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near-spherical molecules
structure on molecular scale

water, light oils

liquid with embedded particles
structure also on nano/micro scale

paint, milk, blood

long, stringy molecules
random coils / fibers / helices

silly putty, actin, DNA solution

Simple liquids Colloidal liquids Polymeric liquids
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• intermolecular interactions

• density, temperature

Statistical mechanics:
bridge between molecular and macroscopic world

• equilibrium properties
(structure,pressure, ...)

• dynamical properties
(diffusion, viscosity, ...)

many particles

Statistical mechanics:
• does not predict individual molecular trajectories, but
• gives probabilities for large collections of particles, and
• yields measurable quantities as averages over ensembles
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Chapter 1: Structure in liquids and gases
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• box volume V, with N identical (rigid) particles

• define number density 

• probability density to encounter system in configuration

is given by the Boltzmann distribution function:

•                     is potential energy of the configuration - contains interactions

Probability density

Chapter 1

Structure in liquids and gases

1.1 Probability density

Consider a closed box of volume V filled with a fluid (liquid or gas) consisting
of a large number N of identical molecules. For our purposes we may assume
each molecule to be a rigid object with a given position and orientation.
According to classical statistical mechanics, these positions and orientations
are not completely random. Rather, at not too low temperature T ,1 the
probability density for encountering a certain configuration of 3N position
and 3N orientation coordinates, in shorthand denoted by R6N , is given by
the Boltzmann distribution function:

P (R6N) =
1

Z
exp

(

−
Φ(R6N )

kBT

)

, (1.1)

where Φ(R6N ) is the total potential energy of the configuration, kB = 1.38065×
10−23 J/K = 8.617×10−5 eV/K is Boltzmann’s constant, and Z is a normal-
isation constant, referred to as the configuration integral.

The positions and orientations are not completely random because the to-
tal potential energy Φ contains terms which depend on the relative positions
and orientations of two or more molecules. The details of such molecular
interactions determine the precise structural and dynamical properties of a
fluid.

1At very low temperatures the discreteness of the energy levels becomes apparent. In
that case the classical view needs to be replaced by a quantum mechanical one and other
distribution statistics apply, like Bose-Einstein statistics for ideal bosons and Fermi-Dirac
statistics for ideal fermions.
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R6N = {r1,Ω1, . . . , rN ,ΩN}

ρ = N/V
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Pair interaction between two neutral atoms

• one pair of atoms, fixed nuclei:
total ground state energy

                 is interatomic interaction / potential

• Lennard-Jones potential describes both
Van der Waals attraction and
short range Pauli repulsion

argon:   
krypton:

1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.1: Pictorial representation
of the interaction between two neutral
spherical atoms. The nuclei (+) are
much heavier than the electrons (-).
In the Born-Oppenheimer approxima-
tion, the nuclei move in effective (elec-
tronically averaged) potentials. Nu-
clear translation, rotations and vibra-
tions can therefore be treated by using
classical mechanics.

1.2 Pair interactions of spherical molecules

To focus on the essentials we will treat the simplest case, namely that of
neutral spherical atoms.2 Suppose we have just two atoms, fixed with their
nuclei at positions r1 and r2, as in Fig. 1.1. We can write the total ground
state energy of the two atoms as

ε0(r1, r2) = ε0(r1) + ε0(r2) + ϕ(r1, r2). (1.2)

Here ε0(r1) is the ground state energy of atom 1 in the absence of atom 2,
and similarly for ε0(r2). So the term ϕ(r1, r2) is the correction to the sum
of two unperturbed ground state energies of the atoms. This term is also
called the interatomic interaction or interatomic potential. Because of the
rotational symmetry of the atoms, the interatomic potential only depends on
the distance r12 = |r1 − r2| between the two atoms, i.e.

ϕ(r1, r2) = ϕ(r12). (1.3)

It is also clear that because of its definition ϕ(∞) = 0. At finite distances, the
electrons in one atom will feel the electrons in the other atom. A classical
picture would be the following: the charge distribution in an atom is not
constant, but fluctuates in time around its average. Consequently, the atom
has a fluctuating dipole moment which is zero on average. The instantaneous
dipoles in the atoms, however, influence each other in a way which makes
each dipole orient a little in the field of the other. This leads to the so-
called van der Waals attraction between two neutral atoms. The van der
Waals attraction becomes stronger as the atoms get closer to one another.
At a certain point, however, the atoms will repel each other because of the
Pauli exclusion principle. The total interatomic interaction as a function of

2Noble gases such as argon and krypton are excellent examples of neutral spherical
atoms. Additionally, we may treat nearly spherical molecules, such as methane, in a
similar way. For “atom” one should then read ”spherical molecule”.
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1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.2: The total inter-
atomic interaction between
two neutral spherical atoms
is well described by the
Lennard-Jones formula,
Eq. (1.4). At large distances
the van der Waals attraction
is dominant. At short dis-
tances the atoms repel each
other because of the Pauli
exclusion principle. The
diameter of the atom may
be defined as the distance σ
where these two interactions
exactly cancel out. 0.5 1.0 1.5 2.0 2.5
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distance is well described by the Lennard-Jones formula (see Fig. 1.2):

ϕ(r) = 4ε

{

(σ

r

)12
−
(σ

r

)6
}

. (1.4)

The parameter ε is the depth of the interaction well, and σ is the diameter
of the atom. The values of ε and σ are characteristic for each atomic species.
For example for argon ε/kB = 117.7 K and σ = 0.3504 nm, for krypton
ε/kB = 164.0 K and σ = 0.3827 nm, and for methane ε/kB = 148.9 K
and σ = 0.3783 nm. Note that at room temperature the magnitudes of
ε are of the same order as the thermal energy kBT . This is important for
fluid behaviour: the intermolecular interactions are weak enough to allow the
structure to change dynamically under the influence of thermal fluctuations.
This is hardly allowed in a solid.

When dealing with more than two spherical molecules, it is often as-
sumed that the total potential energy may be approximated as a sum of pair
interactions (in practice this is often a reasonable assumption):

Φ (r1, . . . , rN) =
N−1
∑

i=1

N
∑

j=i+1

ϕ(rij). (1.5)

The double sum is constructed such that each pair interaction is counted
only once.
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Pair sum approximation

• when >2 particles are present:

• in practice often a reasonable assumption

1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.2: The total inter-
atomic interaction between
two neutral spherical atoms
is well described by the
Lennard-Jones formula,
Eq. (1.4). At large distances
the van der Waals attraction
is dominant. At short dis-
tances the atoms repel each
other because of the Pauli
exclusion principle. The
diameter of the atom may
be defined as the distance σ
where these two interactions
exactly cancel out. 0.5 1.0 1.5 2.0 2.5

r/!

-1

0

1

2

"
(r)

/#

van der Waals attraction

Pauli repulsion

r = !

distance is well described by the Lennard-Jones formula (see Fig. 1.2):

ϕ(r) = 4ε

{

(σ

r

)12
−
(σ

r

)6
}

. (1.4)

The parameter ε is the depth of the interaction well, and σ is the diameter
of the atom. The values of ε and σ are characteristic for each atomic species.
For example for argon ε/kB = 117.7 K and σ = 0.3504 nm, for krypton
ε/kB = 164.0 K and σ = 0.3827 nm, and for methane ε/kB = 148.9 K
and σ = 0.3783 nm. Note that at room temperature the magnitudes of
ε are of the same order as the thermal energy kBT . This is important for
fluid behaviour: the intermolecular interactions are weak enough to allow the
structure to change dynamically under the influence of thermal fluctuations.
This is hardly allowed in a solid.

When dealing with more than two spherical molecules, it is often as-
sumed that the total potential energy may be approximated as a sum of pair
interactions (in practice this is often a reasonable assumption):

Φ (r1, . . . , rN) =
N−1
∑

i=1

N
∑

j=i+1

ϕ(rij). (1.5)

The double sum is constructed such that each pair interaction is counted
only once.

7

7



The radial distribution function g(r)

• molecular interactions cause correlations 
in their positions

• number of particles at a distance between 
r and r+dr from a given particle:

• N/V g(r) is average number density at 
distance r from a given particle

• easy to see that

1. STRUCTURE IN LIQUIDS AND GASES

the radial distribution function g(r) by equating the number of molecules in
the spherical shell of thickness dr at a distance r to

4πr2
N

V
g(r)dr. (1.6)

According to our remarks above, g(∞) = 1 and g(0) = 0. A typical g(r) is
given in Fig. (1.3). We see that g(r) = 0 when r is smaller than the molecular
diameter σ. The first peak is caused by the attractive part of the potential;
at distances where the potential has its minimum there are more particles
than average. Consequently at distances less than σ further away there are
less particles than average.

1.3.2 Statistical formulas for g(r)

Integrating the probability density for a configuration of N spherical parti-
cles, cf. Eq. (1.1), over the coordinates of all particles except the first two,
we find

P12(r1, r2) =
1

Z

∫

d3r3 . . .

∫

d3rN exp

(

−
Φ(r3N )

kBT

)

, (1.7)

where P12(r1, r2) is the probability density to have particle 1 at r1 and particle
2 at r2. For convenience of notation we write

P12(r, r
′) =

1

Z

∫

d3r3 . . .

∫

d3rN exp

(

−
Φ(r3N )

kBT

)
∣

∣

∣

∣

r1=r,r2=r′

. (1.8)

Because all particles are equal, this is equal to the probability density P1j(r, r′)
of having particle 1 at r and particle j at r′. The probability density of having
particle 1 at r and any other particle at r′ equals

∑

j "=1

P1j(r, r
′) = (N − 1)P12(r, r

′) (1.9)

1

V
ρg(|r− r′|) = (N − 1)P12(r, r

′) (1.10)

This is equal to the probability density of having particle 1 at r, which
is simply 1/V , times the conditional density at r′, which is ρg(|r − r′|).
Multiplying by N we get

ρ2g(|r− r′|) = N(N − 1)P12(r, r
′). (1.11)

We will need this expression in the next subsection.
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V
ρg(|r− r′|) = (N − 1)P12(r, r
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Multiplying by N we get
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We will need this expression in the next subsection.
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Statistical formulas for g(r)

• integrate Boltzman distribution function over all coordinates except first 2

• all particles are equal; prob. to have particle 1 at r and any other at r’:
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How do we get g(r) and what can we do with it?

• g(r) can be obtained from

• modern liquid theory

• computer simulation

• experimentally, through microscopy (for large particles) or scattering

• knowing g(r) we can calculate non-entropic thermodynamic functions, e.g.

• energy

• compressibility

• pressure

10



Relation between g(r) and energy

1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.4: The com-
pressibility of a fluid is
a measure for the magni-
tude of spontaneous fluc-
tuations in the number of
particles (black circles) in
an open volume V (indi-
cated by a dashed line).

1.3.3 Relation between the radial distribution func-

tion, energy, compressibility and pressure

Once we know g(r), we can derive all non-entropic thermodynamic properties.

Energy

The simplest is the energy:

U = U int +
3

2
NkBT +

1

2
N
N

V

∫ ∞

0

dr4πr2g(r)ϕ(r). (1.12)

The first term originates from the internal energies of the molecules, the sec-
ond from the translations, and the third from the interactions. The average
total potential energy equals 1

2N times the average interaction of one partic-
ular molecule with all others; the factor 1

2 serves to avoid double counting.
The contribution of all particles in a spherical shell of thickness dr at a dis-
tance r to the average interaction of one particular particle with all others is
4πr2dr(N/V )g(r)ϕ(r). Integration finally yields Eq. (1.12).

Compressibility

The isothermal compressibility κT is defined as:

κT ≡ −
1

V

(

∂V

∂P

)

T,N

(1.13)

From thermodynamics it is known that κT can be linked to spontaneous
fluctuations in the number of particles in an open volume V , see Fig. 1.4:

〈N〉 ρkBTκT =
〈

(N − 〈N〉)2
〉

=
〈

N2
〉

− 〈N〉2 , (1.14)

where the pointy brackets indicate a long time average or an average over
many independent configurations commensurate with the thermodynamic

10

internal energies
of the molecules

translations
of the molecules

average interaction energy
of one particular molecule
with all other molecules
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Relation between g(r) and compressibility [1/2]

• definition of isothermal compressibility:

• compressibility is linked to spontaneous fluctuations
in number of particles in an open volume V:

• assuming that g(r) is known, Eq. (1.11) gives us
almost the needed expression:

1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.4: The com-
pressibility of a fluid is
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tuations in the number of
particles (black circles) in
an open volume V (indi-
cated by a dashed line).
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1. STRUCTURE IN LIQUIDS AND GASES

conditions (in this case constant temperature T and volume V ). From
Eq. (1.11) we obtain (where r12 = |r1 − r2|):

∫

V

d3r1

∫

V

d3r2ρ
2g(r12) = 〈N(N − 1)〉 =

〈

N2
〉

− 〈N〉 . (1.15)

We can use this to link the compressibility to the radial distribution function:

〈N〉 ρkBTκT = ρ

∫

V

d3r1ρ

∫

V

d3r2g(r12) + 〈N〉 − ρ

∫

V

d3r1ρ

∫

V

d3r2

= ρ

∫

V

d3r1ρ

∫

V

d3r2 (g(r12)− 1) + 〈N〉

= ρ

∫

V

d3r1ρ

∫

R3

d3r (g(r)− 1) + 〈N〉 (1.16)

Dividing by 〈N〉 we find

ρkBTκT = 1 + ρ

∫

R3

d3r (g(r)− 1) . (1.17)

This so-called compressibility equation shows that the compressibility of a
fluid is intimately connected to the radial distribution function of its con-
stituent molecules.

Pressure

We will now consider the pressure of a fluid. If the density of the fluid is
not too high, correlations between three or more particles may be ignored,
in which case Eq. (1.1) tells us that the radial distribution function is given
by

g(r) ≈ exp {−βϕ(r)} , (1.18)

where ϕ(r) is the pair interaction potential. Also for not too high densities,
the pressure of a fluid is to a good approximation given by the first two terms
in the virial equation

PV = NkBT

(

1 +B2(T )
N

V

)

, (1.19)

where B2(T ) is called the second virial coefficient.3 Our goal now is to link
B2(T ) to the radial distribution function g(r) or pair interaction ϕ(r). This

3In principle the virial equation also contains higher order terms in N/V with corre-
sponding third, fourth, etc, virial coefficients. These become important at higher densities
than considered here.
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• correct by adding       and subtracting

• dividing by       we find the compressibility equation

Relation between g(r) and compressibility [2/2]

1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.4: The com-
pressibility of a fluid is
a measure for the magni-
tude of spontaneous fluc-
tuations in the number of
particles (black circles) in
an open volume V (indi-
cated by a dashed line).
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ond from the translations, and the third from the interactions. The average
total potential energy equals 1

2N times the average interaction of one partic-
ular molecule with all others; the factor 1

2 serves to avoid double counting.
The contribution of all particles in a spherical shell of thickness dr at a dis-
tance r to the average interaction of one particular particle with all others is
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Compressibility

The isothermal compressibility κT is defined as:

κT ≡ −
1

V

(

∂V

∂P

)

T,N

(1.13)

From thermodynamics it is known that κT can be linked to spontaneous
fluctuations in the number of particles in an open volume V , see Fig. 1.4:

〈N〉 ρkBTκT =
〈

(N − 〈N〉)2
〉

=
〈

N2
〉

− 〈N〉2 , (1.14)

where the pointy brackets indicate a long time average or an average over
many independent configurations commensurate with the thermodynamic
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conditions (in this case constant temperature T and volume V ). From
Eq. (1.11) we obtain (where r12 = |r1 − r2|):

∫

V

d3r1

∫

V

d3r2ρ
2g(r12) = 〈N(N − 1)〉 =

〈

N2
〉

− 〈N〉 . (1.15)

We can use this to link the compressibility to the radial distribution function:

〈N〉 ρkBTκT = ρ

∫

V

d3r1ρ

∫

V

d3r2g(r12) + 〈N〉 − ρ

∫

V

d3r1ρ

∫

V

d3r2

= ρ

∫

V

d3r1ρ

∫

V

d3r2 (g(r12)− 1) + 〈N〉

= ρ

∫

V

d3r1ρ

∫

R3

d3r (g(r)− 1) + 〈N〉 (1.16)

Dividing by 〈N〉 we find

ρkBTκT = 1 + ρ

∫

R3

d3r (g(r)− 1) . (1.17)

This so-called compressibility equation shows that the compressibility of a
fluid is intimately connected to the radial distribution function of its con-
stituent molecules.

Pressure

We will now consider the pressure of a fluid. If the density of the fluid is
not too high, correlations between three or more particles may be ignored,
in which case Eq. (1.1) tells us that the radial distribution function is given
by

g(r) ≈ exp {−βϕ(r)} , (1.18)

where ϕ(r) is the pair interaction potential. Also for not too high densities,
the pressure of a fluid is to a good approximation given by the first two terms
in the virial equation

PV = NkBT

(

1 +B2(T )
N

V

)

, (1.19)

where B2(T ) is called the second virial coefficient.3 Our goal now is to link
B2(T ) to the radial distribution function g(r) or pair interaction ϕ(r). This

3In principle the virial equation also contains higher order terms in N/V with corre-
sponding third, fourth, etc, virial coefficients. These become important at higher densities
than considered here.
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• if density is not high, correlations between >2 particles may be ignored. Then

• at low density, virial equation is an accurate expression for pressure

• using simple mathematics (see Eq. 1.20) and the compressibility equation,
we arrive at a microscopic expression for the second virial coefficient

Relation between g(r) and pressure
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may be achieved by differentiating the virial equation to V :
(

∂P

∂V

)

N,T

V + P = −NkBTB2(T )
N

V 2

−
1

κT
+

NkBT

V

(

1 +B2(T )
N

V

)

= −NkBTB2(T )
N

V 2

ρkBTκT = 1− 2B2(T )
N

V
. (1.20)

Comparing the two expressions for the compressibility, Eqs. (1.17) and (1.20),
we can write the second virial coefficient as a three-dimensional integral over
the pair interaction ϕ(r):

B2(T ) = −
1

2

∫

R3

d3r
(

e−βϕ(r) − 1
)

. (1.21)

The above equation is important because it allows us to calculate the pressure
of a fluid knowing only the pair interaction ϕ(r) between its constituent
molecules. In the next section we will apply this to a hard sphere fluid.

1.3.4 The hard sphere fluid

In many theories of liquids the hard sphere fluid is used as a reference system,
to which interparticle attractions are added as a perturbation. It is therefore
useful to study the radial distribution function, second virial coefficient and
pressure of a hard sphere fluid.

The pair interaction in a hard sphere fluid is given by

ϕ(r) =

{

∞ for r ≤ σ
0 for r > σ

(1.22)

At very low densities the radial distribution function and second virial coef-
ficient are therefore given by

g(r) ≈
{

0 for r ≤ σ
1 for r > σ

(1.23)

B2 = −
1

2

∫

d3r
(

e−βϕ(r) − 1
)

= 2π

∫ σ

0

drr2 =
2

3
πσ3. (1.24)

According to Eq. (1.19), and using η = 1
6πρσ

3 for the volume fraction of
spheres, the pressure of a hard sphere fluid can be expressed as:

P = ρkBT (1 + 4η) . (1.25)
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Example: hard-sphere fluid [1/2]

• Pair interaction

• g(r) at low density

• second virial coefficient and pressure at low density

• pressure at more general densities (from simulations)
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The above expressions are valid for not-too-high densities. At higher
densities the probability to find another hard sphere in (near-)contact with a
given hard sphere is higher than 1, and the pressure is higher than predicted
by the second virial coefficient alone. Using a computer one has calculated
that the pressure for more general densities is given by:

P

ρkBT
= 1 + 4η + 10η2 + 18.365η3 + 28.24η4 + 39.5η5 + 56.6η6 + . . .

(1.26)

This is approximately

P

ρkBT
= 1 + 4η + 10η2 + 18η3 + 28η4 + 40η5 + 54η6 + . . . (1.27)

Extrapolating and summing we find

P

ρkBT
= 1 +

∞
∑

n=1

(n2 + 3n)ηn =
1 + η + η2 − η3

(1− η)3
. (1.28)

This is called Carnahan and Starling’s equation for the pressure of a hard
sphere fluid. Monte Carlo simulations of hard sphere fluids have shown that
Eq. (1.28) is nearly exact at all possible volume fractions.

1.4 Scattering and the structure factor

In the precious section we have linked the compressibility of a fluid to spon-
taneous fluctuations in the number of particles in a large volume. More
generally, density fluctuations in a fluid can be described by means of their
Fourier components:

ρ(r) = ρ+
1

(2π)3

∫

d3k ρ̂(k) exp {−ik · r} , (1.29)

ρ̂(k) =

∫

d3r {ρ(r)− ρ} exp {ik · r} . (1.30)

The microscopic variable corresponding to a density Fourier component is4

ρ̂(k) =

∫

d3r

{

N
∑

j=1

δ (r− rj)− ρ

}

exp {ik · r} , (1.31)

4In order to avoid overly dressed symbols, we use the same symbol for the macroscopic
quantity and the microscopic variable. In general a microscopic variable Amicr is an
expression given explicitly in terms of positions and/or velocities of the particles, which
after ensemble averaging yields the corresponding macroscopic quantity A, i.e.

〈

Amicr
〉

=
A. For example the microscopic density at r is given by ρmicr(r) =

∑

j δ(r− rj), and the

macroscopic density by ρ(r) =
〈

ρmicr(r)
〉

.
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• Carnahan and Starling noticed that the series

 
is quite close to

which can be summed analytically to

Example: hard sphere fluid [2/2]
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∫
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d3r {ρ(r)− ρ} exp {ik · r} . (1.30)

The microscopic variable corresponding to a density Fourier component is4

ρ̂(k) =

∫

d3r

{

N
∑

j=1

δ (r− rj)− ρ

}

exp {ik · r} , (1.31)

4In order to avoid overly dressed symbols, we use the same symbol for the macroscopic
quantity and the microscopic variable. In general a microscopic variable Amicr is an
expression given explicitly in terms of positions and/or velocities of the particles, which
after ensemble averaging yields the corresponding macroscopic quantity A, i.e.

〈

Amicr
〉

=
A. For example the microscopic density at r is given by ρmicr(r) =

∑

j δ(r− rj), and the

macroscopic density by ρ(r) =
〈

ρmicr(r)
〉

.
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Scattering and the structure factor

• illuminate a fluid containing spherical particles by a wave (wavevector        ) 

• X-ray or neutron scattering for atomic liquids

• small-angle X-ray, small-angle neutron or light scattering for colloids

• measured intensity in the direction           depends on density fluctuations in 
the fluid, as probed by the structure factor S(k), with 

N.B. intensity also depends on other factors such as wave polarization, 
scattering strength and form factor, i.e. internal particle structure

kin

kout
k = kout − kin

kin
kout

17



Fourier analysis of density fluctuations

• describe density fluctuations in fluid by means of Fourier components:

• corresponding microscopic variable
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where δ(r) = δ(x)δ(y)δ(z) is the three-dimensional Dirac delta-function.
This may be rewritten as

ρ̂(k) =
N
∑

j=1

exp {ik · rj}− ρ

∫

d3r exp {ik · r}

=
N
∑

j=1

exp {ik · rj}− (2π)3ρδ(k). (1.32)

Density fluctuations in a fluid can be measured experimentally by means
of scattering of light, neutrons, or X-rays (depending on the scale of interest).
The scattered intensity also depends on details such as wave polarization
and scattering strength or form factor, but generally scattering experiments
measure correlation functions of Fourier components of the density. The
correlation function of ρ̂(k) with its complex conjugate ρ̂∗(k) = ρ̂(−k), i.e.
the mean square of the density fluctuation with wave vector k, is a real
function of the wavevector, called the structure factor S(k):

S(k) ≡
1

N
〈ρ̂(k)ρ̂∗(k)〉 . (1.33)

The division by N leads to a quantity which for large enough systems is inde-
pendent of system size (that is to say, the mean square density fluctuations
grow linearly with system size). The structure factor gives a lot of informa-
tion about the structure of a fluid. It is essentially a Fourier transform of
the radial distribution function, as can be shown as follows:

S(k) =
1

N

〈

N
∑

j=1

N
∑

k=1

exp {ik · (rj − rk)}

〉

−
ρ2

N

∫

d3r

∫

d3r′ exp {ik · (r− r′)}

= 1 +
1

N

〈

N
∑

j=1

N
∑

k #=j

exp {ik · (rj − rk)}

〉

− ρ

∫

d3r exp {ik · r}

= 1 + ρ

∫

d3r [g(r)− 1] exp {ik · r} . (1.34)

Comparison with Eq. (1.17) shows, perhaps surprisingly, that the compress-
ibility of a fluid can be obtained not only by compressing the fluid, but also
by performing a scattering experiment:

ρkBTκT = lim
k→0

S(k). (1.35)
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• (static) scattering experiments measure amplitudes of density fluctuations:

• the structure factor S(k) is essentially a Fourier transform of g(r)

• so you can measure the compressibility of a fluid without touching it!

Relation between structure factor and g(r)

1. STRUCTURE IN LIQUIDS AND GASES
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Summary of chapter 1

• the structure of fluids is determined by the interparticle interactions

• radial distribution function g(r): density at distance r from a given particle, 
normalised by the average density N/V. Knowing g(r), we can calculate e.g.

• total energy

• pressure

• compressibility

• scattering experiments probe Fourier components of density fluctuations

Chapter 1

Structure in liquids and gases

1.1 Probability density

Consider a closed box of volume V filled with a fluid (liquid or gas) consisting
of a large number N of identical molecules. For our purposes we may assume
each molecule to be a rigid object with a given position and orientation.
According to classical statistical mechanics, these positions and orientations
are not completely random. Rather, at not too low temperature T ,1 the
probability density for encountering a certain configuration of 3N position
and 3N orientation coordinates, in shorthand denoted by R6N , is given by
the Boltzmann distribution function:

P (R6N) =
1

Z
exp

(

−
Φ(R6N )

kBT

)

, (1.1)

where Φ(R6N ) is the total potential energy of the configuration, kB = 1.38065×
10−23 J/K = 8.617×10−5 eV/K is Boltzmann’s constant, and Z is a normal-
isation constant, referred to as the configuration integral.

The positions and orientations are not completely random because the to-
tal potential energy Φ contains terms which depend on the relative positions
and orientations of two or more molecules. The details of such molecular
interactions determine the precise structural and dynamical properties of a
fluid.

1At very low temperatures the discreteness of the energy levels becomes apparent. In
that case the classical view needs to be replaced by a quantum mechanical one and other
distribution statistics apply, like Bose-Einstein statistics for ideal bosons and Fermi-Dirac
statistics for ideal fermions.
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conditions (in this case constant temperature T and volume V ). From
Eq. (1.11) we obtain (where r12 = |r1 − r2|):

∫

V

d3r1

∫

V

d3r2ρ
2g(r12) = 〈N(N − 1)〉 =

〈

N2
〉

− 〈N〉 . (1.15)

We can use this to link the compressibility to the radial distribution function:

〈N〉 ρkBTκT = ρ

∫

V

d3r1ρ

∫

V

d3r2g(r12) + 〈N〉 − ρ

∫

V

d3r1ρ

∫

V

d3r2

= ρ

∫

V

d3r1ρ

∫

V

d3r2 (g(r12)− 1) + 〈N〉

= ρ

∫

V

d3r1ρ

∫

R3

d3r (g(r)− 1) + 〈N〉 (1.16)

Dividing by 〈N〉 we find

ρkBTκT = 1 + ρ

∫

R3

d3r (g(r)− 1) . (1.17)

This so-called compressibility equation shows that the compressibility of a
fluid is intimately connected to the radial distribution function of its con-
stituent molecules.

Pressure

We will now consider the pressure of a fluid. If the density of the fluid is
not too high, correlations between three or more particles may be ignored,
in which case Eq. (1.1) tells us that the radial distribution function is given
by

g(r) ≈ exp {−βϕ(r)} , (1.18)

where ϕ(r) is the pair interaction potential. Also for not too high densities,
the pressure of a fluid is to a good approximation given by the first two terms
in the virial equation

PV = NkBT

(

1 +B2(T )
N

V

)

, (1.19)

where B2(T ) is called the second virial coefficient.3 Our goal now is to link
B2(T ) to the radial distribution function g(r) or pair interaction ϕ(r). This

3In principle the virial equation also contains higher order terms in N/V with corre-
sponding third, fourth, etc, virial coefficients. These become important at higher densities
than considered here.
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where δ(r) = δ(x)δ(y)δ(z) is the three-dimensional Dirac delta-function.
This may be rewritten as
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N
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exp {ik · rj}− (2π)3ρδ(k). (1.32)

Density fluctuations in a fluid can be measured experimentally by means
of scattering of light, neutrons, or X-rays (depending on the scale of interest).
The scattered intensity also depends on details such as wave polarization
and scattering strength or form factor, but generally scattering experiments
measure correlation functions of Fourier components of the density. The
correlation function of ρ̂(k) with its complex conjugate ρ̂∗(k) = ρ̂(−k), i.e.
the mean square of the density fluctuation with wave vector k, is a real
function of the wavevector, called the structure factor S(k):

S(k) ≡
1

N
〈ρ̂(k)ρ̂∗(k)〉 . (1.33)

The division by N leads to a quantity which for large enough systems is inde-
pendent of system size (that is to say, the mean square density fluctuations
grow linearly with system size). The structure factor gives a lot of informa-
tion about the structure of a fluid. It is essentially a Fourier transform of
the radial distribution function, as can be shown as follows:
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N
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∫
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d3r [g(r)− 1] exp {ik · r} . (1.34)

Comparison with Eq. (1.17) shows, perhaps surprisingly, that the compress-
ibility of a fluid can be obtained not only by compressing the fluid, but also
by performing a scattering experiment:

ρkBTκT = lim
k→0

S(k). (1.35)
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• even when a liquid appears to be at rest macroscopically, microscopically the 
molecules are continually changing their positions and velocities

• therefore most observable quantities fluctuate in time

• characterise the dynamics of fluctuations by time correlation functions

Dynamic properties of liquids

e.g. velocity of a diatomic particle
(in a fluid) along its bond direction

Chapter 2

Time dependent properties of
liquids

2.1 Time correlation functions

In the rest of these lectures we will focus on time dependent properties of
liquids, i.e. their dynamics. Even when a fluid appears to be at rest macro-
scopically, microscopically the molecules are continually changing their po-
sitions and velocities. Most observable quantities therefore fluctuate in time
and we need a way to characterise the dynamics of these fluctuations. We
do this by means of time correlation functions. For a quantity A, the time
correlation function is defined as

〈A(t)A(0)〉 = lim
T→∞

1

T

∫ T

0

dτA(τ + t)A(τ). (2.1)

When t = 0, we get the average of A2. When t → ∞, A(t + τ) will be
unrelated to A(τ) and the result will be 〈A〉2. From Schwarz’s inequality we
get 〈A(t)A(0)〉 ≤ {〈A(t)A(t)〉 〈A(0)A(0)〉}1/2 = 〈A2〉. So, 〈A(t)A(0)〉 decays
from 〈A2〉 at t = 0 to 〈A〉2 for very large times.

A simple generalisation of Eq. (2.1) is

〈A(t)B(0)〉 = lim
T→∞

1

T

∫ T

0

dτA(τ + t)B(τ). (2.2)

When B = A, as in Eq. (2.1), we speak about autocorrelation functions.
In equilibrium, the origin of time is irrelevant, which means that 〈A(t + s)B(s)〉

is independent of s. Hence, using a dot over a quantity to indicate its time
derivative, the following must be true in equilibrium:

d

ds
〈A(t + s)B(s)〉 =

〈

Ȧ(t+ s)B(s)
〉

+
〈

A(t+ s)Ḃ(s)
〉

= 0, (2.3)
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

from which we obtain the important property:

〈

Ȧ(t+ s)B(s)
〉

= −
〈

A(t+ s)Ḃ(s)
〉

(2.4)

For an autocorrelation function this says that

d

dt
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= 0, (2.5)

i.e. any time autocorrelation function starts out with a horizontal slope.
From Eq. (2.4) we can also derive the useful relation

d2

dt2
〈A(t+ s)B(s)〉 = −

〈

Ȧ(t+ s)Ḃ(s)
〉

. (2.6)

We will need this in section 2.3 when dealing with collective diffusion. For
an autocorrelation function this says that

d2

dt2
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= −
〈

Ȧ2
〉

< 0, (2.7)

i.e. any time autocorrelation function is initially curved negatively.

2.2 Self-diffusion and the velocity autocorre-

lation function

Suppose we label some particles inside a very small region (a dot) in an
otherwise homogeneous fluid, at time t = 0 at position r(0). When the dot,
although on a macroscopic scale concentrated at r(0), is dilute enough on
a molecular scale, we may consider the concentration decay as due to the
self-diffusion of the separate labelled particles. The conditional probability
P (r, t) that a particle is at r at time t, given it was at r(0) at time t = 0,
may then be obtained from Fick’s law:

∂P (r, t)

∂t
= D∇2P (r, t), (2.8)

together with the boundary condition P (r, 0) = δ(r − r(0)). D is the self-
diffusion coefficient, which has units of length squared over time (m2/s).
The mean square displacement of the labelled particles can be related to the
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• at t=0 we label some particles in a dot of fluid;
each particle will diffuse away via a different path

• define conditional probability P(r,t) that a labeled particle is at r at time t,
given it was at r(0) at time t=0

• Fick’s law states that

Example: self-diffusion
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• averaging over all possible paths, we find:

• for a real fluid, Fick’s law only holds at large times (after many collisions)

                                                     

       Einstein equation

Mean-square displacement and Einstein equation
2. TIME DEPENDENT PROPERTIES OF LIQUIDS

self-diffusion coefficient as follows:

d

dt

〈

|r(t)− r(0)|2
〉

=

∫

d3r |r(t)− r(0)|2
∂P (r, t)

∂t

= D

∫

d3r |r(t)− r(0)|2∇2P (r, t)

= D

∫

d3rP (r, t)∇2r2

= 6D, (2.9)

where we have used partial integration and the fact that P (r, t) and its
derivative are zero far from r(0). For real fluid particles Fick’s law only holds
for large values of t.1 Integration of Eq. (2.9) yields the Einstein equation

D = lim
t→∞

1

6t

〈

|r(t)− r(0)|2
〉

. (2.10)

We may transform this equation to an expression involving the autocorrela-
tion of the velocity v = ṙ of a labelled particle:

〈

|r(t)− r(0)|2
〉

=

∫ t

0

dt′
∫ t

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′ − t′′) · v(0)〉

= 2

∫ t

0

dt′
∫ t′

0

dτ 〈v(τ) · v(t′′)〉

= 2

∫ t

0

dτ(t− τ) 〈v(τ) · v(0)〉 . (2.11)

The last step follows after partial integration. Comparing with the Einstein
equation (2.10), taking the limit for t → ∞, we finally find

D =
1

3

∫ ∞

0

dt 〈v(t) · v(0)〉 . (2.12)

The is the Green-Kubo relation for the self-diffusion coefficient.

1At very short times the fluid particles are not yet moving completely randomly. For
example, they may still be trapped inside a temporary cage formed by their neighbours.
Fick’s law applies to time scales on which the particles are diffusing freely.
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tion of the velocity v = ṙ of a labelled particle:

〈

|r(t)− r(0)|2
〉

=

∫ t

0

dt′
∫ t

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′ − t′′) · v(0)〉

= 2

∫ t

0

dt′
∫ t′

0

dτ 〈v(τ) · v(t′′)〉

= 2

∫ t

0

dτ(t− τ) 〈v(τ) · v(0)〉 . (2.11)

The last step follows after partial integration. Comparing with the Einstein
equation (2.10), taking the limit for t → ∞, we finally find

D =
1

3

∫ ∞

0

dt 〈v(t) · v(0)〉 . (2.12)

The is the Green-Kubo relation for the self-diffusion coefficient.

1At very short times the fluid particles are not yet moving completely randomly. For
example, they may still be trapped inside a temporary cage formed by their neighbours.
Fick’s law applies to time scales on which the particles are diffusing freely.

17

25



• comparing with the Einstein equation, we find

 
this is the Green-Kubo relation for the self-diffusion coefficient
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∫ ∞

0

dt 〈v(t) · v(0)〉 . (2.12)

The is the Green-Kubo relation for the self-diffusion coefficient.

1At very short times the fluid particles are not yet moving completely randomly. For
example, they may still be trapped inside a temporary cage formed by their neighbours.
Fick’s law applies to time scales on which the particles are diffusing freely.
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tion of the velocity v = ṙ of a labelled particle:

〈

|r(t)− r(0)|2
〉

=

∫ t

0

dt′
∫ t

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′ − t′′) · v(0)〉

= 2

∫ t

0

dt′
∫ t′

0

dτ 〈v(τ) · v(t′′)〉

= 2

∫ t

0

dτ(t− τ) 〈v(τ) · v(0)〉 . (2.11)

The last step follows after partial integration. Comparing with the Einstein
equation (2.10), taking the limit for t → ∞, we finally find

D =
1

3

∫ ∞

0

dt 〈v(t) · v(0)〉 . (2.12)

The is the Green-Kubo relation for the self-diffusion coefficient.

1At very short times the fluid particles are not yet moving completely randomly. For
example, they may still be trapped inside a temporary cage formed by their neighbours.
Fick’s law applies to time scales on which the particles are diffusing freely.

17

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

self-diffusion coefficient as follows:

d

dt

〈

|r(t)− r(0)|2
〉

=

∫

d3r |r(t)− r(0)|2
∂P (r, t)

∂t

= D

∫

d3r |r(t)− r(0)|2∇2P (r, t)

= D

∫

d3rP (r, t)∇2r2

= 6D, (2.9)

where we have used partial integration and the fact that P (r, t) and its
derivative are zero far from r(0). For real fluid particles Fick’s law only holds
for large values of t.1 Integration of Eq. (2.9) yields the Einstein equation

D = lim
t→∞

1

6t

〈

|r(t)− r(0)|2
〉

. (2.10)

We may transform this equation to an expression involving the autocorrela-
tion of the velocity v = ṙ of a labelled particle:
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Velocity autocorrelation in a Lennard-Jones fluid

particle collides with another
particle in front of it

reversed velocity
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• macroscopic laws [the ones that determine α(t)]
usually apply to non-equilibrium situations

• multiplying by A(0) and averaging over all initial conditions
we get a useful equilibrium expression:

Onsager’s regression hypothesis

”the average decay of fluctuations is,
at large times and on macroscopic scales,

governed by the corresponding macroscopic laws”

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.1: Typical velocity auto-
correlation function in a liquid. In
this figure the relatively fast ini-
tial decay is clearly visible, whereas
the slow decay at larger times is
not. Nevertheless, the slow decay
contributes considerably to the self-
diffusion coefficient, Eq. (2.12).

In Fig. 2.1 a typical velocity autocorrelation is shown. After a short time
the autocorrelation goes through zero; here the particle collides with some
other particle in front of it and it reverses it’s velocity. For large values of t
the velocity autocorrelation scales as t−3/2, which is a hydrodynamic effect.
This very slow decay is often difficult to detect.

2.3 Onsager’s regression hypothesis

In the previous section we made use of the fact that the microscopic self-
diffusion of a labelled particle in a liquid may for large times be described
by a macroscopic law. We shall generalise this approach using Onsager’s
regression hypothesis.

Consider an observable quantity A having zero mean, 〈A〉 = 0. Due to
fluctuations, however, A will have a nonzero value at (almost) all instants.
Onsager’s regression hypothesis says that the decay of this fluctuation at
large times and on macroscopic scales will be governed by the corresponding
macroscopic laws.

Notice that the macroscopic laws usually apply to non-equilibrium situ-
ations. In formula Onsager’s hypothesis says

〈A(t)〉A(0) = A(0)α(t), (2.13)

where α(t) is determined by macroscopic laws. The average is a conditional
average: it expresses the average time development of A, given that it was
A(0) at t = 0. Multiplying by A(0) and averaging over all initial conditions
we get

〈A(t)A(0)〉 =
〈

A2
〉

α(t). (2.14)

The averages are now simple equilibrium averages. We shall illustrate the
use of Eq. (2.14) with two examples in the next two sections.
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• we’re interested in the time dependence of density fluctuations

• in order to apply Onsager, let’s first study the decay of a macroscopic 
sinusoidal density fluctuation prepared at t=0

Application 1: collective diffusion

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.4 Collective diffusion

2.4.1 Decay of macroscropic density fluctuations

In the first example, we will focus on the time dependence of density fluc-
tuations in a liquid. Following Eqs. (1.29) and (1.30), we describe density
fluctuations by means of their Fourier components, but now with an explicit
time dependence:

ρ(r, t) = ρ+
1

(2π)3

∫

d3k ρ̂(k, t) exp {−ik · r} , (2.15)

ρ̂(k, t) =

∫

d3r {ρ(r, t)− ρ} exp {ik · r} . (2.16)

To apply Onsager’s regression hypothesis, we first need to know how a macro-
scopic density fluctuation decays. Suppose at time t = 0 we prepare a fluid
system with a macroscopic sinusoidal density fluctuation. In the above equa-
tions this corresponds to a situation in which there is only one non-zero
Fourier component ρ̂(k, 0):

ρ(r, 0) = ρ+
1

(2π)3
ρ̂(k, 0) exp {−ik · r} (2.17)

According to Fick’s law, Eq. (2.8), the rate of decay of such a macroscopic
density fluctuation is determined by the so-called collective diffusion coeffi-
cient D:

∂

∂t

[

1

(2π)3
ρ̂(k, t) exp {−ik · r}

]

= D∇2

[

1

(2π)3
ρ̂(k, t) exp {−ik · r}

]

,

exp {−ik · r}
∂ρ̂(k, t)

∂t
= −D(k)k2ρ̂(k, t) exp {−ik · r} ,

ρ̂(k, t) = ρ̂(k, 0) exp
{

−D(k)k2t
}

. (2.18)

Note that we have included the possibility that the collective diffusion co-
efficient depends on the wave length of the density disturbance, D = D(k).
Eq. (2.18) shows that a density fluctuation smoothens out with a relaxation
time τ(k) = 1/(D(k)k2). Large k (short wavelength) fluctuations decay
rapidly, whereas relaxing small k (long wavelength) fluctuations can take a
very long time. This is a consequence of the fact that relaxing a long wave-
length inhomogeneity requires transport of fluid particles over large length
scales, which is a slow process.
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Decay of macroscopic density fluctuations

• Fick’s law applies here too, but now D is the collective diffusion coefficient

• a macroscopic density fluctuation decays exponentially (at large times)
with a relaxation time given by

short wavelength (large k) fluctuations decay rapidly
long wavelength (small k) fluctuations decay slowly

(relaxing a long wavelength inhomogeneity requires transport of
 fluid particles over large length scales, which is a slow process)

τ(k) =
1

D(k)k2
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rapidly, whereas relaxing small k (long wavelength) fluctuations can take a
very long time. This is a consequence of the fact that relaxing a long wave-
length inhomogeneity requires transport of fluid particles over large length
scales, which is a slow process.
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Microscopic equation for collective D  [1/2]

• microscopic expression for density Fourier component:

• Onsager:

then

using                                                                   we can write this as

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.4.2 Microscopic equation for D(k)

Let us now see if we can derive a microscopic (and equilibrium) equation
for the collective diffusion coefficient. We have encountered the microscopic
variable corresponding to a density Fourier component before, see Eq. (1.32).
We now add an explicit time dependence:

ρ̂(k, t) =

∫

d3r

{

∑

j

δ (r− rj(t))− ρ

}

exp {ik · r} . (2.19)

Eq. (2.14) states that the time autocorrelation function of this variable decays
according to:

〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉 exp
{

−D(k)k2t
}

. (2.20)

To calculate D(k) we differentiate with respect to t and divide by −k2; more-
over we shall assume that k is small enough to set exp {−D(k)k2t} ≈ 1 for
all t of interest:

−
1

k2

d

dt
〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.21)

−
1

k2

∫ t

0

dτ
d2

dt2
〈ρ̂(k, τ)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.22)

Using Eq. (2.6) we may write this as

∫ t

0

dτ
1

k2

〈

˙̂ρ(k, τ) ˙̂ρ∗(k, 0)
〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k). (2.23)

It is now convenient to choose a specific orientation for the wave vector, say
the z-axis: k = kêz. Then

∫ t

0

dτ

〈

∑

i

∑

j

viz(τ)vjz(0) exp {ik (zi(τ)− zj(0))}

〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k).

(2.24)

Using the definition of the structure factor, Eq. (1.33), we finally obtain:

D(k) =
1

S(k)

∫ ∞

0

dt
1

N

〈

∑

i

∑

j

viz(t)vjz(0) exp {ik (zi(t)− zj(0))}

〉

.

(2.25)

This is the Green-Kubo relation for the collective diffusion coefficient.
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from which we obtain the important property:

〈

Ȧ(t+ s)B(s)
〉

= −
〈

A(t+ s)Ḃ(s)
〉

(2.4)

For an autocorrelation function this says that

d

dt
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= 0, (2.5)

i.e. any time autocorrelation function starts out with a horizontal slope.
From Eq. (2.4) we can also derive the useful relation

d2

dt2
〈A(t+ s)B(s)〉 = −

〈

Ȧ(t+ s)Ḃ(s)
〉

. (2.6)

We will need this in section 2.3 when dealing with collective diffusion. For
an autocorrelation function this says that

d2

dt2
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= −
〈

Ȧ2
〉

< 0, (2.7)

i.e. any time autocorrelation function is initially curved negatively.

2.2 Self-diffusion and the velocity autocorre-

lation function

Suppose we label some particles inside a very small region (a dot) in an
otherwise homogeneous fluid, at time t = 0 at position r(0). When the dot,
although on a macroscopic scale concentrated at r(0), is dilute enough on
a molecular scale, we may consider the concentration decay as due to the
self-diffusion of the separate labelled particles. The conditional probability
P (r, t) that a particle is at r at time t, given it was at r(0) at time t = 0,
may then be obtained from Fick’s law:

∂P (r, t)

∂t
= D∇2P (r, t), (2.8)

together with the boundary condition P (r, 0) = δ(r − r(0)). D is the self-
diffusion coefficient, which has units of length squared over time (m2/s).
The mean square displacement of the labelled particles can be related to the
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2.4.2 Microscopic equation for D(k)

Let us now see if we can derive a microscopic (and equilibrium) equation
for the collective diffusion coefficient. We have encountered the microscopic
variable corresponding to a density Fourier component before, see Eq. (1.32).
We now add an explicit time dependence:
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exp {ik · r} . (2.19)
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Using the definition of the structure factor, Eq. (1.33), we finally obtain:

D(k) =
1

S(k)

∫ ∞

0

dt
1

N

〈

∑

i

∑

j

viz(t)vjz(0) exp {ik (zi(t)− zj(0))}

〉

.

(2.25)

This is the Green-Kubo relation for the collective diffusion coefficient.
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This is the Green-Kubo relation for the collective diffusion coefficient.
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• choose specific orientation for wavevector, say               :

• we find the Green-Kubo relation for the collective diffusion coefficient:

compare this with the Green-Kubo relation for the self-diffusion coefficient:

Microscopic equation for collective D  [2/2]

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.4.2 Microscopic equation for D(k)

Let us now see if we can derive a microscopic (and equilibrium) equation
for the collective diffusion coefficient. We have encountered the microscopic
variable corresponding to a density Fourier component before, see Eq. (1.32).
We now add an explicit time dependence:

ρ̂(k, t) =

∫

d3r

{

∑

j

δ (r− rj(t))− ρ

}

exp {ik · r} . (2.19)

Eq. (2.14) states that the time autocorrelation function of this variable decays
according to:

〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉 exp
{

−D(k)k2t
}

. (2.20)

To calculate D(k) we differentiate with respect to t and divide by −k2; more-
over we shall assume that k is small enough to set exp {−D(k)k2t} ≈ 1 for
all t of interest:
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d

dt
〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.21)
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1

k2
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i

∑

j
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〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k).

(2.24)

Using the definition of the structure factor, Eq. (1.33), we finally obtain:

D(k) =
1

S(k)

∫ ∞

0

dt
1

N

〈

∑

i

∑

j

viz(t)vjz(0) exp {ik (zi(t)− zj(0))}

〉

.

(2.25)

This is the Green-Kubo relation for the collective diffusion coefficient.

20

Dself =

� ∞

0

1

N

�
�

i

viz(t)viz(0)

�

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.4.2 Microscopic equation for D(k)

Let us now see if we can derive a microscopic (and equilibrium) equation
for the collective diffusion coefficient. We have encountered the microscopic
variable corresponding to a density Fourier component before, see Eq. (1.32).
We now add an explicit time dependence:

ρ̂(k, t) =

∫

d3r

{

∑

j

δ (r− rj(t))− ρ

}

exp {ik · r}

=
N
∑

j=1

exp {ik · rj(t)}− (2π)3ρδ(k). (2.19)

Eq. (2.14) states that the time autocorrelation function of this variable decays
according to:

〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉 exp
{

−D(k)k2t
}

. (2.20)

To calculate D(k) we differentiate with respect to t and divide by −k2; more-
over we shall assume that k is small enough to set exp {−D(k)k2t} ≈ 1 for
all t of interest:

−
1

k2

d

dt
〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.21)

−
1

k2

∫ t

0

dτ
d2

dt2
〈ρ̂(k, τ)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.22)

Using Eq. (2.6) we may write this as
∫ t

0

dτ
1

k2

〈

˙̂ρ(k, τ) ˙̂ρ∗(k, 0)
〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k). (2.23)

It is now convenient to choose a specific orientation for the wave vector, say
the z-axis: k = kêz. Then
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Application 2: shear viscosity

• suppose the fluid has a macroscopic velocity (flow) field

• neighbouring fluid elements exert forces on each other

• friction due to velocity differences

• momentum exchange due to migration of particles

• momentum exchange due to interactions between particles

• all these forces can conveniently be summarized in the stress tensor

    transforms the normal     of a surface element
to the force       exerted by the fluid below the
surface element on the fluid above the fluid element:

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.5 Shear viscosity

2.5.1 Macroscopic hydrodynamics

In the second example, we will focus on transversal transport of momentum
through a fluid. Suppose the fluid velocity on a macroscopic scale is de-
scribed by the fluid velocity field v (r). When two neighbouring fluid volume
elements move with different velocities, they will experience a friction force
proportional to the area of the surface between the two fluid volume elements.
Moreover, even without relative motion, the volume elements will be able to
exchange momentum through the motions of, and interactions between, the
constituent particles.

All the above forces can conveniently be summarized in the stress tensor.
Consider a surface element of size dA and normal n̂. Let dF be the force
exerted by the fluid below the surface element on the fluid above the fluid
element. Then we define the stress tensor S̄ by

dFα = −
∑

β

Sαβn̂βdA = −
(

S̄ · n̂
)

α
dA, (2.26)

where α and β run from 1 to 3 (or x, y, and z).
Many fluids can be described by assuming that the stress tensor consists

of a part which is independent of the flow velocity and a part which depends
linearly on the instantaneous derivatives ∂vα/∂xβ .2 In hydrodynamics it is
shown that the most general stress tensor having these properties then reads

Sαβ = η

{

∂vα
∂xβ

+
∂vβ
∂xα

}

−
{

P +

(

2

3
η − κ

)

∇ · v
}

δαβ. (2.27)

Here δαβ is the Kronecker delta (1 if α = β, 0 otherwise), η is the shear
viscosity, κ is the bulk viscosity, and P the pressure.

Combining Newton’s equations of motion (expressing the law of conser-
vation of momentum) with the law of conservation of mass, it is possible to
derive the macroscopic Navier-Stokes equation,

ρm
D

Dt
v = ∇ · S̄, (2.28)

where ρm = mρ is the mass density and D/Dt = v · ∇ + ∂/∂t is the total
derivative. The combination of Eq. (2.27) with Eq. (2.28), sometimes also
referred to as the Navier-Stokes equation, is rather formidable. Fortunately,

2In the more general case of complex fluids, the stress tensor depends on the history of
fluid flow (the fluid has a memory) and has both viscous and elastic components.
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derivative. The combination of Eq. (2.27) with Eq. (2.28), sometimes also
referred to as the Navier-Stokes equation, is rather formidable. Fortunately,
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2.5 Shear viscosity

2.5.1 Macroscopic hydrodynamics
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scribed by the fluid velocity field v (r). When two neighbouring fluid volume
elements move with different velocities, they will experience a friction force
proportional to the area of the surface between the two fluid volume elements.
Moreover, even without relative motion, the volume elements will be able to
exchange momentum through the motions of, and interactions between, the
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All the above forces can conveniently be summarized in the stress tensor.
Consider a surface element of size dA and normal n̂. Let dF be the force
exerted by the fluid below the surface element on the fluid above the fluid
element. Then we define the stress tensor S̄ by

dFα = −
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β

Sαβn̂βdA = −
(

S̄ · n̂
)

α
dA, (2.26)

where α and β run from 1 to 3 (or x, y, and z).
Many fluids can be described by assuming that the stress tensor consists

of a part which is independent of the flow velocity and a part which depends
linearly on the instantaneous derivatives ∂vα/∂xβ .2 In hydrodynamics it is
shown that the most general stress tensor having these properties then reads
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• simple fluids can be described by assuming that stress tensor consists of a

• part which is independent of the flow velocity, and a

• part which depends linearly on the instantaneous derivatives 

• N.B. for complex fluids such as polymers, the stress tensor may actually 
depend on the history of fluid flow

shear
viscosity

Stress tensor for simple fluids

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.5 Shear viscosity

2.5.1 Macroscopic hydrodynamics

In the second example, we will focus on transversal transport of momentum
through a fluid. Suppose the fluid velocity on a macroscopic scale is de-
scribed by the fluid velocity field v (r). When two neighbouring fluid volume
elements move with different velocities, they will experience a friction force
proportional to the area of the surface between the two fluid volume elements.
Moreover, even without relative motion, the volume elements will be able to
exchange momentum through the motions of, and interactions between, the
constituent particles.

All the above forces can conveniently be summarized in the stress tensor.
Consider a surface element of size dA and normal n̂. Let dF be the force
exerted by the fluid below the surface element on the fluid above the fluid
element. Then we define the stress tensor S̄ by

dFα = −
∑

β

Sαβn̂βdA = −
(

S̄ · n̂
)

α
dA, (2.26)

where α and β run from 1 to 3 (or x, y, and z).
Many fluids can be described by assuming that the stress tensor consists

of a part which is independent of the flow velocity and a part which depends
linearly on the instantaneous derivatives ∂vα/∂xβ .2 In hydrodynamics it is
shown that the most general stress tensor having these properties then reads

Sαβ = η

{

∂vα
∂xβ

+
∂vβ
∂xα

}

−
{

P +

(

2

3
η − κ

)

∇ · v
}

δαβ. (2.27)

Here δαβ is the Kronecker delta (1 if α = β, 0 otherwise), η is the shear
viscosity, κ is the bulk viscosity, and P the pressure.

Combining Newton’s equations of motion (expressing the law of conser-
vation of momentum) with the law of conservation of mass, it is possible to
derive the macroscopic Navier-Stokes equation,

ρm
D

Dt
v = ∇ · S̄, (2.28)

where ρm = mρ is the mass density and D/Dt = v · ∇ + ∂/∂t is the total
derivative. The combination of Eq. (2.27) with Eq. (2.28), sometimes also
referred to as the Navier-Stokes equation, is rather formidable. Fortunately,

2In the more general case of complex fluids, the stress tensor depends on the history of
fluid flow (the fluid has a memory) and has both viscous and elastic components.

21

bulk
viscosity

pressure

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.5 Shear viscosity

2.5.1 Macroscopic hydrodynamics

In the second example, we will focus on transversal transport of momentum
through a fluid. Suppose the fluid velocity on a macroscopic scale is de-
scribed by the fluid velocity field v (r). When two neighbouring fluid volume
elements move with different velocities, they will experience a friction force
proportional to the area of the surface between the two fluid volume elements.
Moreover, even without relative motion, the volume elements will be able to
exchange momentum through the motions of, and interactions between, the
constituent particles.

All the above forces can conveniently be summarized in the stress tensor.
Consider a surface element of size dA and normal n̂. Let dF be the force
exerted by the fluid below the surface element on the fluid above the fluid
element. Then we define the stress tensor S̄ by

dFα = −
∑

β

Sαβn̂βdA = −
(

S̄ · n̂
)

α
dA, (2.26)

where α and β run from 1 to 3 (or x, y, and z).
Many fluids can be described by assuming that the stress tensor consists

of a part which is independent of the flow velocity and a part which depends
linearly on the instantaneous derivatives ∂vα/∂xβ .2 In hydrodynamics it is
shown that the most general stress tensor having these properties then reads

Sαβ = η

{

∂vα
∂xβ

+
∂vβ
∂xα

}

−
{

P +

(

2

3
η − κ

)

∇ · v
}

δαβ. (2.27)

Here δαβ is the Kronecker delta (1 if α = β, 0 otherwise), η is the shear
viscosity, κ is the bulk viscosity, and P the pressure.

Combining Newton’s equations of motion (expressing the law of conser-
vation of momentum) with the law of conservation of mass, it is possible to
derive the macroscopic Navier-Stokes equation,

ρm
D

Dt
v = ∇ · S̄, (2.28)

where ρm = mρ is the mass density and D/Dt = v · ∇ + ∂/∂t is the total
derivative. The combination of Eq. (2.27) with Eq. (2.28), sometimes also
referred to as the Navier-Stokes equation, is rather formidable. Fortunately,

2In the more general case of complex fluids, the stress tensor depends on the history of
fluid flow (the fluid has a memory) and has both viscous and elastic components.

21

34



• law of conservation of momentum + law of conservation of mass:

                                                              Navier-Stokes equation

• we focus on incompressible flow of simple fluids at small velocities:

Navier-Stokes and Stokes equations

mρ

�
v ·∇+

∂

∂t

�
v = ∇ · S̄2. TIME DEPENDENT PROPERTIES OF LIQUIDS

many flow fields of interest may be described assuming that the fluid is
incompressible. In that case∇·v = 0. Assuming moreover that the velocities
are small, and that second order nonlinear terms in v may be neglected, we
obtain Stokes equations for incompressible flow:

mρ
∂v

∂t
= η∇2v −∇P (2.29)

∇ · v = 0. (2.30)

These are the hydrodynamic equations that we will use from here on.
Our aim is to derive a microscopic equation for the shear viscosity η. To

this end, let us first see how a wavelike velocity field3

ρv(r, t) =
1

(2π)3
g(k, t) exp {−ik · r} (2.31)

decays macroscopically. Introducing this in the incompressibility equation
(2.30) shows that the only possible wavelike velocity field is a transversal
one:

g(k, t) · k = 0. (2.32)

Taking the divergence of Eq. (2.29) and using Eq. (2.30) we get ∇2P = 0.
It is now convenient to choose specific orientations for the wave vector and
velocity field. Suppose that the wave vector is oriented along the z-axis,
k = kêz, and that the flow is along the y-axis, g(k, t) = gy(k, t)êy. Looking
at the x and z components of Eq. (2.29) this yields ∂P/∂x = ∂P/∂z = 0.
Together with ∇2P = 0 this also means that ∂P/∂y = 0. The only remaining
component in Eq. (2.29) then reads

mρ
∂vy
∂t

= η
∂2vy
∂z2

mρ
∂gy
∂t

= −ηk2gy

gy(k, t) = gy(k, 0) exp

{

−
η

mρ
k2t

}

. (2.33)

This shows that a macroscopic transversal velocity field decays to zero with
a relaxation time τ(k) = mρ/(ηk2).

3The factor (2π)−3 appears for the same reason as in Eq. (2.15), so that g(k, t) may
be viewed as a Fourier component of the velocity field.
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Here δαβ is the Kronecker delta (1 if α = β, 0 otherwise), η is the shear
viscosity, κ is the bulk viscosity, and P the pressure.

Combining Newton’s equations of motion (expressing the law of conser-
vation of momentum) with the law of conservation of mass, it is possible to
derive the macroscopic Navier-Stokes equation,

ρm
D

Dt
v = ∇ · S̄, (2.28)

where ρm = mρ is the mass density and D/Dt = v · ∇ + ∂/∂t is the total
derivative. The combination of Eq. (2.27) with Eq. (2.28), sometimes also
referred to as the Navier-Stokes equation, is rather formidable. Fortunately,

2In the more general case of complex fluids, the stress tensor depends on the history of
fluid flow (the fluid has a memory) and has both viscous and elastic components.
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Decay of a macroscopic wavelike velocity field [1/2]

• consider a wavelike velocity field

• for an incompressible fluid the only possible
wavelike velocity field is a transversal one:

• e.g. choose k along z and flow along y

Stokes equation then gives 
and taking the divergence of Stokes equation 
so we get                     too.
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many flow fields of interest may be described assuming that the fluid is
incompressible. In that case∇·v = 0. Assuming moreover that the velocities
are small, and that second order nonlinear terms in v may be neglected, we
obtain Stokes equations for incompressible flow:

mρ
∂v

∂t
= η∇2v −∇P (2.29)

∇ · v = 0. (2.30)

These are the hydrodynamic equations that we will use from here on.
Our aim is to derive a microscopic equation for the shear viscosity η. To

this end, let us first see how a wavelike velocity field3

ρv(r, t) =
1

(2π)3
g(k, t) exp {−ik · r} (2.31)

decays macroscopically. Introducing this in the incompressibility equation
(2.30) shows that the only possible wavelike velocity field is a transversal
one:

g(k, t) · k = 0. (2.32)

Taking the divergence of Eq. (2.29) and using Eq. (2.30) we get ∇2P = 0.
It is now convenient to choose specific orientations for the wave vector and
velocity field. Suppose that the wave vector is oriented along the z-axis,
k = kêz, and that the flow is along the y-axis, g(k, t) = gy(k, t)êy. Looking
at the x and z components of Eq. (2.29) this yields ∂P/∂x = ∂P/∂z = 0.
Together with ∇2P = 0 this also means that ∂P/∂y = 0. The only remaining
component in Eq. (2.29) then reads
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∂z2

mρ
∂gy
∂t

= −ηk2gy

gy(k, t) = gy(k, 0) exp

{

−
η

mρ
k2t

}

. (2.33)

This shows that a macroscopic transversal velocity field decays to zero with
a relaxation time τ(k) = mρ/(ηk2).

3The factor (2π)−3 appears for the same reason as in Eq. (2.15), so that g(k, t) may
be viewed as a Fourier component of the velocity field.
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k = kêz, and that the flow is along the y-axis, g(k, t) = gy(k, t)êy. Looking
at the x and z components of Eq. (2.29) this yields ∂P/∂x = ∂P/∂z = 0.
Together with ∇2P = 0 this also means that ∂P/∂y = 0. The only remaining
component in Eq. (2.29) then reads

mρ
∂vy
∂t

= η
∂2vy
∂z2

mρ
∂gy
∂t

= −ηk2gy

gy(k, t) = gy(k, 0) exp

{

−
η

mρ
k2t

}

. (2.33)

This shows that a macroscopic transversal velocity field decays to zero with
a relaxation time τ(k) = mρ/(ηk2).

3The factor (2π)−3 appears for the same reason as in Eq. (2.15), so that g(k, t) may
be viewed as a Fourier component of the velocity field.

22

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

many flow fields of interest may be described assuming that the fluid is
incompressible. In that case∇·v = 0. Assuming moreover that the velocities
are small, and that second order nonlinear terms in v may be neglected, we
obtain Stokes equations for incompressible flow:

mρ
∂v

∂t
= η∇2v −∇P (2.29)

∇ · v = 0. (2.30)

These are the hydrodynamic equations that we will use from here on.
Our aim is to derive a microscopic equation for the shear viscosity η. To

this end, let us first see how a wavelike velocity field3

ρv(r, t) =
1

(2π)3
g(k, t) exp {−ik · r} (2.31)

decays macroscopically. Introducing this in the incompressibility equation
(2.30) shows that the only possible wavelike velocity field is a transversal
one:

g(k, t) · k = 0. (2.32)

Taking the divergence of Eq. (2.29) and using Eq. (2.30) we get ∇2P = 0.
It is now convenient to choose specific orientations for the wave vector and
velocity field. Suppose that the wave vector is oriented along the z-axis,
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at the x and z components of Eq. (2.29) this yields ∂P/∂x = ∂P/∂z = 0.
Together with ∇2P = 0 this also means that ∂P/∂y = 0. The only remaining
component in Eq. (2.29) then reads

mρ
∂vy
∂t

= η
∂2vy
∂z2

mρ
∂gy
∂t

= −ηk2gy

gy(k, t) = gy(k, 0) exp

{

−
η

mρ
k2t

}

. (2.33)

This shows that a macroscopic transversal velocity field decays to zero with
a relaxation time τ(k) = mρ/(ηk2).

3The factor (2π)−3 appears for the same reason as in Eq. (2.15), so that g(k, t) may
be viewed as a Fourier component of the velocity field.

22

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

many flow fields of interest may be described assuming that the fluid is
incompressible. In that case∇·v = 0. Assuming moreover that the velocities
are small, and that second order nonlinear terms in v may be neglected, we
obtain Stokes equations for incompressible flow:

mρ
∂v

∂t
= η∇2v −∇P (2.29)

∇ · v = 0. (2.30)

These are the hydrodynamic equations that we will use from here on.
Our aim is to derive a microscopic equation for the shear viscosity η. To

this end, let us first see how a wavelike velocity field3

ρv(r, t) =
1

(2π)3
g(k, t) exp {−ik · r} (2.31)

decays macroscopically. Introducing this in the incompressibility equation
(2.30) shows that the only possible wavelike velocity field is a transversal
one:

g(k, t) · k = 0. (2.32)

Taking the divergence of Eq. (2.29) and using Eq. (2.30) we get ∇2P = 0.
It is now convenient to choose specific orientations for the wave vector and
velocity field. Suppose that the wave vector is oriented along the z-axis,
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Decay of a macroscopic wavelike velocity field [2/2]

• Stokes’ equation is reduced to

which may be rewritten in terms of 

• a macroscopic wavelike velocity field decays exponentially (at large times) 
with a relaxation time determined by the shear viscosity and the density:

2. TIME DEPENDENT PROPERTIES OF LIQUIDS

many flow fields of interest may be described assuming that the fluid is
incompressible. In that case∇·v = 0. Assuming moreover that the velocities
are small, and that second order nonlinear terms in v may be neglected, we
obtain Stokes equations for incompressible flow:

mρ
∂v

∂t
= η∇2v −∇P (2.29)

∇ · v = 0. (2.30)

These are the hydrodynamic equations that we will use from here on.
Our aim is to derive a microscopic equation for the shear viscosity η. To

this end, let us first see how a wavelike velocity field3

ρv(r, t) =
1

(2π)3
g(k, t) exp {−ik · r} (2.31)

decays macroscopically. Introducing this in the incompressibility equation
(2.30) shows that the only possible wavelike velocity field is a transversal
one:

g(k, t) · k = 0. (2.32)

Taking the divergence of Eq. (2.29) and using Eq. (2.30) we get ∇2P = 0.
It is now convenient to choose specific orientations for the wave vector and
velocity field. Suppose that the wave vector is oriented along the z-axis,
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at the x and z components of Eq. (2.29) this yields ∂P/∂x = ∂P/∂z = 0.
Together with ∇2P = 0 this also means that ∂P/∂y = 0. The only remaining
component in Eq. (2.29) then reads

mρ
∂vy
∂t

= η
∂2vy
∂z2

mρ
∂gy
∂t

= −ηk2gy

gy(k, t) = gy(k, 0) exp

{

−
η

mρ
k2t

}

. (2.33)

This shows that a macroscopic transversal velocity field decays to zero with
a relaxation time τ(k) = mρ/(ηk2).

3The factor (2π)−3 appears for the same reason as in Eq. (2.15), so that g(k, t) may
be viewed as a Fourier component of the velocity field.

22

τ(k) =
mρ

ηk2

37



• microscopic expression for velocity field Fourier component

• Onsager:

• so we find:

Microscopic equation for shear viscosity [1/3]
2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.5.2 Microscopic equation for η

We will now derive a microscopic (and equilibrium) equation for the shear
viscosity. The microscopic variable corresponding to g(k, t) is

g(k, t) =

∫

d3r
∑

j

vj(t)δ (r− rj(t)) exp {ik · r}

=
∑

j

vj(t) exp {ik · rj(t)} . (2.34)

Choosing k along z and g along y, Onsager’s regression hypothesis, Eq. (2.14),
states that the time autocorrelation function of this variable decays according
to

〈

gy(k, t)g
∗
y(k, 0)

〉

=
〈

gy(k, 0)g
∗
y(k, 0)

〉

exp

{

−
η

mρ
k2t

}

. (2.35)

Following the same analysis as in going from Eq. (2.20) to (2.23), we obtain
∫ t

0

dτ
1

k2

〈

ġy(k, t)ġ
∗
y(k, 0)

〉

=
〈

gy(k, 0)g
∗
y(k, 0)

〉 η

mρ
exp

{

−
η

mρ
k2t

}

. (2.36)

From statistical mechanics it is known that 〈vy,j〉 = 0 and 〈vy,jvy,k〉 =
kBT/mδjk (equipartition theorem). In the limit of small k this can be used
to replace

〈

gy(k, 0)g∗y(k, 0)
〉

by
〈

gy(0, 0)g∗y(0, 0)
〉

= NkBT/m. Then

η =
1

V kBT
lim
k→0

∫ ∞

0

dt
1

k2

〈

mġy(k, t)mġ∗y(k, 0)
〉

. (2.37)

All that remains is to write out the terms mġy(k, t). Remembering that
ṙj = vj we find

mġy(k, t) =
N
∑

j=1

{mv̇y,j(t) + ikmvz,j(t)vy,j(t)} exp {ikzj(t)} , (2.38)

part of which can be written in terms of forces:

N
∑

j=1

mv̇y,j exp {ikzj} =
N
∑

j=1

∑

i $=j

F (i)
y,j exp {ikzj}

=
1

2

N
∑

j=1

N
∑

i=1

F (i)
y,j [exp {ikzj}− exp {ikzi}]

=
1

2
ik

N
∑

j=1

N
∑

i=1

F (i)
y,j(zj − zi). (2.39)
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∗
y(k, 0)

〉

=
〈

gy(k, 0)g
∗
y(k, 0)

〉 η

mρ
exp

{

−
η

mρ
k2t

}

. (2.36)

From statistical mechanics it is known that 〈vy,j〉 = 0 and 〈vy,jvy,k〉 =
kBT/mδjk (equipartition theorem). In the limit of small k this can be used
to replace

〈

gy(k, 0)g∗y(k, 0)
〉

by
〈

gy(0, 0)g∗y(0, 0)
〉

= NkBT/m. Then

η =
1

V kBT
lim
k→0

∫ ∞

0

dt
1

k2

〈
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kBT/mδjk (equipartition theorem). In the limit of small k this can be used
to replace

〈

gy(k, 0)g∗y(k, 0)
〉

by
〈

gy(0, 0)g∗y(0, 0)
〉

= NkBT/m. Then

η =
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V kBT
lim
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∫ ∞

0
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1
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〈
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〉

. (2.37)

All that remains is to write out the terms mġy(k, t). Remembering that
ṙj = vj we find

mġy(k, t) =
N
∑

j=1

{mv̇y,j(t) + ikmvz,j(t)vy,j(t)} exp {ikzj(t)} , (2.38)

part of which can be written in terms of forces:

N
∑
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mv̇y,j exp {ikzj} =
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∑
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∑
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F (i)
y,j exp {ikzj}
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2
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∑
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F (i)
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ik

N
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2.5.2 Microscopic equation for η
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ġy(k, t)ġ
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ṙj = vj we find
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• collecting everything, we get the Green-Kubo relation for the shear viscosity

 
where       is the microscopic stress tensor:
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Figure 2.2: Shear re-
laxation modulus G(t)
of a polymer melt (left:
linear scale, right: log-
arithmic scale).

Here F (i)
y,j is the force in the y-direction exerted by particle i on particle j. In

the second step of Eq. (2.39) we have used Newton’s principle of action and

reaction, F (i)
y,j = −F (j)

y,i . In the third step we have used the fact that k will
be very small. Collecting everything together, we may write

η =
V

kBT

∫ ∞

0

dt 〈σyz(t)σyz(0)〉 , (2.40)

where the microscopic stress tensor is defined as

σyz(t) =
1

V

{

∑

j

mvy,j(t)vz,j(t) +
1

2

N
∑

i=1

N
∑

j=1

F (i)
y,j (t)(zj(t)− zi(t))

}

. (2.41)

Eq. (2.40) is the Green-Kubo relation for the shear viscosity. The above
equations also yield a microscopic expression for the so-called shear relaxation
modulus,

G(t) =
V

kBT
〈σyz(t)σyz(0)〉 . (2.42)

Macroscopically, G(t) is the linear stress relaxation in the system following
a sudden step strain. In agreement with Eq. (2.40) its integral is the shear
viscosity, η =

∫∞

0 G(t)dt.
These equations are useful because they enable us to measure the shear

relaxation modulus and shear viscosity in a simulation of a liquid without
actually shearing the system, but rather by analyzing the spontaneous fluc-
tuations in forces and velocities. As an example, in Fig. 2.2 we show the
shear relaxation modulus measured in a molecular dynamics simulation of a
melt of polyethylene chains at 450 K. Note that in this particular example
the stress does not relax immediately to zero, but remains at a plateau value
of approximately 3 MPa for times between 5 and 50 ns. Such behaviour is
indicative of temporary elasticity, which is typical of an entangled polymeric
liquid.
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Figure 2.2: Shear re-
laxation modulus G(t)
of a polymer melt (left:
linear scale, right: log-
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Example: shear relaxation modulus of polymer melt

• shear relaxation modulus G(t) is the (macroscopic, linear) stress relaxation 
following a sudden step strain

• we can determine G(t) and shear viscosity from
equilibrium simulations without actually shearing!
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Figure 2.2: Shear re-
laxation modulus G(t)
of a polymer melt (left:
linear scale, right: log-
arithmic scale).
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These equations are useful because they enable us to measure the shear
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actually shearing the system, but rather by analyzing the spontaneous fluc-
tuations in forces and velocities. As an example, in Fig. 2.2 we show the
shear relaxation modulus measured in a molecular dynamics simulation of a
melt of polyethylene chains at 450 K. Note that in this particular example
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of approximately 3 MPa for times between 5 and 50 ns. Such behaviour is
indicative of temporary elasticity, which is typical of an entangled polymeric
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• most microscopic quantities fluctuate in time (due to thermal fluctuations);
time correlation functions reveal their dynamics

• Onsager: the average decay of fluctuations obey macroscopic laws

 
• using Onsager we derived Green-Kubo relations for transport properties

self-diffusion

collective diffusion

shear viscosity

Summary of chapter 2
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2.4.2 Microscopic equation for D(k)

Let us now see if we can derive a microscopic (and equilibrium) equation
for the collective diffusion coefficient. We have encountered the microscopic
variable corresponding to a density Fourier component before, see Eq. (1.32).
We now add an explicit time dependence:

ρ̂(k, t) =

∫

d3r

{

∑

j

δ (r− rj(t))− ρ

}

exp {ik · r}

=
N
∑

j=1

exp {ik · rj(t)}− (2π)3ρδ(k). (2.19)

Eq. (2.14) states that the time autocorrelation function of this variable decays
according to:

〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉 exp
{

−D(k)k2t
}

. (2.20)

To calculate D(k) we differentiate with respect to t and divide by −k2; more-
over we shall assume that k is small enough to set exp {−D(k)k2t} ≈ 1 for
all t of interest:

−
1

k2

d

dt
〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.21)

−
1

k2

∫ t

0

dτ
d2

dt2
〈ρ̂(k, τ)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.22)

Using Eq. (2.6) we may write this as
∫ t

0

dτ
1

k2

〈

˙̂ρ(k, τ) ˙̂ρ∗(k, 0)
〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k). (2.23)

It is now convenient to choose a specific orientation for the wave vector, say
the z-axis: k = kêz. Then

∫ t

0

dτ

〈

∑

i

∑

j

viz(τ)vjz(0) exp {ik (zi(τ)− zj(0))}

〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k).

(2.24)

Using the definition of the structure factor, Eq. (1.33), we finally obtain:

D(k) =
1

S(k)

∫ ∞

0

dt
1

N

〈

∑

i

∑

j

viz(t)vjz(0) exp {ik (zi(t)− zj(0))}

〉

.

(2.25)

This is the Green-Kubo relation for the collective diffusion coefficient.
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Figure 2.2: Shear re-
laxation modulus G(t)
of a polymer melt (left:
linear scale, right: log-
arithmic scale).

Here F (i)
y,j is the force in the y-direction exerted by particle i on particle j. In

the second step of Eq. (2.39) we have used Newton’s principle of action and

reaction, F (i)
y,j = −F (j)

y,i . In the third step we have used the fact that k will
be very small. Collecting everything together, we may write

η =
V

kBT

∫ ∞

0

dt 〈σyz(t)σyz(0)〉 , (2.40)

where the microscopic stress tensor is defined as

σyz(t) =
1

V

{

∑

j

mvy,j(t)vz,j(t) +
1

2

N
∑

i=1

N
∑

j=1

F (i)
y,j (t)(zj(t)− zi(t))

}

. (2.41)

Eq. (2.40) is the Green-Kubo relation for the shear viscosity. The above
equations also yield a microscopic expression for the so-called shear relaxation
modulus,

G(t) =
V

kBT
〈σyz(t)σyz(0)〉 . (2.42)

Macroscopically, G(t) is the linear stress relaxation in the system following
a sudden step strain. In agreement with Eq. (2.40) its integral is the shear
viscosity, η =

∫∞

0 G(t)dt.
These equations are useful because they enable us to measure the shear

relaxation modulus and shear viscosity in a simulation of a liquid without
actually shearing the system, but rather by analyzing the spontaneous fluc-
tuations in forces and velocities. As an example, in Fig. 2.2 we show the
shear relaxation modulus measured in a molecular dynamics simulation of a
melt of polyethylene chains at 450 K. Note that in this particular example
the stress does not relax immediately to zero, but remains at a plateau value
of approximately 3 MPa for times between 5 and 50 ns. Such behaviour is
indicative of temporary elasticity, which is typical of an entangled polymeric
liquid.
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Figure 2.1: Typical velocity auto-
correlation function in a liquid. In
this figure the relatively fast ini-
tial decay is clearly visible, whereas
the slow decay at larger times is
not. Nevertheless, the slow decay
contributes considerably to the self-
diffusion coefficient, Eq. (2.12).

In Fig. 2.1 a typical velocity autocorrelation is shown. After a short time
the autocorrelation goes through zero; here the particle collides with some
other particle in front of it and it reverses it’s velocity. For large values of t
the velocity autocorrelation scales as t−3/2, which is a hydrodynamic effect.
This very slow decay is often difficult to detect.

2.3 Onsager’s regression hypothesis

In the previous section we made use of the fact that the microscopic self-
diffusion of a labelled particle in a liquid may for large times be described
by a macroscopic law. We shall generalise this approach using Onsager’s
regression hypothesis.

Consider an observable quantity A having zero mean, 〈A〉 = 0. Due to
fluctuations, however, A will have a nonzero value at (almost) all instants.
Onsager’s regression hypothesis says that the decay of this fluctuation at
large times and on macroscopic scales will be governed by the corresponding
macroscopic laws.

Notice that the macroscopic laws usually apply to non-equilibrium situ-
ations. In formula Onsager’s hypothesis says

〈A(t)〉A(0) = A(0)α(t), (2.13)

where α(t) is determined by macroscopic laws. The average is a conditional
average: it expresses the average time development of A, given that it was
A(0) at t = 0. Multiplying by A(0) and averaging over all initial conditions
we get

〈A(t)A(0)〉 =
〈

A2
〉

α(t). (2.14)

The averages are now simple equilibrium averages. We shall illustrate the
use of Eq. (2.14) with two examples in the next two sections.
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Chapter 3: Brownian motion
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Colloidal liquids

44

• colloidal liquids contain particles much larger than the solvent molecules
(typically 1 nanometer to 1 micrometer)

• Brownian motion is caused by random collisions with solvent molecules



Friction and random forces on a colloidal particle

• suppose a colloidal particle (radius a, mass M) moves along a path R(t)

• colloid will collide on average more often on the front than on the back:
systematic force proportional and opposite to its velocity = friction

• we can find an expression for the friction by solving Stokes’ equations
for a sphere moving through a hydrodynamic solvent: 
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Chapter 3

Brownian motion

3.1 Friction and random forces on colloids

Consider a spherical colloidal particle of radius a (typically between a nanome-
ter and a micrometer) and mass M moving through a solvent along a path
R(t). The colloidal particle will continuously collide with the solvent molecules.
Because on average the colloid will collide more often on the front side than
on the back side, it will experience a systematic force proportional with its
velocity V, and directed opposite to its velocity. The colloid will also experi-
ence a random or stochastic force F(t). These forces are summarized in Fig.
3.1 The equations of motion then read1

dR

dt
= V (3.1)

dV

dt
= −ξV + F. (3.2)

1Note that we have divided all forces by the mass M of the colloid. Consequently, F(t)
is an acceleration and the friction constant ξ is a frequency.

Figure 3.1: A colloid
moving with velocity
V will experience a
friction force−ξV op-
posite to its velocity
and random forces F

due to the continuous
bombardment of sol-
vent molecules.

v-!v

F
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3. BROWNIAN MOTION

By solving Stokes’ equations (2.29), with no-slip boundaries on the surface
of the sphere, it can be shown that the friction constant ξ is given by

ξ = ζ/M = 6πηsa/M , (3.3)

where ηs is the shear viscosity of the solvent.
Solving Eq. (3.2) yields

V(t) = V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ)F(t). (3.4)

where V0 is the initial velocity. We will now determine averages over all
possible realizations of F(t), with the initial velocity as a condition. To this
end we have to make some assumptions about the stochastic force. In view
of its chaotic character, the following assumptions seem to be appropriate
for its average properties:

〈F(t)〉 = 0 (3.5)

〈F(t) · F(t′)〉
V0

= CV0
δ(t− t′) (3.6)

where CV0
may depend on the initial velocity. Using Eqs. (3.4) - (3.6), we

find

〈V(t)〉
V0

= V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ) 〈F(τ)〉
V0

= V0e
−ξt (3.7)

〈V(t) ·V(t)〉
V0

= V 2
0 e

−2ξt + 2

∫ t

0

dτ e−ξ(2t−τ)V0 · 〈F(τ)〉V0

+

∫ t

0

dτ ′
∫ t

0

dτ e−ξ(2t−τ−τ ′) 〈F(τ) · F(τ ′)〉
V0

= V 2
0 e

−2ξt +
CV0

2ξ

(

1− e−2ξt
)

. (3.8)

The colloid is in thermal equilibrium with the solvent. According to the
equipartition theorem, for large t, Eq. (3.8) should be equal to 3kBT/M ,
from which it follows that

〈F(t) · F(t′)〉 = 6
kBT ξ

M
δ(t− t′). (3.9)

This is one manifestation of the fluctuation-dissipation theorem, which states
that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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• average evolution of velocity V depends on characteristics of
random force F(t). Suppose the random force has no memory

• what is the magnitude of the random forces, i.e.       ?

Fluctuation-dissipation theorem [1/2]
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By solving Stokes’ equations (2.29), with no-slip boundaries on the surface
of the sphere, it can be shown that the friction constant ξ is given by
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where ηs is the shear viscosity of the solvent.
Solving Eq. (3.2) yields
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that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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• colloid is in thermal equilibrium with the solvent, so

• from this follows the fluctuation-dissipation theorem 

Fluctuation-dissipation theorem [2/2]
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By solving Stokes’ equations (2.29), with no-slip boundaries on the surface
of the sphere, it can be shown that the friction constant ξ is given by

ξ = ζ/M = 6πηsa/M , (3.3)
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V0

= V 2
0 e

−2ξt + 2

∫ t

0

dτ e−ξ(2t−τ)V0 · 〈F(τ)〉V0

+

∫ t

0

dτ ′
∫ t

0

dτ e−ξ(2t−τ−τ ′) 〈F(τ) · F(τ ′)〉
V0

= V 2
0 e

−2ξt +
CV0

2ξ

(

1− e−2ξt
)
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The colloid is in thermal equilibrium with the solvent. According to the
equipartition theorem, for large t, Eq. (3.8) should be equal to 3kBT/M ,
from which it follows that

〈F(t) · F(t′)〉 = 6
kBT ξ

M
δ(t− t′). (3.9)

This is one manifestation of the fluctuation-dissipation theorem, which states
that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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This is one manifestation of the fluctuation-dissipation theorem, which states
that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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∫ t

0

dτ e−ξ(2t−τ)V0 · 〈F(τ)〉V0
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∫ t

0

dτ ′
∫ t

0

dτ e−ξ(2t−τ−τ ′) 〈F(τ) · F(τ ′)〉
V0

= V 2
0 e
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CV0
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The colloid is in thermal equilibrium with the solvent. According to the
equipartition theorem, for large t, Eq. (3.8) should be equal to 3kBT/M ,
from which it follows that

〈F(t) · F(t′)〉 = 6
kBT ξ

M
δ(t− t′). (3.9)

This is one manifestation of the fluctuation-dissipation theorem, which states
that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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• from the mean-square displacement...

... we find the Einstein relation for the self-diffusion coefficient

                                         D is independent of the mass of the colloid!

Einstein relation for the self-diffusion coefficient

48

3. BROWNIAN MOTION

Integrating Eq. (3.4) we get

R(t) = R0 +
V0

ξ

(

1− e−ξt
)

+

∫ t

0

dτ

∫ τ

0

dτ ′ e−ξ(τ−τ ′)F(τ ′), (3.10)

from which we calculate the mean square displacement

〈

(R(t)−R0)
2
〉

V0

=
V 2
0

ξ2
(

1− e−ξt
)2
+
3kBT

Mξ2
(

2ξt− 3 + 4e−ξt − e−2ξt
)

. (3.11)

For very large t this becomes

〈

(R(t)−R0)
2
〉

=
6kBT

Mξ
t, (3.12)

from which we get the Einstein equation for the self-diffusion coefficient

D =
kBT

ζ
, (3.13)

where we have used 〈(R(t)−R0)2〉 = 6Dt and ζ = Mξ = 6πηsa. Notice that
the self-diffusion coefficient D is independent of the mass M of the colloid.

3.2 Smoluchowski and Langevin equation

From Eq. (3.7) we see that the colloid loses its memory of its initial velocity
after a time τ ≈ 1/ξ. Using equipartition its initial velocity may be put equal
to

√

3kBT/M . The distance l it travels, divided by its diameter then is

l

a
=

√

3kBT/M

aξ
=

√

ρmkBT

9πη2sa
, (3.14)

where ρm is the mass density of the colloid. Typical values are l/a ≈ 10−2

for a nanometre sized colloid and l/a ≈ 10−4 for a micrometre sized colloid
in water at room temperature. We see that the particles have hardly moved
at the time possible velocity gradients have relaxed to equilibrium. When
we are interested in timescales on which particle configurations change, we
may restrict our attention to the space coordinates, and average over the
velocities. The time development of the distribution of particles on these
time scales is governed by the Smoluchowski equation.

The Smoluchowski equation describes the time evolution of the proba-
bility density Ψ(R,R0; t) to find a particle at a particular position R at a
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Overdamped motion?

• reconsider the evolution of the colloidal velocity

• colloid loses memory of                        after 

• traveled distance / radius

• on time scales on which particle configurations change,
we may restrict our attention to the positions only, and
average over the velocities
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By solving Stokes’ equations (2.29), with no-slip boundaries on the surface
of the sphere, it can be shown that the friction constant ξ is given by

ξ = ζ/M = 6πηsa/M , (3.3)

where ηs is the shear viscosity of the solvent.
Solving Eq. (3.2) yields

V(t) = V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ)F(t). (3.4)

where V0 is the initial velocity. We will now determine averages over all
possible realizations of F(t), with the initial velocity as a condition. To this
end we have to make some assumptions about the stochastic force. In view
of its chaotic character, the following assumptions seem to be appropriate
for its average properties:

〈F(t)〉 = 0 (3.5)

〈F(t) · F(t′)〉
V0

= CV0
δ(t− t′) (3.6)

where CV0
may depend on the initial velocity. Using Eqs. (3.4) - (3.6), we

find

〈V(t)〉
V0

= V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ) 〈F(τ)〉
V0

= V0e
−ξt (3.7)

〈V(t) ·V(t)〉
V0

= V 2
0 e

−2ξt + 2

∫ t

0

dτ e−ξ(2t−τ)V0 · 〈F(τ)〉V0

+

∫ t

0

dτ ′
∫ t

0

dτ e−ξ(2t−τ−τ ′) 〈F(τ) · F(τ ′)〉
V0

= V 2
0 e

−2ξt +
CV0

2ξ

(

1− e−2ξt
)

. (3.8)

The colloid is in thermal equilibrium with the solvent. According to the
equipartition theorem, for large t, Eq. (3.8) should be equal to 3kBT/M ,
from which it follows that

〈F(t) · F(t′)〉 = 6
kBT ξ

M
δ(t− t′). (3.9)

This is one manifestation of the fluctuation-dissipation theorem, which states
that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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3kBT
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• Question: how does a distribution of colloidal particles evolve in time when 
they are also subjected to an external potential         ?

                   is probability density to find a particle at position     at time  ,
                   given it was at      at  

• in the overdamped limit a flux J will exist, given by

• note that at equilibrium this re-confirms the Einstein relation:

Smoluchowski equation [1/2]
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Integrating Eq. (3.4) we get

R(t) = R0 +
V0

ξ

(

1− e−ξt
)

+

∫ t

0

dτ

∫ τ

0

dτ ′ e−ξ(τ−τ ′)F(τ ′), (3.10)

from which we calculate the mean square displacement

〈

(R(t)−R0)
2
〉

V0

=
V 2
0

ξ2
(

1− e−ξt
)2
+
3kBT

Mξ2
(

2ξt− 3 + 4e−ξt − e−2ξt
)

. (3.11)

For very large t this becomes

〈

(R(t)−R0)
2
〉

=
6kBT

Mξ
t, (3.12)

from which we get the Einstein equation for the self-diffusion coefficient

D =
kBT

ζ
, (3.13)

where we have used 〈(R(t)−R0)2〉 = 6Dt and ζ = Mξ = 6πηsa. Notice that
the self-diffusion coefficient D is independent of the mass M of the colloid.
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where ρm is the mass density of the colloid. Typical values are l/a ≈ 10−2

for a nanometre sized colloid and l/a ≈ 10−4 for a micrometre sized colloid
in water at room temperature. We see that the particles have hardly moved
at the time possible velocity gradients have relaxed to equilibrium. When
we are interested in timescales on which particle configurations change, we
may restrict our attention to the space coordinates, and average over the
velocities. The time development of the distribution of particles on these
time scales is governed by the Smoluchowski equation.

The Smoluchowski equation describes the time evolution of the proba-
bility density Ψ(R,R0; t) to find a particle at a particular position R at a
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particular time t, given it was at R0 at t = 0. It is assumed that at ev-
ery instant of time the particle is in thermal equilibrium with respect to its
velocity, i.e., the particle velocity is strongly damped on the Smoluchowski
timescale. A flux will exist, given by

J(R,R0, t) = −D∇Ψ(R,R0; t)−
1

ζ
Ψ(R,R0; t)∇Φ(R). (3.15)

The first term in Eq. (3.15) is the flux due to diffusion of the particle. The
second term is the flux in the “downhill” gradient direction of the external
potential Φ(R), damped by the friction coefficient ζ . At equilibrium, the flux
must be zero and the distribution must obey the Boltzmann distribution

Ψeq(R) = C exp [−Φ(R)/(kBT )] , (3.16)

where C is a normalization constant. Using this in Eq. (3.15) while setting
J = 0, leads to the Einstein equation (3.13). In general, we assume that no
particles are generated or destroyed, so

∂

∂t
Ψ(R,R0; t) = −∇ · J(R,R0, t). (3.17)

Combining Eq. (3.15) with the above equation of particle conservation we
arrive at the Smoluchowski equation

∂

∂t
Ψ(R,R0; t) = ∇ ·

[

1

ζ
Ψ(R,R0; t)∇Φ(R)

]

+∇ · [D∇Ψ(R,R0; t)]

(3.18)

lim
t→0

Ψ(R,R0; t) = δ(R−R0). (3.19)

The Smoluchowski equation describes how particle distribution functions
change in time and is fundamental to the non-equilibrium statistical me-
chanics of overdamped particles such as colloids and polymers.

It can be shown (we will not do that here) that the explicit equations
of motion for the particles, i.e. the Langevin equations, which lead to the
Smoluchowski equation are

dR

dt
= −

1

ζ
∇Φ+∇D + f (3.20)

〈f(t)〉 = 0 (3.21)

〈f(t)f(t′)〉 = 2DĪδ(t− t′). (3.22)

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ . We use these
equations in the next chapter to derive the equations of motion for a polymer.
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1

ζ
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The first term in Eq. (3.15) is the flux due to diffusion of the particle. The
second term is the flux in the “downhill” gradient direction of the external
potential Φ(R), damped by the friction coefficient ζ . At equilibrium, the flux
must be zero and the distribution must obey the Boltzmann distribution

Ψeq(R) = C exp [−Φ(R)/(kBT )] , (3.16)

where C is a normalization constant. Using this in Eq. (3.15) while setting
J = 0, leads to the Einstein equation (3.13). In general, we assume that no
particles are generated or destroyed, so

∂

∂t
Ψ(R,R0; t) = −∇ · J(R,R0, t). (3.17)

Combining Eq. (3.15) with the above equation of particle conservation we
arrive at the Smoluchowski equation
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]

+∇ · [D∇Ψ(R,R0; t)]
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lim
t→0

Ψ(R,R0; t) = δ(R−R0). (3.19)

The Smoluchowski equation describes how particle distribution functions
change in time and is fundamental to the non-equilibrium statistical me-
chanics of overdamped particles such as colloids and polymers.

It can be shown (we will not do that here) that the explicit equations
of motion for the particles, i.e. the Langevin equations, which lead to the
Smoluchowski equation are

dR

dt
= −

1

ζ
∇Φ+∇D + f (3.20)

〈f(t)〉 = 0 (3.21)

〈f(t)f(t′)〉 = 2DĪδ(t− t′). (3.22)

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ . We use these
equations in the next chapter to derive the equations of motion for a polymer.
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• inserting the flux equation in an equation for particle number conservation,

... we arrive at the important Smoluchowski equation:

• this may be viewed as a generalization of Fick’s law

Smoluchowski equation [2/2]
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

from which we obtain the important property:

〈

Ȧ(t+ s)B(s)
〉

= −
〈

A(t+ s)Ḃ(s)
〉

(2.4)

For an autocorrelation function this says that

d

dt
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= 0, (2.5)

i.e. any time autocorrelation function starts out with a horizontal slope.
From Eq. (2.4) we can also derive the useful relation

d2

dt2
〈A(t+ s)B(s)〉 = −

〈

Ȧ(t+ s)Ḃ(s)
〉

. (2.6)

We will need this in section 2.3 when dealing with collective diffusion. For
an autocorrelation function this says that

d2

dt2
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= −
〈

Ȧ2
〉

< 0, (2.7)

i.e. any time autocorrelation function is initially curved negatively.

2.2 Self-diffusion and the velocity autocorre-

lation function

Suppose we label some particles inside a very small region (a dot) in an
otherwise homogeneous fluid, at time t = 0 at position r(0). When the dot,
although on a macroscopic scale concentrated at r(0), is dilute enough on
a molecular scale, we may consider the concentration decay as due to the
self-diffusion of the separate labelled particles. The conditional probability
P (r, t) that a particle is at r at time t, given it was at r(0) at time t = 0,
may then be obtained from Fick’s law:

∂P (r, t)

∂t
= D∇2P (r, t), (2.8)

together with the boundary condition P (r, 0) = δ(r − r(0)). D is the self-
diffusion coefficient, which has units of length squared over time (m2/s).
The mean square displacement of the labelled particles can be related to the
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〉

. (2.6)

We will need this in section 2.3 when dealing with collective diffusion. For
an autocorrelation function this says that

d2

dt2
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= −
〈

Ȧ2
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• Smoluchowski equation describes how particle distribution functions change

• the corresponding explicit stochastic equations of motion for the particles
are called the Langevin equations

• the Langevin equations are used as a starting point
for many soft matter simulations and theories;
in the next chapter we will use them to build a theory of polymer dynamics

Langevin equations
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particular time t, given it was at R0 at t = 0. It is assumed that at ev-
ery instant of time the particle is in thermal equilibrium with respect to its
velocity, i.e., the particle velocity is strongly damped on the Smoluchowski
timescale. A flux will exist, given by

J(R,R0, t) = −D∇Ψ(R,R0; t)−
1

ζ
Ψ(R,R0; t)∇Φ(R). (3.15)

The first term in Eq. (3.15) is the flux due to diffusion of the particle. The
second term is the flux in the “downhill” gradient direction of the external
potential Φ(R), damped by the friction coefficient ζ . At equilibrium, the flux
must be zero and the distribution must obey the Boltzmann distribution

Ψeq(R) = C exp [−Φ(R)/(kBT )] , (3.16)

where C is a normalization constant. Using this in Eq. (3.15) while setting
J = 0, leads to the Einstein equation (3.13). In general, we assume that no
particles are generated or destroyed, so

∂

∂t
Ψ(R,R0; t) = −∇ · J(R,R0, t). (3.17)

Combining Eq. (3.15) with the above equation of particle conservation we
arrive at the Smoluchowski equation

∂

∂t
Ψ(R,R0; t) = ∇ ·

[

1

ζ
Ψ(R,R0; t)∇Φ(R)

]

+∇ · [D∇Ψ(R,R0; t)]

(3.18)

lim
t→0

Ψ(R,R0; t) = δ(R−R0). (3.19)

The Smoluchowski equation describes how particle distribution functions
change in time and is fundamental to the non-equilibrium statistical me-
chanics of overdamped particles such as colloids and polymers.

It can be shown (though we will not do that here) that the explicit equa-
tions of motion for the particles, i.e. the Langevin equations, which lead to
the Smoluchowski equation are

dR

dt
= −

1

ζ
∇Φ+∇D + f (3.20)

〈f(t)〉 = 0 (3.21)

〈f(t)f(t′)〉 = 2DĪδ(t− t′). (3.22)

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ . We use these
equations in the next chapter to derive the equations of motion for a polymer.
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Summary of chapter 3

• Brownian motion of colloids is caused by collisions with solvent molecules

• the random forces are related to the friction experienced by a colloid

                                                       (fluctuation-dissipation theorem)

• or equivalently the diffusion is related to the friction

                                                       (Einstein relation)

• motion of colloidal particles in an external potential

                                                       (Langevin equations)
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By solving Stokes’ equations (2.29), with no-slip boundaries on the surface
of the sphere, it can be shown that the friction constant ξ is given by

ξ = ζ/M = 6πηsa/M , (3.3)

where ηs is the shear viscosity of the solvent.
Solving Eq. (3.2) yields

V(t) = V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ)F(t). (3.4)

where V0 is the initial velocity. We will now determine averages over all
possible realizations of F(t), with the initial velocity as a condition. To this
end we have to make some assumptions about the stochastic force. In view
of its chaotic character, the following assumptions seem to be appropriate
for its average properties:

〈F(t)〉 = 0 (3.5)

〈F(t) · F(t′)〉
V0

= CV0
δ(t− t′) (3.6)

where CV0
may depend on the initial velocity. Using Eqs. (3.4) - (3.6), we

find

〈V(t)〉
V0

= V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ) 〈F(τ)〉
V0

= V0e
−ξt (3.7)

〈V(t) ·V(t)〉
V0

= V 2
0 e

−2ξt + 2

∫ t

0

dτ e−ξ(2t−τ)V0 · 〈F(τ)〉V0

+

∫ t

0

dτ ′
∫ t

0

dτ e−ξ(2t−τ−τ ′) 〈F(τ) · F(τ ′)〉
V0

= V 2
0 e

−2ξt +
CV0

2ξ

(

1− e−2ξt
)

. (3.8)

The colloid is in thermal equilibrium with the solvent. According to the
equipartition theorem, for large t, Eq. (3.8) should be equal to 3kBT/M ,
from which it follows that

〈F(t) · F(t′)〉 = 6
kBT ξ

M
δ(t− t′). (3.9)

This is one manifestation of the fluctuation-dissipation theorem, which states
that the systematic part of the microscopic force appearing as the friction is
actually determined by the correlation of the random force.
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Integrating Eq. (3.4) we get

R(t) = R0 +
V0

ξ

(

1− e−ξt
)

+

∫ t

0

dτ

∫ τ

0

dτ ′ e−ξ(τ−τ ′)F(τ ′), (3.10)

from which we calculate the mean square displacement

〈

(R(t)−R0)
2
〉

V0

=
V 2
0

ξ2
(

1− e−ξt
)2
+
3kBT

Mξ2
(

2ξt− 3 + 4e−ξt − e−2ξt
)

. (3.11)

For very large t this becomes

〈

(R(t)−R0)
2
〉

=
6kBT

Mξ
t, (3.12)

from which we get the Einstein equation for the self-diffusion coefficient

D =
kBT

ζ
, (3.13)

where we have used 〈(R(t)−R0)2〉 = 6Dt and ζ = Mξ = 6πηsa. Notice that
the self-diffusion coefficient D is independent of the mass M of the colloid.

3.2 Smoluchowski and Langevin equation

From Eq. (3.7) we see that the colloid loses its memory of its initial velocity
after a time τ ≈ 1/ξ. Using equipartition its initial velocity may be put equal
to

√

3kBT/M . The distance l it travels, divided by its diameter then is

l

a
=

√

3kBT/M

aξ
=

√

ρmkBT

9πη2sa
, (3.14)

where ρm is the mass density of the colloid. Typical values are l/a ≈ 10−2

for a nanometre sized colloid and l/a ≈ 10−4 for a micrometre sized colloid
in water at room temperature. We see that the particles have hardly moved
at the time possible velocity gradients have relaxed to equilibrium. When
we are interested in timescales on which particle configurations change, we
may restrict our attention to the space coordinates, and average over the
velocities. The time development of the distribution of particles on these
time scales is governed by the Smoluchowski equation.

The Smoluchowski equation describes the time evolution of the proba-
bility density Ψ(R,R0; t) to find a particle at a particular position R at a
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particular time t, given it was at R0 at t = 0. It is assumed that at ev-
ery instant of time the particle is in thermal equilibrium with respect to its
velocity, i.e., the particle velocity is strongly damped on the Smoluchowski
timescale. A flux will exist, given by

J(R,R0, t) = −D∇Ψ(R,R0; t)−
1

ζ
Ψ(R,R0; t)∇Φ(R). (3.15)

The first term in Eq. (3.15) is the flux due to diffusion of the particle. The
second term is the flux in the “downhill” gradient direction of the external
potential Φ(R), damped by the friction coefficient ζ . At equilibrium, the flux
must be zero and the distribution must obey the Boltzmann distribution

Ψeq(R) = C exp [−Φ(R)/(kBT )] , (3.16)

where C is a normalization constant. Using this in Eq. (3.15) while setting
J = 0, leads to the Einstein equation (3.13). In general, we assume that no
particles are generated or destroyed, so

∂

∂t
Ψ(R,R0; t) = −∇ · J(R,R0, t). (3.17)

Combining Eq. (3.15) with the above equation of particle conservation we
arrive at the Smoluchowski equation
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1

ζ
Ψ(R,R0; t)∇Φ(R)

]

+∇ · [D∇Ψ(R,R0; t)]

(3.18)

lim
t→0

Ψ(R,R0; t) = δ(R−R0). (3.19)

The Smoluchowski equation describes how particle distribution functions
change in time and is fundamental to the non-equilibrium statistical me-
chanics of overdamped particles such as colloids and polymers.

It can be shown (though we will not do that here) that the explicit equa-
tions of motion for the particles, i.e. the Langevin equations, which lead to
the Smoluchowski equation are

dR

dt
= −

1

ζ
∇Φ+∇D + f (3.20)

〈f(t)〉 = 0 (3.21)

〈f(t)f(t′)〉 = 2DĪδ(t− t′). (3.22)

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ . We use these
equations in the next chapter to derive the equations of motion for a polymer.

28



Intermezzo: hydrodynamic interactions

• note that Langevin equations neglect
hydrodynamic interactions:
when a colloid moves, it induces a solvent flow 
which affects the motion of other colloids too

• example: sedimentation of micron-sized colloids 
in a closed vessel under the influence of gravity

• hydrodynamic interactions may be neglected

• at very low colloid concentration, or

• when other interparticle interactions dominate 
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Chapter 4: 
The dynamics of unentangled polymer liquids
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Polymer liquids
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• long molecules consisting of
N = 100 - 100.000 identical monomers

• characteristics of polymeric liquids:

• high shear viscosity

• often highly elastic
(memory in shear relaxation modulus G(t))

• slow dynamics
(low diffusion coefficient)

4. THE DYNAMICS OF UNENTANGLED POLYMERIC LIQUIDS

The correlation of the xy-component of the microscopic stress tensor at t = 0
with the one at t = t is therefore

σxy(t)σxy(0) =

(

3kBT

V

)2 N
∑

p=1

N
∑

q=1

Xpx(t)Xpy(t)Xqx(0)Xqy(0)
〈

X2
p

〉 〈

X2
q

〉 . (4.54)

To obtain the shear viscosity the ensemble average must be taken over all
possible configurations at t = 0. Now, since the Rouse modes are Gaussian
variables, all the ensemble averages of products of an odd number of Xp’s are
zero and the ensemble averages of products of an even number of Xp’s can
be written as a sum of products of averages of only two Xp’s. For the even
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(4.55)

The first four ensemble averages equal zero because, for a Rouse chain in
equilibrium, there is no correlation between different cartesian components.
The last two ensemble averages are nonzero only when p = q, since the Rouse
modes are mutually orthogonal. Using the fact that all cartesian components
are equivalent, and Eq. (4.40), the shear relaxation modulus of a melt of
Rouse chains can be expressed as

G (t) =
kBT

V

N
∑

p=1

[

〈Xk(t) ·Xk(0)〉
〈X2

k〉

]2

=
ckBT

N + 1

N
∑

p=1

exp (−2t/τp) , (4.56)

where c = N/V is the number density of beads.
The Rouse model predicts a viscosity, at constant monomer concentration

c and segmental friction ζ , proportional to N :

η =

∫ ∞

0

dtG(t) ≈
ckBT

N + 1

τ1
2

N
∑

p=1

1

p2
≈

ckBT

N + 1

τ1
2

π2

6
=

cζb2

36
(N +1). (4.57)

This has been confirmed for concentrated polymers with low molecular weight.2

Concentrated polymers of high molecular weight give different results, stress-
ing the importance of entanglements.

2A somewhat stronger N dependence is often observed because the density and, more
important, the segmental friction coefficient increase with increasing N .
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Conformations of a polymer

• specified by N+1 backbone atom positions

or by N bond vectors

• large scale properties independent of chemistry:

e.g. end-to-end vector 

often has a Gaussian distribution

WHY?
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Chapter 4

The dynamics of unentangled
polymeric liquids

As an application of the theory presented in the previous chapters, we will
study the dynamics of unentangled polymeric liquids. To this end we must
first give a short introduction to their equilibrium properties.

4.1 Equilibrium properties of polymers

4.1.1 Global properties

Polymers are long linear macromolecules made up of a large number of chem-
ical units or monomers, which are linked together through covalent bonds.
The number of monomers per polymer may vary from a hundred to many
thousands. We can describe the conformation of a polymer by giving the
positions of its backbone atoms. The positions of the remaining atoms then
usually follow by simple chemical rules. So, suppose we have N+1 monomers,
with N + 1 position vectors

R0,R1, . . . ,RN .

We then have N bond vectors

r1 = R1 −R0, . . . , rN = RN −RN−1.

Much of the static and dynamic behavior of polymers can be explained by
models which are surprisingly simple. This is possible because the global,
large scale properties of polymers do not depend on the chemical details
of the monomers, except for some species-dependent “effective” parameters.
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4. THE DYNAMICS OF UNENTANGLED POLYMERIC LIQUIDS

For example, one can measure the end-to-end vector, defined as

R = RN −R0 =
N
∑

i=1

ri. (4.1)

If the end-to-end vector is measured for a large number of polymers in a melt,
one will find that the distribution of end-to-end vectors is Gaussian and that
the root mean squared end-to-end distance scales with the square root of the
number of bonds,

√

〈R2〉 ∝
√
N , irrespective of the chemical details. This is

a consequence of the central limit theorem.

4.1.2 The central limit theorem and polymer elasticity

Consider a chain consisting of N independent bond vectors ri. By this we
mean that the orientation and length of each bond is independent of all
others. A justification will be given at the end of this section. The probability
density in configuration space Ψ

(

rN
)

may then be written as

Ψ
(

rN
)

=
N
∏

i=1

ψ (ri) . (4.2)

Assume further that the bond vector probability density ψ (ri) depends only
on the length of the bond vector and has zero mean, 〈ri〉 = 0. For the second
moment we write

〈

r2
〉

=

∫

d3r r2ψ(r) ≡ b2, (4.3)

where we have defined the statistical segment (or Kuhn) length b. Let
Ω (R;N) be the probability distribution function for the end-to-end vector
R given that we have a chain of N bonds,

Ω (R;N) =

〈

δ

(

R−
N
∑

i=1

ri

)〉

, (4.4)

where δ is the Dirac-delta function. The central limit theorem then states
that for large enough N :

Ω (R;N) =

{

3

2πNb2

}3/2

exp

{

−
3R2

2Nb2

}

. (4.5)
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The central limit theorem

• if enough consecutive monomers are
combined into one segment, vectors
connecting the segments are independent
(neglecting long-range excluded volume)

i.e. the probability density for segment-to-
segment bond vectors factorizes:

• now suppose          depends only on length of bond vector;
define the statistical segment (or Kuhn) length b as

• the central limit theorem then states that for large N, irrespective of the 
precise form of         , the distribution of            will be Gaussian
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• end-to-end vector distribution

• entropy and free energy of a polymer chain in which R is kept constant:

entropic spring with spring constant

Polymer elasticity
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Figure 4.1: A polyethylene chain
represented by segments of λ =
20 monomers. If enough consecu-
tive monomers are combined into
one segment, the vectors connecting
these segments become independent
of each other.

So, irrespective of the precise form of the bond length distribution ψ(r), the
end-to-end vector will have a Gaussian distribution with zero mean and a
variance given by

〈

R2
〉

= Nb2. (4.6)

Using Ω (R;N), we can obtain an interesting insight in the thermody-
namic behaviour of a polymer chain. The entropy of a chain in which the
end-to-end vector R is kept fixed, absorbing all constants into a reference
entropy, is given by

S (R;N) = kB lnΩ (R;N) = S0 −
3kR2

2Nb2
. (4.7)

The free energy is then

A = U − TS = A0 +
3kBTR2

2Nb2
. (4.8)

We see that the free energy is related quadratically to the end-to-end dis-
tance, as if the chain is a harmonic (Hookean) spring with spring constant
3kBT/Nb2. Unlike an ordinary spring, however, the strength of the spring
increases with temperature! These springs are often referred to as entropic
springs.

Of course, in a real polymer the vectors connecting consecutive monomers
do not take up random orientations. However, if enough (say λ) consecutive
monomers are combined into one segment with center-of-mass position Ri,
the vectors connecting the segments (Ri−Ri−1, Ri+1−Ri, etcetera) become
independent of each other (for simplicity we ignore long range excluded vol-
ume interactions), see Fig. 4.1. If the number of segments is large enough,
the end-to-end vector distribution, according to the central limit theorem,
will be Gaussianly distributed and the local structure of the polymer appears
only through the statistical segment length b.
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Gaussian chain

• simplest polymer model: every bond is Gaussianly distributed

• mechanical equivalent: beads connected by springs
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Figure 4.2: The gaussian chain can be
represented by a collection of beads
connected by harmonic springs of
strength 3kBT/b2.

4.1.3 The Gaussian chain

Now we have established that global conformational properties of polymers
are largely independent of the chemical details, we can start from the simplest
model available, consistent with a Gaussian end-to-end distribution. This
model is one in which every bond vector itself is Gaussian distributed,

ψ (r) =

{

3

2πb2

}3/2

exp

{

−
3

2b2
r2
}

. (4.9)

Such a Gaussian chain is often represented by a mechanical model of beads
connected by harmonic springs, as in Fig. 4.2. The potential energy of such
a chain is given by:

Φ (r1, . . . , rN) =
1

2
k

N
∑

i=1

r2i . (4.10)

It is easy to see that if the spring constant is chosen equal to k = 3kBT/b2

the Boltzmann distribution of the bond vectors obeys Eqs. (4.2) and (4.9).
The Gaussian chain is used as a starting point for the Rouse model.

4.2 Rouse dynamics of a polymer

In the previous section we have introduced the Gaussian chain as a model for
the equilibrium (static) properties of polymers. We will now adjust it such
that we can use it to calculate dynamical properties as well. A prerequisite
is that the polymer chains are not very long, otherwise entanglements with
surrounding chains will highly constrain the molecular motions.

When a polymer chain moves through a solvent every bead, whether it
represents a monomer or a larger part of the chain, will continuously collide
with the solvent molecules, leading to Brownian motion as described in the
previous chapter. We will ignore hydrodynamic interactions between the
beads.1 This is allowed for polymer melts because the friction may be thought

1When applied to dilute polymeric solutions, this model gives rather bad results, in-
dicating the importance of hydrodynamic interactions. Hydrodynamic interactions are
included in the so-called Zimm theory of polymer dynamics.
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Figure 4.2: The gaussian chain can be
represented by a collection of beads
connected by harmonic springs of
strength 3kBT/b2.

4.1.3 The Gaussian chain

Now we have established that global conformational properties of polymers
are largely independent of the chemical details, we can start from the simplest
model available, consistent with a Gaussian end-to-end distribution. This
model is one in which every bond vector itself is Gaussian distributed,

ψ (r) =

{

3

2πb2

}3/2

exp

{

−
3

2b2
r2
}

. (4.9)

Such a Gaussian chain is often represented by a mechanical model of beads
connected by harmonic springs, as in Fig. 4.2. The potential energy of such
a chain is given by:

Φ (r1, . . . , rN) =
1

2
k

N
∑

i=1

r2i . (4.10)

It is easy to see that if the spring constant is chosen equal to k = 3kBT/b2

the Boltzmann distribution of the bond vectors obeys Eqs. (4.2) and (4.9).
The Gaussian chain is used as a starting point for the Rouse model.

4.2 Rouse dynamics of a polymer

In the previous section we have introduced the Gaussian chain as a model for
the equilibrium (static) properties of polymers. We will now adjust it such
that we can use it to calculate dynamical properties as well. A prerequisite
is that the polymer chains are not very long, otherwise entanglements with
surrounding chains will highly constrain the molecular motions.

When a polymer chain moves through a solvent every bead, whether it
represents a monomer or a larger part of the chain, will continuously collide
with the solvent molecules, leading to Brownian motion as described in the
previous chapter. We will ignore hydrodynamic interactions between the
beads.1 This is allowed for polymer melts because the friction may be thought

1When applied to dilute polymeric solutions, this model gives rather bad results, in-
dicating the importance of hydrodynamic interactions. Hydrodynamic interactions are
included in the so-called Zimm theory of polymer dynamics.
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From statics to dynamics

• statics: Gaussian chain

• dynamics: collisions with neighbouring particles cause

• friction forces on each bead

• random forces on each bead

• note that the resulting Rouse model

• neglects hydrodynamic interactions (important in dilute polymer solutions)

• neglects entanglements (important for very long polymers)

• applies best to melts of relatively short polymer chains (100 monomers)
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Chapter 3

Brownian motion

3.1 Friction and random forces on colloids

Consider a spherical colloidal particle of radius a (typically between a nanome-
ter and a micrometer) and mass M moving through a solvent along a path
R(t). The colloidal particle will continuously collide with the solvent molecules.
Because on average the colloid will collide more often on the front side than
on the back side, it will experience a systematic force proportional with its
velocity V, and directed opposite to its velocity. The colloid will also experi-
ence a random or stochastic force F(t). These forces are summarized in Fig.
3.1 The equations of motion then read1

dR

dt
= V (3.1)

dV

dt
= −ξV + F. (3.2)

1Note that we have divided all forces by the mass M of the colloid. Consequently, F(t)
is an acceleration and the friction constant ξ is a frequency.

Figure 3.1: A colloid
moving with velocity
V will experience a
friction force−ξV op-
posite to its velocity
and random forces F

due to the continuous
bombardment of sol-
vent molecules.

v-!v

F

25



Langevin equations for the Rouse chain

• each bead feels the same friction

• for each bead, the external potential is
generated by bonds to predecessor and
successor

(3N+3) coupled stochastic differential equations
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of as being caused by the motion of a chain relative to the rest of the material,
which to a first approximation may be taken to be at rest; propagation of a
velocity field like in a normal liquid is highly improbable, meaning there are
no hydrodynamic interactions.

We will start with a Gaussian chain consisting of N + 1 beads connected
by N springs. If we focus on one bead, while keeping all other beads fixed,
we see that the external field Φ in which that bead moves is generated by
connections to its predecessor and successor. We assume that each bead feels
the same friction ζ , that its motion is overdamped, and that the diffusion
coefficient D = kBT/ζ is independent of the position Rn of the bead. This
model for a polymer is called the Rouse chain. According to Eqs. (3.20)-
(3.22) the Langevin equations describing the motion of a Rouse chain are

dR0

dt
= −

3kBT

ζb2
(R0 −R1) + f0 (4.11)

dRn

dt
= −

3kBT

ζb2
(2Rn −Rn−1 −Rn+1) + fn (4.12)

dRN

dt
= −

3kBT

ζb2
(RN −RN−1) + fN (4.13)

〈fn (t)〉 = 0 (4.14)

〈fn (t) fm (t′)〉 = 2DĪδnmδ(t− t′). (4.15)

4.3 Normal mode analysis

Equations (4.11) - (4.13) are (3N + 3) coupled stochastic differential equa-
tions. In order to solve them, we will first ignore the stochastic forces fn and
try specific solutions of the following form:

Rn(t) = X(t) cos(an+ c). (4.16)

The equations of motion then read

dX

dt
cos c = −

3kBT

ζb2
{cos c− cos(a + c)}X (4.17)

dX

dt
cos(na+ c) = −

3kBT

ζb2
4 sin2(a/2) cos(na+ c)X (4.18)

dX

dt
cos(Na + c) = −

3kBT

ζb2
{cos(Na + c)− cos ((N − 1)a+ c)}X,(4.19)

where we have used

2 cos(na+ c)− cos ((n− 1)a+ c)− cos ((n+ 1)a+ c)

= cos(na + c) {2− 2 cos a} = cos(na+ c)4 sin2(a/2). (4.20)
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of as being caused by the motion of a chain relative to the rest of the material,
which to a first approximation may be taken to be at rest; propagation of a
velocity field like in a normal liquid is highly improbable, meaning there are
no hydrodynamic interactions.

We will start with a Gaussian chain consisting of N + 1 beads connected
by N springs. If we focus on one bead, while keeping all other beads fixed,
we see that the external field Φ in which that bead moves is generated by
connections to its predecessor and successor. We assume that each bead feels
the same friction ζ , that its motion is overdamped, and that the diffusion
coefficient D = kBT/ζ is independent of the position Rn of the bead. This
model for a polymer is called the Rouse chain. According to Eqs. (3.20)-
(3.22) the Langevin equations describing the motion of a Rouse chain are

dR0

dt
= −

3kBT

ζb2
(R0 −R1) + f0 (4.11)

dRn

dt
= −

3kBT

ζb2
(2Rn −Rn−1 −Rn+1) + fn (4.12)

dRN

dt
= −

3kBT

ζb2
(RN −RN−1) + fN (4.13)

〈fn (t)〉 = 0 (4.14)

〈fn (t) fm (t′)〉 = 2DĪδnmδ(t− t′). (4.15)

4.3 Normal mode analysis

Equations (4.11) - (4.13) are (3N + 3) coupled stochastic differential equa-
tions. In order to solve them, we will first ignore the stochastic forces fn and
try specific solutions of the following form:

Rn(t) = X(t) cos(an+ c). (4.16)

The equations of motion then read

dX

dt
cos c = −

3kBT

ζb2
{cos c− cos(a + c)}X (4.17)

dX

dt
cos(na+ c) = −

3kBT

ζb2
4 sin2(a/2) cos(na+ c)X (4.18)

dX

dt
cos(Na + c) = −

3kBT

ζb2
{cos(Na + c)− cos ((N − 1)a+ c)}X,(4.19)

where we have used

2 cos(na+ c)− cos ((n− 1)a+ c)− cos ((n+ 1)a+ c)

= cos(na + c) {2− 2 cos a} = cos(na+ c)4 sin2(a/2). (4.20)
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Normal modes [1/3]

• first ignore the random forces and try a specific solution of the form

this yields

[make use of 
               and                                                                     ]
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of as being caused by the motion of a chain relative to the rest of the material,
which to a first approximation may be taken to be at rest; propagation of a
velocity field like in a normal liquid is highly improbable, meaning there are
no hydrodynamic interactions.

We will start with a Gaussian chain consisting of N + 1 beads connected
by N springs. If we focus on one bead, while keeping all other beads fixed,
we see that the external field Φ in which that bead moves is generated by
connections to its predecessor and successor. We assume that each bead feels
the same friction ζ , that its motion is overdamped, and that the diffusion
coefficient D = kBT/ζ is independent of the position Rn of the bead. This
model for a polymer is called the Rouse chain. According to Eqs. (3.20)-
(3.22) the Langevin equations describing the motion of a Rouse chain are

dR0

dt
= −

3kBT

ζb2
(R0 −R1) + f0 (4.11)

dRn

dt
= −

3kBT

ζb2
(2Rn −Rn−1 −Rn+1) + fn (4.12)

dRN

dt
= −

3kBT

ζb2
(RN −RN−1) + fN (4.13)

〈fn (t)〉 = 0 (4.14)

〈fn (t) fm (t′)〉 = 2DĪδnmδ(t− t′). (4.15)

4.3 Normal mode analysis

Equations (4.11) - (4.13) are (3N + 3) coupled stochastic differential equa-
tions. In order to solve them, we will first ignore the stochastic forces fn and
try specific solutions of the following form:

Rn(t) = X(t) cos(an+ c). (4.16)

The equations of motion then read

dX

dt
cos c = −

3kBT

ζb2
{cos c− cos(a + c)}X (4.17)

dX

dt
cos(na+ c) = −

3kBT

ζb2
4 sin2(a/2) cos(na+ c)X (4.18)

dX

dt
cos(Na + c) = −

3kBT

ζb2
{cos(Na + c)− cos ((N − 1)a+ c)}X,(4.19)

where we have used

2 cos(na+ c)− cos ((n− 1)a+ c)− cos ((n+ 1)a+ c)

= cos(na + c) {2− 2 cos a} = cos(na+ c)4 sin2(a/2). (4.20)
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rest of the material, which to a first approximation may be taken to be at rest;
propagation of a velocity field like in a normal liquid is highly improbable,
meaning there are no hydrodynamic interactions.

We will start with a Gaussian chain consisting of N + 1 beads connected
by N springs. If we focus on one bead, while keeping all other beads fixed,
we see that the external field Φ in which that bead moves is generated by
connections to its predecessor and successor. We assume that each bead feels
the same friction ζ , that its motion is overdamped, and that the diffusion
coefficient D = kBT/ζ is independent of the position Rn of the bead. This
model for a polymer is called the Rouse chain. According to Eqs. (3.20)-
(3.22) the Langevin equations describing the motion of a Rouse chain are

dR0

dt
= −

3kBT

ζb2
(R0 −R1) + f0 (4.11)

dRn

dt
= −

3kBT

ζb2
(2Rn −Rn−1 −Rn+1) + fn (4.12)

dRN

dt
= −

3kBT

ζb2
(RN −RN−1) + fN (4.13)

〈fn (t)〉 = 0 (4.14)

〈fn (t) fm (t′)〉 = 2DĪδnmδ(t− t′). (4.15)

4.3 Normal mode analysis

Equations (4.11) - (4.13) are (3N + 3) coupled stochastic differential equa-
tions. In order to solve them, we will first ignore the stochastic forces fn and
try specific solutions of the following form:

Rn(t) = X(t) cos(an+ c). (4.16)

The equations of motion then read

dX

dt
cos c = −

3kBT

ζb2
{cos c− cos(a + c)}X (4.17)

dX

dt
cos(na+ c) = −

3kBT

ζb2
4 sin2(a/2) cos(na+ c)X (4.18)

dX

dt
cos(Na + c) = −

3kBT

ζb2
{cos(Na + c)− cos ((N − 1)a+ c)}X,

(4.19)

where we have used

2 cos(na+ c)− cos ((n− 1)a+ c)− cos ((n+ 1)a+ c)

= cos(na + c) {2− 2 cos a} = cos(na+ c)4 sin2(a/2). (4.20)
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Normal modes [2/3]

• consistent description of boundaries of chain if we choose

• we find independent solutions from

where p is an integer
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)
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Normal modes [3/3]

• so set of differential equations is decoupled by

• to find the general solution, we form a linear combination of all independent 
solutions by taking p in the range p = 0, ..., N

• this may be inverted to
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Rn(t) = X(t) cos

�
pπ

N + 1
(n+

1

2
)

�
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ
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(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ
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2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1
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∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos
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(n+

1
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)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)

34



• in summary, the equations are decoupled by transforming to

called the Rouse modes. The equations of motion for the Rouse modes are

where p, q = 0, ..., N

Rouse modes
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)
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Centre-of-mass motion

• p = 0: centre-of-mass motion of the polymer chain

the Rouse model predicts that the diffusion coefficient of a (unentangled) 
polymer in a melt scales inversely with its molecular weight!

this is confirmed in experiments and computer simulations
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where p, q = 0, . . . , N . Fp is a weighted average of the stochastic forces fn,

Fp =
1

N + 1

N
∑

n=0

fn cos

[

pπ

N + 1
(n+

1

2
)

]

, (4.35)

and is therefore itself a stochastic variable, characterised by its first and
second moments, Eqs. (4.32) - (4.34).

4.4 Rouse relaxation times and amplitudes

Eqs. (4.31) - (4.34) form a decoupled set of 3(N + 1) stochastic differential
equations, each of which describes the fluctuations and relaxations of a nor-
mal mode (a Rouse mode) of the Rouse chain. It is easy to see that X0 is
the position of the polymer centre-of-mass RG =

∑

n Rn/(N +1). The mean
square displacement of the centre-of-mass, gcm(t) can easily be calculated:

X0(t) = X0(0) +

∫ t

0

dτ F0(τ) (4.36)

gcm(t) =
〈

(X0(t)−X0(0))
2〉 =

〈
∫ t

0

dτ

∫ t

0

dτ ′ F0(τ) · F0(τ
′)

〉

=
6D

N + 1
t ≡ 6DGt. (4.37)

So the diffusion coefficient DG of the centre-of-mass of the polymer scales
inversely proportional to the weight of the polymer chain. All other modes
1 ≤ p ≤ N describe independent vibrations of the chain leaving the centre-
of-mass unchanged; Rouse mode Xp descibes vibrations of a wavelength cor-
responding to a subchain of N/p segments. In the applications ahead of us,
we will frequently need the time correlation functions of these Rouse modes.
From Eq. (4.31) we get

Xp(t) = Xp(0)e
−t/τp +

∫ t

0

dτ e−(t−τ)/τpFp(τ), (4.38)

where the characteristic relaxation time τp is given by

τp =
ζb2

3kBT

[

4 sin2

(

pπ

2(N + 1)

)]−1

≈
ζb2(N + 1)2

3π2kBT

1

p2
. (4.39)

The last approximation is valid for large wavelengths, in which case p % N .
Multiplying Eq. (4.38) by Xp(0) and taking the average over all possible
realisations of the random force, we find

〈Xp(t) ·Xp(0)〉 =
〈

X2
p

〉

exp (−t/τp) . (4.40)
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• p = 1, ..., N: independent vibrations of the polymer chain,
wavelength corresponding to a subchain of N/p segments

      is the characteristic relaxation time of mode p
      is the relaxation time of the slowest mode (Rouse time      )

the time correlation functions of the Rouse modes are given by

Internal motion of the polymer chain
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From these equations it is clear that the lower Rouse modes, which represent
motions with larger wavelengths, are also slower modes. The relaxation time
of the slowest mode, p = 1, is often referred to as the Rouse time τR.

We now calculate the equilibrium expectation values of X2
p , i.e., the am-

plitudes of the normal modes. To this end, first consider the statistical weight
of a configuration R0, . . . ,RN in Cartesian coordinates,

P (R0, . . . ,RN) =
1

Z
exp

[

−
3

2b2

N
∑

n=1

(Rn −Rn−1)
2

]

. (4.41)

We can use Eq. (4.28) to find the statistical weight of a configuration in
Rouse coordinates. Since the transformation to the Rouse coordinates is a
linear transformation from one set of orthogonal coordinates to another, the
corresponding Jacobian is simply a constant. The probability therefore reads

P (X0, . . . ,XN) =
1

Z
exp

[

−
12

b2
(N + 1)

N
∑

p=1

Xp ·Xp sin
2

(

pπ

2(N + 1)

)

]

.

(4.42)

Since this is a simple product of independent Gaussians, the amplitudes of
the Rouse modes can easily be calculated:

〈

X2
p

〉

=
b2

8(N + 1) sin2
(

pπ
2(N+1)

) ≈
(N + 1)b2

2π2

1

p2
. (4.43)

Again, the last approximation is valid when p # N . We can now calculate
all kinds of dynamic quantities of the Rouse chain.

4.5 Correlation of the end-to-end vector

The first dynamic quantity we are interested in is the time correlation func-
tion of the end-to-end vector R. Notice that

R = RN −R0 = 2
N
∑

p=1

Xp {(−1)p − 1} cos
[

pπ

2(N + 1)

]

. (4.44)

Because the Rouse mode amplitudes decay as p−2, our results will be domi-
nated by p values which are extremely small compared to N . We therefore
write

R = −4

N
∑′

p=1

Xp, (4.45)

36

4. THE DYNAMICS OF UNENTANGLED POLYMERIC LIQUIDS

where p, q = 0, . . . , N . Fp is a weighted average of the stochastic forces fn,

Fp =
1

N + 1

N
∑

n=0

fn cos

[

pπ

N + 1
(n+

1

2
)

]

, (4.35)

and is therefore itself a stochastic variable, characterised by its first and
second moments, Eqs. (4.32) - (4.34).

4.4 Rouse relaxation times and amplitudes

Eqs. (4.31) - (4.34) form a decoupled set of 3(N + 1) stochastic differential
equations, each of which describes the fluctuations and relaxations of a nor-
mal mode (a Rouse mode) of the Rouse chain. It is easy to see that X0 is
the position of the polymer centre-of-mass RG =

∑

n Rn/(N +1). The mean
square displacement of the centre-of-mass, gcm(t) can easily be calculated:

X0(t) = X0(0) +

∫ t

0

dτ F0(τ) (4.36)

gcm(t) =
〈

(X0(t)−X0(0))
2〉 =

〈
∫ t

0

dτ

∫ t

0

dτ ′ F0(τ) · F0(τ
′)

〉

=
6D

N + 1
t ≡ 6DGt. (4.37)

So the diffusion coefficient DG of the centre-of-mass of the polymer scales
inversely proportional to the weight of the polymer chain. All other modes
1 ≤ p ≤ N describe independent vibrations of the chain leaving the centre-
of-mass unchanged; Rouse mode Xp descibes vibrations of a wavelength cor-
responding to a subchain of N/p segments. In the applications ahead of us,
we will frequently need the time correlation functions of these Rouse modes.
From Eq. (4.31) we get

Xp(t) = Xp(0)e
−t/τp +

∫ t

0

dτ e−(t−τ)/τpFp(τ), (4.38)

where the characteristic relaxation time τp is given by

τp =
ζb2

3kBT

[

4 sin2

(

pπ

2(N + 1)

)]−1

≈
ζb2(N + 1)2

3π2kBT

1

p2
. (4.39)

The last approximation is valid for large wavelengths, in which case p % N .
Multiplying Eq. (4.38) by Xp(0) and taking the average over all possible
realisations of the random force, we find
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X2
p
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Rouse mode amplitudes

• statistical weight (probability) of a configuration

transformation to Rouse coordinates is a linear transformation,
so Jacobian of transformation is a constant:

this is a product of independent Gaussians, therefore
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From these equations it is clear that the lower Rouse modes, which represent
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[

pπ

2(N + 1)

]

. (4.44)

Because the Rouse mode amplitudes decay as p−2, our results will be domi-
nated by p values which are extremely small compared to N . We therefore
write

R = −4

N
∑′

p=1

Xp, (4.45)
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From these equations it is clear that the lower Rouse modes, which represent
motions with larger wavelengths, are also slower modes. The relaxation time
of the slowest mode, p = 1, is often referred to as the Rouse time τR.

We now calculate the equilibrium expectation values of X2
p , i.e., the am-

plitudes of the normal modes. To this end, first consider the statistical weight
of a configuration R0, . . . ,RN in Cartesian coordinates,

P (R0, . . . ,RN) =
1

Z
exp

[

−
3

2b2

N
∑

n=1

(Rn −Rn−1)
2

]

. (4.41)

We can use Eq. (4.28) to find the statistical weight of a configuration in
Rouse coordinates. Since the transformation to the Rouse coordinates is a
linear transformation from one set of orthogonal coordinates to another, the
corresponding Jacobian is simply a constant. The probability therefore reads

P (X0, . . . ,XN) =
1

Z
exp

[

−
12

b2
(N + 1)

N
∑

p=1

Xp ·Xp sin
2

(

pπ

2(N + 1)

)

]

.

(4.42)

Since this is a simple product of independent Gaussians, the amplitudes of
the Rouse modes can easily be calculated:

〈

X2
p

〉
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b2

8(N + 1) sin2
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pπ
2(N+1)

) ≈
(N + 1)b2
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Figure 4.3: Molecular dynamics
simulation results for the orienta-
tional correlation function of the
end-to-end vector of a C120H242

polyethylene chain under melt con-
ditions (symbols), compared with
the Rouse model prediction (solid
line). J.T. Padding and W.J.
Briels, J. Chem. Phys. 114, 8685
(2001). 0 1000 2000 3000 4000
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where the prime at the summation sign indicates that only terms with odd
p should occur in the sum. Then

〈R(t) ·R(0)〉 = 16

N
∑′

p=1

〈Xp(t) ·Xp(0)〉 =
8b2

π2
(N +1)

N
∑′

p=1

1

p2
e−t/τp . (4.46)

The characteristic decay time at large t is τ1, which is proportional to (N+1)2.
Figure 4.3 shows that Eq. (4.46) gives a good description of the time

correlation function of the end-to-end vector of a real polymer chain in a melt
(provided the polymer is not much longer than the entanglement length).

4.6 Segmental motion

In this section we will calculate the mean square displacements gseg(t) of the
individual segments. Using Eq. (4.28) and the fact that different modes are
not correlated, we get for segment n

〈

(Rn(t)−Rn(0))
2〉 =

〈

(X0(t)−X0(0))
2〉

+4
N
∑

p=1

〈

(Xp(t)−Xp(0))
2〉 cos2

[

pπ

N + 1
(n +

1

2
)

]

. (4.47)

Averaging over all segments, and introducing Eqs. (4.37) and (4.40), the
mean square displacement of a typical segment in the Rouse model is

gseg(t) =
1

N + 1

N
∑

n=0

〈

(Rn(t)−Rn(0))
2〉

= 6DGt + 4
N
∑

p=1

〈

X2
p

〉 (

1− e−t/τp
)

. (4.48)
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Segmental motion [1/2]

• mean-square displacement of segment n

• mean-square displacement of a typical segment (average over all n)
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Figure 4.3: Molecular dynamics
simulation results for the orienta-
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end-to-end vector of a C120H242

polyethylene chain under melt con-
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line). J.T. Padding and W.J.
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The characteristic decay time at large t is τ1, which is proportional to (N+1)2.
Figure 4.3 shows that Eq. (4.46) gives a good description of the time
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(provided the polymer is not much longer than the entanglement length).
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The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq.
(4.18) if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential
equations. To find the general solution to Eqs. (4.11) to (4.15) we form a
linear combination of all independent solutions:

Rn = X0 + 2
N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience.
Making use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n +

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)

we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −

3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)
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Figure 4.3: Molecular dynamics
simulation results for the orienta-
tional correlation function of the
end-to-end vector of a C120H242

polyethylene chain under melt con-
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The characteristic decay time at large t is τ1, which is proportional to (N+1)2.
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correlation function of the end-to-end vector of a real polymer chain in a melt
(provided the polymer is not much longer than the entanglement length).
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Averaging over all segments, and introducing Eqs. (4.37) and (4.40), the
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Segmental motion [2/2]

• good agreement with simulations
(for displacements > segment size)

• long time limit:
 

• intermediate times:
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Figure 4.4: Molecular dynamics
simulation results for the mean
square displacements of a C120H242

polyethylene chain under melt con-
ditions (symbols). The dotted and
dot-dashed lines are Rouse predic-
tions for a chain with an infinite
number of modes and for a finite
Rouse chain, respectively. The hor-
izontal line is the statistical seg-
ment length b2. J.T. Padding and
W.J. Briels, J. Chem. Phys. 114,
8685 (2001).

Two limits may be distinguished. First, when t is very large, t ! τ1, the first
term in Eq. (4.48) will dominate, yielding

gseg(t) ≈ 6DGt (t ! τ1) . (4.49)

This is consistent with the fact that the polymer as a whole diffuses with
diffusion coefficient DG.

Secondly, when t # τ1 the sum over p in Eq. (4.48) dominates. If
N ! 1 the relaxation times can be approximated by the right hand side of
Eq. (4.39), the Rouse mode amplitudes can be approximated by the right
hand side of Eq. (4.43), and the sum can be replaced by an integral,

gseg(t) =
2b2

π2
(N + 1)

∫ ∞

0

dp
1

p2

(

1− e−tp2/τ1
)

=
2b2

π2
(N + 1)

∫ ∞

0

dp
1

τ1

∫ t

0

dt′ e−t′p2/τ1

=
2b2

π2

(N + 1)

τ1

1

2

√
πτ1

∫ t

0

dt′
1√
t′

=

(

12kBTb2

πζ

)1/2

t1/2 (τN # t # τ1, N ! 1) . (4.50)

At short times the mean square displacement of a typical segment is subdif-
fusive and independent of the number of segments N in the chain.

Figure 4.4 shows the mean square displacement of monomers (circles) and
centre-of-mass (squares) of an unentangled polyethylene chain in its melt.
Observe that the chain motion is in agreement with the Rouse model pre-
diction, but only for displacements larger than the square statistical segment
length b2.
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diffusion coefficient DG.
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• remember the Green-Kubo relations for viscosity & shear relaxation modulus

• microscopic stress tensor is a collective property

• sums run over all segments of all polymer chains in the system

• Rouse model: dynamics of one chain uncorrelated with that of another

• we can study stress relaxation of single chain and make ensemble average

• overdamped: kinetic contribution to stress may be neglected

Stress and viscosity
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4.7 Polymer stress and viscosity

We will finally calculate the viscosity of a melt of Rouse chains, using the
Green-Kubo relation Eq. (2.40). Generalizing Eq. (2.41), the (equilibrium)
microscopic stress tensor σ can be expressed as

σ = −
1

V

(

Ntot
∑

i=1

MiViVi +
Ntot−1
∑

i=1

Ntot
∑

j=i+1

(Ri −Rj)Fij

)

, (4.51)

where Mi is the mass of particle i and Fij is the force that particle j is
exerting on particle i.

At first sight, it would be a tremendous task to calculate the viscosity
analytically because the sums in Eq. (4.51) must be taken over all Ntot par-
ticles, i.e. over all segments of all polymer chains in the system. This is
why in real polymer systems the stress tensor is a collective property. In the
Rouse model, however, there is no correlation between the dynamics of one
chain and the other, so one may just as well analyze the stress relaxation of
a single chain and make an ensemble average over all initial configurations.
Moreover, because the velocities of the polymer segments are usually over-
damped, the polymer stress is dominated by the interactions between the
segments. The first (kinetic) part of Eq. (4.51) may then be neglected.

Using Eqs. (4.28) and (4.51), the microscopic stress tensor of a Rouse
chain in a specific configuration, neglecting kinetic contributions, is equal to

σ =
1

V

3kBT

b2

N
∑

n=1

(Rn−1 −Rn) (Rn−1 −Rn)

=
1

V

48kBT

b2

N
∑

n=1

N
∑

p=1

N
∑

q=1

XpXq sin

(

pπn

N + 1

)

sin

(

pπ

2(N + 1)

)

×

sin

(

qπn

N + 1

)

sin

(

qπ

2(N + 1)

)

=
1

V

24kBT

b2
N

N
∑

p=1

XpXp sin
2

(

pπ

2(N + 1)

)

. (4.52)

Combining this with the expression for the equilibrium Rouse mode ampli-
tudes, Eq. (4.43), this can be written more concisely as

σ =
3kBT

V

N
∑

p=1

XpXp
〈

X2
p

〉 . (4.53)
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Figure 2.2: Shear re-
laxation modulus G(t)
of a polymer melt (left:
linear scale, right: log-
arithmic scale).

Here F (i)
y,j is the force in the y-direction exerted by particle i on particle j. In

the second step of Eq. (2.39) we have used Newton’s principle of action and

reaction, F (i)
y,j = −F (j)

y,i . In the third step we have used the fact that k will
be very small. Collecting everything together, we may write

η =
V

kBT

∫ ∞

0

dt 〈σyz(t)σyz(0)〉 , (2.40)

where the microscopic stress tensor is defined as

σyz(t) =
1

V

{

∑

j

mvy,j(t)vz,j(t) +
1

2

N
∑

i=1

N
∑

j=1

F (i)
y,j (t)(zj(t)− zi(t))

}

. (2.41)

Eq. (2.40) is the Green-Kubo relation for the shear viscosity. The above
equations also yield a microscopic expression for the so-called shear relaxation
modulus,

G(t) =
V

kBT
〈σyz(t)σyz(0)〉 . (2.42)

Macroscopically, G(t) is the linear stress relaxation in the system following
a sudden step strain. In agreement with Eq. (2.40) its integral is the shear
viscosity, η =

∫∞

0 G(t)dt.
These equations are useful because they enable us to measure the shear

relaxation modulus and shear viscosity in a simulation of a liquid without
actually shearing the system, but rather by analyzing the spontaneous fluc-
tuations in forces and velocities. As an example, in Fig. 2.2 we show the
shear relaxation modulus measured in a molecular dynamics simulation of a
melt of polyethylene chains at 450 K. Note that in this particular example
the stress does not relax immediately to zero, but remains at a plateau value
of approximately 3 MPa for times between 5 and 50 ns. Such behaviour is
indicative of temporary elasticity, which is typical of an entangled polymeric
liquid.
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Figure 2.2: Shear re-
laxation modulus G(t)
of a polymer melt (left:
linear scale, right: log-
arithmic scale).
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Microscopic stress tensor of a Rouse chain

• the forces are due to the entropic springs connecting the segments:

• rewrite in terms of Rouse modes

75

σ = − 1

V

N�

n=1

(Rn−1 −Rn)
3kBT

b2
(Rn −Rn−1)

4. THE DYNAMICS OF UNENTANGLED POLYMERIC LIQUIDS

4.7 Polymer stress and viscosity

We will finally calculate the viscosity of a melt of Rouse chains, using the
Green-Kubo relation Eq. (2.40). Generalizing Eq. (2.41), the (equilibrium)
microscopic stress tensor σ can be expressed as

σ = −
1

V

(

Ntot
∑

i=1

MiViVi +
Ntot−1
∑

i=1

Ntot
∑

j=i+1

(Ri −Rj)Fij

)

, (4.51)

where Mi is the mass of particle i and Fij is the force that particle j is
exerting on particle i.

At first sight, it would be a tremendous task to calculate the viscosity
analytically because the sums in Eq. (4.51) must be taken over all Ntot par-
ticles, i.e. over all segments of all polymer chains in the system. This is
why in real polymer systems the stress tensor is a collective property. In the
Rouse model, however, there is no correlation between the dynamics of one
chain and the other, so one may just as well analyze the stress relaxation of
a single chain and make an ensemble average over all initial configurations.
Moreover, because the velocities of the polymer segments are usually over-
damped, the polymer stress is dominated by the interactions between the
segments. The first (kinetic) part of Eq. (4.51) may then be neglected.

Using Eqs. (4.28) and (4.51), the microscopic stress tensor of a Rouse
chain in a specific configuration, neglecting kinetic contributions, is equal to

σ =
1

V

3kBT

b2

N
∑

n=1

(Rn−1 −Rn) (Rn−1 −Rn)

=
1

V

48kBT

b2

N
∑
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N
∑
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XpXq sin

(

pπn

N + 1

)

sin

(

pπ

2(N + 1)

)

×

sin

(

qπn

N + 1

)

sin

(

qπ

2(N + 1)

)

=
1

V

24kBT

b2
N

N
∑

p=1

XpXp sin
2

(

pπ

2(N + 1)

)

. (4.52)

Combining this with the expression for the equilibrium Rouse mode ampli-
tudes, Eq. (4.43), this can be written more concisely as

σ =
3kBT

V

N
∑

p=1

XpXp
〈

X2
p

〉 . (4.53)
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• we need averages of

• Rouse modes are Gaussian variables:

Stress relaxation in a melt of Rouse chains
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The correlation of the xy-component of the microscopic stress tensor at t = 0
with the one at t = t is therefore

σxy(t)σxy(0) =

(

3kBT

V

)2 N
∑

p=1

N
∑

q=1

Xpx(t)Xpy(t)Xqx(0)Xqy(0)
〈

X2
p

〉 〈

X2
q

〉 . (4.54)

To obtain the shear viscosity the ensemble average must be taken over all
possible configurations at t = 0. Now, since the Rouse modes are Gaussian
variables, all the ensemble averages of products of an odd number of Xp’s are
zero and the ensemble averages of products of an even number of Xp’s can
be written as a sum of products of averages of only two Xp’s. For the even
term in Eq. (4.54) we find:

〈Xpx (t)Xpy (t)Xqx (0)Xqy (0)〉 = 〈Xpx (t)Xpy (t)〉 〈Xqx (0)Xqy (0)〉
+ 〈Xpx (t)Xqy (0)〉 〈Xpy (t)Xqx (0)〉
+ 〈Xpx (t)Xqx (0)〉 〈Xpy (t)Xqy (0)〉 .

(4.55)

The first four ensemble averages equal zero because, for a Rouse chain in
equilibrium, there is no correlation between different cartesian components.
The last two ensemble averages are nonzero only when p = q, since the Rouse
modes are mutually orthogonal. Using the fact that all cartesian components
are equivalent, and Eq. (4.40), the shear relaxation modulus of a melt of
Rouse chains can be expressed as

G (t) =
kBT

V

N
∑

p=1

[

〈Xk(t) ·Xk(0)〉
〈X2

k〉

]2

=
ckBT

N + 1

N
∑

p=1

exp (−2t/τp) , (4.56)

where c = N/V is the number density of beads.
The Rouse model predicts a viscosity, at constant monomer concentration

c and segmental friction ζ , proportional to N :

η =

∫ ∞

0

dtG(t) ≈
ckBT

N + 1

τ1
2

N
∑

p=1

1

p2
≈

ckBT

N + 1

τ1
2

π2

6
=

cζb2

36
(N +1). (4.57)

This has been confirmed for concentrated polymers with low molecular weight.2

Concentrated polymers of high molecular weight give different results, stress-
ing the importance of entanglements.

2A somewhat stronger N dependence is often observed because the density and, more
important, the segmental friction coefficient increase with increasing N .
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justed N to get the best fit for short time behavior. This
procedure yields !1!(6.0"0.5)ns and N!13"3, in agree-
ment with the fit parameters obtained from the mean square
displacement data. The fit can be made fairly accurate be-
cause the end-to-end vector is a property of the entire chain
and much larger than the statistical segment length b.

D. Shear relaxation modulus and viscosity

The shear relaxation modulus G(t) is calculated from
the autocorrelation of the stress tensor, Eq. "11#. As ex-
plained in Sec. III the stress tensor can be determined from
an atomic or a molecular point of view. In Fig. 5 both results
are presented for a sampling interval of 5 fs. The atomic
shear relaxation modulus shows strong oscillatory behavior
due to fast vibrations of the bonds in the chain, while the
molecular shear relaxation modulus is a much smoother
function, with a minimum at 0.21 ps. The inset of Fig. 5
shows the integrals up to time t,

$" t #!!
0

t
G" t #dt "13#

for both shear relaxation moduli. %The shear relaxation
modulus itself is given by the slope of $(t).& It is seen that
the atomic and molecular integrals become identical for t
larger than 1 ps, in accordance with the findings of other
authors.5,11 The limit of Eq. "13# for t going to infinity gives
the viscosity of the polyethylene melt. The computational
demands for these calculations are very large because the
stress tensor is a collective property of the system, yielding
only one value per time frame "in practice we can use five, as
explained in Sec. III#. This means that very long runs are
needed to obtain enough statistical accuracy. Because of the
larger possible integration time step "50 fs#, the molecular
stress tensor was used to determine $(t) for large time
scales.

The rate of convergence of the integral of the shear re-
laxation modulus depends on the relaxation time of the
chain. In principle one should integrate up to, say, 2!1 to
reach the plateau value of the integral. This is, however,

quite impossible, so instead of varying the parameters of the
Rouse model "N and !1# to fit the entire curve, we will use
the parameters found before to compare the Rouse predicted
integral with the measured integral $(t) up to t!1 ns. The
measured result, shown in Fig. 6, is an average of the results
of the four independent simulation boxes, each yielding five
independent contributions. We can make a conservative es-
timate of the error in the average value at each time by treat-
ing these 20 contributions at each time as independent data.
This way we find estimated errors of 6% at t!0.1 ns up to
17% at t!1 ns. Because the statistical uncertainties are rela-
tively large, we must be careful with our conclusions.

Before testing the Rouse predictions, let us compare our
EMD result with the NEMD results of Moore et al. on C100
chains.8 They measured transient shear stresses by applying
sudden constant shear rates to equilibrated systems. At the
high shear rates applied by these authors, the stresses exhibit
temporary overshoots above the steady-state values, in par-
tial agreement with the Doi–Edwards theory of entangled
systems.30 This seems to indicate that under some conditions
aspects of the reptation picture may be applicable, even for
chains which are not supposed to be entangled. Notice that
our Fig. 6 represents the zero-shear limit of their Fig. 1. In
this sense the results of Moore et al. and our results are
complementary.

Let us now compare the results with the Rouse integral,
Eq. "A13#. The density of Rouse chains is set equal to the
density of chains in the MD system. The result is shown in
Fig. 6 for N!13 and !1!6.0 ns. It is immediately apparent
that the Rouse curve differs from the measured curve. This
should be expected because the initial relaxation modulus
G(t) of the polyethylene system does not behave Rouse-like
at all, as can be seen in Fig. 5. However, the Rouse curve is
observed to run parallel with the measured curve after ap-
proximately 0.4 ns. This means that the zero-shear relaxation

FIG. 5. Comparison of the short-time behavior of the shear relaxation
modulus determined from the atomic "line# and molecular "dotted line#
stress tensor. The inset shows the integral up to time t. After 1 ps the atomic
and molecular integrals become identical.

FIG. 6. The long time behavior of the integral of the shear relaxation modu-
lus determined from the molecular stress tensor "line#. The dashed line is the
Rouse prediction, Eq. "A13#, for N!13 and !1!6.0 ns. The inset shows the
difference '$(t) %see Eq. "14#& between measured and Rouse integrals for
different sets of parameters. From top to bottom: "N!13, !1!6.0 ns#, "N
!14, !1!6.5 ns#, and "N!20, !1!7.0 ns#. For the first two sets, the differ-
ence becomes constant after approximately 0.4 ns "dashed lines#. From this
graph we are unable to determine which of the two sets of parameters
provides the best fit.
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Viscosity of a melt of Rouse chains

• viscosity scales linearly with molecular 
weight of the polymer

• in good agreement with experiments and 
simulations of unentangled polymer melts
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The correlation of the xy-component of the microscopic stress tensor at t = 0
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To obtain the shear viscosity the ensemble average must be taken over all
possible configurations at t = 0. Now, since the Rouse modes are Gaussian
variables, all the ensemble averages of products of an odd number of Xp’s are
zero and the ensemble averages of products of an even number of Xp’s can
be written as a sum of products of averages of only two Xp’s. For the even
term in Eq. (4.54) we find:

〈Xpx (t)Xpy (t)Xqx (0)Xqy (0)〉 = 〈Xpx (t)Xpy (t)〉 〈Xqx (0)Xqy (0)〉
+ 〈Xpx (t)Xqy (0)〉 〈Xpy (t)Xqx (0)〉
+ 〈Xpx (t)Xqx (0)〉 〈Xpy (t)Xqy (0)〉 .

(4.55)

The first four ensemble averages equal zero because, for a Rouse chain in
equilibrium, there is no correlation between different cartesian components.
The last two ensemble averages are nonzero only when p = q, since the Rouse
modes are mutually orthogonal. Using the fact that all cartesian components
are equivalent, and Eq. (4.40), the shear relaxation modulus of a melt of
Rouse chains can be expressed as
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where c = N/V is the number density of beads.
The Rouse model predicts a viscosity, at constant monomer concentration

c and segmental friction ζ , proportional to N :
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This has been confirmed for concentrated polymers with low molecular weight.2

Concentrated polymers of high molecular weight give different results, stress-
ing the importance of entanglements.

2A somewhat stronger N dependence is often observed because the density and, more
important, the segmental friction coefficient increase with increasing N .
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To obtain the shear viscosity the ensemble average must be taken over all
possible configurations at t = 0. Now, since the Rouse modes are Gaussian
variables, all the ensemble averages of products of an odd number of Xp’s are
zero and the ensemble averages of products of an even number of Xp’s can
be written as a sum of products of averages of only two Xp’s. For the even
term in Eq. (4.54) we find:

〈Xpx (t)Xpy (t)Xqx (0)Xqy (0)〉 = 〈Xpx (t)Xpy (t)〉 〈Xqx (0)Xqy (0)〉
+ 〈Xpx (t)Xqy (0)〉 〈Xpy (t)Xqx (0)〉
+ 〈Xpx (t)Xqx (0)〉 〈Xpy (t)Xqy (0)〉 .

(4.55)

The first four ensemble averages equal zero because, for a Rouse chain in
equilibrium, there is no correlation between different cartesian components.
The last two ensemble averages are nonzero only when p = q, since the Rouse
modes are mutually orthogonal. Using the fact that all cartesian components
are equivalent, and Eq. (4.40), the shear relaxation modulus of a melt of
Rouse chains can be expressed as

G (t) =
kBT

V

N
∑

p=1

[

〈Xp(t) ·Xp(0)〉
〈

X2
p

〉

]2

=
ckBT

N + 1

N
∑

p=1

exp (−2t/τp) , (4.56)

where c = N/V is the number density of beads.
The Rouse model predicts a viscosity, at constant monomer concentration

c and segmental friction ζ , proportional to N :

η =

∫ ∞

0

dtG(t) ≈
ckBT

N + 1

τ1
2

N
∑

p=1

1

p2
≈

ckBT

N + 1

τ1
2

π2

6
=

cζb2

36
(N +1). (4.57)

This has been confirmed for concentrated polymers with low molecular weight.2

Concentrated polymers of high molecular weight give different results, stress-
ing the importance of entanglements.

2A somewhat stronger N dependence is often observed because the density and, more
important, the segmental friction coefficient increase with increasing N .
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η(t) ≡
� t

0
dτG(τ)



Summary of chapter 4

• large scale properties of polymers are independent of chemistry;
end-to-end vector distribution is Gaussian

• Rouse model = Gaussian chain + Langevin equations for segments;
normal mode analysis reveals characteristic scalings:
 

                          longest relaxation time

                          diffusion of the centre-of-mass

                          shear viscosity

in agreement with experiments & simulations of unentangled polymer melts
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4. THE DYNAMICS OF UNENTANGLED POLYMERIC LIQUIDS

For example, one can measure the end-to-end vector, defined as

R = RN −R0 =
N
∑

i=1

ri. (4.1)

If the end-to-end vector is measured for a large number of polymers in a melt,
one will find that the distribution of end-to-end vectors is Gaussian and that
the root mean squared end-to-end distance scales with the square root of the
number of bonds,

√

〈R2〉 ∝
√
N , irrespective of the chemical details. This is

a consequence of the central limit theorem.

4.1.2 The central limit theorem and polymer elasticity

Consider a chain consisting of N independent bond vectors ri. By this we
mean that the orientation and length of each bond is independent of all
others. A justification will be given at the end of this section. The probability
density in configuration space Ψ

(

rN
)

may then be written as

Ψ
(

rN
)

=
N
∏

i=1

ψ (ri) . (4.2)

Assume further that the bond vector probability density ψ (ri) depends only
on the length of the bond vector and has zero mean, 〈ri〉 = 0. For the second
moment we write

〈

r2
〉

=

∫

d3r r2ψ(r) ≡ b2, (4.3)

where we have defined the statistical segment (or Kuhn) length b. Let
Ω (R;N) be the probability distribution function for the end-to-end vector
R given that we have a chain of N bonds,

Ω (R;N) =

〈

δ

(

R−
N
∑

i=1

ri

)〉

, (4.4)

where δ is the Dirac-delta function. The central limit theorem then states
that for large enough N :

Ω (R;N) =

{

3

2πNb2

}3/2

exp

{

−
3R2

2Nb2

}

. (4.5)
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τ1 ∝ N2

DG ∝ N−1

η ∝ N



The end
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