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Statistical mechanics:
bridge between molecular and macroscopic world

e equilibrium properties
¢ intermolecular interactions (structure,pressure, ...)

many particles

* density, temperature e dynamical properties
(diffusion, viscosity, ...)

Statistical mechanics:

e does not predict individual molecular trajectories, but

e gives probabilities for large collections of particles, and

¢ yields measurable quantities as averages over ensembles



Chapter 1: Structure in liquids and gases



Probability density

e box volume V, with N identical (rigid) particles O OO o
O

O O

e define number density p = N/V °©0 o ©
O
@ 0 o o

e probability density to encounter system in configuration O O

O O O

R6N — {I‘l,ﬂl, o ,I‘N,QN}

Is given by the Boltzmann distribution function:

o CI)( RGN ) Is potential energy of the configuration - contains interactions



Palr Interaction between two neutral atoms

e one pair of atoms, fixed nuclei:
total ground state energy

€o(r1,T2) = €o(r1) + €9(r2) + (11, r2).

o(r1,T2) is interatomic interaction / potential

¢ | ennard-Jones potential describes both i
Van der Waals attraction and
short range Pauli repulsion

<— Pauli repulsion

r=0
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Palr sum approximation

e when >2 particles are present:

d(ry,...,ry) = f: > o(ri).

i=1 j=i+1

® in practice often a reasonable assumption

(1.5)



The radial distribution function g(r)

e molecular interactions cause correlations
In their positions

e number of particles at a distance between
r and r+dr from a given particle:

N
47T7“2Vg(7”)d7“

e N/V g(r) is average number density at
distance r from a given particle

® casy to see that




Statistical formulas for g(r)

¢ integrate Boltzman distribution function over all coordinates except first 2

1 O (r3N
Pia(ry,15) = E/dgrg.../d?’w exXp (— /iBT)> , (1.7)

Pio(r,r') = %/d?)fr'g . ./d?’rN exp (— qD}i:;p) _ (1.8)
¢ all particles are equal; prob. to have particle 1 at r and any other at r’:

> Py(r,x') = (N—1)Py(r,1) (1.9)

j#1

Zogllr =) = (N ~1)Po(r,x) (110

p’g(|r —1'|) = N(N — 1)Ppo(r, x'). (1.11)



How do we get g(r) and what can we do with it?

® g(r) can be obtained from
e modern liquid theory
e computer simulation

e experimentally, through microscopy (for large particles) or scattering

e knowing g(r) we can calculate non-entropic thermodynamic functions, e.g.
® energy
e compressibility

® pressure
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Relation between g(r) and energy

Internal energies
of the molecules

average interaction energy

of one particular molecule
with all other molecules

(1.12)
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Relation between g(r) and compressibility [1/2]

1 [oV

e definition of isothermal compressibility: K7 = v (a_P>T’N

e compressibility is linked to spontaneous fluctuations
INn number of particles in an open volume V.

(N) pksThr = (N — (N))?) = (N?) — (N)3

e assuming that g(r) is known, Eq. (1.11) gives us
almost the needed expression:
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Relation between g(r) and compressibility [2/2]

e correct by adding (V) and subtracting (N

(N) pkgTrkr = /dBfrlp/d?’ng 12) p/d?’frlp/d37“2
1% 1%
— /dBTlp/dTQ 7“12 —1) N>
— p/d3fr1p/ d*r (g(r) — 1) + (N) (1.16)
1% R3

e dividing by (IV) we find the compressibility equation
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Relation between g(r) and pressure

e if density is not high, correlations between >2 particles may be ignored. Then

g(r) = exp {—Bp(r)}

e at low density, virial equation is an accurate expression for pressure

N

e using simple mathematics (see Eq. 1.20) and the compressibility equation,
we arrive at a microscopic expression for the second virial coefficient

(1.21)
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—xample: hard-sphere fluid [1/2]

<
e Pair interaction SD(T) — { (C)>O Ei : ; Z
| 0 forr <o
* g(r) at low density g(r) =~ { 1 forr>o

e second virial coefficient and pressure at low density

1 d 2
By = ) /dST (e_ﬁw(r) — 1) — 27T/ drr? = §7T0'3.
0
P=pksT(1+4y) = irpo’

e pressure at more general densities (from simulations)

P

T T 1 + 4n + 10n* + 18.365n° + 28.24n* + 39.5n° + 56.6n° + . ...
B
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—xample: hard sphere fluid [2/2]

e Carnahan and Starling noticed that the series

pkBT

IS quite close to

=1+ 41+ 10n° + 181° + 28n* 4+ 401 + 54n° + . ..
pkpT

which can be summed analytically to

P
pkBT

0 1 2 .3
“ 13 g = LI

n=1

= 1+4n+ 109" + 18.365n" 4 28.241" + 39.51° + 56.6n° + ... |

BP/p-1
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Scattering and the structure factor

O
O OO
k. O o
n @, OO
ﬁ O O o O kO’U,t

o - \ y\
o © © o%,
o O O '3,,‘/“"

e illuminate a fluid containing spherical particles by a wave (wavevector K;,, )
e X-ray or neutron scattering for atomic liquids
e small-angle X-ray, small-angle neutron or light scattering for colloids

¢ measured intensity in the direction kot depends on density fluctuations in
the fluid, as probed by the structure factor S(k), with k = k., — Kin,

N.B. intensity also depends on other factors such as wave polarization,
scattering strength and form factor, i.e. internal particle structure

17



Fourier analysis of density fluctuations

e describe density fluctuations in fluid by means of Fourier components:

/dSk p(k)exp{—ik-r},

p(r) = p+

(2m)°

1

o) = [ @ {plr) ~ p}exp {ik-x}

e corresponding microscopic variable

p(k) = / d’r <

» d(r—rj)—p

j=1
N

\ j=1

\

> exp {ik - r}

/

N
Zexp {ik -r;} — p/d?’r exp {ik - r}

— Z exp {ik - r;} — (27)°pd (k).

g=1
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Relation between structure factor and g(r)

e (static) scattering experiments measure amplitudes of density fluctuations:

e the structure factor S(k) is essentially a Fourier transform of g(r)

Sk) = ]1]<S:S:exp{ik-(rj—rk > /d3 /d3r’exp{1k (r—1r")}

j=1 k=1

— 1—|—<YY€XP{Z]( rk)}> —p/d?’frexp{ik.r}

J=1 k#j
= 1+ ,O/d3r lg(r) — 1]exp{ik - r}. (1.34)

® SO you can measure the compressibility of a fluid without touching it!

pkg Tk = lim S(k).
k—0
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Summary of chapter 1

e the structure of fluids is determined by the interparticle interactions

(1.1)

e radial distribution function g(r): density at distance r from a given particle,
normalised by the average density N/V. Knowing g(r), we can calculate e.qg.

e total energy
® pressure

e compressibility

e scattering experiments probe Fourier components of density fluctuations

20




Chapter 2: Time dependent properties of liquids
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Dynamic properties of liquids

e cven when a liquid appears to be at rest macroscopically, microscopically the
molecules are continually changing their positions and velocities

¢ therefore most observable quantities fluctuate in time
l n

. T ] T ] I [ T

' ' q e.g. velocity of a diatomic particle
‘ (in a fluid) along its bond direction G
\

TR I T B

! L "
e characterise the dynamics of fluctuations by time correlation functions

F'! | (A®A©0) = Jim 1 / TdTA(TH)A(T).
0 | Loy
'U'"‘ (A(1)B(0)) = lim — /O drA(r +t)B(7).
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Properties of time-correlation functions

e it is easy to see that {A(t)A(0)) decays from {A?%) at t=0 to <A>2for large times

* in equilibrium, the origin of time is irrelevant, so

% (A(t+5)B(s)) = <A(t + s)B(s)> + <A(t + S)B(S)> =0

which gives the important property

<A(t + S)B(s)> = <A(t + S)B(s)> (2.4)

e with this we can also derive
(A A(0) =0 (2.5)
j—; (A(t + 5)B(s)) = — <A(t + S)B(s)> . (2.6)
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—xample: self-diffusion

e at =0 we label some particles in a dot of fluid;
each particle will diffuse away via a different path

e define conditional probability P(r,t) that a labeled particle is at r at time ¢,
given it was at r(0) at time t=0 —— P(r,0) = d(r — r(0))
OP(r,t)

o2
pra DV*P(r,t)

e Fick’s law states that

2
D = self-diffusion coefficient [m—]
S

24



Mean-square displacement and Einstein equation

e averaging over all possible paths, we find:

S0 —xOF) = [ @i -rop 20

_ D / & [r(t) — r(0)2 V2P(r, 1)

= D/d37“P(r,t)V2r2

— 6D,
e for a real fluid, Fick’s law only holds at large times (after many collisions)

= lim —<|r >

t—00 6

Einstein equation

25



Connection with the velocity autocorrelation

/!

(r(t) —r(0)]*) = /dt/dt” I

o~

e comparing with the Einstein equation, we find

D= ;/Ooodﬂv(t)-v(O)}.J

this is the Green-Kubo relation for the self-diffusion coefficient

(2.12)
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Velocity autocorrelation in a Lennard-Jones fluid
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Onsager’s regression hypothesis

“the average decouj of fluctuations is,
at large times and on macroscopic scales,
governed by the corresponding macroscopic laws” [

(A1) a0y = A0)a(t)

e macroscopic laws [the ones that determine «(t)]
usually apply to non-equilibrium situations

e multiplying by A(0) and averaging over all initial conditions
we get a useful equilibrium expression:

(A(H)A(0)) = (A?) a(t).J (2.14)
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Application 1: collective diffusion

e we're interested in the time dependence of density fluctuations

o) = ot s [ @ kb esp{—ik-r).

pk,t) = /d?’r {p(r,t) — p}exp{ik-r}.

e in order to apply Onsager, let’s first study the decay of a macroscopic
sinusoidal density fluctuation prepared at t=0




Decay of macroscopic density fluctuations

e Fick’s law applies here too, but now D is the collective diffusion coefficient

gt (271r)3’5(k’ t)exp {—ik - r}] = DV? [(2;)3’5(1{’ t)exp{—ik-r}|,
exp{—ik - r} (‘9,5%1;, ') = —D(k)k*p(k,t)exp{—ik-r},
pk,t) = pk,0)exp{—D(k)k*t}. (2.18)

e a macroscopic density fluctuation decays exponentially (at large times)
with a relaxation time given by

(k) = —

D(k)k?

short wavelength (large k) fluctuations decay rapidly
long wavelength (small k) fluctuations decay slowly

(relaxing a long wavelength inhomogeneity requires transport of
fluid particles over large length scales, which is a slow process)
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Microscopic equation for collective D [1/2]

® microscopic expression for density Fourier component:

pk,t) = /d?’fr{Zé(rrj(t)) p} exp {ik - r}

_ zN:eXp{ik-rj(t)}—(277)3,05(k). (2.19)
e Onsager: (p (k?t)l “(k,0)) = (p(k,0)p*(k,0)) exp {—D(k)k*t}
then  — o (A, 15" (k,0)) = {5(k,0)p"(k,0)) D(k
5 [ arss om0 = (pk.0)5(0) DY

k2 dt?
2

using ;T (A(t+s)B(s)) = — <A(t + s)B(s)> we can write this as

/ dr o (7 (,0)) = (41, 0)7 (k, 0)) D(R)

31



Microscopic equation for collective D [2/2]

e choose specific orientation for wavevector, say k = ke,;

/O dr <Z Z Vi (T)0;,(0) exp {ik (z(1) — zj(()))}> — (p(k,0)p*(k,0)) D(k).

e we find the Green-Kubo relation for the collective diffusion coefficient:

compare this with the Green-Kubo relation for the self-diffusion coefficient:

Dself _ /OOO % <Z vzz(t)vzz(0)>

1
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Application 2: shear viscosity

e suppose the fluid has a macroscopic velocity (flow) field v (r)

y
K

¢ neighbouring fluid elements exert forces on each other
e friction due to velocity differences

e momentum exchange due to migration of particles > X

e momentum exchange due to interactions between particles

e all these forces can conveniently be summarized in the stress tensor S

S transforms the normal 1N of a surface element d A

to the force dFF exerted by the fluid below the ﬁT /
surface element on the fluid above the fluid element:

_ L
dF, = = S.pigdA = — (S-q)_dA % /
B

33




Stress tensor for simple fluids

e simple fluids can be described by assuming that stress tensor consists of a
e part which is independent of the flow velocity, and a

e part which depends linearly on the instantaneous derivatives 6v,/0zz
(%a (91}5 2
@ _4Pp “n—
o+ om0 (37

shear
viscosity

pressure : :
VISCOSIty

e N.B. for complex fluids such as polymers, the stress tensor may actually
depend on the history of fluid flow
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Navier-Stokes and Stokes equations

e |aw of conservation of momentum + law of conservation of mass:

Navier-Stokes equation

e we focus on incompressible flow of simple fluids at small velocities:

[ Ovey  Oug
Saﬁ_n{(?—xg+8xa}_{P+(§n 'V}5aﬁ

Stokes equations

35



Decay of a macroscopic wavelike velocity field [1/2]

e consider a wavelike velocity field

271T)3g(k, t)exp {—ik - r}

pv(r,t) = :

e for an incompressible fluid the only possible
wavelike velocity field is a transversal one:

gk,t)-k=0.
® ¢.g. choose k along z and flow along y

Stokes equation then gives dP/0x = 0P/0z = 0
and taking the divergence of Stokes equation V2P = 0
so we get dP/dy = 0 too.

36



Decay of a macroscopic wavelike velocity field [2/2]

e Stokes’ equation is reduced to

Ov 0%v
mp(()—ty - 5’z2y

which may be rewritten in terms of g,

agy 2
—2 = _—nk
mp Y NK~ gy
n 9
k. t) = k.0 —— k¢t
gy( ; ) gy( ; )exp{ mp }

e a macroscopic wavelike velocity field decays exponentially (at large times)
with a relaxation time determined by the shear viscosity and the density:
mp

(k) = e

37



Microscopic equation for shear viscosity [1/3]

® microscopic expression for velocity field Fourier component

/d3 ZV] (r —r;(t)) exp{ik - r}
= ZVJ ) exp {ik - 1;(t)} .

e Onsager:  (gy(k,t)g;(k,0)) = (g,(k,0)g;(k,0)) exp {—ik%} same procedure>

mp

t
/ dT— (3 (K, 1) (k, 0)) = (gy (K, 0)g7:(k, 0) —exp{—ik%}

mp mp

small k: (g, (k,0)g;(k,0)) =~ (g4(0,0)g;(0,0)) <szyﬂ)yk> NkBTJ

e sowe find: n= hm/ dt— (mg,(k, 1) )mg, (k, 0))

V]CBT k—0

38



Microscopic equation for shear viscosity [2/3]

* write out the terms mg,(k,t)

mg,(k,t) Z-—I—lkmv t)v, ;(t)}exp {ikz;(t)}

39



Microscopic equation for shear viscosity [3/3]

e collecting everything, we get the Green-Kubo relation for the shear viscosity

where 0, is the microscopic stress tensor:

40



—xample: shear relaxation modulus of polymer melt

e shear relaxation modulus G(t) is the (macroscopic, linear) stress relaxation
following a sudden step strain

e we can determine G(t) and shear viscosity from
equilibrium simulations without actually shearing!

n=J, G(t)dt

Gty [Pa)
Gty [Pa)

melt of C400
polyethylene chains
with a shear viscosity of
0.2 Pa s (200 x water)

41



Summary of chapter 2

e most microscopic quantities fluctuate in time (due to thermal fluctuations);
time correlation functions reveal their dynamics

e Onsager: the average decay of fluctuations obey macroscopic laws

e using Onsager we derived Green-Kubo relations for transport properties

self-diffusion pelf — /O %<Zviz(t)viz(o)>

collective diffusion D(k) = ﬁ /O h dt% <Z > via(t)02(0) exp ik (=4() - zj(O))}>

. . V >
shear viscosity n = T |- dt (o,.(t)0,.(0))

42



Chapter 3:

SBrownian motion
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Colloidal liquids

¢ colloidal liquids contain particles much larger than the solvent molecules
(typically 1 nanometer to 1 micrometer)

il

e Brownian motion is caused by random collisions with solvent molecules

44



Friction and random forces on a colloidal particle

e suppose a colloidal particle (radius a, mass M) moves along a path R(t)

¢ colloid will collide on average more often on the front than on the back:
systematic force proportional and opposite to its velocity = friction

\ v F IR
_iv \A /V E:V
b ~ vV _evirE
/ & dt SV

e we can find an expression for the friction by solving Stokes’ equations
for a sphere moving through a hydrodynamic solvent:

§ = C/M — 67T778a/M

solvent viscosity 7,

45



Fluctuation-dissipation theorem [1/2]

t
V(t) = Ve & + / dr e *C=TF(¢)

0

e average evolution of velocity V depends on characteristics of
random force F(t). Suppose the random force has no memory

e what is the magnitude of the random forces, i.e. Cv,?
t
(V(t))y, = Ve ot + / dr e ¢¢=7) (F(7))v,
0
— V()e_gt

V() V(t)y, = Vi 42 / dr €2V, - (F(r))y

0

/ dr’ / dr e =TT (R (1) - F(7))y,

Vo (1 o2ty

_ o2t 4
Vite o€
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Fluctuation-dissipation theorem [2/2]

V) VD), = Ve s S (1- e
e colloid is in thermal equilibrium with the solvent, so <V > = 7

e from this follows the fluctuation-dissipation theorem

fluctuations are coupled to dissipation

47



—INstein relation for the selt-diffusion coetficient

e from the mean-square displacement...

R(t) = R0+— (1—e) + /dT/ dr’ e *TTR(r

2
(R(t) = Ro)?),, = ZQ (1— e )ﬁ?’fg (26t — 3+ o€ — %)
6kpT
tlggo<(R(t) —R0)2> - ]\Z t = 6Dt

... we find the Einstein relation for the self-diffusion coefficient

DkBCT)J (= ME = 6mnsa

D is independent of the mass of the colloid!

48



Overdamped motion?

e reconsider the evolution of the colloidal velocity

(Vt))v, = Voe™

3]€BT 1
T — —
M after

e colloid loses memory of Vi =

e traveled distance / radius ~ 107% — 1072

e on time scales on which particle configurations change,

we may restrict our attention to the positions only, and
average over the velocities

49



Smoluchowski equation [1/2]

e Question: how does a distribution of colloidal particles evolve in time when
they are also subjected to an external potential ®(R)?

U (R, Ry;t) is probability density to find a particle at position R at time ¢,
givenitwasatRgatt =0

* in the overdamped limit a flux J will exist, given by

1
J(R,Ro, t) = =DVY(R, Ry; t) — Z\Ij(Ra Ro;t)VO(R)

flux due to diffusion ' flux in downhill gradient
of the particles of external potential

e note that at equilibrium this re-confirms the Einstein relation:

)~ o[- eaT

kT




Smoluchowski equation [2/2]

¢ inserting the flux equation in an equation for particle number conservation,

%\IJ(R, Ro;t) = =V - J(R, Ry, ?)

... we arrive at the important Smoluchowski equation:

e this may be viewed as a generalization of Fick’s law

OP(r,t)
ot
P(r,0) = 6(r — r(0))

= DV?P(r,t)
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Langevin equations

e Smoluchowski equation describes how particle distribution functions change

e the corresponding explicit stochastic equations of motion for the particles
are called the Langevin equations

e the Langevin equations are used as a starting point
for many soft matter simulations and theories;
iIn the next chapter we will use them to build a theory of polymer dynamics
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Summary of chapter 3

e Brownian motion of colloids is caused by collisions with solvent molecules

e the random forces are related to the friction experienced by a colloid

kpT€
M

(F(t)-F(t')) =6 6(t —t') (fluctuation-dissipation theorem)

e or equivalently the diffusion is related to the friction

D = ]‘CBTT, (Einstein relation)
¢ motion of colloidal particles in an external potential
% = —%VCID + VD +f
(Langevin equations)
(f(t)) = 0

EWfE)) = 2DIs(t —1). Langev.m:'mu
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Intermezzo: hydrodynamic interactions

e note that Langevin equations neglect
hydrodynamic interactions:
when a colloid moves, it induces a solvent flow
which affects the motion of other colloids too

e example: sedimentation of micron-sized colloids
In a closed vessel under the influence of gravity
¢ hydrodynamic interactions may be neglected
e at very low colloid concentration, or

¢ when other interparticle interactions dominate

Tl I I yITYTYT' -

..OQ..Oﬂobtig.DQQ.’Q
T Il I T IYT I
PRASRRPER AP ROSRAPSE
I Y IT YAl I I
PRIt
'S YA A AT T RTINS TR
S F E I P T Y TR RS I R NTY Y

Tl T T AAA R IT TR AT Y
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Chapter 4:

The dyna

mics of unentangled polymer liquids
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Polymer liquids

® l[ong molecules consisting of
N =100 - 100.000 identical monomers

e characteristics of polymeric liquids:

e high shear viscosity 7]

e often highly elastic
(memory in shear relaxation modulus G(t))

¢ slow dynamics
(low diffusion coefficient)

56



Conformations of a polymer

¢ specified by N+1 backbone atom positions
R07R17°"7RN

or by N bond vectors
r,=Ri—Rg,...,rtn =Ry — Ry

¢ |arge scale properties independent of chemistry:
N

e.g. end-to-end vector R = Ry — Ry = Z r;

1=1

often has a Gaussian distribution : 7%

3 Y 3R
SHR;N) = { 2 ND? } P {_ IND? }

WHY? / V

57



The central Imit theorem

e if enough consecutive monomers are
combined into one segment, vectors
connecting the segments are independent
(neglecting long-range excluded volume)

l.e. the probability density for segment-to-
segment bond vectors factorizes:

\If(rN) = H@b(rz)

e now suppose ¥ (r;) depends only on length of bond vector;
define the statistical segment (or Kuhn) length b as {r*) = / d*r ra(r) = b

e the central limit theorem then states that for large N, irrespective of the
precise form of ¥ (r;), the distribution of ¥ (r") will be Gaussian

58



Polymer elasticity

¢ end-to-end vector distribution

e entropy and free energy of a polymer chain in which R is kept constant:

3k R*

S(R;N)=kgInQ(R; N) =5, — TN

3kpT R*

A=U-TS=A+

entropic spring with spring constant

- 3kT
- Nb2

59



(Gaussian chain

e simplest polymer model: every bond is Gaussianly distributed

3 )3° 3
TR

e mechanical equivalent: beads connected by springs

1

N
®(T1,---,PN):§/€ZTZ-2 W
i=1
3k T (\N(\
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From statics to dynamics

e statics: Gaussian chain (‘NNC w%(\

e dynamics: collisions with neighbouring particles cause

e friction forces on each bead -EV

e random forces on each bead

e note that the resulting Rouse model
e neglects hydrodynamic interactions (important in dilute polymer solutions)
e neglects entanglements (important for very long polymers)

e applies best to melts of relatively short polymer chains (100 monomers)

61



Langevin equations for the Rouse chain

e each bead feels the same friction ¢ FNW&%\

e for each bead, the external potential is
generated by bonds to predecessor and

SUCCEeSSOr
dR SkgT
dR,, SkgT
dt - C§2 (2Rn — Rn—l — Rn-l—l) - fn
dR kT
d—tN = - C; (Ry —Ry-1) + fy

<fn (t)> = 0
(£, ()£, () = 2DI6,,.6(t —t).

(BN+3) coupled stochastic differential equations



Normal modes [1/3]

e first ignore the random forces and try a specific solution of the form

R, (t) = X(t) cos(an + ¢)

this yields

dX kT
— - cosc = —3<§2 {cosc —cos(a+¢)} X (4.17)

X T
Cii—t cos(na+c) = — 3?;2 4sin*(a/2) cos(na + ¢)X (4.18)

dX 3kpT

ECOS(NaJrC) - 52 {cos(Na +¢) — cos (N = L)a +¢)} X,

(4.19)

[make use of cos(z + y) = cos(x) cos(y) — sin(x) sin(y)
and sin(z + y) = cos(x) sin(y) + sin(z) cos(y)]



Normal modes [2/3]

e consistent description of boundaries of chain if we choose

4sin”(a/2) cosc

cos ¢ — cos(a + ¢)

cos(Na+c¢) —cos (N —1)a+c¢) = 4sin*(a/2)cos(Na + c)
v
cos(a —c¢) = cosc
cos ((N+1)a+c) = cos(Na+c)

¢ we find independent solutions from
a—Cc = ¢C

(N+1)a+c = p2n— Na—c

where p Is an integer
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Normal modes [3/3]

¢ so set of differential equations is decoupled by

R, (1) = X(t) cos | ot 1)]

¢ to find the general solution, we form a linear combination of all independent
solutions by taking p intherangep =0, ..., N

N
1
R, :X0—|—QZXPCOS [Npil(n—l——)]

p=1

¢ this may be inverted to

Xy = N+1ZR COS{ 1(”+;)}




Rouse modes

® in summary, the equations are decoupled by transforming to

called the Rouse modes. The equations of motion for the Rouse modes are

pr B SkBT . 9 yuus
7 - o2 4 sin (Q(N 1)> p + Fp
F,(1) = 0
FoFo(t)) = 1ot —1)
F)OF (1)) = Wbt —1)  (p+a>0)

wherep,g=0, ..., N
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Centre-of-mass motion

e p = 0: centre-of-mass motion of the polymer chain
N
1

- —— N"R,
N +1

n=0

X0

Xo(t) = Xo(0)+ /t dr Fo(7) (4.36)

denlt) = (Xa(0) = Xo(0)%) = ( [[ar [ a7 Bor) Bl

6D
N +1

t = 6Dgt. (4.37)

the Rouse model predicts that the diffusion coefficient of a (unentangled)
polymer in a melt scales inversely with its molecular weight!

this is confirmed in experiments and computer simulations
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Internal motion of the polymer chain

e p =1, ..., N: independent vibrations of the polymer chain,
wavelength corresponding to a subchain of N/p segments

t
X, () = X, (0)e "™ + /0 dr e -D/BE (1) /-

Ty Is the characteristic relaxation time of mode p
71 is the relaxation time of the slowest mode (Rouse time Tgr)

the time correlation functions of the Rouse modes are given by
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Rouse mode amplitudes

e statistical weight (probability) of a configuration

1

P(Ry,...,Ry)=—=exp |—

Z

3

22

N

> (R, — Ry’

n=1

transformation to Rouse coordinates is a linear transformation,
so Jacobian of transformation is a constant:

1
P (Xg,...,XnN) = — €Xp

this is a product of independent Gaussians, therefore

b2

——N+ ZX . X, sin’ (2(

(x3) -

8(N + 1) sin” (

pT

2(N+1))

(N+1)b* 1

\ 271'2 p2

ifp<<N

pir

N+1)

)




comparison with atomistical
simulations of a C120 polye

Predictions of the Rouse model;
y detalled

hylene melt
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Time correlation of the end-to-end vector

R:RN—RQZQZXP{(—l)p_l}COS [2(N—|— ] :—42 X,

p=1
N / 1.0 ¢
(R(t) - R(0)) =16 ) (X, (t) - X,,(0))
p=1
8b° 1 —tjr, <N os L Rouse model
B F(NJFDZ ]?e p § | rediction
p=1 A P
A _
o
T 06
v simulation
04 1 | 1 | 1 | 1
0 1000 2000 3000 4000

t [ps]
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Segmental motion [1/2]

Rn:XO—I—QEN:XpCOS [Npil(n—l_%)] KN‘F%X\@\“

p=1

® mean-square displacement of segment n %2}

(Ru(t) = R,(0))°) = ((Xo(t) — Xo(0))")

+4 > ((X,(t) — X,(0))*) cos? [Np:z o %)]

e mean-square displacement of a typical segment (average over all n)
1 N
() = —— R,(t) — R, (0))’
Jseg (1) N1 (Ra(t) (0))7)

n=0

N
= 6Dgt+4) (X7)(1—e /™)

p=1



Segmental motion [2/2]

e good agreement with simulations 10" E
(for displacements > segment size) ; :
— 10° A E
S ]
S ;
e long time limit: S0 L
Jseg(t) = 6 Dgt (t> 1) T o - q... Rouse, infinite N
- —- O, ROUsSE, T, exact -
e intermediate times: 107 ¥ e FOUSE
2b2 1 —t 2/7- _O — llll1 l lllllll2 l llllllll3 = llllll4 —
Jseg(t) = — (N +1) dp (1 —e P 1) 10 10 10 10 10 10
m t [ps]
20 2 /7
= 7T2(N+1)/ p—/dtet/1
20° (N + 1) 1
= —/TTT1
2 \/_
12k T62
— ( jC ) th/2 (T <t <1, N>1)
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Stress and viscosity

e remember the Green-Kubo relations for viscosity & shear relaxation modulus

n:fooo
G(t)

|
N
m ‘
~
S
Q
Ny
N
N
N~
N——"
S
Ny
N
N
-
N——"
~~—

Niot Niot—1 Niot
:——<ZMVV+ > ) Ri-Ry) )

=1 =141
® microscopic stress tensor is a collective property

e sums run over all segments of all polymer chains in the system
¢ Rouse model: dynamics of one chain uncorrelated with that of another
e we can study stress relaxation of single chain and make ensemble average

e overdamped: kinetic contribution to stress may be neglected
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Microscopic stress tensor of a Rouse chain

¢ the forces are due to the entropic springs connecting the segments:

N
1 Z 3kpT

e rewrite in terms of Rouse modes

1 3kgT
o = V2 Z (Rn—l — Rn) (Rn—l — Rn)
n=1
N N N
1 48kg5T , ™ 7
— X, X
poo 2ok (7 ) ()
S e sin 1
in
N +1 2(N +1)
N N
1 24kgT 5 P SkpT X, X,
— N X, X —
Voo Z pp S (2(N+1)) vV Z<X2>
p=1 p=1 p
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Stress relaxation in a melt of Rouse chains

e we need averages of
2 N N

_(3ETN T N e (8) Xy (1) X2 (0) Xy (0)
im0 = (77) 23 =

¢ Rouse modes are Gaussian variables:

(Xpa (1) Xpy () Xgo (0) Xy (0)) = (Zm=a10) (Xort8=2510))

76



Viscosity of a melt of Rouse chains

N
> Ck’BTTl 1
77:/ dtG(1) >
0 N+12p1p
CkBTTlﬂ'Q CCbQ

~ = ——(N+1
N+12 6 36(+)

n(t) [cP]

e viscosity scales linearly with molecular
weight of the polymer

® in good agreement with experiments and
simulations of unentangled polymer melts

measured "
---- Rouse N=13,t,=6ns = __--~

-

)

200

400 600 800 1000

t [ps]

= [ 4G
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Summary of chapter 4

¢ |arge scale properties of polymers are independent of chemistry;
end-to-end vector distribution is Gaussian

e Rouse model = Gaussian chain + Langevin equations for segments;
normal mode analysis reveals characteristic scalings:

T1 X N2 longest relaxation time
Do o N -1 diffusion of the centre-of-mass

n o< N shear viscosity

iIn agreement with experiments & simulations of unentangled polymer melts
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The end
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