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Chapter 1

Structure in liquids and gases

1.1 Probability density

Consider a closed box of volume V at temperature T filled with a fluid (liquid or
gas) consisting of a large number N of identical molecules. For our purposes we may
assume each molecule to be a rigid object with a given position and orientation.
According to classical statistical mechanics, these positions and orientations are
not completely random. Rather, at not too low temperature T ,1 the probability
density for encountering a certain configuration of 3N position and 3N orientation
coordinates, in shorthand denoted by R6N , is given by the Boltzmann distribution
function:

P (R6N) =
1

Z
exp

(

−Φ(R6N )

kBT

)

, (1.1)

where Φ(R6N ) is the total potential energy of the configuration, kB = 1.38065 ×
10−23 J/K = 8.617× 10−5 eV/K is Boltzmann’s constant, and Z is a normalisation
constant, referred to as the configuration integral.

The positions and orientations are not completely random because the total po-
tential energy Φ contains terms which depend on the relative positions and orienta-
tions of two or more molecules. The details of such molecular interactions determine
the precise structural and dynamical properties of a fluid.

1.2 Pair interactions of spherical molecules

To focus on the essentials we will treat the simplest case, namely that of neutral
spherical atoms.2 Suppose we have just two atoms, fixed with their nuclei at posi-
tions r1 and r2, as in Fig. 1.1. We can write the total ground state energy of the

1At very low temperatures the discreteness of the energy levels becomes apparent. In that
case the classical view needs to be replaced by a quantum mechanical one and other distribution
statistics apply, like Bose-Einstein statistics for ideal bosons and Fermi-Dirac statistics for ideal
fermions.

2Noble gases such as argon and krypton are excellent examples of neutral spherical atoms.
Additionally, we may treat nearly spherical molecules, such as methane, in a similar way. For
“atom” one should then read ”spherical molecule”.
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1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.1: Pictorial representation of the
interaction between two neutral spherical
atoms. The nuclei (+) are much heav-
ier than the electrons (-). In the Born-
Oppenheimer approximation, the nuclei
move in effective (electronically averaged)
potentials. Nuclear translation, rotations
and vibrations can therefore be treated by
using classical mechanics.
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Figure 1.2: The total interatomic in-
teraction between two neutral spherical
atoms is well described by the Lennard-
Jones formula, Eq. (1.4). At large dis-
tances the van der Waals attraction is
dominant. At short distances the atoms
repel each other because of the Pauli ex-
clusion principle. The diameter of the
atom may be defined as the distance σ
where these two interactions exactly can-
cel out.

two atoms as

ǫ0(r1, r2) = ǫ0(r1) + ǫ0(r2) + ϕ(r1, r2). (1.2)

Here ǫ0(r1) is the ground state energy of atom 1 in the absence of atom 2, and simi-
larly for ǫ0(r2). So the term ϕ(r1, r2) is the correction to the sum of two unperturbed
ground state energies of the atoms. This term is also called the interatomic inter-
action or interatomic potential. Because of the rotational symmetry of the atoms,
the interatomic potential only depends on the distance r12 = |r1 − r2| between the
two atoms, i.e.

ϕ(r1, r2) = ϕ(r12). (1.3)

It is also clear that because of its definition ϕ(∞) = 0. At finite distances, the
electrons in one atom will feel the electrons in the other atom. A classical picture
would be the following: the charge distribution in an atom is not constant, but
fluctuates in time around its average. Consequently, the atom has a fluctuating
dipole moment which is zero on average. The instantaneous dipoles in the atoms,
however, influence each other in a way which makes each dipole orient a little in
the field of the other. This leads to the so-called van der Waals attraction between
two neutral atoms. The van der Waals attraction becomes stronger as the atoms
get closer to one another. At a certain point, however, the atoms will repel each
other because of the Pauli exclusion principle. The total interatomic interaction as
a function of distance is well described by the Lennard-Jones formula (see Fig. 1.2):

ϕ(r) = 4ǫ

{

(σ

r

)12

−
(σ

r

)6
}

. (1.4)
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1. STRUCTURE IN LIQUIDS AND GASES

The parameter ǫ is the depth of the interaction well, and σ is the diameter of the
atom. The values of ǫ and σ are characteristic for each atomic species. For example
for argon ǫ/kB = 117.7 K and σ = 0.3504 nm, for krypton ǫ/kB = 164.0 K and
σ = 0.3827 nm, and for methane ǫ/kB = 148.9 K and σ = 0.3783 nm. Note that at
room temperature the magnitudes of ǫ are of the same order as the thermal energy
kBT . This is important for fluid behaviour: the intermolecular interactions are weak
enough to allow the structure to change dynamically under the influence of thermal
fluctuations. This is hardly allowed in a solid.

When dealing with more than two spherical molecules, it is often assumed that
the total potential energy may be approximated as a sum of pair interactions (in
practice this is often a reasonable assumption):

Φ (r1, . . . , rN) =
N−1
∑

i=1

N
∑

j=i+1

ϕ(rij). (1.5)

The double sum is constructed such that each pair interaction is counted only once.

1.3 The radial distribution function

The interactions between the molecules in a liquid or gas cause correlations in their
positions. The aim of almost all modern theories of liquids is to calculate the
radial distribution function by means of statistical thermodynamical reasoning. Al-
ternatively, the radial distribution function can be measured directly in computer
simulations. We will discuss its use in calculating the energy, compressibility and
pressure of a fluid, with a particular application to a hard sphere fluid.

1.3.1 Definition

Imaging we have placed ourselves on a certain molecule in a liquid or gas (Fig. 1.3).
Now let us count the number of molecules in a spherical shell of thickness dr at
a distance r, i.e. we count the number of molecules within a distance between r
and r + dr. If r is very large the measured number of molecules will be equal to
the volume of the spherical shell times the number density ρ = N/V , so equal to
4πr2drN/V . At distances smaller than the diameter of the molecules we will find
no molecules at all. We now define the radial distribution function g(r) by equating
the number of molecules in the spherical shell of thickness dr at a distance r to

4πr2
N

V
g(r)dr. (1.6)

According to our remarks above, g(∞) = 1 and g(0) = 0. A typical g(r) is given in
Fig. (1.3). We see that g(r) = 0 when r is smaller than the molecular diameter σ.
The first peak is caused by the attractive part of the potential; at distances where
the potential has its minimum there are more particles than average. Consequently
at distances less than σ further away there are less particles than average.
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1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.3: A typical radial distribution
function in a liquid of spherical molecules
with diameter σ. The radial distribution
function g(r) measures the local number
density of particles at a distance r from
a given particle (black circle), relative to
the average number density ρ = N/V .

1.3.2 Statistical formulas for g(r)

Integrating the probability density for a configuration of N spherical particles, cf.
Eq. (1.1), over the coordinates of all particles except the first two, we find

P12(r1, r2) =
1

Z

∫

d3r3 . . .

∫

d3rN exp

(

−Φ(r3N )

kBT

)

, (1.7)

where P12(r1, r2) is the probability density to have particle 1 at r1 and particle 2 at
r2. For convenience of notation we write

P12(r, r
′) =

1

Z

∫

d3r3 . . .

∫

d3rN exp

(

−Φ(r3N )

kBT

)
∣

∣

∣

∣

r1=r,r2=r′

. (1.8)

Because all particles are equal, this is equal to the probability density P1j(r, r
′) of

having particle 1 at r and particle j at r′. The probability density of having particle
1 at r and any other particle at r′ equals

∑

j 6=1

P1j(r, r
′) = (N − 1)P12(r, r

′) (1.9)

1

V
ρg(|r− r′|) = (N − 1)P12(r, r

′) (1.10)

This is equal to the probability density of having particle 1 at r, which is simply
1/V , times the conditional density at r′, which is ρg(|r− r′|). Multiplying by N we
get

ρ2g(|r− r′|) = N(N − 1)P12(r, r
′). (1.11)

We will need this expression in the next subsection.
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1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.4: The com-
pressibility of a fluid is
a measure for the magni-
tude of spontaneous fluc-
tuations in the number of
particles (black circles) in
an open volume V (indi-
cated by a dashed line).

1.3.3 Relation between the radial distribution function, en-

ergy, compressibility and pressure

Once we know g(r), we can derive all non-entropic thermodynamic properties.

Energy

The simplest is the energy:

U = U int +
3

2
NkBT +

1

2
N
N

V

∫ ∞

0

dr4πr2g(r)ϕ(r). (1.12)

The first term originates from the internal energies of the molecules, the second from
the translations, and the third from the interactions. The average total potential
energy equals 1

2
N times the average interaction of one particular molecule with all

others; the factor 1
2
serves to avoid double counting. The contribution of all particles

in a spherical shell of thickness dr at a distance r to the average interaction of one
particular particle with all others is 4πr2dr(N/V )g(r)ϕ(r). Integration finally yields
Eq. (1.12).

Compressibility

The isothermal compressibility κT is defined as:

κT ≡ − 1

V

(

∂V

∂P

)

T,N

(1.13)

From thermodynamics it is known that κT can be linked to spontaneous fluctuations
in the number of particles in an open volume V , see Fig. 1.4:

〈N〉 ρkBTκT =
〈

(N − 〈N〉)2
〉

=
〈

N2
〉

− 〈N〉2 , (1.14)

where the pointy brackets indicate a long time average or an average over many
independent configurations commensurate with the thermodynamic conditions (in
this case constant temperature T and volume V ). From Eq. (1.11) we obtain (where
r12 = |r1 − r2|):

∫

V

d3r1

∫

V

d3r2ρ
2g(r12) = 〈N(N − 1)〉 =

〈

N2
〉

− 〈N〉 . (1.15)
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1. STRUCTURE IN LIQUIDS AND GASES

We can use this to link the compressibility to the radial distribution function:

〈N〉 ρkBTκT = ρ

∫

V

d3r1ρ

∫

V

d3r2g(r12) + 〈N〉 − ρ

∫

V

d3r1ρ

∫

V

d3r2

= ρ

∫

V

d3r1ρ

∫

V

d3r2 (g(r12)− 1) + 〈N〉

= ρ

∫

V

d3r1ρ

∫

R3

d3r (g(r)− 1) + 〈N〉 (1.16)

Dividing by 〈N〉 we find

ρkBTκT = 1 + ρ

∫

R3

d3r (g(r)− 1) . (1.17)

This so-called compressibility equation shows that the compressibility of a fluid is
intimately connected to the radial distribution function of its constituent molecules.

Pressure

We will now consider the pressure of a fluid. If the density of the fluid is not too
high, correlations between three or more particles may be ignored, in which case
Eq. (1.1) tells us that the radial distribution function is given by

g(r) ≈ exp {−βϕ(r)} , (1.18)

where ϕ(r) is the pair interaction potential. Also for not too high densities, the
pressure of a fluid is to a good approximation given by the first two terms in the
virial equation

PV = NkBT

(

1 +B2(T )
N

V

)

, (1.19)

where B2(T ) is called the second virial coefficient.3 Our goal now is to link B2(T ) to
the radial distribution function g(r) or pair interaction ϕ(r). This may be achieved
by differentiating the virial equation to V :

(

∂P

∂V

)

N,T

V + P = −NkBTB2(T )
N

V 2

− 1

κT
+
NkBT

V

(

1 +B2(T )
N

V

)

= −NkBTB2(T )
N

V 2

ρkBTκT = 1− 2B2(T )
N

V
. (1.20)

Comparing the two expressions for the compressibility, Eqs. (1.17) and (1.20), we
can write the second virial coefficient as a three-dimensional integral over the pair
interaction ϕ(r):

B2(T ) = −1

2

∫

R3

d3r
(

e−βϕ(r) − 1
)

. (1.21)

3In principle the virial equation also contains higher order terms in N/V with corresponding
third, fourth, etc, virial coefficients. These become important at higher densities than considered
here.
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1. STRUCTURE IN LIQUIDS AND GASES

The above equation is important because it allows us to calculate the pressure of a
fluid knowing only the pair interaction ϕ(r) between its constituent molecules. In
the next section we will apply this to a hard sphere fluid.

1.3.4 The hard sphere fluid

In many theories of liquids the hard sphere fluid is used as a reference system, to
which interparticle attractions are added as a perturbation. It is therefore useful
to study the radial distribution function, second virial coefficient and pressure of a
hard sphere fluid.

The pair interaction in a hard sphere fluid is given by

ϕ(r) =

{

∞ for r ≤ σ
0 for r > σ

(1.22)

At very low densities the radial distribution function and second virial coefficient
are therefore given by

g(r) ≈
{

0 for r ≤ σ
1 for r > σ

(1.23)

B2 = −1

2

∫

d3r
(

e−βϕ(r) − 1
)

= 2π

∫ σ

0

drr2 =
2

3
πσ3. (1.24)

According to Eq. (1.19), and using η = 1
6
πρσ3 for the volume fraction of spheres,

the pressure of a hard sphere fluid can be expressed as:

P = ρkBT (1 + 4η) . (1.25)

The above expressions are valid for not-too-high densities. At higher densities
the probability to find another hard sphere in (near-)contact with a given hard
sphere is higher than 1, and the pressure is higher than predicted by the second
virial coefficient alone. Using a computer one has calculated that the pressure for
more general densities is given by:

P

ρkBT
= 1 + 4η + 10η2 + 18.365η3 + 28.24η4 + 39.5η5 + 56.6η6 + . . .

(1.26)

This is approximately

P

ρkBT
= 1 + 4η + 10η2 + 18η3 + 28η4 + 40η5 + 54η6 + . . . (1.27)

Extrapolating and summing we find

P

ρkBT
= 1 +

∞
∑

n=1

(n2 + 3n)ηn =
1 + η + η2 − η3

(1− η)3
. (1.28)

This is called Carnahan and Starling’s equation for the pressure of a hard sphere
fluid. Monte Carlo simulations of hard sphere fluids have shown that Eq. (1.28) is
nearly exact at all possible volume fractions.
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1. STRUCTURE IN LIQUIDS AND GASES

k in

k out

Figure 1.5: An incoming wave with
wave vector kin is scattered and anal-
ysed in the direction kout, with |kin| =
|kout| for elastic scattering. The scat-
tered intensity depends on density fluc-
tuations inside the fluid.

1.4 Scattering and the structure factor

In the precious section we have linked the compressibility of a fluid to spontaneous
fluctuations in the number of particles in a large volume. More generally, density
fluctuations in a fluid can be described by means of their Fourier components:

ρ(r) = ρ+
1

(2π)3

∫

d3k ρ̂(k) exp {−ik · r} , (1.29)

ρ̂(k) =

∫

d3r {ρ(r)− ρ} exp {ik · r} . (1.30)

The microscopic variable corresponding to a density Fourier component is4

ρ̂(k) =

∫

d3r

{

N
∑

j=1

δ (r− rj)− ρ

}

exp {ik · r} , (1.31)

where δ(r) = δ(x)δ(y)δ(z) is the three-dimensional Dirac delta-function. This may
be rewritten as

ρ̂(k) =
N
∑

j=1

exp {ik · rj} − ρ

∫

d3r exp {ik · r}

=
N
∑

j=1

exp {ik · rj} − (2π)3ρδ(k). (1.32)

Density fluctuations in a fluid can be measured experimentally by means of
scattering of light, neutrons, or X-rays (depending on the scale of interest), see
Fig. 1.5. The scattered intensity also depends on details such as wave polarization
and scattering strength or form factor, but generally scattering experiments measure
correlation functions of Fourier components of the density. The correlation function
of ρ̂(k) with its complex conjugate ρ̂∗(k) = ρ̂(−k), i.e. the mean square of the
density fluctuation with wave vector k, is a real function of the wavevector, called
the structure factor S(k):

S(k) ≡ 1

N
〈ρ̂(k)ρ̂∗(k)〉 . (1.33)

4In order to avoid overly dressed symbols, we use the same symbol for the macroscopic quantity
and the microscopic variable. In general a microscopic variable Amicr is an expression given
explicitly in terms of positions and/or velocities of the particles, which after ensemble averaging
yields the corresponding macroscopic quantity A, i.e.

〈

Amicr
〉

= A. For example the microscopic

density at r is given by ρmicr(r) =
∑

j δ(r−rj), and the macroscopic density by ρ(r) =
〈

ρmicr(r)
〉

.
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1. STRUCTURE IN LIQUIDS AND GASES

The division by N leads to a quantity which for large enough systems is independent
of system size (that is to say, the mean square density fluctuations grow linearly with
system size). The structure factor gives a lot of information about the structure of
a fluid. It is essentially a Fourier transform of the radial distribution function, as
can be shown as follows:

S(k) =
1

N

〈

N
∑

j=1

N
∑

k=1

exp {ik · (rj − rk)}
〉

− ρ2

N

∫

d3r

∫

d3r′ exp {ik · (r− r′)}

= 1 +
1

N

〈

N
∑

j=1

N
∑

k 6=j

exp {ik · (rj − rk)}
〉

− ρ

∫

d3r exp {ik · r}

= 1 + ρ

∫

d3r [g(r)− 1] exp {ik · r} . (1.34)

Comparison with Eq. (1.17) shows, perhaps surprisingly, that the compressibility
of a fluid can be obtained not only by compressing the fluid and measuring the
pressure, but also by performing a scattering experiment:

ρkBTκT = lim
k→0

S(k). (1.35)
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1. STRUCTURE IN LIQUIDS AND GASES

Problems

1-1. A simple generalisation of the hard sphere fluid is the square well fluid, which
also includes attraction between the spherical particles. The pair interaction in a
square well fluid is given by

ϕ(r) =







∞ for r ≤ σ
−ǫ for σ < r < λσ
0 for r ≥ λσ

Make a sketch of the pair interaction. Make a sketch of the radial distribution
function at low density. Calculate the second virial coefficient for a square well
fluid.
1-2. Using spherical coordinates and choosing the k-vector along the z-axis, show
that the structure factor of an isotropic fluid can also be written as

S(k) = 1 + 4πρ

∫ ∞

0

drr2 [g(r)− 1]
sin(kr)

kr

Calculate the structure factor of a hard sphere fluid at low density. What is the
limit for small k?

14



Chapter 2

Time dependent properties of

liquids

2.1 Time correlation functions

In the rest of these lectures we will focus on time dependent properties of liquids,
i.e. their dynamics. Even when a fluid appears to be at rest macroscopically, mi-
croscopically the molecules are continually changing their positions and velocities.
Most observable quantities therefore fluctuate in time and we need a way to charac-
terise the dynamics of these fluctuations. We do this by means of time correlation

functions. For a quantity A, the time correlation function is defined as

〈A(t)A(0)〉 = lim
T→∞

1

T

∫ T

0

dτA(τ + t)A(τ). (2.1)

When t = 0, we get the average of A2. When t→ ∞, A(t + τ) will be unrelated to
A(τ) and the result will be 〈A〉2. From Schwarz’s inequality we get 〈A(t)A(0)〉 ≤
{〈A(t)A(t)〉 〈A(0)A(0)〉}1/2 = 〈A2〉. So, 〈A(t)A(0)〉 decays from 〈A2〉 at t = 0 to
〈A〉2 for very large times.

A simple generalisation of Eq. (2.1) is

〈A(t)B(0)〉 = lim
T→∞

1

T

∫ T

0

dτA(τ + t)B(τ). (2.2)

When B = A, as in Eq. (2.1), we speak about autocorrelation functions.
In equilibrium, the origin of time is irrelevant, which means that 〈A(t+ s)B(s)〉

is independent of s. Hence, using a dot over a quantity to indicate its time derivative,
the following must be true in equilibrium:

d

ds
〈A(t+ s)B(s)〉 =

〈

Ȧ(t + s)B(s)
〉

+
〈

A(t + s)Ḃ(s)
〉

= 0, (2.3)

from which we obtain the important property:

〈

Ȧ(t+ s)B(s)
〉

= −
〈

A(t+ s)Ḃ(s)
〉

(2.4)
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.1: Self-diffusion:
each particle, initially resid-
ing within a very small dot,
will diffuse away via a differ-
ent path.

For the initial slope of an autocorrelation function this says that

d

dt
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= 0, (2.5)

i.e. any time autocorrelation function starts out with a horizontal slope.
From Eq. (2.4) we can also derive the useful relation

d2

dt2
〈A(t+ s)B(s)〉 = −

〈

Ȧ(t+ s)Ḃ(s)
〉

. (2.6)

We will need this in section 2.3 when dealing with collective diffusion. For the initial
decay of an autocorrelation function this says that

d2

dt2
〈A(t)A(0)〉

∣

∣

∣

∣

t=0

= −
〈

Ȧ2
〉

< 0, (2.7)

i.e. any time autocorrelation function is initially curved negatively.

2.2 Self-diffusion and the velocity autocorrelation

function

Suppose we label some particles inside a very small region (a dot) in an otherwise
homogeneous fluid, at time t = 0 at position r(0), as in Fig. 2.1. When the dot,
although on a macroscopic scale concentrated at r(0), is dilute enough on a molecular
scale, we may consider the concentration decay as due to the self-diffusion of the
separate labeled particles. The conditional probability P (r, t) that a particle is at r
at time t, given it was at r(0) at time t = 0, may then be obtained from Fick’s law:

∂P (r, t)

∂t
= D∇2P (r, t), (2.8)

together with the boundary condition P (r, 0) = δ(r − r(0)). D is the self-diffusion
coefficient, which has units of length squared over time (m2/s). The mean square
displacement of the labeled particles can be related to the self-diffusion coefficient
as follows:

d

dt

〈

|r(t)− r(0)|2
〉

=

∫

d3r |r(t)− r(0)|2 ∂P (r, t)
∂t

= D

∫

d3r |r(t)− r(0)|2∇2P (r, t)

= D

∫

d3rP (r, t)∇2r2

= 6D, (2.9)
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.2: Typical velocity autocorre-
lation function in a liquid. In this figure
the relatively fast initial decay is clearly
visible, whereas the slow decay at larger
times is not. Nevertheless, the slow de-
cay contributes considerably to the self-
diffusion coefficient, Eq. (2.12).

where we have used partial integration and the fact that P (r, t) and its derivative
are zero far from r(0). For real fluid particles Fick’s law only holds for large values
of t.1 Integration of Eq. (2.9) yields the Einstein equation

D = lim
t→∞

1

6t

〈

|r(t)− r(0)|2
〉

. (2.10)

We may transform this equation to an expression involving the autocorrelation of
the velocity v = ṙ of a labeled particle:

〈

|r(t)− r(0)|2
〉

=

∫ t

0

dt′
∫ t

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′) · v(t′′)〉

= 2

∫ t

0

dt′
∫ t′

0

dt′′ 〈v(t′ − t′′) · v(0)〉

= 2

∫ t

0

dt′
∫ t′

0

dτ 〈v(τ) · v(0)〉

= 2

∫ t

0

dτ(t− τ) 〈v(τ) · v(0)〉 . (2.11)

The last step follows after partial integration. Comparing with the Einstein equa-
tion (2.10), taking the limit for t→ ∞, we finally find

D =
1

3

∫ ∞

0

dt 〈v(t) · v(0)〉 . (2.12)

The is the Green-Kubo relation for the self-diffusion coefficient.
In Fig. 2.2 a typical velocity autocorrelation is shown. After a short time the

autocorrelation goes through zero; here the particle collides with some other particle
in front of it and it reverses it’s velocity. For large values of t the velocity autocorre-
lation scales as t−3/2, which is a hydrodynamic effect. This very slow decay is often
difficult to detect.

1At short times the fluid particles are not yet moving completely randomly. For example, they
may still be trapped inside a temporary cage formed by their neighbours. Fick’s law applies to
time scales on which the particles are diffusing freely.
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

2.3 Onsager’s regression hypothesis

In the previous section we made use of the fact that the microscopic self-diffusion
of a labeled particle in a liquid may for large times be described by a macroscopic
law. We shall generalise this approach using Onsager’s regression hypothesis.

Consider an observable quantity A having zero mean, 〈A〉 = 0. Due to fluc-
tuations, however, A will have a nonzero value at (almost) all instants. Onsager’s
regression hypothesis says that the decay of this fluctuation at large times and on

macroscopic scales will be governed by the corresponding macroscopic laws.

Notice that the macroscopic laws usually apply to non-equilibrium situations. In
formula Onsager’s hypothesis says

〈A(t)〉A(0) = A(0)α(t), (2.13)

where α(t) is determined by macroscopic laws. The average is a conditional average:
it expresses the average time development of A, given that it was A(0) at t = 0.
Multiplying by A(0) and averaging over all initial conditions we get

〈A(t)A(0)〉 =
〈

A2
〉

α(t). (2.14)

The averages are now simple equilibrium averages. We shall illustrate the use of
Eq. (2.14) with two examples in the next two sections.

2.4 Collective diffusion

2.4.1 Decay of macroscropic density fluctuations

In the first example, we will focus on the time dependence of density fluctuations
in a liquid. Following Eqs. (1.29) and (1.30), we describe density fluctuations by
means of their Fourier components, but now with an explicit time dependence:

ρ(r, t) = ρ+
1

(2π)3

∫

d3k ρ̂(k, t) exp {−ik · r} , (2.15)

ρ̂(k, t) =

∫

d3r {ρ(r, t)− ρ} exp {ik · r} . (2.16)

To apply Onsager’s regression hypothesis, we first need to know how a macroscopic
density fluctuation decays. Suppose at time t = 0 we prepare a fluid system with a
macroscopic sinusoidal density fluctuation, see Fig. 2.3. In the above equations this
corresponds to a situation in which there is only one non-zero Fourier component
ρ̂(k, 0):

ρ(r, 0) = ρ+
1

(2π)3
ρ̂(k, 0) exp {−ik · r} (2.17)

18



2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.3: An initial sinusoidal
density fluctuation will homogenise
with a rate that is determined by
the collective diffusion coefficient.

According to Fick’s law, Eq. (2.8), the rate of decay of such a macroscopic density
fluctuation is determined by the so-called collective diffusion coefficient D:

∂

∂t

[

1

(2π)3
ρ̂(k, t) exp {−ik · r}

]

= D∇2

[

1

(2π)3
ρ̂(k, t) exp {−ik · r}

]

,

exp {−ik · r} ∂ρ̂(k, t)
∂t

= −D(k)k2ρ̂(k, t) exp {−ik · r} ,
ρ̂(k, t) = ρ̂(k, 0) exp

{

−D(k)k2t
}

. (2.18)

Note that we have included the possibility that the collective diffusion coefficient
depends on the wave length of the density disturbance, D = D(k). Eq. (2.18) shows
that a density fluctuation smoothens out with a relaxation time τ(k) = 1/(D(k)k2).
Large k (short wavelength) fluctuations decay rapidly, whereas relaxing small k (long
wavelength) fluctuations can take a very long time. This is a consequence of the fact
that relaxing a long wavelength inhomogeneity requires transport of fluid particles
over large length scales, which is a slow process.

2.4.2 Microscopic equation for D(k)

Let us now see if we can derive a microscopic (and equilibrium) equation for the
collective diffusion coefficient. We have encountered the microscopic variable cor-
responding to a density Fourier component before, see Eq. (1.32). We now add an
explicit time dependence:

ρ̂(k, t) =

∫

d3r

{

∑

j

δ (r− rj(t))− ρ

}

exp {ik · r}

=

N
∑

j=1

exp {ik · rj(t)} − (2π)3ρδ(k). (2.19)

Eq. (2.14) states that the time autocorrelation function of this variable decays ac-
cording to:

〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉 exp
{

−D(k)k2t
}

. (2.20)

To calculate D(k) we differentiate with respect to t and divide by −k2; moreover we
shall assume that k is small enough to set exp {−D(k)k2t} ≈ 1 for all t of interest:

− 1

k2
d

dt
〈ρ̂(k, t)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.21)

− 1

k2

∫ t

0

dτ
d2

dt2
〈ρ̂(k, τ)ρ̂∗(k, 0)〉 = 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k) (2.22)
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Using Eq. (2.6) we may write this as

∫ t

0

dτ
1

k2

〈

˙̂ρ(k, τ) ˙̂ρ∗(k, 0)
〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k). (2.23)

It is now convenient to choose a specific orientation for the wave vector, say the
z-axis: k = kêz. Then

∫ t

0

dτ

〈

∑

i

∑

j

viz(τ)vjz(0) exp {ik (zi(τ)− zj(0))}
〉

= 〈ρ̂(k, 0)ρ̂∗(k, 0)〉D(k).

(2.24)

Using the definition of the structure factor, Eq. (1.33), we finally obtain:

D(k) =
1

S(k)

∫ ∞

0

dt
1

N

〈

∑

i

∑

j

viz(t)vjz(0) exp {ik (zi(t)− zj(0))}
〉

. (2.25)

This is the Green-Kubo relation for the collective diffusion coefficient. For compari-
son, the Green-Kubo relation for the self -diffusion coefficient, which we encountered
in Eq. (2.12), may be rewritten as

Dself =

∫ ∞

0

1

N

〈

∑

i

viz(t)viz(0)

〉

, (2.26)

which clearly shows the difference between collective and single-particle properties.

2.5 Shear viscosity

2.5.1 Macroscopic hydrodynamics

In the second example, we will focus on transversal transport of momentum through
a fluid. Suppose the fluid velocity on a macroscopic scale is described by the fluid
velocity field v (r). When two neighbouring fluid volume elements move with dif-
ferent velocities, they will experience a friction force proportional to the area of the
surface between the two fluid volume elements. Moreover, even without relative mo-
tion, the volume elements will be able to exchange momentum through the motions
of, and interactions between, the constituent particles.

All the above forces can conveniently be summarized in the stress tensor. Con-
sider a surface element of size dA and normal n̂. Let dF be the force exerted by the
fluid below the surface element on the fluid above the fluid element, see Fig. 2.4.
The stress tensor S̄ is defined as the tensor that transforms the vector n̂dA into the
force vector dF:

dFα = −
∑

β

Sαβn̂βdA = −
(

S̄ · n̂
)

α
dA, (2.27)

where α and β run from 1 to 3 (or x, y, and z). Note that the unit of stress is that
of pressure (Pa).
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2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.4: The stress tensor S̄

transforms the normal n̂ of a sur-
face element dA to the force dF ex-
erted by the fluid below the surface
element on the fluid above the fluid
element.

n̂

dA

dF = S  n dA^.
_

Many fluids can be described by assuming that the stress tensor consists of a
part which is independent of the flow velocity and a part which depends linearly
on the instantaneous derivatives ∂vα/∂xβ .

2 In hydrodynamics it is shown that the
most general stress tensor having these properties then reads

Sαβ = η

{

∂vα
∂xβ

+
∂vβ
∂xα

}

−
{

P +

(

2

3
η − κ

)

∇ · v
}

δαβ . (2.28)

Here δαβ is the Kronecker delta (1 if α = β, 0 otherwise), η is the shear viscosity, κ
is the bulk viscosity, and P the pressure.

Combining Newton’s equations of motion (expressing the law of conservation
of momentum) with the law of conservation of mass, it is possible to derive the
macroscopic Navier-Stokes equation,

ρm
D

Dt
v = ∇ · S̄, (2.29)

where ρm = mρ is the mass density and D/Dt = v · ∇ + ∂/∂t is the total deriva-
tive. The combination of Eq. (2.28) with Eq. (2.29), sometimes also referred to as
the Navier-Stokes equation, is rather formidable. Fortunately, many flow fields of
interest may be described assuming that the fluid is incompressible. In that case
∇ · v = 0. Assuming moreover that the velocities are small, and that second order
nonlinear terms in v may be neglected, we obtain Stokes equations for incompress-
ible flow:

mρ
∂v

∂t
= η∇2v −∇P (2.30)

∇ · v = 0. (2.31)

These are the hydrodynamic equations that we will use from here on.
Our aim is to derive a microscopic equation for the shear viscosity η. To this

end, let us first see how a wavelike velocity field3

ρv(r, t) =
1

(2π)3
g(k, t) exp {−ik · r} (2.32)

decays macroscopically. Introducing this in the incompressibility equation (2.31)
shows that the only possible wavelike velocity field is a transversal one:

g(k, t) · k = 0. (2.33)

2In the more general case of complex fluids, the stress tensor depends on the history of fluid
flow (the fluid has a memory) and has both viscous and elastic components.

3The factor (2π)−3 appears for the same reason as in Eq. (2.15), so that g(k, t) may be viewed
as a Fourier component of the velocity field.
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kêz ,

he x

, t) êy .

= ∂ P

Figure 2.5: The only
possible wavelike ve-
locity field in an in-
compressible fluid is a
transversal one. The
rate of decay of this
velocity field is deter-
mined by the shear
viscosity η of the fluid.

Taking the divergence of Eq. (2.30) and using Eq. (2.31) we get ∇2P = 0. It is
now convenient to choose specific orientations for the wave vector and velocity field.
Suppose that the wave vector is oriented along the z-axis, k = kêz, and that the
flow is along the y-axis, g(k, t) = gy(k, t)êy, see Fig. 2.5. Looking at the x and z
components of Eq. (2.30) this yields ∂P/∂x = ∂P/∂z = 0. Together with ∇2P = 0
this also means that ∂P/∂y = 0. The only remaining component in Eq. (2.30) then
reads

mρ
∂vy
∂t

= η
∂2vy
∂z2

mρ
∂gy
∂t

= −ηk2gy

gy(k, t) = gy(k, 0) exp

{

− η

mρ
k2t

}

. (2.34)

This shows that a macroscopic transversal velocity field decays to zero with a relax-
ation time τ(k) = mρ/(ηk2).

2.5.2 Microscopic equation for η

We will now derive a microscopic (and equilibrium) equation for the shear viscosity.
The microscopic variable corresponding to g(k, t) is

g(k, t) =

∫

d3r
∑

j

vj(t)δ (r− rj(t)) exp {ik · r}

=
∑

j

vj(t) exp {ik · rj(t)} . (2.35)

Choosing k along z and g along y, Onsager’s regression hypothesis, Eq. (2.14), states
that the time autocorrelation function of this variable decays according to

〈

gy(k, t)g
∗
y(k, 0)

〉

=
〈

gy(k, 0)g
∗
y(k, 0)

〉

exp

{

− η

mρ
k2t

}

. (2.36)

Following the same analysis as in going from Eq. (2.20) to (2.23), we obtain
∫ t

0

dτ
1

k2
〈

ġy(k, t)ġ
∗
y(k, 0)

〉

=
〈

gy(k, 0)g
∗
y(k, 0)

〉 η

mρ
exp

{

− η

mρ
k2t

}

. (2.37)

22
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From statistical mechanics it is known that 〈vy,j〉 = 0 and 〈vy,jvy,k〉 = (kBT/m)δjk
(equipartition theorem). In the limit of small k this can be used to replace

〈

gy(k, 0)g
∗
y(k, 0)

〉

by
〈

gy(0, 0)g
∗
y(0, 0)

〉

= NkBT/m. Then

η =
1

V kBT
lim
k→0

∫ ∞

0

dt
1

k2
〈

mġy(k, t)mġ
∗
y(k, 0)

〉

. (2.38)

All that remains is to write out the terms mġy(k, t). Remembering that ṙj = vj we
find

mġy(k, t) =

N
∑

j=1

{mv̇y,j(t) + ikmvz,j(t)vy,j(t)} exp {ikzj(t)} , (2.39)

part of which can be written in terms of forces:

N
∑

j=1

mv̇y,j exp {ikzj} =

N
∑

j=1

∑

i 6=j

F
(i)
y,j exp {ikzj}

=
1

2

N
∑

j=1

N
∑

i=1

F
(i)
y,j [exp {ikzj} − exp {ikzi}]

=
1

2
ik

N
∑

j=1

N
∑

i=1

F
(i)
y,j (zj − zi). (2.40)

Here F
(i)
y,j is the force in the y-direction exerted by particle i on particle j. In the

second step of Eq. (2.40) we have used Newton’s principle of action and reaction,

F
(i)
y,j = −F (j)

y,i . In the third step we have used the fact that k will be very small.
Collecting everything together, we may write

η =
V

kBT

∫ ∞

0

dt 〈σyz(t)σyz(0)〉 , (2.41)

where the microscopic stress tensor is defined as

σyz(t) =
1

V

{

∑

j

mvy,j(t)vz,j(t) +
1

2

N
∑

i=1

N
∑

j=1

F
(i)
y,j(t)(zj(t)− zi(t))

}

. (2.42)

We recognise two contributions to the microscopic stress tensor: momentum trans-
port through particle motion (the kinetic mvv term) and momentum transport
through particle interactions (the virial Fr term).

Eq. (2.41) is the Green-Kubo relation for the shear viscosity. The above proce-
dure also yield a microscopic expression for the so-called shear relaxation modulus,

G(t) =
V

kBT
〈σyz(t)σyz(0)〉 . (2.43)

Macroscopically, G(t) is the linear stress relaxation in the system following a sudden
step strain. In agreement with Eq. (2.41) its integral is the shear viscosity, η =
∫∞

0
G(t)dt.
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Figure 2.6: Shear relax-
ation modulus G(t) of a
polymer melt (left: linear
scale, right: logarithmic
scale).

These equations are useful because they enable us to measure the shear relaxation
modulus and shear viscosity in a simulation of a liquid without actually shearing the
system, but rather by analyzing the spontaneous fluctuations in forces and velocities.
As an example, in Fig. 2.6 we show the shear relaxation modulus measured in a
molecular dynamics simulation of a melt of polyethylene chains at 450 K. Note
that in this particular example the stress does not relax immediately to zero, but
remains at a plateau value of approximately 3 MPa for times between 5 and 50 ns.
Such behaviour is indicative of temporary elasticity, which is typical of an entangled
polymeric liquid.

Problems

2-1. Follow and prove the steps made in Eq. 2.11 to arrive at the Green-Kubo
equation for the self-diffusion coefficient.
2-2. Under what conditions can one expect the collective diffusion coefficient to be
equal to the self-diffusion coefficient?
2-3. Follow and prove the steps made to arrive at Eq. (2.41), starting from Eq. (2.38).
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Chapter 3

Brownian motion

3.1 Friction and random forces on colloids

Consider a spherical colloidal particle of radius a (typically between a nanometer
and a micrometer) and mass M moving through a solvent along a path R(t). The
colloidal particle will continuously collide with the solvent molecules. Because on
average the colloid will collide more often on the front side than on the back side,
it will experience a systematic force proportional with its velocity V, and directed
opposite to its velocity. The colloid will also experience a random or stochastic force
F(t). These forces are summarized in Fig. 3.1 The equations of motion then read1

dR

dt
= V (3.1)

dV

dt
= −ξV + F. (3.2)

By solving Stokes’ equations (2.30), with no-slip boundaries on the surface of the
sphere, it can be shown that the friction constant ξ is given by

ξ = ζ/M = 6πηsa/M , (3.3)

where ηs is the shear viscosity of the solvent.
Solving Eq. (3.2) yields

V(t) = V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ)F(t). (3.4)

1Note that we have divided all forces by the mass M of the colloid. Consequently, F(t) is an
acceleration and the friction constant ξ is a frequency.

Figure 3.1: A colloid moving
with velocity V will experi-
ence a friction force −ξV op-
posite to its velocity and ran-
dom forces F due to the con-
tinuous bombardment of sol-
vent molecules.

v-xv

F
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where V0 is the initial velocity. We will now determine averages over all possible
realizations of F(t), with the initial velocity as a condition. To this end we have to
make some assumptions about the stochastic force. In view of its chaotic character,
the following assumptions seem to be appropriate for its average properties:

〈F(t)〉 = 0 (3.5)

〈F(t) · F(t′)〉
V0

= CV0
δ(t− t′) (3.6)

where CV0
may depend on the initial velocity. Using Eqs. (3.4) - (3.6), we find

〈V(t)〉
V0

= V0e
−ξt +

∫ t

0

dτ e−ξ(t−τ) 〈F(τ)〉
V0

= V0e
−ξt (3.7)

〈V(t) ·V(t)〉
V0

= V 2
0 e

−2ξt + 2

∫ t

0

dτ e−ξ(2t−τ)V0 · 〈F(τ)〉V0

+

∫ t

0

dτ ′
∫ t

0

dτ e−ξ(2t−τ−τ ′) 〈F(τ) · F(τ ′)〉
V0

= V 2
0 e

−2ξt +
CV0

2ξ

(

1− e−2ξt
)

. (3.8)

The colloid is in thermal equilibrium with the solvent. According to the equipartition
theorem, for large t, Eq. (3.8) should be equal to 3kBT/M , from which it follows
that

〈F(t) · F(t′)〉 = 6
kBTξ

M
δ(t− t′). (3.9)

This is one manifestation of the fluctuation-dissipation theorem, which states that
the systematic part of the microscopic force appearing as the friction is actually
determined by the correlation of the random force.

Integrating Eq. (3.4) we get

R(t) = R0 +
V0

ξ

(

1− e−ξt
)

+

∫ t

0

dτ

∫ τ

0

dτ ′ e−ξ(τ−τ ′)F(τ ′), (3.10)

from which we calculate the mean square displacement

〈

(R(t)−R0)
2
〉

V0

=
V 2
0

ξ2
(

1− e−ξt
)2

+
3kBT

Mξ2
(

2ξt− 3 + 4e−ξt − e−2ξt
)

. (3.11)

For very large t this becomes

〈

(R(t)−R0)
2
〉

=
6kBT

Mξ
t, (3.12)

from which we get the Einstein equation for the self-diffusion coefficient

D =
kBT

ζ
, (3.13)

where we have used 〈(R(t)−R0)
2〉 = 6Dt and ζ = Mξ = 6πηsa. Notice that the

self-diffusion coefficient D is independent of the mass M of the colloid.
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3.2 Smoluchowski and Langevin equations

From Eq. (3.7) we see that the colloid loses its memory of its initial velocity after a
time τ ≈ 1/ξ. Using equipartition its initial velocity may be put equal to

√

3kBT/M .
The distance l it travels, divided by its radius then is

l

a
=

√

3kBT/M

aξ
=

√

ρmkBT

9πη2sa
, (3.14)

where ρm is the mass density of the colloid. Typical values are l/a ≈ 10−2 for
a nanometre sized colloid and l/a ≈ 10−4 for a micrometre sized colloid in water
at room temperature. We see that the particles have hardly moved at the time
possible velocity gradients have relaxed to equilibrium. When we are interested in
timescales on which particle configurations change, we may restrict our attention
to the space coordinates, and average over the velocities. The time development of
the distribution of particles on these time scales is governed by the Smoluchowski
equation.

The Smoluchowski equation describes the time evolution of the probability den-
sity Ψ(R,R0; t) to find a particle at a particular position R at a particular time t,
given it was at R0 at t = 0. It is assumed that at every instant of time the particle
is in thermal equilibrium with respect to its velocity, i.e., the particle velocity is
strongly damped on the Smoluchowski timescale. A flux will exist, given by

J(R,R0, t) = −D∇Ψ(R,R0; t)−
1

ζ
Ψ(R,R0; t)∇Φ(R). (3.15)

The first term in Eq. (3.15) is the flux due to diffusion of the particle. The second
term is the flux in the “downhill” gradient direction of the external potential Φ(R),
damped by the friction coefficient ζ . At equilibrium, the flux must be zero and the
distribution must obey the Boltzmann distribution

Ψeq(R) = C exp [−Φ(R)/(kBT )] , (3.16)

where C is a normalization constant. Using this in Eq. (3.15) while setting J = 0,
leads to the Einstein equation (3.13). In general, we assume that no particles are
generated or destroyed, so

∂

∂t
Ψ(R,R0; t) = −∇ · J(R,R0, t). (3.17)

Combining Eq. (3.15) with the above equation of particle conservation we arrive at
the Smoluchowski equation

∂

∂t
Ψ(R,R0; t) = ∇ ·

[

1

ζ
Ψ(R,R0; t)∇Φ(R)

]

+∇ · [D∇Ψ(R,R0; t)]

(3.18)

lim
t→0

Ψ(R,R0; t) = δ(R−R0). (3.19)

The Smoluchowski equation describes how particle distribution functions change in
time and is fundamental to the non-equilibrium statistical mechanics of overdamped
particles such as colloids and polymers.
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3. BROWNIAN MOTION

It can be shown (though we will not do that here) that the explicit equations of
motion for the particles, i.e. the Langevin equations, which lead to the Smoluchowski
equation are

dR

dt
= −1

ζ
∇Φ +∇D + f (3.20)

〈f(t)〉 = 0 (3.21)

〈f(t)f(t′)〉 = 2DĪδ(t− t′). (3.22)

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ. We use these equations
in the next chapter to derive the equations of motion for a polymer.

Problems

3-1. Derive the last step in Eq. (3.14). Calculate the relative distance l/a over
which a typical colloidal particle with radius a = 1 micrometer forgets its initial
velocity. Assume the density of the colloid is equal to that of the surrounding liquid
(water), which has a density of 1000 kg/m3, a viscosity of ηs = 10−3 Pa s, and a
temperature of 300 K.
3-2. Show that using the equilibrium distribution Eq. (3.16) in the flux equation
Eq. (3.15) indeed leads to the Einstein equation (3.13).
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Chapter 4

The dynamics of unentangled

polymeric liquids

As an application of the theory presented in the previous chapters, we will study the
dynamics of unentangled polymeric liquids. To this end we must first give a short
introduction to their equilibrium properties.

4.1 Equilibrium properties of polymers

4.1.1 Global properties

Polymers are long linear macromolecules made up of a large number of chemical
units or monomers, which are linked together through covalent bonds. The number
of monomers per polymer may vary from a hundred to many thousands. We can
describe the conformation of a polymer by giving the positions of its backbone atoms.
The positions of the remaining atoms then usually follow by simple chemical rules.
So, suppose we have N + 1 monomers, with N + 1 position vectors

R0,R1, . . . ,RN .

We then have N bond vectors

r1 = R1 −R0, . . . , rN = RN −RN−1.

Much of the static and dynamic behavior of polymers can be explained by models
which are surprisingly simple. This is possible because the global, large scale prop-
erties of polymers do not depend on the chemical details of the monomers, except
for some species-dependent “effective” parameters. For example, one can measure
the end-to-end vector, defined as

R = RN −R0 =
N
∑

i=1

ri. (4.1)

If the end-to-end vector is measured for a large number of polymers in a melt, one
will find that the distribution of end-to-end vectors is Gaussian and that the root
mean squared end-to-end distance scales with the square root of the number of
bonds,

√

〈R2〉 ∝
√
N , irrespective of the chemical details. This is a consequence of

the central limit theorem.
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Figure 4.1: A polyethylene chain rep-
resented by segments of λ = 20
monomers. If enough consecutive
monomers are combined into one seg-
ment, the vectors connecting these
segments become independent of each
other.

4.1.2 The central limit theorem and polymer elasticity

Consider a linear polymer chain. The bonds, angles and torsion angles between
consecutive monomers are often fairly rigid. Therefore the vectors connecting con-
secutive monomers do not take up random orientations. However, if enough con-
secutive monomers are combined into one segment with center-of-mass position Ri,
the vectors connecting the segments (ri = Ri −Ri−1, ri+1 = Ri+1 −Ri, etcetera)
do become independent of each other,1 see Fig. 4.1.

Because the orientation and length of each segment-to-segment bond is inde-
pendent of all others, the probability density in configuration space Ψ

(

rN
)

may be
written as

Ψ
(

rN
)

=
N
∏

i=1

ψ (ri) . (4.2)

Assume further that the bond vector probability density ψ (ri) depends only on the
length of the bond vector and has zero mean, 〈ri〉 = 0. For the second moment we
write

〈

r2
〉

=

∫

d3r r2ψ(r) ≡ b2, (4.3)

where we have defined the statistical segment (or Kuhn) length b. Let Ω (R;N) be
the probability distribution function for the end-to-end vector R given that we have
a chain of N bonds,

Ω (R;N) =

〈

δ

(

R−
N
∑

i=1

ri

)〉

, (4.4)

where δ is the Dirac-delta function. The central limit theorem then states that for
large enough N :

Ω (R;N) =

{

3

2πNb2

}3/2

exp

{

− 3R2

2Nb2

}

. (4.5)

1For simplicity we ignore long range excluded volume interactions. This is allowed in a polymer
melt or in a so-called Θ-solvent.
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4. THE DYNAMICS OF UNENTANGLED POLYMERIC LIQUIDS

Figure 4.2: The gaussian chain can be
represented by a collection of beads
connected by harmonic springs of
strength 3kBT/b

2.

So, irrespective of the precise form of the bond length distribution ψ(r), the end-to-
end vector will have a Gaussian distribution with zero mean and a variance given
by N times the variance of a single bond:

〈

R2
〉

= Nb2. (4.6)

The local structure of the polymer appears only through the statistical segment
length b.

Using Ω (R;N), we can obtain an interesting insight in the thermodynamic be-
haviour of a polymer chain. The entropy of a chain in which the end-to-end vector
R is kept fixed, absorbing all constants into a reference entropy, is given by

S (R;N) = kB ln Ω (R;N) = S0 −
3kR2

2Nb2
. (4.7)

The free energy is then

A = U − TS = A0 +
3kBTR

2

2Nb2
. (4.8)

We see that the free energy is related quadratically to the end-to-end distance, as if
the chain is a harmonic (Hookean) spring with spring constant 3kBT/Nb

2. Unlike
an ordinary spring, however, the strength of the spring increases with temperature!
These springs are often referred to as entropic springs.

4.1.3 The Gaussian chain

Now we have established that global conformational properties of polymers are
largely independent of the chemical details, we can start from the simplest model
available, consistent with a Gaussian end-to-end distribution. This model is one in
which every bond vector itself is Gaussian distributed,

ψ (r) =

{

3

2πb2

}3/2

exp

{

− 3

2b2
r2
}

. (4.9)

Such a Gaussian chain is often represented by a mechanical model of beads connected
by harmonic springs, as in Fig. 4.2. The potential energy of such a chain is given
by:

Φ (r1, . . . , rN) =
1

2
k

N
∑

i=1

r2i . (4.10)

It is easy to see that if the spring constant is chosen equal to k = 3kBT/b
2 the Boltz-

mann distribution of the bond vectors obeys Eqs. (4.2) and (4.9). The Gaussian
chain is used as a starting point for the Rouse model.
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4.2 Rouse dynamics of a polymer

4.2.1 From statics to dynamics

We will now adjust the static Gaussian chain model such that we can use it to
calculate dynamical properties as well. A prerequisite is that the polymer chains are
not very long, otherwise entanglements with surrounding chains will highly constrain
the molecular motions.

When a polymer chain moves through a solvent every bead will continuously
collide with the solvent molecules, leading to Brownian motion as described in the
previous chapter. We will ignore hydrodynamic interactions between the beads.2

This is allowed for polymer melts because the friction may be thought of as being
caused by the motion of a chain relative to the rest of the material, which to a first
approximation may be taken to be at rest; propagation of a velocity field like in a
normal liquid is highly improbable, meaning there are no hydrodynamic interactions.

We will start with a Gaussian chain consisting of N + 1 beads connected by
N springs. If we focus on one bead, while keeping all other beads fixed, we see
that the external field Φ in which that bead moves is generated by connections to
its predecessor and successor. We assume that each bead feels the same friction
ζ , that its motion is overdamped, and that the diffusion coefficient D = kBT/ζ is
independent of the position Rn of the bead. This model for a polymer is called the
Rouse chain. According to Eqs. (3.20)-(3.22) the Langevin equations describing the
motion of a Rouse chain are

dR0

dt
= −3kBT

ζb2
(R0 −R1) + f0 (4.11)

dRn

dt
= −3kBT

ζb2
(2Rn −Rn−1 −Rn+1) + fn (4.12)

dRN

dt
= −3kBT

ζb2
(RN −RN−1) + fN (4.13)

〈fn (t)〉 = 0 (4.14)

〈fn (t) fm (t′)〉 = 2DĪδnmδ(t− t′). (4.15)

4.2.2 Normal mode analysis

Equations (4.11) - (4.13) are (3N + 3) coupled stochastic differential equations. In
order to solve them, we will first ignore the stochastic forces fn and try specific
solutions of the following form:

Rn(t) = X(t) cos(an + c). (4.16)

2When applied to dilute polymeric solutions, this model gives rather bad results, indicating the
importance of hydrodynamic interactions. Hydrodynamic interactions are included in the so-called
Zimm theory of polymer dynamics.
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The equations of motion then read

dX

dt
cos c = −3kBT

ζb2
{cos c− cos(a+ c)}X (4.17)

dX

dt
cos(na + c) = −3kBT

ζb2
4 sin2(a/2) cos(na + c)X (4.18)

dX

dt
cos(Na + c) = −3kBT

ζb2
{cos(Na + c)− cos ((N − 1)a+ c)}X,

(4.19)

where we have used

2 cos(na+ c)− cos ((n− 1)a+ c)− cos ((n+ 1)a+ c)

= cos(na+ c) {2− 2 cos a} = cos(na+ c)4 sin2(a/2). (4.20)

The boundaries of the chain, Eqs. (4.17) and (4.19), are consistent with Eq. (4.18)
if we choose

cos c− cos(a+ c) = 4 sin2(a/2) cos c (4.21)

cos(Na + c)− cos ((N − 1)a+ c) = 4 sin2(a/2) cos(Na + c), (4.22)

which is equivalent to

cos(a− c) = cos c (4.23)

cos ((N + 1)a+ c) = cos(Na + c). (4.24)

We find independent solutions from

a− c = c (4.25)

(N + 1)a+ c = p2π −Na− c, (4.26)

where p is an integer. So finally

a =
pπ

N + 1
, c = a/2 =

pπ

2(N + 1)
. (4.27)

Eq. (4.16), with a and c from Eq. (4.27), decouples the set of differential equations.
To find the general solution to Eqs. (4.11) to (4.15) we form a linear combination
of all independent solutions:

Rn = X0 + 2

N
∑

p=1

Xp cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.28)

The factor 2 in front of the summation is only for reasons of convenience. Making
use of

1

N + 1

N
∑

n=0

cos

[

pπ

N + 1
(n+

1

2
)

]

= δp0 (0 ≤ p < 2(N + 1)), (4.29)
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we may invert this to

Xp =
1

N + 1

N
∑

n=0

Rn cos

[

pπ

N + 1
(n+

1

2
)

]

. (4.30)

The equations of motion then read

dXp

dt
= −3kBT

ζb2
4 sin2

(

pπ

2(N + 1)

)

Xp + Fp (4.31)

〈Fp(t)〉 = 0 (4.32)

〈F0(t)F0(t
′)〉 =

2D

N + 1
Īδ(t− t′) (4.33)

〈Fp(t)Fq(t
′)〉 =

D

N + 1
Īδpqδ(t− t′) (p+ q > 0) (4.34)

where p, q = 0, . . . , N . Fp is a weighted average of the stochastic forces fn,

Fp =
1

N + 1

N
∑

n=0

fn cos

[

pπ

N + 1
(n +

1

2
)

]

, (4.35)

and is therefore itself a stochastic variable, characterised by its first and second
moments, Eqs. (4.32) - (4.34).

4.2.3 Rouse relaxation times and amplitudes

Eqs. (4.31) - (4.34) form a decoupled set of 3(N+1) stochastic differential equations,
each of which describes the fluctuations and relaxations of a normal mode (a Rouse
mode) of the Rouse chain.

It is easy to see that X0 is the position of the polymer centre-of-mass RG =
∑

nRn/(N + 1). The mean square displacement of the centre-of-mass, gcm(t) can
easily be calculated:

X0(t) = X0(0) +

∫ t

0

dτ F0(τ) (4.36)

gcm(t) =
〈

(X0(t)−X0(0))
2〉 =

〈
∫ t

0

dτ

∫ t

0

dτ ′ F0(τ) · F0(τ
′)

〉

=
6D

N + 1
t ≡ 6DGt. (4.37)

So the diffusion coefficient DG of the centre-of-mass of the polymer scales inversely
proportional to the weight of the polymer chain.

All other modes 1 ≤ p ≤ N describe independent vibrations of the chain leaving
the centre-of-mass unchanged; Rouse mode Xp descibes vibrations of a wavelength
corresponding to a subchain of N/p segments. In the applications ahead of us, we
will frequently need the time correlation functions of these Rouse modes. From Eq.
(4.31) we get

Xp(t) = Xp(0)e
−t/τp +

∫ t

0

dτ e−(t−τ)/τpFp(τ), (4.38)
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where the characteristic relaxation time τp is given by

τp =
ζb2

3kBT

[

4 sin2

(

pπ

2(N + 1)

)]−1

≈ ζb2(N + 1)2

3π2kBT

1

p2
. (4.39)

The last approximation is valid for large wavelengths, in which case p ≪ N . Mul-
tiplying Eq. (4.38) by Xp(0) and taking the average over all possible realisations of
the random force, we find

〈Xp(t) ·Xp(0)〉 =
〈

X2
p

〉

exp (−t/τp) . (4.40)

From these equations it is clear that the lower Rouse modes, which represent motions
with larger wavelengths, are also slower modes. The relaxation time of the slowest
mode, p = 1, is often referred to as the Rouse time τR. It scales with the square of
the molecular weight of the polymer:

τR =
ζb2(N + 1)2

3π2kBT
. (4.41)

This has been confirmed for concentrated polymers of low molecular weight.

We now calculate the equilibrium expectation values ofX2
p , i.e., the amplitudes of

the normal modes. To this end, first consider the statistical weight of a configuration
R0, . . . ,RN in Cartesian coordinates,

P (R0, . . . ,RN) =
1

Z
exp

[

− 3

2b2

N
∑

n=1

(Rn −Rn−1)
2

]

. (4.42)

We can use Eq. (4.28) to find the statistical weight of a configuration in Rouse coordi-
nates. Since the transformation to the Rouse coordinates is a linear transformation
from one set of orthogonal coordinates to another, the corresponding Jacobian is
simply a constant. The probability therefore reads

P (X0, . . . ,XN) =
1

Z
exp

[

−12

b2
(N + 1)

N
∑

p=1

Xp ·Xp sin
2

(

pπ

2(N + 1)

)

]

. (4.43)

Since this is a simple product of independent Gaussians, the amplitudes of the Rouse
modes can easily be calculated:

〈

X2
p

〉

=
b2

8(N + 1) sin2
(

pπ
2(N+1)

) ≈ (N + 1)b2

2π2

1

p2
. (4.44)

Again, the last approximation is valid when p≪ N .

We now have the ingredients to calculate all kinds of dynamic quantities of the
Rouse chain.
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Figure 4.3: Molecular dynamics simula-
tion results for the orientational corre-
lation function of the end-to-end vec-
tor of a C120H242 polyethylene chain
under melt conditions (symbols), com-
pared with the Rouse model prediction
(solid line). J.T. Padding and W.J.
Briels, J. Chem. Phys. 114, 8685
(2001).

4.2.4 Correlation of the end-to-end vector

The first dynamic quantity we are interested in is the time correlation function of
the end-to-end vector R. Notice that

R = RN −R0 = 2
N
∑

p=1

Xp {(−1)p − 1} cos
[

pπ

2(N + 1)

]

. (4.45)

Because the Rouse mode amplitudes decay as p−2, our results will be dominated by
p values which are extremely small compared to N . We therefore write

R = −4

N
∑′

p=1

Xp, (4.46)

where the prime at the summation sign indicates that only terms with odd p should
occur in the sum. Then

〈R(t) ·R(0)〉 = 16

N
∑′

p=1

〈Xp(t) ·Xp(0)〉 =
8b2

π2
(N + 1)

N
∑′

p=1

1

p2
e−t/τp . (4.47)

The characteristic decay time at large t is τ1, which is proportional to (N + 1)2.
Figure 4.3 shows that Eq. (4.47) gives a good description of the time correlation

function of the end-to-end vector of a real polymer chain in a melt (provided the
polymer is not much longer than the entanglement length).

4.2.5 Segmental motion

In this section we will calculate the mean square displacements gseg(t) of the individ-
ual segments. Using Eq. (4.28) and the fact that different modes are not correlated,
we get for segment n

〈

(Rn(t)−Rn(0))
2〉 =

〈

(X0(t)−X0(0))
2〉

+4

N
∑

p=1

〈

(Xp(t)−Xp(0))
2〉 cos2

[

pπ

N + 1
(n+

1

2
)

]

. (4.48)
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Figure 4.4: Molecular dynamics simu-
lation results for the mean square dis-
placements of a C120H242 polyethylene
chain under melt conditions (symbols).
The dotted and dot-dashed lines are
Rouse predictions for a chain with an
infinite number of modes and for a finite
Rouse chain, respectively. The horizon-
tal line is the statistical segment length
b2. J.T. Padding and W.J. Briels, J.
Chem. Phys. 114, 8685 (2001).
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Averaging over all segments, and introducing Eqs. (4.37) and (4.40), the mean square
displacement of a typical segment in the Rouse model is

gseg(t) =
1

N + 1

N
∑

n=0

〈

(Rn(t)−Rn(0))
2〉

= 6DGt+ 4

N
∑

p=1

〈

X2
p

〉 (

1− e−t/τp
)

. (4.49)

Two limits may be distinguished. First, when t is very large, t ≫ τ1, the first term
in Eq. (4.49) will dominate, yielding

gseg(t) ≈ 6DGt (t≫ τ1) . (4.50)

This is consistent with the fact that the polymer as a whole diffuses with diffusion
coefficient DG.

Secondly, when t ≪ τ1 the sum over p in Eq. (4.49) dominates. If N ≫ 1 the
relaxation times can be approximated by the right hand side of Eq. (4.39), the
Rouse mode amplitudes can be approximated by the right hand side of Eq. (4.44),
and the sum can be replaced by an integral,

gseg(t) =
2b2

π2
(N + 1)

∫ ∞

0

dp
1

p2

(

1− e−tp2/τ1
)

=
2b2

π2
(N + 1)

∫ ∞

0

dp
1

τ1

∫ t

0

dt′ e−t′p2/τ1

=
2b2

π2

(N + 1)

τ1

1

2

√
πτ1

∫ t

0

dt′
1√
t′

=

(

12kBTb
2

πζ

)1/2

t1/2 (τN ≪ t≪ τ1, N ≫ 1) . (4.51)

At short times the mean square displacement of a typical segment is subdiffusive
and independent of the number of segments N in the chain.

Figure 4.4 shows the mean square displacement of monomers (circles) and centre-
of-mass (squares) of an unentangled polyethylene chain in its melt. Observe that
the chain motion is in agreement with the Rouse model prediction, but only for
displacements larger than the square statistical segment length b2.
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4.2.6 Polymer stress and viscosity

We will finally calculate the viscosity of a melt of Rouse chains, using the Green-
Kubo relation Eq. (2.41). Generalizing Eq. (2.42), the (equilibrium) microscopic
stress tensor σ can be expressed as

σ = − 1

V

(

Ntot
∑

i=1

MiViVi +

Ntot−1
∑

i=1

Ntot
∑

j=i+1

(Ri −Rj)Fij

)

, (4.52)

where Mi is the mass of particle i and Fij is the force that particle j is exerting on
particle i.

At first sight, it would be a tremendous task to calculate the viscosity analytically
because the sums in Eq. (4.52) must be taken over all Ntot particles, i.e. over all
segments of all polymer chains in the system. This is why in real polymer systems
the stress tensor is a collective property. In the Rouse model, however, there is no
correlation between the dynamics of one chain and the other, so one may just as well
analyze the stress relaxation of a single chain and make an ensemble average over all
initial configurations. Moreover, because the velocities of the polymer segments are
usually overdamped, the polymer stress is dominated by the interactions between
the segments. The first (kinetic) part of Eq. (4.52) may then be neglected.

Using Eqs. (4.28) and (4.52), the microscopic stress tensor of a Rouse chain in a
specific configuration, neglecting kinetic contributions, is equal to

σ =
1

V

3kBT

b2

N
∑

n=1

(Rn−1 −Rn) (Rn−1 −Rn)

=
1

V

48kBT

b2

N
∑

n=1

N
∑

p=1

N
∑

q=1

XpXq sin

(

pπn

N + 1

)

sin

(

pπ

2(N + 1)

)

×

sin

(

qπn

N + 1

)

sin

(

qπ

2(N + 1)

)

=
1

V

24kBT

b2
N

N
∑

p=1

XpXp sin
2

(

pπ

2(N + 1)

)

. (4.53)

Combining this with the expression for the equilibrium Rouse mode amplitudes,
Eq. (4.44), this can be written more concisely as

σ =
3kBT

V

N
∑

p=1

XpXp
〈

X2
p

〉 . (4.54)

The product of the xy-component of the microscopic stress tensor at t = 0 and the
one at t = t is therefore

σxy(t)σxy(0) =

(

3kBT

V

)2 N
∑

p=1

N
∑

q=1

Xpx(t)Xpy(t)Xqx(0)Xqy(0)
〈

X2
p

〉 〈

X2
q

〉 . (4.55)

To obtain the shear viscosity the ensemble average must be taken over all possible
configurations at t = 0. Now, since the Rouse modes are Gaussian variables, all the
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ensemble averages of products of an odd number of Xp’s are zero and the ensemble
averages of products of an even number of Xp’s can be written as a sum of products
of averages of only two Xp’s. For the even term in Eq. (4.55) we find:

〈Xpx (t)Xpy (t)Xqx (0)Xqy (0)〉 = 〈Xpx (t)Xpy (t)〉 〈Xqx (0)Xqy (0)〉
+ 〈Xpx (t)Xqy (0)〉 〈Xpy (t)Xqx (0)〉
+ 〈Xpx (t)Xqx (0)〉 〈Xpy (t)Xqy (0)〉 .

(4.56)

The first four ensemble averages equal zero because, for a Rouse chain in equilib-
rium, there is no correlation between different cartesian components. The last two
ensemble averages are nonzero only when p = q, since the Rouse modes are mutually
orthogonal. Using the fact that all cartesian components are equivalent, and Eq.
(4.40), the shear relaxation modulus of a melt of Rouse chains can be expressed as

G (t) =
kBT

V

N
∑

p=1

[

〈Xp(t) ·Xp(0)〉
〈

X2
p

〉

]2

=
ckBT

N + 1

N
∑

p=1

exp (−2t/τp) , (4.57)

where c = N/V is the number density of beads.
The Rouse model predicts a viscosity, at constant monomer concentration c and

segmental friction ζ , proportional to N :

η =

∫ ∞

0

dtG(t) ≈ ckBT

N + 1

τ1
2

N
∑

p=1

1

p2
≈ ckBT

N + 1

τ1
2

π2

6
=
cζb2
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(N + 1). (4.58)

This has been confirmed for concentrated polymers with low molecular weight.3

Concentrated polymers of high molecular weight give different results, stressing the
importance of entanglements.

Problems

4-1. Why is it obvious that the expression for the end-to-end vector R, Eq. (4.46),
should only contain Rouse modes of odd mode number p?
4-2. Show that the shear relaxation modulus G(t) of a Rouse chain at short, but
not too short, times decays like t−1/2 and is given by

G(t) =
ckBT

N + 1

√

πτ1
8t

(τN ≪ t≪ τ1).

We know that G(t) must be finite at t = 0. Explain how the stress relaxes at very
short times. Make a sketch of G(t) on a double logarithmic scale.

3A somewhat strongerN dependence is often observed because the density and, more important,
the segmental friction coefficient increase with increasing N .
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