X-ray Spectroscopy

- Lecture 1: Introduction & experimental aspects
- Lecture 2: Atomic Multiplet Theory Crystal Field Theory CTM4XAS program
- Lecture 3: Charge Transfer Multiplet Theory Resonant Inelastic X-ray Scattering X-ray Spectroscopy on nanomaterials

Röntgen's experiment in 1895

x-rays

Wavelength: 10⁻¹⁰ m

Frequency: $C/\lambda = 3.10^{18}$ Hz

mm	μm	nm	pm
10 ⁻² 10 ⁻³ 10 ⁻⁴ 10	⁻⁵ 10 ⁻⁶ 10 ⁻⁷	10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹¹	10 ⁻¹²
This Period Cell	Bacteria Virus	Protern Water Molecule	shorter
INFRARED	< ULTRAVIO	LET "HARD" X RAYS	
MICROWAVES	ISIBLE	"SOIT" X RAYS GAMMA	RAYS
ve Radar Peo	Light Bulb	the Adverticed Light Source	
10 ¹⁰ 10 ¹¹ 10 ¹² 10 ¹³	1014 1015 10	15 10 ¹⁷ 10 ¹⁸ 10 ¹⁹ 1	20
			higher
10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻	¹ 1 10 ¹	10 ² 10 ³ 10 ⁴ 10 ⁵	10 ⁶
meV	eV	keV	MeV

	X-ray photoemission edges				
Paladium Electron binding energies					
Мι	35	671.6			
Мп	<u>3p1/2</u>	559.9			
M III	<u>3p_{3/2}</u>	532.3			
МIV	<u>3d_{3/2}</u>	340.5			
Μv	<u>3d5/2</u>	335.2			
ΝI	<u>4s</u>	87.1			
Nп	<u>4p1/2</u>	55.7			
N III	<u>4p_{3/2}</u>	50.9			
	htt	tp://www.webelements.com/			

X-ray absorptionExcitation of core electrons to empty states.Spectrum given by the Fermi Golden Rule
(name Golden Rule given by Fermi; rule itself given by Dirac)
$$I_{XAS} \sim \Sigma_f \left| \left\langle \Phi_f \left| \hat{e} \cdot r \right| \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

X-ray absorption

 Fermi Golden Rule:

 I_{XAS} = |<\Phi_f|dipole|
$$\Phi_i > |^2 \delta_{[\Delta E=0]}$$
 $\left| \left\langle \Phi_f \middle| \hat{e}_q \cdot r \middle| \Phi_i \right\rangle \right|^2 = \left| \left\langle \Phi_i \underline{c} \mathcal{E} \middle| \hat{e}_q \cdot r \middle| \Phi_i \right\rangle \right|^2$
 $= ?? \left| \left\langle \mathcal{E} \middle| \hat{e}_q \cdot r \middle| c \right\rangle \right|^2$

 Single electron (excitation) approximation:

 I_{XAS} = |<\Phi_{empty}|dipole| $\Phi_{core} > |^2 \rho$

	Ground State		
\otimes	Mn 4p -	MnO	3d⁵
	<u>Mn 3d</u> 0		
	<u>O 2p</u> 5		
	<u>O 2s</u> 20		
	Mp 2p 45		
	<u>MII 30</u> 45		
	Mn 3s 80		
	O 1s 530		
_	Mn 2p 650		
—	Mn 2s 770		
 	Mn 1s 6540		
•			

Oxygen 1s2p2p Auger						
	Mn 4p -	MnO	3d ⁵			
	<u>Mn 3d</u> 0					
	<u>O 2p</u> 5					
	<u>O 2s</u> 20					
	<u>Mn 3p</u> 45 Mn 3s 80 O 1s 530					
-	Mn 2p 650					
	Mn 2s 770					
	Mn 1s 6540					

Why a synchrotron?

- Energy: tunable source
- Intensity: 10⁶-10¹² higher than x-ray tube
- Space: spot-size 1x1 mm (unfocussed) down to 20x20 nm (focussed)
- Time: pulse 50 ps, sliced down to 50 fs.
- Polarization:

Angular dependence & Circular dichroism:

NOT coherent (no laser)

