

	Why X-ray Absorption?
•	Element specific Low concentrations (0.01-0.1 wt%)
•	Valence, Spin-state, Crystal field energies Hybridization, MO energies / Density of states
•	Time: excited states (mainly) in ps range Pressure : <u>1 bar/500 ^oC flowing gas</u> Space : 0.5 nm (STEM), <u>20 nm (STXM)</u>
	www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

Charge Transfer Multiplet program Used for the analysis of XAS, EELS, Photoemission, Auger, XES, ATOMIC PHYSICS ↓ GROUP THEORY ↓ MODEL HAMILTONIANS

