN (r) ZN f i ‘r _R‘ dR E;nNt ~ ESN + EiN + E€2],Visotr0pic + EeZ],Vanisotropic

Point or Gaussian nuclear model Taylor expansion of the electronic potential

© L. Visscher, 2011



Extracting nuclear structure information from
Spectroscopy & Quantum Chemistry

Nuclear Quadrupole Moments Molecular

, rotation
The coupling between the nuclear
quadrupole moment Q and the electric
field gradient (EFG) at the nucleus q
gives an energy splitting that depends
on the orientation of the nuclear spin.
This can be observed with high
precision in microwave (rotational)
spectroscopy on diatomic molecules.

Nuclear spin

Quantum chemistry gives q and can P q Q[3 m? — 1] (I + 1)]
thus be used to obtain accurate values E = 2z u

of Q or to predict and rationalize NQR e 4121 -1)
or NMR observations.
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NQM 2'Sb (mbarn)

Isotope Method SbN SbP SbF SbCl Average(1) Error(1) Average(2) Error(2)
YIS DC-HF* -527.2 -427.6 -569.1 -579.4 -525.8 49.1 477 .4 49.8
DC-B3LYP* -503.0 -513.0 - - . . -508.0 5.0
DC-BPW91* -510.0 -533.7 - - . . -521.9 11.9
DC-CCSD -521.8 -511.4 -628.9 -707.3 -592 4 75.8 -516.6 5.2
DC-CCSD(T) -562.2 -540.9 -546.4 -505.3 -538.7 16.7 -551.6 10.7
DC-CCSD-T -542.5 -543.2 -559.8 -528.3 -543 .4 8.2 -542.9 0.4

]

With only SbN, SbP

Buchholz, et al., Z. Phys. A 288 (1978) 247 (Current standard Value) '2'Sb=-360(40) mb
Demovic et al. JCP 124 (2006)184308 (I0TC CCSD(T)) 121§p=-556(24) mb
Haiduke et al. JCP 124 (2006) (this work) 121§ph=-543(11) mb
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NQM 271 (mbarn)

Spread in Nuclear Quadrupole Moments (mbarn)

. ETI

OAul DC-CCSD(T)

W Agl

OCul
DC-CCSD

mI2

O1IBr
DC-MP2

O ICl

mIF

B HI ZORA4-DFT(BP)
DC-HF

' SF-HF
NR-HF
-400 -300 -200 -100 0 100 200

-500
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Gold : direct method

Method

Gold NQM (relative to -506 mbarn)

DC-CCSD-T+G(HF) o
DC-CCSD-T ey
DC-CCSD(T) =
DC-CCSD E—
| !
DC-MP2 —
S —
| !
DCHE et
100 0 0 50

Deviation from best value

100

AuH

M (CO)AUF
ArAuF
KrAuF

B XeAuF
AuF
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Gold : indirect method

Gold NQM (relative to -510 mbarn)

DC-CCSD-T+G(HF)

DC-CCSD-T

DC-CCSD(T)

DC-CCSD

method

DC-MP2

DCG-HF

DC-HF

-60

-40

-20 0 20 40 60 80

Deviation from best value

100

AuH

M (CO)AuUF
ArAuF
KrAuF

B XeAuF
AuF

L. Belpassi, F. Tarantelli, A. Sgamellotti, H. M. Quiney, J. N. P. van@tréatesherl20\fisscher, J. Chem. Phys. 126 (2007) 064314.




Reaction energies: HgF,+ F, =& HgF,

Hamiltonian Reaction
energy (kJ/mol)

sc-ECP aug-QZ

sc-ECP CCSD -3
sc-ECP CCSD(T) —34
DC aug-TZ MP2 —67
DC CCSD —1
DC CCSD(T) —31
DCG CCSD(T) —29

sc-ECP calculations: S. Riedel, M. Straka, M. Kaupp, PCCP 6 (2004) 1122.

Confirmed 1993 prediction of Hg(IV) by Kaupp, compound observed by Andrews in 2007.
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Mossbauer Isotope Shift

E,(source) e Change in electron-nuclear attraction energy due to
changing nuclear radius
E,(absorber)
- AE,=E"*(R)-E (R))
9| \p
i AE =~ p
 (source) : AE, (absorber) IR |g_g,
OE a¢ (r,,R
—r =fpe (r;;R) AU )d3re
: aR R=R, aR R=R
_— ’ Y
EO(source)\:_ + —¢8p (r:R) r,,R)d’r
E,(absorber) J IR (1 R)dT,
R=R,
) | — Second term is not relevant! for 6: chemical information
from environmental influence on this shift
Pl AE (source) - AE (absorber)

2e+06

1.5e+06

le+06

4.0x10"

2.0x10™"

0.0

2.0x10"

4.0x10"

O=c

AE

14
Further approximations:
e proton charge density is constant inside the nuclear volume
e electron charge density is approximated by contact density

1) B. Fricke, J. Waber, Phys. Rev. B 5 (1972), 3445.
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Implementation in DIRAC

e Finite-size nucleus
» Has nothing to do with relativity !
» Realistic charge distribution of the nucleus
+  Removes cusp condition at the origin

» Nuclear excitation can be modeled directly (but be careful with
numerical precision)

e Relativistic (4-component) electron densities
» Large and small component contribution
» Difference with non-relativistic density most prominent near nuclei
» Maossbauer shift: analysis in terms of orbitals

e Implementation
+ HF and DFT: expectation value
+ CC: HF value + finite differences of electron correlation energy

S. Knecht, S.Fux, R. van Meer, L. Visscher, M. Reiher, T. Saue,. Theor. Chem. Acc. 129 (2011), 631.
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Mercury atom: orbital contributions

m Contact density Eff. density correction

151/2
2s1/2
3s1/2
4s51/2
5s1/2
6s1/2
2p1/2
3p1/2
4p1/2
5p1/2
2p3/2
3p3/2
4p3/2
5p3/2
Total

1,951,311.50
294,993.24
67,814.71
17,035.79
32,65.26
276.32
21,856.04
5,638.93
1,398.44
23717

0

0

0

0
2,363,827.39

© L. Visscher, 2011

-194,467.78
-29,548.24
-6,798.36
-1,708.17
-327.42
-27.71
-2,107.28
-544.14
-134.96
-22.89

0.51

0.14

0.03

0.01
-235,685.57

units: a,

Non-relativistic
361,818.93



Mercury halides: Hg, (n=1,2,4)

Contact Effective Difference units: a,
density density

-114 .54 -103.05 -10.0%
HgF2 -127.58 -115.01 -9.9%
HgF4 -98.09 -88.22 -10.1%
HgF HgF2 HgF4
-60
-70
-80 A
=m=|\P2
-90 ==CCSD
-100 =*=CCSD(T)
-110 oA
“@-BLYP
-120 <s=CAMB3LYP
-130
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Mercury Fluorides: conclusions

e Contact density approximation in Mossbauer calculations
o Significant overestimation of effective density
e Scaling relation can be applied for relativistic wave function

e Interpretation of HF vs. LDA result
o LDA gives more compact 6s = larger effect of electron withdrawal
o LDA gives smaller polarizability = smaller effect of ligands

+ Is this really Hg(IV) ? Charge analysis gives:

0.88 1.51 2.47
LDA 0.55 1.12 1.89

S. Knecht, S.Fux, R. van Meer, L. Visscher, M. Reiher, T. Saue,. Theor. Chem. Acc. 129 (2011), 631.
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Al* atomic clock

i TABLE I.  Systematic effects that shift the clock from its ideal
] unperturbed frequency. Shifts and uncertainties given are in
10" 1 fractional frequency units (Aw/»).
b
] Effect Shift (10~'%)  Uncertainty (10~'%)
13 l
10 '14 Excess micromotion -9 6
f‘ Secular motion —16.3 5
~ 10™L — ] ; | Blackbody radiation shift -9 3 ]
2 + \ optical i Cooling laser Stark shift -3.6 1.5
3 st \ (neutral) ] Quad. Zeeman shift —-1079.9 0.7
® 10 b %J Linear Doppler shift 0 0.3
\ i Tock lacer Stark <hif 5
opiical N 1 Clock laser Stark .~m‘n> 0 (1t
o & Sr 1 Background-gas collisions 0 0.5
1077k 10N 1*s ] AOM freq. error 0 0.2
Al 1 Total 1117.8 8.6
Hg'(8 1
1077} oAl §
} T. Rosenband, C. W. Chou, D. B. Hume, D. J. Wineland, Laser
" 1: Science (2010);C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J.
10 ! g i
1970 1980 1990 2000 2010 2020 Wineland, T. Rosenband, Phys. Rev. Lett., 104 (2010) 070802.

year
Fig. 1: Accuracy of atomic clocks based on different species of atoms.

e Based on !S,—> 3P, transition in Al*
Relative accuracy 8.6 10-18 (3.7 seconds / age of the universe)
Blackbody radiation shift (BBRS) responsible for 35% of this uncertainty

e Precise calculation of BBR shift using relativistic coupled cluster approach
© L. Visscher, 2011



Blackbody Radiation Shift

Energy levels of the Al* ion:

State Excitation
energy [cm™1]
382 150 -
3s3p 3P, 37393
3s3p 3P, 37454
3s3p 3P 37578

Clock transition: 3s%21S; — 3s3p3P,

BBR shift is calculated from the
difference in polarizabilities of the
ground and excited state:

1 T(K)\'
AEBBR — __ 831.9V/m2(—) a—-a.
v 2( ) 300 ( : ’)

Finite field differentiation for the
DC contribution

i 82

a’c = E[EfC(I-AIDC +£2)—EiCC(PAIDC)]
Breit + QED correction from
numerical relativistic MCSCF
calculation

Act.. = (aiDC _ a;)C)_'_(aiBQED _ anED)
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Results and convergence

N Y T TN YT

24.203 24.261 0.058
TZ 24143 25.040 0.897 0.839
QZ 24.273 24.700 0.427 0.470
oz 24.251 24.656 0.406 0.021
CCSD 24.251+0.044 24.656+0.88 0.406+0.042
Corelatiom*GED|__a sy | _arpy | Ao
CCSD 24.251+£0.044 24.656+0.088 0.406+0.042
AT -0.126+0.011 -0.061+£0.015 0.065+0.026
AQ -0.002+0.005 0.001+0.002 0.003+0.007
ABQED 0.015+0.015 0.018+0.018 0.003+0.003
Total 24.137+0.075 24.614+0.123 0.477+0.078

M. Kallay, H. S. Nataraj, B. K. Sahoo, B. P. Das, L. Visscher, Phys. Rev. A, 83 (2011) 030503.
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Actinide spectroscopy by TD-DFT ?

e CASPT2 (MOLCAS)
» Versatile treatment of multideterminant reference wave functions
» Electron correlation to second order
» Douglas-Kroll-Hess Hamiltonian
» Spin-Orbit coupling in two-step procedure

e Coupled Cluster (DIRAC)
» Restricted by need for single determinant reference
» Electron correlation to infinite order but limited by excitation level
+ (Intermediate Hamiltonian) Fock Space CCSD
» DC and/or 2DCGA

e Time-Dependent Density Functional Theory (ADF & DIRAC)
» Assessment of functionals
+ Study influence of ALDA approximation

© L. Visscher, 2011



2.00

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

Difference to FS-CCSD in eV

Excited states of Uranyl

LR-CCSD consistently higher than FS-CCSD, CASPT2 close.

TD-DFT: no functional gives a consistent picture. Influence
Hamiltonian (ZORA) small but ALDA approximation has

significant effect.

Rl Ll 1

ETRCCSD  ®CASPTZ2

LDA uPBE

ESAOP

3Ag 3dg 1dg 1Ag

1Au

3Au

1Mg

F. Réal, A. S. P. Gomes, V. Vallet, L. Visscher, E. Eliav, J. Phys. Chem. A 113 (2009) 12504-12511
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OUO2*, NUO* and NUN

Triplet -
Singlet

15

1

Te) o
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_ _
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P. Tecmer, A. S. P. Gomes, U. Ekstrom, L. Visscher, 136 (2011) 6249.
Automatic differentation for XC functionals: Ekstrom @t-dF°3"CHe. Theory Comput. 6 (2010) 1971.



Further reading for RQC

Relativistic Quantum Mechanics
o M. Reiher and A. Wolf, Relativistic Quantum Chemistry, (Wiley, 2009)

o K. G. Dyall and K. Faegri Jr, Relativistic Quantum Chemistry, (Oxford
University Press, 2007)

o R. E. Moss, Advanced molecular quantum mechanics. (Chapman &
Hall, London, 1973).

« P. Strange, Relativistic Quantum Mechanics. (Cambridge University
Press, Cambridge, 1998).

Relativistic Quantum Chemical methods

e Relativistic Electronic Structure Theory - Part 1 : Fundamentals, ed.
P. Schwerdtfeger (Elsevier, Amsterdam, 2002).

o Theoretical chemistry and physics of heavy and superheavy
elements, ed. U. Kaldor and S. Wilson (Kluwer, Dordrecht, 2003.

Applications

o Relativistic Electronic Structure Theory - Part 2 : Applications, ed. P.
Schwerdtfeger (Elsevier, Amsterdam, 2004).
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