
Rare event simulation
Macroscopic phenomenological theory 

Chemical reaction: A B

dcA(t)
dt

= −kA→BcA(t) + kB→AcA(t)

dcB(t)
dt

= +kA→BcA(t)− kB→AcA(t)

d[cA(t) + cB(t)]
dt

= 0 dcA(t)
dt

=
dcB(t)

dt
= 0

〈
cA

〉
〈
cB

〉 =
kB→A

kA→B

Total number of molecules: Equilibrium:



Rare event simulation
Macroscopic phenomenological theory 

Make a small perturbation:

cA(t) =
〈
cA

〉
+ ∆cA(t) cB(t) =

〈
cB

〉
+ ∆cA(t)

∆cA(t) = ∆cA(0) exp[−(kA→B + kB→A)t]
= ∆cA(0) exp[−t/τ ]

τ =
(
kA→B + kB→A

)−1

= k−1
A→B

(
1 +

〈
cA

〉
/
〈
cB

〉)−1 =
〈
cB

〉

kA→B

d∆cA(t)
dt

= −kA→B∆cA(t)− kB→A∆cA(t)



Rare event simulation
Microscopic linear response theory

!F

q

BA

q*

θ(q − q∗) =

{
0 if q − q∗ < 0 (Reactant A)
1 if q − q∗ > 0 (Product B)

H = H0 − εgA(q − q∗)

gA(q − q∗) = 1− θ(q − q∗) = θ(q∗ − q)

∆cA =
〈
cA

〉
ε
−

〈
cA

〉
0

∆cA =
〈
gA

〉
ε
−

〈
gA

〉
0

Perturbation
add bias to increase concentration cA

    probability to be in state A
〈
gA

〉



Very small perturbation: linear response theory

∆cA =
〈
gA

〉
ε
−

〈
gA

〉
0 H = H0 − εgA(q − q∗)

How does the response (!c) depend on the perturbation (!")?

d∆cA

dε
= β

(〈
(gA)2

〉
0
−

〈
gA

〉2

0

)

= β

(〈
gA

〉
0

(
1−

〈
gA

〉
0

))

= β

(〈
cA

〉
0

(
1−

〈
cA

〉
0

))
= β

〈
cA

〉
0

〈
cB

〉
0

gA(x)gA(x) = gA(x)

Outside the barrier

gA = 0 or 1

Switch of the perturbation: dynamic linear response

∆cA(t) = ∆cA(0)
∆gA(0)∆gA(t)〈

cA

〉〈
cB

〉

= ∆cA(0) exp[−t/τ ] holds for sufficiently long times



Linear response theory: static

H = H0 − εB
〈
∆A

〉
=

〈
A

〉
−

〈
A

〉
0

〈
A

〉
=

∫
dΓA exp[−β(H0 − εB)]∫
dΓ exp[−β(H0 − εB)]

〈
A

〉
0

=
∫

dΓA exp[−β(H0)]∫
dΓ exp[−β(H0)]

〈
∂∆A

∂ε

〉
=

∫
dΓβAB exp[−β(H0 − εB)]

∫
dΓ exp[−β(H0 − εB)]

{ ∫
dΓ exp[−β(H0 − εB)]

}2

−
∫

dΓA exp[−β(H0 − εB)]
∫

dΓβB exp[−β(H0 − εB)]
{ ∫

dΓ exp[−β(H0 − εB)]
}2

= β
{〈

AB
〉
0
−

〈
A

〉
0

〈
B

〉
0

}



exp[−t/τ ] =
〈
∆gA(0)∆gA(t)

〉
〈
cA

〉〈
cB

〉

−1
τ

exp[−t/τ ] =
〈
gA(0)ġA(t)

〉
〈
cA

〉〈
cB

〉 =
〈
ġA(0)gA(t)

〉
〈
cA

〉〈
cB

〉

kA→B(t) =
〈
ġA(0)gA(t)

〉
〈
cA

〉

ġA(q − q∗) = q̇
∂gA(q − q∗)

∂q
= −q̇

∂gB(q − q∗)
∂q

ka→B(t) =

〈
q̇(0)∂gB(q(0)−q∗)

∂q gB(t)
〉

〈
cA

〉

Derivative

For sufficiently short t

! has disappeared 
because of derivative



Stationary

d

dt

〈
A(t)B(t + t′)

〉
= 0

〈
A(t)Ḃ(t + t′)

〉
+

〈
Ȧ(t)B(t + t′)

〉
= 0

〈
A(t)Ḃ(t + t′)

〉
= −

〈
Ȧ(t)B(t + t′)

〉



Eyring’s transition state theory

Correlation between velocity of states that are at the top of the barrier at 
t=0 and in the product state B some time t later.

Let us consider the limit t     0+ :

lim
t→0+

= θ
(
q(t)− q∗

)
= θ

(
q̇(t)

)

kTST
a→B(t) =

〈
q̇(0)δ(q(0)− q∗)θ(q̇)

〉
〈
θ(q∗ − q)

〉

ka→B(t) =

〈
q̇(0)∂gB(q(0)−q∗)

∂q gB(t)
〉

〈
cA

〉

=
〈
q̇(0)δ(q(0)− q∗)θ(q(t)− q∗)

〉
〈
θ(q∗ − q)

〉



Bennett-Chandler approach
(or Reactive flux method)

ka→B(t) =
〈
q̇(0)δ(q(0)− q∗)θ(q(t)− q∗)

〉
〈
θ(q∗ − q)

〉

ka→B(t) =
〈
q̇(0)δ(q(0)− q∗)θ(q(t)− q∗)

〉
〈
δ(q(0)− q∗)

〉 × δ(q(0)− q∗)
θ(q∗ − q)

Conditional average:
given that we start on top of barrier 

q̇(0)θ(q(t)− q∗)
Probability to find q 
on barrier top

Computational scheme:
• Determine the probability with free energy calculation
• Compute conditional average from “shooting” trajectories from barrier top



Transition path sampling

Importance sampling of the path ensemble:

all trajectories that lead over barrier and connect stable states.

P.G. Bolhuis, D. Chandler, 
C. Dellago, P.L. Geissler

Annu. Rev. Phys. Chem 2002



Monte Carlo simulation:

trials by random moves

Transition path sampling:

trial paths by shooting move

TPS is Monte Carlo sampling of dynamical trajectories 

Transition path sampling



• No reaction coordinate 
(only state definition)

• True dynamics

• Works well for 2-state 
problems

• Needs an initial pathway

• Analysis required 

• Transition state ensemble

Transition path sampling



Transition interface sampling

• Introduce interfaces between the stable states

• Sample pathways between the interfaces

• Committor surfaces (probability to end up in B)

Diffusive processes



fin



Free energy methods

It is very (very) difficult to compute (or measure) absolute 
thermodynamic properties, such as free energy and entropy, that 
depend on the size of the phase space.

But we can compute relative free energies, in particular free energy 
differences between thermodynamic states.

Reaction equilibrium constants

Examples:
- Chemical reactions, catalysis, isomerization, etc...
- Protein folding, ligand binding affinity, protein-protein association
- Phase diagrams, coexistence lines, critical points, transitions

A B

K =
[B]
[A]

=
pB

pA
= [−β(GB −GA)]



Free energy perturbation

∆βF = − ln(QB/QA) = − ln
(∫

dsN exp(−βUB)∫
dsN exp(−βUA)

)

∆F = −kBT ln
(∫

dsN exp(−βUA) exp(−β∆U)∫
dsN exp(−βUA)

)

= −kBT ln
〈
exp(−β∆U)

〉
A

∆F = −kBT ln
〈
exp(−β∆U)

〉
A

= −kBT ln
〈
exp(β∆U)

〉
B

Sampling problems may lead to hysteresis between the two samples 



Alchemical transformation

Cl– Br–intermediate stage(s)

system A

system B

intermediate
state

poor overlap

H(λi) = λiHA + (1− λi)HB

E.g. solvation free energy difference between ions

To improve the sampling,
- define n-2 fictitious intermediate states
- compute !F between state i and i+1

∆F =
N−1∑

i=1

∆Fi,i+1

= −kBT
N−1∑

i=1

ln
〈
exp−β∆Ui,i+1

〉
Ai



Umbrella Sampling

P (q) =
∫

drNδ(q′(rN )− q) exp
[
− β(U(rN ) + w(q′)− w(q′))

]
∫

drN exp
[
− β(U(rN + w(q′)− w(q′))

]

P (q) =
∫

drNδ(q′(rN )− q) exp
[
− β(U(rN ) + w(q′))

]
exp(βw(q′))∫

drN exp
[
− β(U(rN + w(q′))) exp(βw(q′))

]

P (q) =
〈
δ(q′(rN )− q) exp(βw(q′))

〉
biased〈

exp(βw(q′))
〉
biased

P (q) =
exp(βw(q))〈

exp(βw(q′))
〉
biased

Pbiased(q)

Bias the samping along an order parameter q
Add and subtract bias potential w(q):

F (q) = kBT lnP (q) = −kBT lnPbiased(q)− w(q) + const

• Let w(q) be a good 
guess of minus the free 
energy F(q), or
• Choose w(q) to confine 
sampling to a specific 
window along q.
• Or do both.



Constrained MD
The derivative of the free energy F(#) with respect 
to # can be written as an ensemble average.

(
∂F (λ)

∂λ

)

NVT

=
∫

drN (∂U(λ)/∂λ) exp[−βU(λ)]∫
drN exp[−βU(λ)]

=
〈

∂U(λ)
∂λ

〉

λ

The free energy difference between states A and B can then be obtained by 
thermodynamic integration

F (λB)− F (λA) =
∫ λB

λA

dλ

〈
∂U(λ)

∂λ

〉

λ

In the case “hard” constraints are used, additional corrections are needed to unbias 
for sampling in a constraint ensemble (instead of the actual NVT ensemble)



Metadynamics

V (t, s) =
∑

t′<t

Ht′

∏

α

exp

[

−(sα − st
′

α)2

2δ2
αW 2

]

Escaping free-energy minima,
Laio and Parrinello, PNAS (2002)

• The metadynamics biasing potential “grows” with time, by adding relatively small 
repulsive Gaussian potentials.
• The potentials placed at visited points in the space of order parameters (collective 
variables) enhance sampling of unexplored regions.
• The Gaussian “hills” accumulate in the free energy minima, until the counter-
balance the basins and allow the system to escape to product states, where the 
process repeats
• The biasing potential is an estimator of the free energy.

ε = Cd

√
HWS

D∆τβ

 The error depends on the height, width, and time 
interval of the added Gaussians, and on the 
diffusion, temperature and order parameter space 
of the system.



flooding the landscape with hills

6 hours
8 hours



Steered MD

Mechanical work to bring the system 
from state A to state B

WA→B ≥ ∆FA→B

〈
exp[−βWA→B ]

〉
A

= exp[−β∆FA→B ]Jarzynski’s equality

Surprisingly, we can obtain the equilibrium free energy difference from a non-
equilibrium simulation, in which we force the system in a finite time to move 
from A to B.

Although, this may sound as a free lunch method, note that it requires 
sampling an exponential distribution of the work. For infinitely slow switching 
from A to B, the system is always in equilibrium so that a single simulation 
gives !F. But the faster the switching the more rare are the important low-
work contributions to the average, so that many steered simulations are 
required for convergence.



Example
Relative solvation free energy of hexane molecule

The solvation free energy free difference of a solute in different solvents 
is here used a target property to parameterized a coarse-grain forcefield. 

water

hexane

dz=0

dz=10

dz=20

dz=30



Constrained MD

!F / [kcal/mol]

Running average constraint force

Spline fit of constraint force measurements



Steered MD



Umbrella Sampling

Weighted Histogram Analysis Method (WHAM) 
to connect the piecewise free energy curves



Metadynamics

Simulation in two parts with different 
size of the Gaussian “hills”:
• Part 1: H=0.25 K, W=0.4 Å
• Part 2: H=0.10 K, W=0.2 Å



Comparisson



Path-metadynamics

• add extra collective variable: $

• $ is a function of all other coll. variables

• biasing potential is only working on $

• $ function adapts on the fly

Combine metadynamics with reaction path finding methods such as the “string 
method” or the “nudge elastic band” method

Start with a guess reaction path from A to B.
While biasing the system along the guess path, evolve the path to find the minimal 
free energy path



path as the collective variable

cv

cv
path CV

σ = n−1

(
imin ±

√
(v̄1v̄3)2 − v̄3v̄3(v̄1v̄1 − v̄2v̄2)− v̄1v̄3

2(v̄3v̄3 − 1)

)

v2

v3

v1

! =1

! =0



! =1

! =0

path as the collective variable

cv

cv

histogram distance to the path for each node

maximum of P(d) should be at d=0

or accumulate average d for each node

d



cv

cv

d

path as the collective variable

f = exp[τ−1 ∗ ln
1
2
]

move nodes to d (every step)
set d=0
redistribute nodes along path

< di >=
∑τ

0 wi ∗ di∑τ
0 wi

wi(t) = (σ(n− 1)− imin)fτ−t



Alanine dipeptide

Ramachandran plot

Classical Molecular Dynamics 
(CM3D code by Preston Moore, USP)

Alanine dipeptide + 216 water
CHARMM27 forcefield (modified internal 
params water)
Cubic periodic box L=18.8 Angstrom
NVT ensemble, T=298K

• Zhiwei Liu
• Preston Moore
University of the Sciences, Philadelphia

Hill size: W=0.2 rad, H=0.02 kcal/
mol
Hill stride: 100 MD steps (=50 fs)

Total simulation time: ca. 5 ns

Error in energy: 0.3-0.5 kcal/mol
Error in angles: 3-10 degrees

Gas-phase Aqueous solution

Bernd Ening, M DeVivo, ZW Liu, PB Moore, ML Klein, Acc. Chem. Res. 2006, 39, 73. 



Alanine dipeptide
Parameters:

T = 300 K

Hgaussian = 10 K

Wgaussian = 0.05

!tgaussian = 100 MD steps

n = 20 + 20 + 20

" = 1000 MD steps

every recrossing:

H x 50%

W x 50%

" x 100

!

0 0.5 1.0 1.5-0.5


