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The Hamilton operator for a general 

system with n nuclei and N electrons

• The time-dependent Schrödinger equation is:

with the Hamiltonian
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I,J label atoms with positions RI, RJ

i,j label electrons with positions ri, rj
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The Born-Oppenheimer approximation

Large difference between electronic and nuclear mass 
allows to separate the electronic from the nuclear motion: 

me << mI

=> different time scales 

=> different energy scales



The Born-Oppenheimer approximation
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Ansatz for the total wave function:

Potential energy
surface (PES)
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Then the nuclei are described by:
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Where the       are a complete set of electronic eigenfunctions: 
iψ

Or in the classical limit by:

Electron wavefunction 

for given nuclear 

positions R Nuclear 

wavefunction



A cartoon of a potential energy surface (PES).

The sphere represent the position of the system (in the 2-dim. 

coordinate space). The arrow shows the path followed during 

the dynamics.



The Born-Oppenheimer 

Approximation
• The large difference between the electronic mass and the 

nuclear mass allows one to separate the electronic and the 

nuclear problem  

• The interatomic forces and potential energy are determined 

by the behaviour of the bonding electrons, which itself 

depends parametrically on the atomic structure

• In the B-O approximation we neglect coupling terms 

involving different electronic eigenfunctions. This implies 

that the motion of the nuclei proceeds without changing the 

electronic state during time evolution.



Classical Approximation for the nuclei
Newton equation with ab-initio potential

Nuclear Schrödinger equation Electronic Schrödinger equation

Born-Oppenheimer approximation

General Hamiltonian
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By using DFT:

];[]);([min)( RERrERV GSeff ρρ
ρ

==

⇓
Car-Parrinello approach ⇐

R: nuclear coordinates

r: electronic coordinates



Why ab initio Molecular Dynamics ?



Molecular Dynamics: 
Classical approximation for the nuclear motion

• Assume the nuclei are heavy enough to be 

described with classical mechanics 

� The quantum aspects of the nuclear motion, such as 

tunneling and zero-point motion, are neglected. 

• Instead of solving the Schrödinger equation for the 

nuclei we solve the Newton equation for N 

particles moving on the Potential Energy Surface

(PES)
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Force Field Methods:

empirical potentials
• Capture very simple interactions between atoms

• Predefined functional form for the interatomic potential

• Contain many parameters to be fixed according to 

experimental data or theoretical calculations 

• Usually work in situations where it is easy to identify 

individual `atomic’ charge distributions, and these do not 

vary strongly as the atoms move around

• Some popular Force Fields for treating (bio)-molecules:

– AMBER

– CHARMM

– GROMOS

– SYBYL



Force Field Energy

The force field energy (PES) is written as a sum of terms 
describing bonded and non-bonded interatomic interactions

– bonded terms

– non-bonded terms (van der Waals and electrostatic) 

Each term contains a number of empirical fitting parameters
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The Stretching Energy

• The energy function for stretching a bond between two atoms A 
and B can be written as a Taylor expansion around the equilibrium 
bond length

• In the harmonic approximation

• Fitting parameters: 
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Non-bonded energy terms
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Van der Waals term: often modeled as a Lennard-Jones potential
- attractive term due to instantaneous dipoles
- repulsive term due to electron cloud overlap (Pauli repulsion)

σ: distance for which E=0

ε: well depth



Non-bonded energy terms
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Electrostatic energy: Coulomb potential

where qA and qB are centered on the nuclei A and B, 

respectively,  and are called partial atomic charges.

The electrostatic interactions are effective also at 
long range since they decay as R-1



Molecular Dynamics

• Basic idea: simply follow the dynamical evolution 

according to Newton’s equations of motion for the atoms

• Break time into discrete `steps’ ∆t, compute forces on 

atoms from their positions at each timestep

• Evolve positions by, for example, Verlet algorithm (1967):

• or the equivalent `velocity Verlet’ scheme
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Molecular Dynamics

• Follow the `trajectory’ and use it to sample 

the states of the system: The system 

samples the ‘microcanonical’ (constant-

energy) thermodynamic ensemble, provided 

that the trajectory eventually passes through 

all states with a given energy (ergodicity)



Ensemble Averages and Time Averages 

(ergodic hypothesis)
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where the probability P(q,p) in the canonical ensemble [T,V,N] 
is given by
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The time average, defined as

Ensemble average of a property A at equilibrium

is equivalent to the ensemble average in the ergodic hypothesis



Time-correlation functions and 

transport coefficient

• They give a clear picture of the dynamics in 
a fluid

• Their time integral may be related directly 
to macroscopic transport coefficients (e.g. 
the diffusion coefficient)

• Their Fourier transform may be related to 
experimental spectra (e.g., vibrational DOS, 
infrared spectra)



Molecular Dynamics

• Assuming forces are conservative, the total 
energy will be conserved with time (to order (∆t)2 

in the case of Verlet)

• Note: the energy conservation along the dynamics 
is also a test on the accuracy and stability of the 
numerical integration
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Technical details

Choice of time step:

– The time step ∆t must be ~one order of 

magnitude smaller than the shortest 

oscillation period of the normal modes 

of the system 

Periodic boundary conditions (to overcome 

surface effects):

– The box is replicated throughout space 

to form an infinite lattice

– Forces are computed according to the 

‘minimum image convention’



How to simulate ‘rare events’?

• Low probability regions of the PES will not be visited 
during the ‘short’ time scale of a typical MD simulation 
(particularly critical for chemical reactions)

• Different schemes are being developed to overcome this 
problem:

– Biasing potential added to the PES (umbrella sampling) [Torrie, 
Vallieau 1974]

– Constrained Molecular Dynamics [Sprik, Ciccotti 1998]

– Metadynamics approach (dynamically adjustable biasing potential) 
[Laio, Parrinello 2002]  



Molecular Dynamics:

beyond microcanonics

• Refinements exist to allow simulations with 

– Constant temperature (an additional variable is 

connected to the system which acts as a ‘heat 

bath’)

– Constant pressure (the volume of the system is 

allowed to fluctuate)

– Constant stress (the shape, as well as the 

volume, of the system is allowed to fluctuate)

– Geometrical constraints



Advantages and Limitations of 

Force Field Methods
• Advantages

– speed of calculations

– large systems can be treated (several thousands atoms 

with a PC)

– easy to include solvent effects and crystal packing 

• Limitations

– Lack of good parameters (for molecules which are out 

of the ordinary)

– The predicting power is very limited

– Transferability limited

– Cannot simulate bond breaking and forming



References on classical MD

• Allen MP and Tildesley DJ (1987) 

Computer Simulation of Liquids, Clarendon 

Press, Oxford

• Frenkel D and Smit B (1996) 

Understanding Molecular Simulation –

From Algorithms to Applications, 

Academic Press, San Diego



Ab initio Molecular Dynamics 

• Use a Potential Energy Surface obtained by solving the 

electronic structure.

• Why  AIMD ? Overcome limitations of  (force-field) MD, 

specifically in simulating bond breaking and forming.

• How can we obtain the Potential Energy Surface (       ) ?

– By fitting ab initio results to a suitable functional form. 

This is very demanding and can be done only for 

extremely small systems; furthermore it is difficult to 

design a well-behaved fitting function

– The fitting step can be bypassed and the dynamics 

performed directly by calculating the interatomic forces 

(obtained from the electronic structure calculated on-the-

fly) at each time-step of an MD simulation

effV





Born-Oppenheimer Molecular Dynamics 

• Calculate interatomic forces in Molecular Dynamics by solving the 

electronic structure problem for each nuclear configuration in the 

MD trajectory:

• Density Functional Theory is mostly used to solve the electronic

structure (self-consistent solution of the Kohn-Sham equations). 

However, in principle other methods can be used (HF, MCSCF, …)

• the direct BO-MD involves a SCF calculation of the wave functions 

at each time step �computationally very demanding
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Density Functional Theory

(Hohenberg and Kohn, 1964)

• The ground-state electronic energy (E) of a N-electron system 
can be uniquely determined by the electron charge density 

• Given an external potential (due to the nuclei) there is only one 
ground state wavefunction and thus only one ground state 
charge density

• A variational principle holds for the energy functional:

for any electron density 
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Walter Kohn:  Nobel Prize in Chemistry, 1998
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Density Functional Theory
(Kohn and Sham, 1965)

][][];[][];[ ncorrelatio-ExchangeHartreeextparticle-single ρρρρρ EERETRE +++=

K.E. of noninteracting 

particles at this density

Interaction with external 

potential: nuclei-electrons term

Interaction with Hartree 

potential (Coulomb energy)

ii

i

i drfT φφ 






 ∇
−= ∫∑

2

2
*

21

21
21

)()(

2

1
][

rr

rr
drdrEH

−
= ∫∫

ρρ
ρ

Usually also the nuclear-nuclear 

term                 is added in the 

total energy functional
}{ IRU

∑∫ −
=

I I

I
ext

Rr

Zr
drE

)(ρ

contains the exchange energy, the 

correlation energy and the kinetic 

terms not included in

xcE

T
2

1

)()( ∑
=

=
N

i

i rr ϕρElectron density written in terms of a set 

of auxiliary one-electron functions:



Density Functional Theory
(Kohn and Sham, 1965)

• By applying the variational principle for the functional 

with the constraint on the total number of electrons we 

obtain a set of self-consistent single-particle (Kohn-Sham) 

equations

• where the effective local potential is given by

• with the exchange-correlation potential defined as

)()()(
2

1 2
rrrV iii

KS ϕεϕ =







+∇−

)(
)(

)()( rVrd
rr

r
rVrV xcext

KS +′
′−

′
+= ∫

ρ

[ ]
)(

)(
)(

r

rE
rV xc

xc
ρ

ρ

∂

∂
≡



Basis Set approximation

• All calculations use a basis set expansion to 
express the unknown Kohn-Sham (Molecular) 
Orbitals

• Mostly used basis set are atom-centered functions 
that resemble atomic orbitals (Linear Combination 
of Atomic Orbitals)

• basis set used in practical calculations are 

– STO (exponential: Slater-type orbitals)

– GTO (Gaussian-type orbitals)

– Plane waves



Local Density Approximation (LDA)

• The Kohn-Sham approach enables one to derive an exact
set of one-electron equations

• Problem: all the nasty bits (including exchange) are now 
included into the unknown exchange-correlation energy

• A simple approximation, the Local Density Approximation, 
is surprisingly good: approximate exchange-correlation 
energy per electron at each point by its value for a 
homogeneous electron gas of  the same density (known 
from QMC results)

• Can be generalized to include spin polarization (LSDA)
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Generalized Gradient Approximation 

(GGA)

• Though Local Density Approximation works quite 

well in many cases (metals and semiconductors), 

in general underestimates the exchange energy and 

gives poor results for molecules. 

• To improve over the LSDA, the exchange-

correlation energy should depend not only on the 

density, but also on derivatives of the density 

(gradient corrections) :
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• GGA, as e.g. the BP (Becke-Perdew) or the BLYP 

(Becke-Lee-Yang-Parr) functional, can give 

accuracy of the same or better quality than MP2. 

• Hybrid functionals (such as B3LYP), which 

include part of the exact HF exchange, are also 

broadly used. 

• The search for increasingly accurate functionals is 

a current hot topic in the field:

– Meta-GGA have been also recently developed
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Why DFT is the preferred 

choice for ab initio MD?

• Advantages

– General accuracy for geometries and 
vibrational frequencies similar or better than 
MP2

– Computational cost scales at most as N3 (N = 
number of basis functions)

• Limitations

– Weak interactions (vdW) are poorly described

– Lack of a systematic improvability  



Born-Oppenheimer Molecular Dynamics

• Molecular Dynamics with interatomic forces 
obtained using DFT for each nuclear 
configuration in the MD trajectory:

• the direct BO-MD involves a SCF solution of the 
Khon-Sham equations at each step 
�computationally very demanding
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Car-Parrinello Molecular Dynamics 

• Car and Parrinello (1985) proposed an approach in which the 

electronic self-consistent problem has to be solved only for 

the initial nuclear configuration in the MD

• CPMD evolves in time the nuclear positions and the 

electronic degrees of freedom using an extended Lagrangian:

• This dynamics generates at the same time the nuclear 

trajectory and the corresponding electronic ground state.
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Car-Parrinello Molecular Dynamics 

• The corresponding Newtonian equations of 

motion are obtained from the associated 

Euler-Lagrange equations:            

• which can be solved numerically using, for 

example, the Verlet algorithm

j

j

ij

i

KS

i

KS

R
I

I

E

dt

d

RE
dt

Rd
M

I

φλ
δφ

δφ
µ

φ

∑+−=

−∇=

*2

2

2

2

],[



Initial conditions 

• The electrons must be in the ground state 

corresponding to the initial nuclear configuration

• Electron velocities and accelerations are set to zero

• The equations of motion for the electrons are 

equivalent to the Kohn-Sham equations after a 

unitary transformation

• The nuclei can have also zero velocities or a 

distribution of velocities consistent with the required 

temperature



Why does the Car-Parrinello method work ?

• CPMD exploits a classical adiabatic energy scale 

separation between the nuclear and electronic degrees of 

freedom: By choosing the parameter                   the 

evolution of  the         can be decoupled from that of  

• The electrons oscillate around the instantaneous ground-

state BO surface with very low kinetic energy

• The physical total energy        behaves approximately like 

the strictly conserved total energy in classical MD
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• Under these conditions the CPMD 

trajectories derived from the extended 

Lagrangian

– reproduce very closely the true (Born-

Oppenheimer) nuclear trajectories

– approximates very closely the microcanonical

dynamics 





Vibrational density of states



Various energy terms for a model system



Comparison between 

Born-Oppenheimer and Car-Parrinello forces



How to control adiabaticity ?

• The electronic frequencies depend also on the 

electronic structure:

• warning: adiabaticity is broken when the gap 

between occupied and virtual orbitals is too small 

(problems with metals)
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Practical solution to broken adiabaticity

• Couple the electronic subsystem with a 

thermostat keeping the electron at low 

temperature

• Couple the nuclear subsystem with a 

thermostat at the desired physical 

temperature of the system 



Technical details

• Time step ∆t 

– Limited by the fast electronic motion

– Typical value ∆t ≈ 0.1 fsec

• Electronic mass µ:

– Adiabatic evolution if  µ/M << 1

– Typical value µ/M = 1/100



Technical details

• Supercell geometry

– Periodic boundary conditions

• Plane wave expansion of electronic states

– more suitable for extended systems: solids, liquids

– Only one parameter controls the accuracy 

– Fast Fourier transform (FFT) can be used 

– Evaluation of nuclear forces easy (no Pulay forces)
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The Hellman-Feynman theorem

• For a general electron state ψ the electronic energy depends on 

the state, as well as explicitly on the atomic positions

• In order to find the force on any particular atom, we would 

therefore have use the chain rule to write

• For the ground state (or indeed any electronic eigenstate) the 

electronic energy is stationary with respect to variations in ψ and 

we can therefore ignore the second term.

dEel(R)

dRI

= ψ
∂ ˆ H el(R)

∂RI

ψ +
δ ψ ˆ H el ψ

δ ψ

∂ ψ

∂RI

Explicit dependence of H on R

Implicit dependence of E on R via 

the change in wavefunction as 

atoms move



The Hellman-Feynman theorem

• This theorem is true also for variational wavefunctions such as 

Hartree-Fock or DFT provided that complete basis sets are 

used.

• In practical calculations this is never the case and the second

term needs to be computed explicitly:

– If the one-particle orbitals are expanded in atom-centered

functions (Gaussian, STO), this term gives rise to the so-

called “Pulay force”

– If we use plane waves the Pulay force vanishes exactly



Pseudopotentials

• To minimize the size of the plane wave basis

– only valence electrons are included explicitly

– core electrons are replaced by pseudopotentials

• First-principles pseudopotentials are built to 

– correctly represent the long range interactions 

of the core

– produce pseudo-wavefunctions that approach 

the full wavefunction outside a core radius rc





Car-Parrinello Molecular Dynamics 

• Advantages:

– More general applicability and predictive power 

compared to MD using “predefined potentials”

– In comparison with static quantum chemistry 

approaches allows for the inclusion of dynamical, 

entropic effects, and the possibility of treating 

disordered systems (e.g. chemical reactions in solution)

• Limitations:

– approximation in the exchange-correlation functional

– size: 100-1000 atoms

– time scale : 10-100 ps



Advanced techniques 

(recent developments)

• QM/MM extension

• Excited state Molecular Dynamics

• Extension to localized basis set (Gaussians): 

more suitable for molecules, clusters



Phenylalanine hydroxylase



Hybrid QM/MM approaches:
quantum-mechanics/molecular-mechanics

• Systems of interest in computational biology are too large 

for a full quantum-mechanical treatment

• Need to integrate various computational chemistry 

methodologies with differing accuracies and cost.

• In QM/MM approaches this is done by embedding a QM 

calculation in a classical MM model of the environment

• Review paper: P. Sherwood, (2000), in 

– http://www.fz-juelich.de/nic-series/Volume1



QM/MM scheme 

• The system is divided in two subsystems:            

an inner region (QM) where quantum-mechanics 

is used and an outer region (MM) where a 

classical field is used, interacting with each other

QM

MM



Why and when QM/MM ?

• Interest in active sites of proteins / enzymes or drug-DNA 

interaction

• Geometry and Functionality of active site influenced by the 

protein environment

• Proteins still too large to be handled completely by quantum 

chemistry &

high quality (QM) description only needed for a usually small 

region of interest (active site)

• QM/MM schemes aim to incorporate environmental effects at an 

atomistic level, including mechanical constraints, electrostatic

perturbations and dielectric screening



QM-MM Hamiltonian

• We can in general write a total Hamiltonian of the QM-MM system 

as follows:

• includes all the interactions between the particles treated 

with QM

• includes all the interactions between the classical particles 

• accounts for all the interactions between one quantum 

particle and one classical particle 

HQM

H=HQM+HMM+HQM/MM

HMM

HQM / MM



The choice of the QM method

• The choice of the QM method within a hybrid approach depends 

on the accuracy required and on the size of the QM region. 

• Implementation of QM-MM methods have been reported with 

almost any QM approach:

– The first application of Warshel and Levitt (1976) employed a 

semiempirical method. 

– More recently several implementation involving DFT and 

Car-Parrinello MD have been reported. This is a very 

interesting development since DFT can deal with relatively 

large QM regions and can be used also in combination with 

Molecular Dynamics.



The choice of the MM model

• The HMM term is determined by the specific classical force field 

used to treat the MM part. 

• The most popular force fields for hybrid QM-MM simulations are 

the same force fields mostly used for biomolecules:

– CHARMM 

– AMBER 

– GROMOS96



Handling the hybrid term

• The third term of the Hamiltonian, HQM-MM , is the most critical and the 

details of this interaction term may differ substantially in different 

implementations. 

• In terms of classification, we can distinguish two possibilities:

– (i) the boundary separating the QM and MM region, does not cut 

across any chemical bond

– (ii) the boundary cuts across at least one chemical bond 



Handling the hybrid term:
(i) the QM/MM boundary does not cut chemical bonds

• the QM-MM coupling term in the Hamiltonian contains the non-

bonded interactions, i.e., electrostatic and short-range (van der 

Waals) forces. 

• The treatment of the electrostatic interactions varies for different 

implementations, but the most common is the electrostatic 

embedding, in which the classical part appears as an external 

charge distribution (e.g. a set of point charges) in the QM 

Hamiltonian. 

• The van der Waals interactions are usually described by a 

Lennard-Jones potential between QM and MM atoms with 

values of the parameters characteristic for their atomic type. 



• If there are bonds between the QM and MM regions, it is 

necessary to introduce some termination of the QM part. 

• For termination of sites where a covalent bond has been broken, 

addition of a so-called link atom is the most common approach: 

An extra nuclear centre is introduced together with the electrons 

required to form a covalent bond to the QM dangling valences 

that will mimic the bond to the MM region. 

• The simplest and most used choice is to add a hydrogen atom 

as link atom. Of course there are chemical differences between 

hydrogen and the chemical group it replaces. One possible 

approach to adjust the link atom interaction is to place a 

pseudopotential at the MM site to mimic the electronic 

properties of the replaced bond.

Handling the hybrid term:
(ii) the QM/MM boundary cuts chemical bonds



Why excited states?

• Microscopic understanding of photo-induced 

reactions in photoactive molecules and proteins

• Complementary to experiment in the interpretation 

of spectroscopic data

• Use the knowledge about mechanisms and 

predictive power of computational tools to assist in 

the engineering process of photoactive devices



Basic concepts

• When light is absorbed by a molecule, this is 
promoted to an electronic excited state

• As a consequence of the excitation a rearrangement 
or photochemical reaction is observed:

– Isomerization

– Bond breaking

– Cycloaddition

– …



• Cinnamic acid cycloaddition

• Retinal photoisomerization

• Photodissociation of heteroaromatic molecules



Potential Energy Surfaces (PES) 

S0 : ground state PES 

S1 : first excited state PES

Reaction Coordinate



Static vs. dynamical approaches

Static:

stationary points (M*)

transition states (TS) 

conical intersection (CI)

minimum energy path

Dynamics:

relaxation time

kinetic effects

thermal fluctuations



Validity of the BO approximation

• The BO approximation holds as long as the 
excited and ground state PES are not too 
close to each other

• When S0 and S1 approach each other, we 
have to consider explicitly the probability of 
electron hopping from one PES to the other

=> Non-adiabatic dynamics 

(see e.g., J. Tully, J. Chem. Phys. 93, 1061, 1990)  



Methods for excited state energy and 

gradient computations

• Wave function based methods (ab initio)

– Hartree-Fock (HF), Configuration Interaction (CI), 

MCSCF, CASSCF, CASPT2, CC

• DFT methods

- ROKS (restricted open-shell Kohn-Sham)

- TD-DFT (time dependent Density Functional 
Theory)



Restricted open-shell Kohn-Sham (ROKS)  

[Frank,Hutter,Marx,Parrinello, JCP (1998), 108, 4060]

• Kohn-Sham-like formalism for the treatment of excited 
singlet states. 

• This scheme is suited to perform molecular dynamics 
simulation in the excited state.

• Suitable for large gap systems with well separated states. 
The nuclei move on one excited state PES 

• A spin-adapted function is constructed and the 
corresponding energy expression minimized.

• Inspired to the sum method for the calculation of multiplet
splittings (Ziegler, Rauk, Baerends, 1977)

• Calculation of forces is easy: successfully applied to the 
dynamical simulation of the cis-trans isomerization of 
formaldimine.



ROKS  

Four possible determinants t1, t2, m1 and m2 as a result of the 

promotion of a single electron from the HOMO to the LUMO 

of a closed shell system. Suitable Clebsch-Gordon projections 

of the mixed states m1 and m2 yield another triplet state t3 and 

the desired first excited singlet S1 state.



ROKS  

• The total energy of the S1 state is given by

where the energies of the mixed and triplet determinants

are expressed in terms of (restricted) Kohn-Sham spin-density 
functionals constructed from the set }{ iφ



Nonadiabatic Car-Parrinello Molecular Dynamics

(N. Doltsinis, D. Marx, PRL, 88, 166402, 2002)



Time-dependent Density Functional Theory 

(TD-DFT)

(Runge and Gross, 1984)

• Time-dependent analogue of the HK theorem

• TD-DFT allows to calculate properties like polarizability and 

excitation energies through the linear density response of the 

system to the external time dependent field.

• Efficiently implemented in various packages 

• Calculation of forces within TD-DFT have been recently 

implemented

– MD simulations in the excited state using the TD-DFT forces 

are becoming feasible



LR-TDDFT

• The basic quantity in the LR-TDDFT is the density-density 

response function

• which relates the first order density response δρ(r, t) to the 

applied perturbation δv(r, t)

• The response function for the physical system of interacting 

electrons, χ(r, t, r′, t′), can be related to the computationally more 

advantageous Kohn-Sham response, χs(r, t, r′, t′)

•

• where



Performance of TD-DFT

• Usually TD-DFT results are reliable for low-energy excitations, 

specifically for energies lower than the ionization potential

• Tests on small organic molecules show average errors of about 0.2 

eV using BP or B3LYP functionals

=> usually better than CIS

(Marques, Gross: Annu. Rev. Phys. Chem. 2004, 55, 427–55)

• however TD-DFT does not provide information on the wavefunctions



The Photoactive Yellow Protein (PYP)
blue light photoreceptors isolated in 1985 from 

Halorhodospira halophila

Borgstahl,Williams,Getzoff, Biochemistry 34, 6278 (1995)

4-hydroxycinnamic acid 

(pCA) chromophore (Hoff et al., 

Biochemistry 33, 13959 (1994)



Structure, Initial Excited-State Relaxation and Energy 

Storage of Rhodopsin at the CASPT2//CASSCF/AMBER 

level of Theory. 

T. Andruniow, N. Ferré and M. Olivucci (PNAS) USA , 2004 



Applications:

From Materials Science to Biochemistry

• Semiconductors: silicon in crystalline and disordered 
phases

• Structural phase transitions of materials under pressure

• Diffusion of atoms in solids

• Surface reconstruction, chemisorption on surfaces

• Simulations of liquids, water, ions in water

• Clusters, fullerenes, nanostructures

• Chemical reactions (in gas phase or in solution)

• Polymerization reactions – Ziegler-Natta catalysts

• Zeolites, metallocenes

• Rhodopsin, enzymatic reactions, drug-DNA interactions


