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A quick reminder: What is electronic structure theory?

A quantum mechanical and first-principle approach

—— Collection of ions + electrons

!
Only input: Z,, N,

Work in the Born-Oppenheimer approximation

Solve the Schrodinger equation for the electrons in the ionic field
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Solving the many-electron Schrodinger equation ‘

1 ) 1 1

What do we want to compute?‘

Fermionic ground state and low-lying excited states

(Wn|O[Wh)

Evaluate expectation values
(Wa|Wp)

Where is the difficulty?|

Electron-electron interaction — Non-separable



Why quantum simulations?

Why not just doing classical simulations?
Inter-atomic forces are determined by the electrons

Interacting quantum system — Effective inter-atomic potentials

Much simpler and economical but ...
— Empirical potentials — inadeguate, non-transferable

— Important phenomena (bond breaking/forming, excitations ...)

are intrinsically classical



Is there an optimal theoretical approach?‘

e Density functional theory methods

Large systems but approximate exchange/correlation

e Quantum chemistry post-Hartree-Fock methods

Accurate on relatively small systems

— Jungle of approaches: Cl, MCSCF, CC, CASPT2 ...

° ’Quantum Monte Carlo techniques‘

Stochastic solution of the Schrodinger equation
Accurate calculations for medium-large systems
— Molecules of typically 10-50 1st/2nd-row atoms

— Relatively little experience with transition metals
— Solids (Si, C ... Fe, MnO, FeO)



Is there an optimal theoretical approach?‘

e Density functional theory methods

Large systems but approximate exchange/correlation

e Quantum chemistry post-Hartree-Fock methods

Accurate on relatively small systems

— Jungle of approaches: Cl, MCSCF, CC, CASPT2 ...

° ’Quantum Monte Carlo techniques‘

Stochastic solution of the Schrodinger equation
Accurate calculations for medium-large systems
— Molecules of typically 10-50 1st/2nd-row atoms

— Relatively little experience with transition metals
— Solids (Si, C ... Fe, MnO, FeO)

e.g. Geophysics: Bulk Fe with 96 atoms/cell (Alfé 2009)



If you can, use density functional theory!

HUMAN TIME

Wave function methods

Density functional theory
N3

Quantum chemistry Quantum Monte Carlo
> N6 N4

COMPUTATIONAL COST‘




Density functional theory: Cheap and painless!

— Hohenberg-Kohn theorem (1964)

Ground-state density p(r) fully characterizes the system

Ground-state energy Eg = E[po]

— Kohn-Sham theorem (1965)

Interacting — non-interacting system with same p(r Z [i(r)
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’ Fast evolution of DFT

State of the art is in constant progression

1985
1985
1987
1992
1996
1996
2000

Car-Parrinello molecular dynamics

GW calculations — quasiparticle spectra
Linear-response for phonons, dielectric tensor
Berry-phase approach to polarization
Time-dependent DFT for excited states
Combine DFT for electrons and quantum ions
Using O(N) — 15000 atoms

Transport, DFT for superconductors etc.



Software engineering: Important part of success

1998 Nobel prize in chemistry to Kohn and Pople
J. Pople — GAUSSIAN70

GAUSSIANO09

It had a big impact in quantum chemistry community

— At the origin of the popularity of DFT among chemists

Many commercial, free, open-source codes are now available



Are we theoreticians out of job?

Successful applications of DFT + efficient, user-friendly codes

Can anybody do it?

Better posed questions

Is it always a success story?

Do we have a black-box method close to perfection?
In principle | — DFT is correct

BUT Exc[p] unknown functional of the density

— Exc[p] must be approximated

... and sometimes things go wrong



... density functional theory does not always work‘

A “classical” example: Adsorption/desorption of Hy on Si(001)

!
ads
E <Si
oo H
+ Edes J
ds des
For a small model cluster Eacs ESS Erxn

DFT 069 28 217
QMC 1.01(6) 3.65(6) 2.64(6)

DFT error persists for larger models!

eV



’ Favorable scaling of QMC with system size

QMC possible for clusters with 2, 3, 4 ... surface dimers

Accurate QMC calculations doable from small to large scales

Error of DFT is large — 0.8 eV on desorption barrier !

Healy, Filippi et al. PRL (2001); Filippi et al. PRL (2002)



What about DFT and excited states?‘

Density functional methods for excited states

— Restricted open-shell Kohn-Sham method (DFT-ROKS)
Based on ASCF approach, efficiently combined with CPMD

— Time-dependent density functional theory (TDDFT)
Formally exact but approximations have limitations
— Lack of two- and higher-electron excitations

— Underestimation of charge-transfer excitations ...



Problematic example: Minimal model of retinal

5.0

S0-S1 adiabatic excitation: ROKS géométrieé
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Neither approach correctly describes excited-state isomerization

Schautz, Buda, Filippi, JCP (2004)



Several problems remain open‘

Reaction barriers, weakly bound, strongly correlated systems ...

Excitations with charge-transfer/multi-configurational character ...

A practical approach or the darkest side of DFT

... Let us get it to work !

And it all began with hybrid schemes such as

1 2
3 Hartree-Fock  + 3 DFT

which does work better!



’Available functionals in Gaussian09

COMBINATION FORMS

EXCHANGE CORRELATION

s

LONG RANGE
CCORRECTION
LC-

VWN
VWNS
LYP
PL

STAND ALONE FUNCTIONALS

EXCHANGE
ONLY
HFS
XAlpha
HFB

PURE
VSXC

HCTH
HCTHY3
HCTH147

tHCTH
MO6L
B97D

HYBRID
B3LYP
B3PS6

B3PWI1
BIB9S

mPWI1PW91

mPWILYP
mPWIPBE
mPW3PBE
BYS
BY71
BY72
PBEIPBE
BILYP
03LYP
BHandH
BHandHLYP
BMK
M6
MOGHF
M062X
HCTHhyb
HSEhIPBE
HSE2PBE
HSEhPBE
PBERIPBE
WB97XD
WB97
WB97X
TPSSh
X3LYP
LC-wPBE
CAM-B3LYP

... rather distressing



’When DFT has problems — Wave function based methods‘

Wave function W(xy,...,xy) where x = (r,0) and 0 = +1

’Optimal wave functions and the variational theorem‘

V(X, a) with X the space-spin variables and [a] the parameters

W(a)[HW(2) o

B@)="aNGE) ©

E\/(a) = Eo = W(X, a) = \Uo(X)



The variational method and the linear basis approach‘

Wave function as a linear combination of basis functions f,(X)

5 n.m 333
V(X2) = D anfilX)| = Ev(a) = S
n m<mn

n,m “n

where Hpm = (fo|H|fm) and Spm = (f|fm)

dE
Y e £33 =0 = [Fa= B



Linear basis approach — Generalized eigenvalue problem‘

VX3 = Y aihX) =

’ Important properties ‘

> For a basis of size M, 9 M eigenvalues and eigenfunctions

> | McDonald’s theorem

EL<E<..<Ey with




’ Merits and problems of the variational method

Find approximate solution W to Schrodinger equation
> Upper bound is guaranteed
> Linear basis — Generalized eigenvalue problem

> Linear basis — McDonald's theorem for excited states

> How do we compute the matrix elements H,,, and S,,7?
> How do we access convergence?

> What goes in, comes out



How do we compute the matrix elements S,,, and H,m?

Integrals Hpm, and S, too slow to perform unless one-particle basis

— Problem which can be solved by Monte Carlo integration

Many-body wave functions in traditional quantum chemistry‘

Interacting W(xy,...,xy) < Non-interacting basis ¥(x)

V¥ expanded in determinants of single-particle orbitals 1/(x)

Single-particle orbitals expanded in Gaussian basis

= | All integrals can be computed analytically‘




Many-body wave functions in traditional quantum chemistry‘ (1)

Starting point — Non-interacting Hartree-Fock wave function

¢1(X1) 7111('XN)

DHF(Xla e ,XN) =

Yn(x1) ... wN(.XN)

Optimal spin-orbitals 1;(x) = ¢i(r)xs (o) satisfy HF equations

N (v\]2
=IO / ar ',‘ff(_"r),', 61(6) + [oup il (r) = ci65(r)
j=1

= [occupied | orbitals (¢1...vn) + [virtual | orbitals (¢n:1...)



Many-body wave functions in traditional quantum chemistry‘ (2)

A jungle of acronyms: Cl, CASSCF, MRCI, CASPT2 ...

Expansion in linear combination of determinants

Y1(x1) ... 7/11(?(N)

W(x]_,...,XN) — DHF e

\ /

coDgr + c1D1 + oDy + ... of determinants

d)/\/&xl) QZJN(.XN)

Yi(x1) ... ¢1(?<N)

Ynra(x1) oo Unra(xn)

by constructing single, double, ... up to N-body excitations



’ Many-body wave functions in traditional quantum chemistry‘

of Cl expansion in Slater determinants

Ver = coDur + Z cabD*TP + Z Cabcd DT 4 .
ab abcd

Optimal Cl coefficients by solving generalized eigenvalue equation

PN

K K
Vor =Y oD = | S (DD = ES) ST (Di| Dy
- =

Jj=1

Orbitals on a Gaussian basis — ’ Integrals computed analytically‘

. but | slowly converging expansion ‘




Can we use a more compact W?

We want to construct an accurate and more compact W
Explicit dependence on the inter-electronic distances

How do we compute expectation values if no single-electron basis?



A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on W

_ (WVH|W)  [dRWV*(RYHV(R) > E

STy T TARVRV(R) ©

HY(R)| _ [W(R)?
V(R) | [ dRIV(R)]?

/
:/dR EL(R) p(R) = (EL(R)),

= [ dR

HV(R)

p is a distribution function and Ep(R) = U(R)

the local energy



’Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

> Sample R from p(R) using Metropolis algorithm

¥(R)
V(R)

> Average local energy Ep(R) = to obtain Ey as

Ev = (EL(R)), = i Z EL(R})

R

%\ Random walk in 3N dimensions, R = (r,...,ry)

Just a to evaluate integrals in many dimensions



Is it really “just” a trick?|

Number of electrons 4 x 21422 =106
Number of dimensions 3 x 106 =

Integral on a grid with 10 points/dimension — 103! points!

MC is a powerful trick = Freedom in form of the wave function W



Monte Carlo integration‘

We want to compute an integral

Ey = / dRE(R)p(R)

We sample p(R) — | Ey = (E(R)), =

— Does the trick always work?

— How efficient is it?




’The Central Limit Theorem‘

Consider a probability density p(x) and function f(x) with a finite
mean and variance

= [ axrCap0 = [ ax (2 - ()

Sample M independent random variables xi, ..., xy from p(x) and
define

1 M
FM:M;f(Xi)

1
e
\V2ro

—(x=n)? /207

As M increases, Fy; is normally distributed as

with a mean [ and variance | 02, = 02/M

— of the original probability density function




Monte Carlo versus deterministic integration ‘

Integration error € using M integration/Monte Carlo points
— Deterministic integration methods

1-dim Simpson rule: € ﬁ
d-dim Simpson rule: € M4/d

For a given error, M grows exponentialy with d as M (l/e)d/4
— Monte Carlo methods
|
€ X \/W independent on dimension
It follows from Central Limit Theorem

— width of Gaussian decreases as ﬁ for finite variance



Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

... for many-body wave functions d = 3Ngje !

— Simpson rule integration (M integration points)

Cc Cc C\ 3Netec/4 _
€= = = Mt = Exponential
VD T g BN B
int int

— Monte Carlo integration (Myic Monte Carlo samples)

N, elec

c\?2 ;
Ve = Myc = (E) Nelec
M

[
I



’ Reminder of variational Monte Carlo‘

Expectation value of the Hamiltonian on W

_ (V[RV) HV(R) VR
B ="y = | R GR) TaRIVR? _/dR EL(R) p(R)

Ey = /dREL(R)p(R)

7 = [aRER) - E)%(R)

Estimate Ey and o from M independent samples as
1M
Ev = M;EL(R,-)

_2 1 o 2
S WZ(EL(Ri)_EV)



Are there any conditions on many-body VW to be used in VMC?

Within VMC, we can use any “computable” wave function if

> Continuous, normalizable, proper symmetry

> ’ Finite variance‘

2 _ (V[(H—Ev)’lv) 2
0" = (wyw‘; = ((EL(R) — Ev)%),

. g
since the Monte Carlo error goes as |err(Ey) ~ —

VM

Zero variance principle: if W — Wy, Ep,(R) does not fluctuate




Typical VMC run

Example: Local energy and average energy of acetone (C3HgO)

Ovme

Energy (Hartree)

Evmc = (EL(R)), = —36.542 4 0.001 Hartree (4020000 steps)

ovmc = ((EL(R) — Evmc)?), = 0.90 Hartree



Variational Monte Carlo and the generalized Metropolis algorithm‘

[W(R)?

How do we sample distribution function p(R) = W :

— Obtain a set of {Ry, Ry, ..., Ry} distributed as p(R)

Generate a

> Start from arbitrary initial state R;

> Use stochastic transition matrix P(R¢|R;)

P(RR) >0 > P(R¢R) =1.
R¢
as probability of making transition R; — Ry

> Evolve the system by repeated application of P



Stationarity condition

To sample p, use P which satisfies ’ stationarity condition |

> P(R¢[Ri) p(Ri) = p(R¢) V Rg

> Stationarity condition

= ’ If we start with p, we continue to sample p‘

> Stationarity condition + stochastic property of P + ergodicity

= ’Any initial distribution will evolve to p‘




More stringent condition‘

In practice, we impose ‘ detailed balance‘ condition

| P(Re[R;) p(Ri) = P(Ri[R;) p(Ry)|

Stationarity condition can be obtained by summing over R;

ZP(Rf’Ri) ZP ilRe) p(R¢) = p(Ry)

Detailed balance is a sufficient but not necessary condition




How do we construct the transition matrix P in practice?

Write transition matrix P as proposal T x acceptance A

|P(Re|R)) = A(R{[R;) T(R(|R;)

P and T are stochastic matrices but A is not

Detailed balance condition becomes
A(R¢|R;) T(R¢|Ri) p(R;) = A(Ri|R¢) T(R;i|R¢) p(R¢)

or AReR:) - T(Ri|Rr) p(Ry)

ARi[R:) — T(R¢|R;) p(Ri)



Choice of acceptance matrix A‘ (1)

Detailed balance condition is

A(R¢|Ri) T(Ri|R¢) p(Ry)

ARiR:) — T(R¢|R;) p(Ri)

For a given choice of T, choices of A satisfy this equation

Any function A(R¢|R;) = F (W) with

=x and 0<F(x)<1

will do the job!



Choice of acceptance matrix A‘ (2)

Original choice by Metropolis et al. maximizes the acceptance

- T(RilR) p(Ry)
A(R¢|R;) = mm{l’T(Rf\Rfi)p(Rf)}

Note: p(R) does not have to be normalized

’Original Metropolis method‘

Symmetric T(R¢|R;) = 1/A3" = A(R¢|R;) = min {17 P(Rf)}

)

—~
._-: U
~

’ Is this the best possible choice for T?‘




Choice of proposal matrix T (1)

Sequential correlation = Mg < M independent observations

M
Tcorr

Mg = with T.orr autocorrelation time of desired observable

Aim is to achieve fast evolution of the system and reduce T o

Use in choice of T to have high acceptance

T(Ri|R¢) p(Ry)

~1 = AR{R)~1
T(R¢|Ri) p(Ry) (Re[R)

and small T.o of desired observable



Choice of proposal matrix T‘ (2)

If A is the linear dimension of domain around R;

AReR) _ T(RiR)p(R) . .
ARi|Ry)  T(R¢R) p(Ri) 1-0(A")

> T symmetric as in original Metropolis algorithm gives
> A choice motivated by diffusion Monte Carlo with is

(Rt — R; — V(R;)7)?

T(R¢[Ri) = Nexp | — >

with V(R;) =

> Other (better) choices of T are possible




Acceptance and T, for the total energy Ey

Example: All-electron Be atom with simple wave function

Simple Metropolis
A T A

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
020 45 0.75

Drift-diffusion transition
T 7—v:orr A

0.100 13 0.42
0.050 7 0.66
0.020 8 0.87
0.010 14 094



Generalized Metropolis algorithm‘

1. Choose distribution p(R) and proposal matrix T(R¢|R;)
2. Initialize the configuration R;
3. Advance the configuration from R; to R’

a) Sample R’ from T(R'|R;).

1’ /
b) Calculate the ratio p = mpg ;
i) PARy

c) Accept or reject with probability p
Pick a uniformly distributed random number x € [0, 1]
if x < p, move accepted — set Rf = R’
if x > p, move rejected — set Rf =R
4. Throw away first x configurations of equilibration time

5. Collect the averages and block them to obtain the error bars



Expectation values in variational Monte Carlo

We compute the expectation value of the Hamiltonian H as

g, )
W)
HU(R) [W(R)P

V(R) [dR|W(R)2
- /dREL(R)p(R)

= dR

Note: a) Metropolis method: p does not have to be normalized

— For complex W we do not know the normalization!

b) If W — eigenfunction, E;(R) does not fluctuate



Expectation values in variational Monte Carlo

The energy is computed by averaging the local energy

_ (VIH|vV)
Ey = Ty (EL(R))p

The variance of the local energy is given by

2 (WI(H - Ev)*|¥)

o2 = T = ((EL(R) — Ev)?),

The statistical Monte Carlo error goes as err(Ey) ~

2l

Note: For other operators, substitute H with X



Typical VMC run

Example: Local energy and average energy of acetone (C3HgO)

Ovme

Energy (Hartree)

Evmc = (EL(R)), = —36.542 4 0.001 Hartree (4020000 steps)

ovmc = ((EL(R) — Evmc)?), = 0.90 Hartree



’Variational Monte Carlo — Freedom in choice of W

Monte Carlo integration allows the use of complex and accurate W

= More representation of W than in quantum chemistry
= coDgr +c1D1+ Dy + ... of determinants



| Jastrow-Slater wave function |

W(rl,...,l’/\/) I’1,... deD r1,...,rNT)Di(rNTH,...,rN)

—— Jastrow correlation factor

- Positive function of inter-particle distances
- Explicit dependence on electron-electron distances

- Takes care of divergences in potential

Z ¢k D | — Determinants of single-particle orbitals

- and not millions of determinants as in quantum chemistry

- Determines the nodal surface



’What is strange with the Jastrow-Slater wave function?‘

w(rla . '7rN) = j(rla . '7rN)deDII(r17 . '7rNT) Dl{(rNTle: <o
k

> Why is W not depending on the spin variables o7

\U(Xl,... 7X/\/) = \U(I‘l,O'l,.. .,I’N,O'N) with o; = +1

> Why is W not totally antisymmetric?



Why can we factorize D,IDi?

Consider N electrons with N = N; + N| and S, = (Ny — N|)/2

W(Xl, .

Define a spin function (3

Ci(o1, ...

Generate

K = N!/N;!N,! functions (;

,XN) = \Il(rl,al,...,rN,UN) with g = +1

yon) = xp(o1) - xi(on)xi(on,+1) - x 1 (on)

by permuting indices in (1

The functions (; form a complete, orthonormal set in spin space

Z Ci(017 , ,O'N)Cj(al, e

01...0N

7UN) - 5’J



Wave function with space and spin variables

Expand the wave function W in terms of its spin components

W(Xl,..., ZF re,...,r C,(O’l, ..,O’N)

WV is totally antisymmetric =
> F; = —F; for interchange of like-spin

> F; = 4+ permutation of F;

’W(xl,...,xN) = A{Fi(r1,...,ry) C1(01,--~70N)}‘




Can we get rid of spin variables? Spin-assigned wave functions

Note that if O is a spin-independent operator

| (V[O[) = (R|O|F)|

since the functions (; form an orthonormal set

More convenient to use Fj instead of full wave function W

To obtain Fq, assign the spin-variables of particles:

Particle 1 2 ... NT NT+1 ce N
o 11 ... 1 -1 ... -1

Fl(l‘l, .. .,I‘N) = \U(I’l, ].7 .. "rNT7 1,rNT+17 —1, B —1)




Spin assignment: a simple wave function for the Be atom‘ (1)

Be atom, 152252 = Ny =N =2,5,=0
Determinant of spin-orbitals ¢1s X1, ®2s X1, @15 X|. P25 X

d1s(ri)xq(on) .. d1s(ra)xi(oa)

1 | das(r)xi(on) ... dos(ra)xi(oa)
~ Va1 | ¢1s(r)xy(o1) P15(ra)x | (04)
¢2s(r1)x 1 (01) $25(ra) x| (04)



Spin assignment: a simple wave function for the Be atom‘ (2)

Be atom, 152252 = Ny =N =2,5,=0

P15(r1)  ¢1s(r2) 0 0
1 | P2s(r1)  ¢as(r2) 0 0

var| o 0 61s(r3) ¢us(ra)
0 0 ¢os(r3) ¢os(ra)

$15(r1)  ¢1s(r2)

1 $15(r3)  ¢1s(ra)
VAl | ¢2s(r1)  das(r2)

¢2s(r3) ¢2s(r4)

|

D(Xl,xz,X3,X4) - DT(rler) X Di(r3,r4)




Jastrow-Slater spin-assigned wave function

To obtain spin-assigned Jastrow-Slater wave functions, impose

Particle 1 2 ... Ny Ny ... N
o 11 ... 1 -1 .. -1

\U(rl, . ,rN) = Fl(rl, .. .,I‘N)

= j(rla"‘7rN)deDII(r17"'7rNT)Di(rNT+l7' .
k

7rN)



Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as

Z .
——  for the electron-nucleus potential

liew

1 .
—  for the electron-electron potential
Tij

v 1« V2V —
Local energy H—:—iz “— + V| must be

v v

= Kinetic energy must have opposite divergence to the potential V



Divergence in potential and behavior of the local energy

Consider two particles of masses m;, m; and charges q;, g;

Assume r;; — 0 while all other particles are well separated

: : . HV . .
Keep only diverging terms in v and go to relative coordinates

closetor=r; =0

1 Vv 1 v 11V
V() ~ = ——— + V()
2pij ¥ 2pp Vo pr W
11V
pij r ¥ )

where pjj = m;m;/(m; + m;)



Divergence in potential and cusp conditions

Diverging terms in the local energy

11V 11V iqj
_7,7_|_V(r):_777-|-ﬂ = finite
pijr W pijrv r

= W must satisfy Kato's cusp conditions:

~

ov
6r,-j

= wiiqi q;V(rj = 0)

rij=0

where W is a spherical average

Note: We assumed W(r;j =0) #0



Cusp conditions: example

The condition for the local energy to be finite at r =0 is

\Ul
v = Kijqi qj
\U/
e Electron-nucleus: p=1,q9i=1,q=-2 = | =-7
v r=0
1 g
e Electron-electron: p=-,q9;=1,qg;=1 = | — =1/2
2 v r=0




Cusp conditions and QMC wave functions

> Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

J(rij) Hexp{b01+b }

1<J

1

Imposes cusp conditions
+

keeps electrons apart r
y

> Electron-nucleus cusps imposed through the determinantal part



‘ The effect of the Jastrow factor‘

Pair correlation function for 1| electrons in the (110) plane of Si
gr1(r,r') with one electron is at the bond center

Hood et al. Phys.

Rev. Lett. 78, 3350 (1997)

>



Simple wave function for the Be atom ‘

Be atom, 152252 = Ny =N =2,5,=0

Spin-assigned W(ry,+1,rp,+1,r3,—1,ry,—1) =T D

> Factorized determinant

QZ)ls(rl) ¢ls(r2)
¢2s(r1) ¢2s(r2)

D:DTxDlz‘ X

¢15(I’3) ¢15(I’4)
$2s(r3)  ¢2s(ra)

> Simple Jastrow factor

1 r,-j
J = H eXp{2l+br,-j} x

ij=13,14,23,24

1 {2
=134 41+b rij

}



’Some comments on Jastrow factor‘ (1)

More general Jastrow form with e-n, e-e and e-e-n terms

Hexp{A o }Hexp{B rij }HGXP{C rIOmrJOHrU)}

i<j a,i<j
> Polynomials of scaled variables, e.g. 7 = r/(1 + ar)
> J > 0 and becomes constant for large r;, rj and r;;

> Electron-electron terms B

- Imposes the cusp conditions and keeps electrons apart
- More general than simple J(r;;) gives small improvements

> Electron-nucleus terms A

Should be included if determinantal part (DFT or HF) is not
reoptimized: e-e terms alter the single-particle density



Role of the electron-nucleus terms‘

Example: Density of all-electron Carbon atom

DFT determinant + e-e J

+enJ
0.10 010
2
— PN — PpiN |
nywe/N N ry,/N
0.08 0.08 i 0.035 ————
i i
-~ o ' | /«\
3 3 ) / N
= 0.06 > 006 H | 0025 ¢
S g0l ,\ [ N
4 P4 Tl W
= = r o .
‘E’ 004 =004 ] \ %08 15
o e i
|
\
0.02 0.02 i ‘//\\\
e | \*\
0.00 T o0l a8
00 0 40 60 o0 20 40 60
r(a.u.) r(au.)

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)



’Some comments on Jastrow factor‘ (2)

> Electron-electron-nucleus terms C

If the order of the polynomial in the e-e-n terms is infinite, W
can exactly describe a two-electron atom or ion in an S state
For these systems, a 5'"-order polynomial recovers more than
99.99% of the correlation energy, Ecorr = Eoxact — Enw

> Is this Jastrow factor adequate for multi-electron systems?

The e-e-n terms are the most important: due to the exclusion
principle, it is rare for 3 or more electrons to be close, since at

least 2 electrons must necessarily have the same spin



’Jastrow factor with e-e, e-e-n and e-e-e-n terms‘

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)

J Evme
Eur -7.43273
ee 7.47427(4)
+e-en  -7.47783(1)
+e-een -7.47797(1)
Eexact -7.47806
Eur -128.5471
ee  -128.713(2)
+e-en -128.9008(1)
teeen -128.9029(3)
Eexact -128.9376

Eic (%)
0
91.6
99.6
99.8
100

0
42.5
90.6
91.1

100

OVMC

0.240

0.037

0.028
0

1.90
0.90
0.88



Dynamic and static correlation

W = Jastrow x Determinants — Two types of correlation

> Dynamic correlation

Described by Jastrow factor
Due to inter-electron repulsion

Always present

> Static correlation

Described by a linear combination of determinants
Due to near-degeneracy of occupied and unoccupied orbitals

Not always present



’ Static correlation

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration
Additional important configuration

Ground state has 'S symmetry = 4 determinants
D = (1s',2s!,1s!,2s1) 4 ¢ [(15T72pl, 1st,2p})

+(1s',2p], 15", 2py)
+ (1s',2p], 15", 2p})

152252 x J(rj) — ERQF =61%
15225 © 1s22p?  x J(ry) — ESH, =93%




’ Static correlation

Ccorr

Ccorr

Example: EQJ and ESRf for 15t-row dimers

MO orbitals with atomic s-p Slater basis (all-electron)

Active MO orbitals are 20,,20,,305,30,, 17y, 174

5%h_order polynomial J (e-n, e-e, e-e-n)

100

©
o

% correlation energy
o
o

70

Filippi and Umrigar, J.

multi-determinant

D\D\D\.D\G—D//g
\\hjirmmam O7/20/
— ‘(7/

multi-determinant

1 determinant

DMC]

Li, Be, B, C, N, O, F

Chem. Phys. 105, 213 (1996)



Why should Wqne = J D work?

Full wave-function — Factorized wave-function
v Jo
! !

Full Hamiltonian — Effective Hamiltonian
H Hes

— HFo=ETe — Lo=Eo

Heg weaker Hamiltonian than ‘H

= ® = non-interacting wave function D

= Quantum Monte Carlo wave function ¥ = 7D



’ Construction of the wave function ‘

How do we obtain the parameters in the wave function?

U(ry,....rn) =J Y deDLDy
k

C1oN202H7 70 electrons and 21 atoms

VTZ s-p basis + 1 polarization
3s+3p+1d functions for C, N, O
2s+1p forH

9

> Parameters in the Jastrow factor J (= 100)
> Cl coefficients di (< 10 — 100)

> Linear coefficients in expansion of the orbitals (5540 !)



’Optimization of trial wave function‘

How do we find the parameters in V. = 7¢ 7
First thought| Let us minimize the energy!

JARW (RIMW(R) _ [ HUR) [W(RP _ HY(R)

B = TwReRuEr) )R UR) FRERE - CUR)

Straightforward minimization on finite MC sample will work!



Why problems with straightforward energy minimization ?

Let us write the energy on a finite MC sample
Sample Ngopns configurations from |W(R, {ag})|* with Metropolis
Energy of W(R, {a}) on this set of MC configurations

1 " HY(R;, {a})
= N & VR o))

2 / Nconf
i=1

E[a] on a finite MC sample is not bounded from below

where )

V(R, {a})

V(R, {ao})

P =

‘ V(R;, {a})
V(R;, {ao})

= Straightforward minimization of E[a] does not work



Is variance minimization an alternative?

Minimize the variance of the local energy

2 (VI(H - Ev)*|V)

o2 = ) = ((EL(R) — Ev)*)y2

Would this work?

Consider variance on a finite number of MC configurations

Neonf H\II(R,-,{a}) N2
7l =2 (Ve F)

02 has a known lower bound

Robust and stable optimization for very small values of Nonf



Energy minimization to optimize the trial wave function

How do we find the parameters in V. = 7 7

But it seems simple 17!

Let us compute gradient + Hessian of the energy in VMC



What is so difficult about wave function optimization?‘

Statistical error: Both a blessing and a curse!

Wy} — Energy and its derivatives wrt parameters {c }

HY(R) [W(R)P

v VR) JARVR)E v
o 8k\|1 H@k\ll akw
OkEy = < v E, + v 2Ey \U>W2

The last expression is obtained using Hermiticity of H



’ Use gradient/Hessian expressions with smaller fluctuations‘

Two mathematically equivalent expressions of the energy gradient

AT HOW OV OV
Ey = <"EL+ u 2Evk> = 2<k(ELEV)>
W2 v Y2

v v v

Why using the last expression?

’ Lower fluctuations| — 0 as W — Wy

If you play similar tricks with the Hessian as with the gradient

— | 5| orders of magnitude efficiency gain wrt using original Hessian

C. Umrigar and C. Filippi, PRL 94, 150201 (2005)



’Energy minimization is possible: Three most successful methods

e Newton method (Umrigar and Filippi, 2005)

0 2 0
OE(a )Aa;+1 O°E(x ')Aa,-Aj

ov(a?)

Solution of H Aa = ES A« in the basis of {W(a?), Dor

}

e Perturbative approach (Scemama and Filippi, 2006)



Customary practice for optimizing wave function

Jastrow-Slater wave function

U(ry,....rn) =T Y deDLDy
k

> Jastrow factor optimized in variance/energy minimization
> Orbitals and dy coefficients in determinantal part are from

o Hartree-Fock or DFT (LDA, GGA, B3LYP ...)
o Cl or multi-configuration self-consistent-field calculation

o Optimized in energy minimization (very simple for dy)



Beyond VMC?

Removing or reducing wave function bias?

= Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function W

-0.1070 T T

‘ \ \ \
3D electron gas at a density r =10

VMC JS.
@

-0.1075
VMC JS+3B..-~
e

-0.1080| -
VMC JS+BE-"

DMC JS ,,—"'..VMC JS+3B+BF
-0.10858- -

Energy (Ry)

L
-0.1090

PDMC JS+3B+BF
L 1 L | 1
0 0.02 0.04 0.06 0.08
. 2
Variance ( x r;‘ (Ry/electron)™)

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



Why going beyond VMC?

> Dependence on wave function: What goes in, comes out!

> No automatic way of constructing wave function W

Choices must be made about functional form (human time)

> Hard to ensure good error cancelation on energy differences

e.g. easier to construct good W for closed than open shells

Can we remove wave function bias?



Projector Monte Carlo methods

> Construct an operator which inverts spectrum of H

> Use it to stochastically project the ground state of H

’ Diffusion Monte Carlo‘ exp[—7(H — Er)]
Green's function Monte Carlo 1/(H — Er)

Power Monte Carlo Er —H



| Diffusion Monte Carlo |

Consider initial guess V() and repeatedly apply projection operator

(M) _ o m(H—Er)ys(n-1)

Expand V(9 on the eigenstates W; with energies E; of H
w(n) _ e—nT(H—ET)w(O) _ Z v, <\U(O)’wl_>e—nr(E,-—ET)
and obtain in the limit of n — oo

lim W — \jj0<\|j(0)’w0>e*n‘r(EofET)

n—oo

If we choose Et ~ Ey, we obtain | lim w(" =y,

n—oo




How do we perform the projection?‘

Rewrite projection equation in integral form

YR, t+7) = /dR G(R',R, 7)V(R, t)

where G(R,R,7) = (R/|e "=ET)|R)

> Can we sample the wave function?
For the moment, assume we are dealing with , soV >0

> Can we interpret G(R’, R, 7) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



’VMC and DMC as power methods‘

Distribution function is gi = M
sven o(R) = T aRju(R)P

Construct P which satisfies stationarity condition Pp = p
— p is eigenvector of P with eigenvalue 1

— p is the dominant eigenvector = lim P"pijitial = p
n—oo
Opposite procedure!

The matrix P is given — P = (R’\e’T(H*ET)|R>

We want to find the dominant eigenvector p = W



What can we say about the Green's function?‘

G(R.R.7) = (Rle " ED|R)

G(R’,R, 7) satisfies the imaginary-time Schrédinger equation

0G(R, Ry, t)

(H — ET)G(R, RQ, t) = — ot

with G(R’,R,0) = §(R' — R)



’Can we interpret G(R’,R, 7) as a transition probability?‘ (1)

H=T
Imaginary-time Schrodinger equation is a diffusion equation

8G(R, Ro7 t')

1 2
~IV2G(R,Ry, t) = —
2V G( 3 07t) ot

The Green's function is given by a Gaussian

G(R,R,7) = (277) 3N/2 exp [_ (R’2—TR)2]

Positive and can be sampled‘




’Can we interpret G(R’,R, 7) as a transition probability?‘ (2)

H=V

8G(R, Ro, t)

(V(R) - ET)G(R7 RO: t) = - ot 5

The Green's function is given by

G(R',R,7) =exp[-7 (V(R) — E1)] 6(R—R’),

but does not preserve the normalization

It is a factor by which we multiply the distribution W(R, t)



H =7 +V and a combination of diffusion and branching‘

Trotter's theorem — | eA1B)T = ¢ATeBT L 0(72)

<R"6_HT‘R0> ~ <R/|e—TTe—VT|RO>
— [ aRRIeTTRY R e Ro)

_ <R/|e—’TT|RO>e—V(RO)T

The Green's function in the ‘short—time approximation ‘ to O(72) is

(R' — R)?

G(R',R,7) = (277)3N/2 exp [— >

] exp [-7 (V(R) — Ey)]

DMC results must be extrapolated at short time-steps (7 — 0)



Time-step extrapolation

Example: Energy of Lip versus time-step 7

—14.988

14980

@

[ih]

o

=1

t

£

~—-14.902

>

<

b

<

c

w

—14.994 |
PO Simple DMC, Emx (0, 1, 3/2 2, 5/2) AN
+ oo Simple DMC, Egr (O, 1 2 3/2 2, 5/2)
o Improved OMC,” Emie (0. ) 3
o ——= Improved DMC g (0, 1,72)
—14.996
0.00 0.05 0.10 0.15 0.20 0.25

Time Step T (Hartree™')

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk (1)

The basic DMC algorithm is rather simple:

1. Sample W(O(R) with the Metropolis algorithm

Generate My walkers Ry, ..., Ry, (zeroth generation)

2. Diffuse each walker as|[R" = R+ ¢

where ¢ is sampled from g(¢) = (277) 3N/ 2 exp (—¢&2/27)

3. For each walker, compute the factor

\p=exp[-7(V(R) — Ev)]|

Branch the walker with p the probability to survive

Continue —



Diffusion Monte Carlo as a branching random walk (2)

4. Branch the walker with p the probability to survive

> If p <1, the walker survives with probablity p

> If p > 1, the walker continues and new walkers with the

same coordinates are created with probability p — 1

= Number of copies of the current walker equal to int(p + )

where 7 is a random number between (0,1)

5. Adjust Et so that population fluctuates around target My

— After many iterations, walkers distributed as Wo(R)



Diffusion and branching in a harmonic potential

V() \\J

VA G0RN

\

W) T

Walkers proliferate/die in regions of lower/higher potential than Ep




Problems with simple algorithm ‘

The simple algorithm is | inefficient and unstable

> Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction — Exploding population

> Branching factor grows with system size



Importance sampling‘

Start from integral equation

V(R t+7)= /dR G(R',R,7)V(R, 1)

Multiply each side by trial W and define | f(R, t) = W(R)W(R, t) |

f(R t+7) = /dR G(R,R,7)f(R,t)

where the importance sampled Green's function is

G(R\R,7) = W(R')(R'|e """ FIIR) /W(R)

We obtain | lim f(R) = W(R)Wo(R)

n—oo




Importance sampled Green's function ‘

The importance sampled G(R, R, 7) satisfies

eYe : 06
V26 + V- [GVR)] + [EL(R) ~ Er] G =~
2 or

with the quantum velocity V(R) = V\U\Izl(g)

We now have in addition to diffusion and branching terms

Trotter's theorem = Consider them separately for small enough 7



| The drift-diffusion-branching Green's function|

Drift-diffusion-branching short-time Green's function is

é(R/, R,T) _ (27T7‘)_3N/2 exp |:_(R/ —R - TV(R))2:| y

2T
x exp {—7[(EL(R) + EL(R))/2 — Er]} + O(7?)
What is new in the drift-diffusion-branching expression?
> V(R) pushes walkers where W is large
> Ep(R) is better behaved than the potential V(R)
Cusp conditions = No divergences when particles approach

As V — Vg, E, — Ep and branching factor is smaller



DMC algorithm with importance sampling‘

1. Sample initial walkers from |W(R)|?

2. Drift and diffuse the walkers as R" = R+ 7V(R) + ¢
where ¢ is sampled from g(¢&) = (2n7) 3N/ 2 exp (—¢2/27)

3. Branching step as in the simple algorithm but with the factor
p = exp {—7[(EL(R) + EL(R))/2 — Er]}

4. Adjust the trial energy to keep the population stable

— After many iterations, walkers distributed as W(R)W(R)



Evolution equation of the probability distribution ‘

> V(R t+7) :/dR G(R',R,7)V(R, 1)

where G(R',R,7) = (R'|e "H=ET)|R)

(H — Ex)G(R, Ry, t) — —2C(R-Ro. £)
ot

satisfies the imaginary-time Schrodinger equation

V(R t)

(H— Er)V(R,t) = — ot




Electrons are fermions!

We assumed that Wy > 0 and that we are dealing with bosons

Fermions — W is antisymmetric and changes sign!

Fermion Sign Problem ‘

All fermion QMC methods suffer from sign problems
These sign problems look different but have the same “flavour”

Arise when you treat something non-postive as probability density



| The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Evolve separate positive and negative populations of walkers

Simple 1D example

Revrite V(x,7 = 0) as W(x1=0)
Vv, v
where
1
Ve = (v

1 W(x1=0) W(x1=0)
Vo = S(vI-v) |




Particle in a box and the fermionic problem

The imaginary-time Schrodinger equation

ov

is linear, so solving it with the initial condition
VU(x,t=0) = VWV, (x,t=0)—WV_(x,t=0)

is equivalent to solving

v oW _
HY, = —86; and MV =——=

separately and subtracting one solution from the other



Particle in a box and the fermionic problem (2)

> Expand Wy at t =0 in eigenfunctions

At t =0, Vi(t=0)=cgViEtciVy+...

Ast — oo, Wi(t) — cge BIWS+ e BEwg +

> Since E§ < E§, both W and W_ evolve to Vj

v, —

> Antisymmetric component exponentially harder to extract

Wy —v| e Eot

— =7 t
W v | X Eg 3 10X



The Fixed-Node Approximation ‘

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don't know them, guess them)

impenetrable

barrier \




Fixed-node algorithm in simple DMC (1)

How do we impose that additional boundary condition?

> Distribute walkers according to any positive initial W(©)
> Evolve according to imaginary-time Schrodinger equation

> Annihilate walkers that bump into barrier (and into walls)
— This step enforces boundary conditions

In each nodal pocket, evolution to ground state in that pocket



Fixed-node algorithm in simple DMC] (2)

Numerically algorithm (no exponentially growing noise)

— Solution is exact if nodes are exact
— The computed energy is variational if nodes approximate

— Best solution consistent with the assumed nodes



’ For many electrons, what are the nodes? A complex beast‘

Many-electron wave function W(R) = W(ry,ra, ... ry)

— surface where W = 0 and across which W changes sign

A 2D slice through the 321-dimensional nodal surface
of a gas of 161 spin-up electrons.



Some known properties of the nodes‘

Physical space has d (=1,2,3) dimensions

» Node is (dN — 1)-dimensional surface in dN dimensions
constraint (W = 0) = | (dN — 1) Fdimensional node

» Equations as r; = r; define (dN — d)-dimensional coincidence
surfaces and do not define the node completely if d > 1

» If d =1, coincidence points x; = x; define the ground-state
node completely — One-dim problems are easy to simulate



Nodal pockets can be divided up into cIasses‘

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Ry

Map this subvolume over rest of the space with permutations
X

\ ¥
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Nodal pockets can be divided up into cIasses|
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The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class
X

>
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The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class

X




Use the nodes of trial W — Fixed-node approximation

Use the nodes of the best available trial W wave function

W(R)=0

<

Find best solution with same nodes as trial wave function ¥

| Fixed-node solution exact if the nodes of trial W are exact




Fixed-node solution and importance-sampling DMC‘

Given trial W(R), evolve ’ f(R,t) = V(R)V(R, t) ‘ as

—%V2f + V- [fV(R)] + [EL(R) — Ex] f = —%
with V(R) = unzg) and EL(R) = TZI(S)

Fixed-node approximation — [f(R,t) >0



Fixed-node solution and behavior at the nodes‘

Within the nodes | HWpn (R) = EpxWen(R) |

If the nodes not exact — Wpn # Vg

If the nodes not exact — Discontinuity of derivatives at the nodes

‘HWFN(R) = EFN\UFN(R) -+ (5‘ for R € 6Q

Note that the § function does not affect the computed energy

/WFNHWFN = /‘UFN(EFNWFN +9) = /WFNEFN‘UFN = Epn



Fixed-node solution is an upper bound to exact energy

In a nodal pocket Q of the trial wave function ¥

H\UFN(R) = EFNWFN(R) ReQ
with WVpn(R) =0 for R € Q — Extend solution over all space

Upn(R =i Z 1)PWepn(PR)

which satisfies

J AR U (R)HWpn(R)

= = =Ern > Eo
J AR Vi (R)Wen(R)




’ Have we solved all our problems?‘

Results depend on the nodes of the trail wave function W

’ How well are we doing with a simple W?‘

One determinant of natural orbitals, 6-3114++G(2d,2p) basis

emaD for atomization energy of the 55 molecules of the G1 set

DMC CCSD(T)/aug-cc-pVQZ
eMAD 2.9 2.8 kcal/mol

Grossman, J. Chem. Phys. 117, 1434 (2002)

We are doing very well without much effort on W !



Diffusion Monte Carlo as a black-box approach?‘

Not always but with some more effort ... QMC can do better!

Example: Problematic in G1 set — Atomization energy of P>

DMC one-det  107.9(2)
DMC multi-det  115.9(2)
Experiment 116.1(5)

Grossman, J. Chem. Phys. 117, 1434 (2002)

kcal /mol



Fixed-node DMC and excited states

No general fixed-node variational principle for excited states

T=0:
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> 0:




Fixed-node DMC and excited states (1)

No general fixed-node variational principle for excited states

> 0:

For t — o0, only pockets of the lowest energy class are occupied

It can happen that Epn < Ecxact



Fixed-node diffusion Monte Carlo and excited states (2)

Is fixed-node diffusion Monte Carlo variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?‘

In general, exact excited state for exact nodal structure

For excited states, even bigger role of the trial wave function

— Enforces fermionic antisymmetry + selects the state

In practice, fixed-node DMC most often works very well



Excited states and the trial wave function

Dependence of DMC energy from wave function ¥ = 7

>_iciDi

Lowest singlet excitation along torsional path of formaldimine

DMC energies e DMC (HF HOMO-LUMO)
7.0F e DMC (CIS)
< e DMC (Tl -1 1)
2 e DMC (CASSCF optimized)
5 6.0 e MRCI
(0]
[
(0]
_5 5.04
S
2
L 4.0

39 15 30 45 60 75 90
Torsional angle (deg)




’ Excited state optimal wave function ‘

Wave functions for multiple states of the same symmetry

\Ul(r].?"'arN):ZCil j(r]_,..../l’N)X Di(rla"'er)
i

Common set of parameters in 7 and D; but different coefficients c,-’

Optimize parameters in J and D; by state averaging

ZW (V| =)
U

and preserve orthogonality through coefficients C,-’

Filippi, Zaccheddu and Buda, JCTC (2009)



In practice, fixed-node DMC for excited states works well

Example: Cyanines dyes

So— S1

4.0eV 1 v DMC
3.5eV |
3.0eV |

25eV

2.0eV

CN7 CN9 CN11
DMC/aug-cc-pVTZ, CC and CASPT2/ANO-L-VTZP calculations

Send, Valsson, Filippi, JCTC (2011).



In practice, fixed-node DMC for excited states works well

Example: Cyanines dyes

406V So— St
VeV T 1 v bMC
e CC3
3.5eV ¢ 1
3.0eV
25eV ¢t
2.0eV ‘ L
CN7 CN9 CN11

DMC/aug-cc-pVTZ, CC and CASPT2/ANO-L-VTZP calculations

Send, Valsson, Filippi, JCTC (2011).



In practice, fixed-node DMC for excited states works well

Example: Cyanines dyes

406y 071 :
vev v DMC
356V | | ©ccs
e m CASPT2
30eV |
25eV ¢t
20eV L ‘ L

CN7 CN9 CN11

DMC/aug-cc-pVTZ, CC and CASPT2/ANO-L-VTZP calculations

Send, Valsson, Filippi, JCTC (2011).



In practice, fixed-node DMC for excited states works well

Example: Cyanines dyes

4.0eV

35eV |

3.0eV |

25eV

2.0eV

So— S1

CN7

CN9

| v DMC

e CC3

| m CASPT2
| O CASPT2 (0-IPEA)

o "
L 2 2 . 2 2 72 2
N W'\
VOM s )
° [e] 5 4 e}

DMC/aug-cc-pVTZ, CC and CASPT2/ANO-L-VTZP calculations

Send, Valsson, Filippi, JCTC (2011).



’Comparison with other theories? A headache

ﬂ
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Active space

FCIQMC/ANO-L-VDZP calculations



Comparison with other theories? A headache
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Alternatives to fixed-node DMC: Releasing the nodes‘

First do a fixed-node DMC simulation




Alternatives to fixed-node DMC: Releasing the nodes‘

Then release the nodes




Alternatives to fixed-node DMC: Releasing the nodes‘

Then release the nodes

» Red and blue solutions collapse to boson ground state, but
their difference approaches the fermion ground state

» Back to the sign problem: exponentially growing noise



Alternatives to fixed-node DMC: Determinantal QMC‘ (2)

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

— Determinantal QMC by Zhang and Krakauer
Appears less plagued by fixed phase than DMC by FN

— Full-Cl QMC by Alavi
Start from Wep =) . ¢iD;

8\“ 8C,'
\U = - H’" = — —
H or Y ot



DMC in summary

The fixed-node DMC method is

» Easy to do
» Stable

» Accurate enough for many applications in quantum chemistry

... especially in large systems

» Not accurate enough for subtle correlation physics



’ Beauty of quantum Monte Carlo — Highly parallelizable

V(ry,...,ry) — Ensemble of walkers diffusing in 3N dimensions

VMC — Independent walkers = Trival parallelization

DMC — Nearly independent walkers = Few communications

Easily take great advantage of parallel supercomputers!

30

- s, § o () Gauss
Xy : () P\::ZS\Izra‘ve -
20 Carbon  —=— (d) MLW Up to S|123H100 and C180 !

CPU Time (s)
=

0

0 200 400 600 800 1000
Number of electrons

Williamson, Hood, Grossman (2001)




Human and computational cost of a typical QMC calculation

Task Human time Computer time
Choice of basis set, pseudo etc. 10% 5%
DFT/HF/CI runs for W setup 65% 10%
Optimization of W 20% 30%

DMC calculation 5% 55%



Outlook on QMC — Subjects of ongoing research

> Search for different forms of trial wave function
> Interatomic forces — Relaxation and dynamics
> Let us attack transition metals!

> Alternatives to fixed-node diffusion Monte Carlo



’Other applications of quantum Monte Carlo methods‘

> ’ Electronic structure calculations‘

v

Strongly correlated systems (Hubbard, t-J, ...)

v

Quantum spin systems (Ising, Heisenberg, XY, ...)

v

Liquid-solid helium, liquid-solid interface, droplets

v

Atomic clusters

» Nuclear structure

v

Lattice gauge theory

Both zero (ground state) and finite temperature



’The drift-branching components: Reminder‘

’ Diffusion term ‘

9G(R,Ro, t)

1 5~
—~V2&(R,Ry, t) = —
N G(R,Ro, ) ot

I 2
= é(R/, R,7) = (27T’7')_3N/2 exp [—(R 5 R) }
-

’ Branching term ‘

9G(R,Ro, t)

(EL(R) — Er)G(R, Ry, t) = — ot

= G(R,R,7) = exp[—7 (EL(R) — E7)] 6(R — R')



The drift-diffusion-branching Green's function ‘

1 .. - o oG
—>V?G +V-[GV(R)] +[EL(R) — Er] G = ———
2 or
Drift term
VV(R)
Assume V(R) = V(R) constant over the move (true as 7 — 0)

The drift operator becomes ‘V -V4+V.-VxV. V‘ so that

_9G(R, Ry, )

V.VG(R,Ry, t) = o

with solution | G(R, Ro, t) = 6(R — Ro — Vt)




An important and simple improvement

If W = W, E(R) = Eg — No branching term — Sample W2

Due to time-step approximation, we only sample W2 as 7 — 0 |

Introduce accept/reject step like in Metropolis algorithm

I _ T 2 T
G(R,R,T) ~ N exp [—(R R 2TV(R) ) ] exp {—(EL(R) + EL(R/))E

T(R/7R7T)

Walker drifts, diffuses and the move is accepted with probability

[ W(R)P T(R.R,7)
p=min {1’ W(R)Z T(R.R,7) }

— Improved algorithm with smaller time-step error



Finite and infinite variance‘

1 M
Fr = M;f(x;)

Finite variance o = | The Central Limit Theorem |

Since we have a Gaussian distribution for Fy, the probability of
Fp being within 1 oy of the true mean is 68.3%
Fp being within 2 oy of the true mean is 95.4%

Fp being within 3 oy of the true mean is 99.7%

Infinite variance o = | The law of large numbers‘

The sample mean converge to the expected value (if finite)
... but statistical error goes down slower than 1/vM

Beware of densities with oo variance!



