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Description of Quantum Systems

To describe a quantum system, we have to
@ construct a Hamiltonian:
e add kinetic-energy operators for all elementary particles
(in chemistry: electrons and nuclei)
e add interaction operators for all interactions between elementary
particles
(in chemistry: Coulomb interactions)
o find wavefunction ¥ that fulfills Schrédinger Equation with this
Hamiltonian

@ note: ¥ = ¥(xy,xp,...,X,, X1, X2, ..., XpN, 1)

x = electronic coordinates (incl. spin), X = nuclear coordinates, 7 = time



Non-Separability of Quantum Systems

@ all charged particles interact via Coulomb forces
= in a strict sense, there are no isolated systems

(and we have to find the wavefunction of the universe)

@ but: experimental evidence shows that systems can be treated
as if they were isolated

@ Can we separate a quantum system into “parts” (electrons,
atoms, functional groups, molecules, ...)?
=- a posteriori approach

@ Can we calculate the electronic structure of a big quantum
chemical system based on its constituents? = a priori approach



Simplification of the Wavefunction

@ for stationary states, we can separate r from x, X

@ Born—Oppenheimer approximation:
allows to separate x from X

@ harmonic oscillator approximation:
allows to obtain 3N separate equations for nuclear coordinates

@ common problem in quantum chemistry:
find ¥(x,xz,...,X,) for fixed coordinates X;,X,, ..., Xy

= find eigenfunctions of

A

H. = fe + ‘A/ne"‘ ‘A/ee
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Hartree Atomic Units

... are used throughtout

1 a.u. of charge

1 a.u. of mass

1 a.u. of action

1 a.u. of permittivity



Simplification of the Electronic Wavefunction

@ Hartree product:

My (X1, X2, ..., Xy) = O1(X1) - P2(X2) < - .. - Pn(Xy)

e electrons have individuality (can be labeled)
@ in line with intuitive chemical concepts
e violates Pauli principle

@ Hartree—Fock wavefunction: antisymmetrized Hartree product
Dyp(X1, X2, . .., Xy) = NAGI(X1) - $2(X2) - ... - B(Xn)

e electrons have no individuality (indistinguishable)
e in line with Pauli principle
e introduces difficulties for “intuitive” concepts



Hartree—Fock Equations

@ canonical Hartree—Fock equations:

|:h+2j k] ,' = 6,‘@25,‘

with

h = Z|1~—R,|

AJj = (&[1/r12]|e))
Kigi = (¢j|1/ri2|9i)9;

@ solution: basis set expansion

¢i = Z CrpiXup

0



Solution of the Hartree—Fock Equations

@ insert ansatz into Hartree—Fock equations,
fz CpiXp = €i Z CrpiXp
iz "

where

>

f=h+) (J;-K)
J
@ multiply from the left with (x|
D Ol i = € ) i (olxu)
——— ———

B a S

or
fci = EiSCi



Population Analysis: Are There Atoms in Molecules?

Integral over sum of orbital densities:

Z/|¢i|2dr = chaicﬁi/XaXBdr
i o

i

= Z (Z Caic,@i) Saﬁ = Zpaﬂsa,@ =n

aB i o

@ atoms are no “elementary units” in quantum chemistry

@ but: we can use several partitioning schemes to assign effective
charges to atomic centers

@ Mulliken electron population of atom A:

ng = Z Zpaﬁsaﬂ

acA

gross charges: Qa4 = Z4 — na



Population Analysis

Density-based schemes avoid basis set problems:
@ Bader charges:

Op =2y — / p(r)dr
atomic basin

(defined through Vp(r) - n(r) = 0)
@ Hirshfeld charges:

Oa=2Zs — /pA(r)p(r)dr

with
on (r) _ pgree atom(r)
ppromolecule (I‘)
lecule free atom
prromoleile(r) =3 pfe omr)
A

@ similar: Voronoi charges (hard boundaries)



Orbitals in Hartree—Fock Theory

@ canonical HF orbitals are often delocalized

@ energy and properties remain unchanged under unitary
transformation among occupied orbitals

$i(x)=> Uy of ¢=U-¢
k=1
@ localized orbitals: often more useful for chemical concepts

@ Boys—Foster localization:
find U that minimizes distance between electrons in a spatial
orbital o o
D (Gildil (r12)*| i) i)

@ Pipek—Mezey localization: maximize sum of Mulliken charges



Canonical vs. Localized Orbitals

é o

canonical orbitals

® ¢

localized orbitals (Boys—Foster)




Quasi-Electrons

@ Edminston—Ruedenberg (ER) localization:
find U such that exchange is minimized,

Z//¢l X1 ¢J X1 iNj*(Xz)(z)l(Xz)dxldXz min

12
1<j

(alternative formulation: maximize self-energy)

@ ER orbitals: often similar to Hartree orbitals (exchange
completely missing)

= “Hartree orbitals describe the quasi-electrons of chemists”

H. Primas, U. Muller—Herold, Elementare Quantenchemie



Il. Subsystem Approaches in
Quantum Chemistry



Group Functions

@ subsystems A and B will be distinct if each is described by “its
own wavefunction”,

U (X1,X2, -+ Xnytng) = Ya(X1, o, X )VB(Xnyt 1y - -+ » Xigtnp)
@ Pauli principle requires:
‘II(XbXZ? s 7XnA+n3) = NA [\IIA(Xla s 7XnA)\IjB(XnA+17 B 7XnA+nB)] )

(unless separation A — B becomes very large; exact for non-interacting subsystems)

@ can be starting point for accurate calculations
(if U4, g are highly accurate)

@ note: Slater determinant is included as a special case



Group Functions

E, - 3@— W P

a ¥ la =y 2a
e e

ZE- monomer 1 ’%}f monomer 2

@ example for group functions:
discussion of energy-transfer phenomena: |DA), [D*A), |DA*)

@ basis for exciton models




Hybrid Methods

General idea:

@ calculate energy of active subsystem (1) with accurate method
(M)

@ add correction for interaction with environment (2) based on less
accurate method (M)

Eo = EMl + EM2 + E’l‘fiz (additive scheme)
Eo = E +E(1 ) — EY">  (subtractive scheme)
since E(’ ) = E\* + E° + E2,

@ can be extended to several layers
@ examples: QM/MM, WF/DFT, ONIOM, QM/PCM



Hybrid Methods

@ simple hybrid methods only partition the energy
(mechanical embedding; wavefunction/density (1) unchanged)

@ electronic/Hamiltonian embedding:
wavefunction (1) polarized by environment

—%Vz + var/ks(r) + Vemb(l')] ¢i(r) = €idi(r)

e.g.

Vemb E

AEMM v~ RA|

@ more advanced schemes consider back-polarization of the
environment by the active system



Increment Methods

General idea:

@ largest part of total energy is due to energies of (isolated)
subsystems

@ interaction energy: mainly due to pair interactions
@ general energy expression:

Eo = ZEHLZE]HH- Z Ejjek + ..

1<J I1<J<K
Ei.; = EIJ—EI E;

Eijox = Eyx—E —E;
—(Ey —Er—Ej) — (Elxk — Er — Ex) — (Ejx — Ej — Ex)

@ nth-order increment method: exact for n subsystems



Other Subsystem Methods

@ methods that partition the correlation energy
(= increment methods for E o)
@ correlation methods based on localized orbitals
e conventional methods (e.g., Cl-type):

= cur®ur + Z ! + Z C“b@”b
ijab

e local methods:
create a domain [i] of virtual orbitals spatially close to ¢;(r)
e include all excitations from ¢; to [i]
e include all double excitations from ¢; ; to pair domain [i, ]
e group pair domains into strong, weak, and distant pairs

@ methods that partition the density matrix
@ What about density-based schemes?



[ll. Subsystem Density-Functional
Theory



Some Basics of DFT

General Idea:

@ calculate energy based on observable real-space quantity p(r)
Formal basis:
@ 1st HK theorem:
The ground-state e/gctron density determines the external
potential (and thus H, V;, E;, and all properties).
@ 2nd HK theorem:

We can obtain the electronic ground-state energy E, from a
variational procedure:

Ey = min E|p]
p{pr}



Minimization of the Energy Functional

@ minimize energy subject to constraint:

/p(r)dr =n

= construct Lagrange functional:

Lis) = Elgl — | [ otwrar

and minimize unconstrained
@ minimization condition:

SLp) = / gﬁgﬂap(r)dr:o
or
SL[p] _ SE[p] _ OE[p]
o) 0T G MY T T

(Euler—Lagrange equation)



Some Basics of DFT

Partitioning of the energy:

where
Vext [P]

Vext (I’)

Veelpl

E[p] = Vext [P] + Vee [p] + T[p]

/ p(r)vext(r)dr

most often
Z ’I’ — RA‘ ( )

<\p
<\p

> // dr 1dr2 + Vee ne[p]
r12 N——

i< 2?77




Some Basics of DFT

Partitioning of the energy:

where
Vext [P]

Vext (l‘)

Veelp]

E[p] = Vext [P] + Vee [p] + T[p]

/ p(r)vext(r)dr

most often
Z |l‘ — RA| ( )

<\11
<\11

> // dr 1dr2 + Vee ne[p]
r12 N——

277
J [p]

\IJ> ~ Cr / p3(r)dr  (very crude)

-~

7
i<j v

_le
> 5"

i

Trr|p]



Functional Derivatives

@ functional derivative:

is defined through:
FIF) + 8] = FIF 0] + [ s)aF o + O?)
o simple example:
Veulp(r) + 5p(1)] = [ vew(r)[p(r) + p(r)Jar
/

vext(r)p(r)dr+/vext(r) dp(r)dr

dVext[p]
Vext [P} dp(r)




Functional Derivatives

Coulomb energy

p(ry) + dp(ry))(p(r2) + dp(r
Jlp+op] = // v p|r11—r2|2) o 2))dr 1dr;

5
-3/ dd*//””
\1'1— r2| Ir| — 2
5 5
//5’”1 dd—i—//prlprzdrdrz
ry —rzl Ir; — 2

= il [ ([ 250w ) oo, + Ol

VCoul (1'1 )

g:([i]) = VCoul (I’)




Thomas—Fermi Theory

@ Trr[p]: exact kinetic energy for homogeneous electron gas
@ energy functional and Lagrangian:

Errlp] = Vexlp] +Jp] + Trr[p]
Ltelp] = Err—p [/ p(r)dr — "]

@ minimization condition:

OF 5
noo= 5;&5] _ gCpp2/3(r) + Vext(T) + vcoul (T)

@ very simple DFT model
@ extension: Dirac exchange EP™[p] = —C, [ p*/3(r)dr



Kinetic-Energy Functionals: Another Example

@ assume one-electron system, p(r) = |¢(r)|?

1

r=1d) = - [ Voirar

1
- . / (Vo(r)) (Vo(r))dr

- ! / (Vo)) (Vo)) ar

1

1 1
_ L[ [Vp(r)P
-5/

= von Weizsacker functional Tyw|[p]




Kohn—-Sham DFT

Non-interacting System

@ consider system of non-interacting “electrons”:

n

. . 1
o= s v= 3 [39 bnin)]
i=1

@ exact wavefunction for this system:
antisymmetrized product (Slater determinant) of orbitals ¢,

-5 )] aie) = aato)

)

@ exact kinetic energy of this system:

o) = Y (o] 5

i




Kohn—-Sham DFT

Non-interacting System

@ ground-state density of this system:

occ

) = > ou(r) P

@ this density fulfills (2nd HK theorem):

S P

(Euler—Lagrange eq.)



Kohn—-Sham DFT

Central assertion in Kohn—Sham theory:

For any interacting system of electrons, there is a potential vy(r), so
that the ground-state density of the interacting system equals that of
a non-interacting system with external potential v(r).

= po IS vy-representable
@ use T[{¢;}] as approximation for T[]

Elp] = Tl{i}] + Veulp] + ol + (Veelpl = Jlp| + Tlp] = Ts[{di}])
= Tl{¢i}] + Vexdlpl + Jlp) + Exclp]



Kohn—-Sham DFT

Euler—Lagrange equation for the interacting system:

. SE[p]
dp(r)




Kohn—-Sham DFT

Euler—Lagrange equation for the interacting system:

E[p]
dp(r)

— 5T[{¢l}] + (SJU)] +5Vext[p] 5Exc[:0}
op(r)  dop(r) — op(r) — dp(r)




Kohn—-Sham DFT

Euler—Lagrange equation for the interacting system:

. SE[p]

dp(r)
5T[{¢l}] + (SJ{/)] +5Vext[p] 5Exc[:0}
op(r)  dop(r) — op(r) — dp(r)
0T[{¢i}]

= 5p(r) + veoul () + Vext(r) + vxc(r)




Kohn—-Sham DFT

Euler—Lagrange equation for the interacting system:

I

E[p]
gg&}] L 9ol | 0Vexlp] | OEiclp]
5;{{){(2}} ép(r) = dp(r) — dp(r)
5o T vCoul (1) + Vext(I) + Vxe(r)

efr(T)



Kohn—-Sham DFT

Euler—Lagrange equation for the interacting system:

I

6T[{¢l}] 6J[p] + 5Vext[p] 5Exc[p}

ép(r) +<5p(r) op(r) — dp(r)

7] + VCoul(r) + veXt(r) + Vxe (I‘)

= is fulfilled by the density of the non-interacting system
= choose v,(r) = veg(r) and solve

=57+ v i) = o

(Kohn—Sham equations)



Kohn—-Sham DFT

Euler—Lagrange equation for the interacting system:

I

6T[{¢l}] 6J[p] + 5Vext[p] 5Exc[p}

ép(r) +<5p(r) op(r) — dp(r)

7] + VCoul(r) + veXt(r) + Vxe (I‘)

= is fulfilled by the density of the non-interacting system
= choose v,(r) = veg(r) and solve

—%Vz + vetr [ p] (r) | $i(r) = €ighi(r)

(Kohn—Sham equations)



Kohn—-Sham DFT

Remaining problem: E..[p]
@ often partitioned into

Eyc[p] = Ex[p] + E¢[p]

@ several strategies for the development of approximations
e exactly solvable models (local density approximation, LDA)
e generalized gradient approximation (GGA; may involve exact

constraints)

Meta-GGAs

empirical fits

Hybrid functionals

generalized random phase approximation (RPA)

G.E. Scuseria, V.N. Staroverov, in: C.E. Dykstra, G.Frenking, K.S. Kim, G.E. Scuseria (Eds.) Theory and Applications

of Computational Chemistry: The First Forty Years, Elsevier, Amsterdam 2005, pp. 669-724.



Density-Partitioning Schemes

General idea:

@ HK theorems: Ey = E|[pp] = min, E[p]
@ electron density is a real-space quantity
@ additive for different subsystems,

prat(®) =D pi(r)prar(r) = pi(r)
1

1

@ problems:

e how can we obtain the (optimum) p;(r) ?
e how can we approximate the energy functional?



Density Partitioning: Early Attempts

Zeroth-order approximation:
@ start from unperturbed densities (combas, 1949)

prr(r) = 3 (1)

I

@ Gordon—Kim model (1972):
e Hartree—Fock monomer densities,

p(r) = par(r) = pi" (r) + py’ ()

e Thomas—Fermi kinetic energy functional,

Eck[p] = Trep] + Ecoulp] + EX™[p] + E™*[p] + / p(r)vex (r)dr



Gordon—Kim Model

Equilibrium distances of rare gas dimers:
(in units of A)

calc. exp.
Ne-Ne 3.0 ~3.1
Ar—Ar 3.6 ~3.8
Kr—Kr 3.8 ~39

interaction energies: quite good, better than KS-DFT

R.G. Gordon, Y.S. Kim, J. Chem. Phys. 56 (1972), 3122.



Gordon—Kim Model

Equilibrium distances of rare gas dimers:
(in units of A)

calc. exp.
Ne-Ne 3.0 ~3.1
Ar—Ar 3.6 ~3.8
Kr—Kr 3.8 ~39

interaction energies: quite good, better than KS-DFT

R.G. Gordon, Y.S. Kim, J. Chem. Phys. 56 (1972), 3122.

Why did this work?



The Gordon—Kim Model

o
=
o
=

was mainly applied to rare gas dimers
very weak density perturbations
was not used self-consistently

avoids problems of kinetic-energy potentials to reproduce
shell-structure in atomic densities

was applied to study interaction energies only,

ES = Vun+ Ecklp) — (Eck[pa) + Eck[ps))

atomic densities taken from Hartree—Fock calculations

both kinetic-energy and exchange—correlation energy have
wrong distance dependence

cancellation of several error sources



Energy Functional without T/[p]

KS orbital energies:

Do = > (ail—V/2) +/ [Zla (veou (r) =+ vee(r )+Vext(r))]

— ¢,|—v2/2|¢, )+ / dr [p(F) (vcou () + vie(F) + veu ()]



Energy Functional without T/[p]

KS orbital energies:

occ OCC occ

Z € = ¢l| — V2/2|¢l + / lz |¢z VCoul + VXC( ) + VeXt(r))]

i
occ

— ¢,|—v2/z|¢, )+ / dr [p(F) (vcou () + vie(F) + veu ()]

total electronic energy:
occ

HA = Y0000+ / (F)veou (0)dE + Ex[o] + / (0o ()

occ

- Y- > [ pocuateiar = [ pleve)ar + £



Energy Functional without T/[p]

KS orbital energies:

occ OCC occ

Z € = ¢l| — V2/2|¢l + / lz |¢z VCoul + VXC( ) + VeXt(r))]

i i
oce

= S (- VA2l + / dr [p(F) (vcou () + vie(F) + veu ()]

i

total electronic energy:
occ

S (0 = VAo + / (F)veou (0)dE + Ex[o] + / (0o ()

occ

- Y- > [ pocuateiar = [ pleve)ar + £

Elp]

kinetic energy is implicitly contained in orbital energies



The Harris Functional

@ assume density change is small:

p(r) = p°(r) + op(r)
@ define change in effective potential
Svert(r) = verrlp)(r) — verr[p"] (r)
= [VCoul [p](r) — veoul [/’0] (r)] + [ch[,O} (r) - ch[f)o] (r)]
@ determine orbitals for fixed potential (no SCF)

(—;VZ + vere[p] (1')> ¢i(x) = Egi(x)

@ 1st order approximation for true orbital energies:

occ occ

Z € ~ Z € + / (5veff



The Harris Functional

@ approximation for total energy:

occ

Bpl = 3o+ gl [ plo) ven) - Jrcanll(6) — vl ar
= S Bl [ ple) | Seanll6) - el ) w10 .
@ XC term:

Evlol- / p(r)vu-[p“} (r)dr
~ Ee[p"] + / 5E“ r)dr— / P (0)vee[p"] (r)dr — / 5p(r)vee[p°)(r)dr

= E\ /) /PO vvc




The Harris Functional

@ Coulomb term:

[ o0 | 3rcoalile) = vew 106 ar
= [ [0 soren [y O PO g

@ energy (to first order in dp):
Z € — / |: VCoul ](I’) + Vae [PO](T)] dr + Eye [/00]‘

= only density p° appears!

J. Harris, Phys. Rev. B 31 (1985), 1770.



Harris Functional: Results

E, (eV) R, (bohr) w, (MeV)
Harris KS exp. | Harris KS exp. | Harris KS exp.
Be, 049 050 0.1 450 4.63 4.66 45 45 28
N, 10.7 11.34 9.91 2.03 2.08 2.07 346 296 292
F, 37 332 1.65 271 2.62 2.68 120 133 111
Cu, 29 265 203 | 410 410 4.20 35 41 33

J. Harris, Phys. Rev. B31 (1985), 1770.



Subsystem DFT

@ total density:

p(r) = D 6™ (1)
@ partition into subsystem contributions:
p(r) = pi(r)
1
@ write each p; in terms of subsystem orbitals

pi(r) = 1o (r)?

1

@ assume all ¢;, are known (but not ¢."*")



Subsystem DFT

@ problem for calculations of KS energy: T,[{¢;"*"}]
@ write formally exactly as

™ = S nlon] +

{nguper Z T {¢ll ]

or

Tyl{6;™} {1 = D Tl{oud] + 7010} {00, 1]
1

@ introduce density-dependent approximation,

TR0} {{on 1] = T ps}) = Tilo] = ) Tiloi]

1



One-Particle Equations in Subsystem DFT

@ energy functional:

El{ps}] = Eexlp] + Ecoulp] + Exclp] + > Tsl{di}] + T [{ps}];
I

@ choose no. of electrons per subsystem (N,)
@ construct Lagrangian

Lo} = Elfen) + S ( [ Eronte) - N,)

and minimize w.r.t. all pg
= Euler—Lagrange equations:

OT[{0i}] | T [{ px}]
dpk(r) pk(r)

0 = vext(r) + veou [p] (r) + vee[p] (r) + + 1k



Frozen-Density Embedding

@ assume all subsystem densities are v;-representable
= subsystem orbitals can be obtained from

1
(=372 + 8810, l)) 05 = 0
= if we choose

su _ 0T [P] 0T [p ]
Vi [, 1] (r) = veirlp) (r) + 5o 5p1(r1),

the systems of non-interacting particles fulfill

V;?P [p, pr](r) + (ST(5S£1[(¢I‘II)}] +ur=0

= these are the sought-for densities



Some References on Subsystem

Subsystem DFT:

P. Cortona, Phys. Rev. B 44 (1991), 8454

Frozen density embedding (FDE):
T.A. Wesolowski, A. Warshel, J. Phys. Chem. 97 (1993), 8050.
FDE-TDDFT:

M.E. Casida, T.A. Wesolowski, Int. J. Quant. Chem. 96 (2004), 577; T.A. Wesolowski, J. Am. Chem. Soc. 126 (2004),
11444.

Subsystem TDDFT:

JN, J. Chem. Phys. 126 (2007), 134116.

3-FDE:

C.R. Jacob, L. Visscher, J. Chem. Phys. 128 (2008), 155102.

ADF implementation:
JN, C.R. Jacob, T.A. Wesolowski, E.J. Baerends, J. Phys. Chem. A 109 (2005), 7805;

C.R. Jacob, JN, L. Visscher, J. Comput. Chem. 29 (2008), 1011.

overview over subsystem methods for spectroscopy:

JN, ChemPhysChem (2009), DOI: 10.1002/cphc.200900538.



Embedding Potential

@ define complementary density to p;(r)

A = 3 o) = o) i)

JJ£I

@ one-particle equations become

1 compl.
(=57 vealprle) + v 7™1) 1, = i

(Kohn—Sham equations with constrained electron density, KSCED)

@ embedding potential

vemblpr, p7(0) =D vha(0) + Y veoulpil(

JJA T4

ey . OTslel 6T
 velelr) = veelod M} + 05 = 5o




Solution of the KSCED equations

@ define subsystems (R4, Z4, A € 1, and N;)

© provide density guess for each subsystem; most common:

solve KS equations for all isolated subsystems
© loop over all subsystems:

e calculate embedding potential due to all other subsystems

solve KSCED equations for currently active subsystem 7
update density p;
if density change in system I is negligible: stop
otherwise: next cycle in loop

Note: step 2 is crucial for the definition of the subsystems



Frozen-Density Embedding

e o o U

common type of partitioning:
“active subsystem” and “environment”

environment has small (though non-negligible) influence on
properties of active part

construct density guess of the environment (p2(r))
determine embedding potential due to p,(r)
calculate density of active part (p;)

“orbital-free embedding”, “frozen DFT”, “FDE”



Monomer vs. Supermolecular Expansion

of subsystem densities

@ main computational advantage with monomer basis sets:
biy = Zcilyl Xvis bi, = Zcilyzxvz
V] v

0cey 0cCy

p = Z ZCIIVIXVI +Z chzl/zXVz

@ properties often converge faster with supermolecular basis:
¢i1/2 = Z Ciyjon Xy + Z Ciyppra Xvn

14 vy
0ccy occy

P = Z ZCZ]V]XV] + ZCI]I/2XV2 +Z ZC12U1XV1 + chzVZXllz

(computatlonally [much] more demandmg)




Electron Densities from FDE: F—H—-F~

F1 H F2

P
O scr1 @ gep2 o

@ strong, symmetric hydrogen bonds
@ p1: H-F2, p,: F1~— = asymmetric fragments




Electron Densities from FDE: F—H—-F~

F1 H F2

*—v—9
BCPlv BCP2

@ strong, symmetric hydrogen bonds
@ pi: H-F2, po: F1~ = asymmetric fragments

Density from FDE:

-1 0 1 2

K. Kiewisch, G. Eickerling, M. Reiher, JN, J. Chem. Phys. 128 (2008), 044114.

3



L

c
©

Laplac

ive

negat

F—H—F-

-2

2

K. Kiewisch, G. Eickerling, M. Reiher, JN, J. Chem. Phys. 128 (2008), 044114.



v,-Representability Conditions

a) initial F~ fragment, b) fully relaxed, c) fully relaxed, ghost basis

@ all p; must be v,-representable
emb,exact |

@ test case: pyaer = pProt — pp- for H,O---F~
@ negative areas in target density reduced upon relaxation

K. Kiewisch, G. Eickerling, M. Reiher, JN, J. Chem. Phys. 128 (2008), 044114.



V. (Subsystem) TDDFT



Time-Dependent DFT

Formal Basis:

@ Runge—Gross theorem (1984):
one-to-one correspondence between vy (r, ) and p(r, 1)

@ Runge and Gross also developed an effective one-electron
equation

1 .0
<—2v2 + Verr (T, z)) Yi(r,1) = lawi(r, )
= TDKS equations, where

VEff(ra t) = Vext(ra t) + VCoul(r’ t) + ch(r; t)

@ solutions (unperturbed system):

1/;[.(0) (r,t) = e*ie"’qﬁi(r),



Linear Response TDDFT

@ apply small perturbation
Svefr(r, 1) = VP [ + e 7] = 26VP" cos(wt),
@ write perturbed wavefunction as
bir, 1) = O (e, 1) + 5ei(r, 1)
@ insert into TDKS equation, subtract unperturbed TDKS equations
3 vanle) + )| (5. ) + B 07 00) = 150

@ expand 6v;(r, t) into unperturbed functions

sui(r,t) = > ci () (x, 1)

r



Linear Response TDDFT

@ solve for ¢;, (to first order)

[i(wsitw)]t [i(wsi—w)]t
cul) = 1 <e e

_E (wsi"_w) + (wsi _w>> <¢S’6vpe |¢l>

with w; = €, — ¢
@ first-order change in the density

dp(e,t) = p(r.0) = pOr,1)
= 3 [ 60, 1) + 0 (v, 060 (1, 1)

r

(n, = occupation number of orbital r)



Frequency-Dependent Response

@ insert expression for ¢, into ansatz for 64, (r, t)
@ insert ansatz for 6¢,(r, t) into dp(r, )
@ identify Fourier components of ép

dp(r,w) = n [<¢r|6vpe”|¢s>¢j(r)¢,(r) {&s]0vP|6,) 67 (r) 95(r)

s W — Wsr W+ Wy

@ ¢,(r) can always be chosen real
@ for real perturbations (electric fields):

(ds]0VP | pr) = VT = OVIET

@ occ—occ and virt-virt pairs do not contribute to dp(r,w)



The Perturbed Density Matrix

@ rewrite dp as

) = X[ - | eEmatmem

W — Wyi W + Wy

+ Wai ai e
= Z[” ~e - wz_i,]”%( ) ba(r)

ia ai w a

where




Linear Response in the Potential

@ external perturbation Jvey induces dp
@ Jp induces change in potential, dvegdving

. .
ST = UK 4+ gyind

ia ia >

§yind

ia <¢i|6vmd|¢a>
= /d37'1 {¢i(r])6villd¢d(rl)}

Jan{am| [onat s o)}

/d3r1 {¢i(r1) {/d% (m im' +fu-(l’1~,r2)) 5/)(1'2)} ¢a(r1)}




Exchange—Correlation Kernel

® f.(r;,r2) = Fourier transform of

Ovxe(r, 1)

! N o
Sl T ) = Sper )

@ ... gives rise to causality problems
@ typical approximation

@ exchange part



Linear Response in the Potential

@ matrix elements of the induced potential:

5v§2d = ZZKianij(w)
jb

@ coupling matrix

Kup = [@n{am)| [on (o vn) o) o]

@ combine results for §vi™d and §ve

w;
Pia(w) = 3 “ ) |:5V?;t+22Kia,ijjb(w):|

T W
ia Jjb

/

pert
vy,



Response Equations in Matrix Form

@ solve for oV

2
w

§ ij5zj5ab—2Kia,;b—r)b5ij5ab Ppp(w) = 05"
W

ib
J Ma j»

@ introduce matrix S
1
Sian = méijéab,

@ re-write equation in matrix—vector form:

M+ S| P(w) = v,
ST/2 M+ wS| S22 P(w) = ST1/Z5vee
1



Response Equations in Matrix Form

@ formal solution for P:

-1
P(w) = s—1/2 |:Sl/2MSI/2—|—w21] S—1/25yext,
Q

Pw) = S0 s 26y

where

Qiajps = (€4 — €)*6;j0up + meia,jb\/ (er — €j)



Casida’s Equation for Excitation Energies

@ re-write matrix equation as

(@ —w?1]8'PP(w) = —S71/25ve
F

@ consider vt — 0:
Q-wil]F, = 0

@ identical to constrained variational treatment (Ziegler et al.)



Subsystem TDDFT

@ partition density response
Sp(r) = pi(r)
1
@ expand response density in products of subsystem orbitals

(5p1(1‘) = 225P(ia)1¢il (r)¢a1 (r)7
(ia)r
@ perturbed density matrix
Py, (W) = Xfia),(w)‘;"?ie;)t,

Tt _ X ind
(Sfoa = (SV?iat)l =+ 6V(ia),



Local Response Approximation

@ total induced potential:

in 0 52Ts
() = /dl‘z [ ( Crok — 5p2[p]

JJ#

)5;» r) + /& ) 001 rz]
124



Local Response Approximation

@ total induced potential:
6vind(r ) _ / dr tot 52Tx [P}
I 1 2 JCxck 5p2

@ approximation for local excitations

) 6pr(r2) + S Z 501(1'2)]
pr

JJ#



Effective Kernel in Subsystem TDDFT

@ matrix elements of the induced potential

Vi, = 22 K{hy (i), 5Pia)s

(ia) s

where

Ky = /d3’1{ &, (x1) ¢, (1) X

/d3r2 (fgfck(l‘l,l'z) - m(m) ¢i1(r2)¢a1(r2)}

@ total effective response kernel:

1 82E. [p] 82Typ]
=12 T ap(ra)ap(ri) | op(ra)op(ry)

fock(rl ’ 1'2)



Subsystem TDDFT in Matrix Form

@ perturbed density matrix

5P(]b)l = X(]b { CXt + 2 Z K?]fg‘) la)]]

@ matrix equation for excitation energies

[ — Wi Fp =0



Approximate Solutions

full problem:
Qs Qup - Quz F/ 04
QBA QBB e QBZ ) FE 0B
. . . — Wy . =
Qz Qzp -+ Qz F} 02

JN, J. Chem. Phys. 126 (2007), 134116.



Approximate Solutions

Qaa Ff? 04
Qpp ) Ff 0z

— W} ) -
77 Ff 0z

@ diagonalize subsystem problems = yields Uy, Ug, . .. (solution
factor matrices) within “local response approximation”

JN, J. Chem. Phys. 126 (2007), 134116.



Approximate Solutions

Qs Qup - Quz F/ 04

Qpy Qg -+ Qpy ) F2 0p
. . . . — Wy . =

Qu Qzp - Qp FZ 0z

@ diagonalize subsystem problems = yields Uy, Ug, . .. (solution
factor matrices) within “local response approximation”

@ construct supermatrix U containing Uy, U blocks on the diagonal

JN, J. Chem. Phys. 126 (2007), 134116.



Approximate Solutions

5 ~ ~ ~
Wiao Qup - Quz F’,;1 04
~ 2 ~ ~
QBA w&o L QBZ 2 FE 03

—wy — .
0 0 2 V4
QZA QZB s wZ,O Fk 0Z

@ diagonalize subsystem problems = yields Uy, Ug, . .. (solution
factor matrices) within “local response approximation”

@ construct supermatrix U containing Uy, U blocks on the diagonal
© transform equation by U

JN, J. Chem. Phys. 126 (2007), 134116.



Approximate Solutions

5 ~ ~ ~
Wi.0 Qup - Quz F‘;{1 04
~ 2 ~ ~
QBA w&O L QBZ 2 FE 03

—wy — .
0 0 2 V4
QZA QZB s wZ,O Fk 0Z

@ diagonalize subsystem problems = yields Uy, Ug, . .. (solution
factor matrices) within “local response approximation”

@ construct supermatrix U containing Uy, U blocks on the diagonal
© transform equation by U
but: that still requires all couplings

JN, J. Chem. Phys. 126 (2007), 134116.
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Selective Inclusion of Couplings

@ FDE often works fine without intersystem couplings
@ critical cases: identical chromophores, degenerate excitations

new protocol:

@ calculate most important eigenvectors for subsystems to be
coupled

© calculate intersystem couplings only for these states
(or a subset of them)

@ diagonalize the corresponding subblock of 2™



Selective Inclusion of Couplings

@ FDE often works fine without intersystem couplings
@ critical cases: identical chromophores, degenerate excitations

new protocol:

@ calculate most important eigenvectors for subsystems to be
coupled

© calculate intersystem couplings only for these states
(or a subset of them)
@ diagonalize the corresponding subblock of 2™
requires matrix elements between subsystem excitations 4, vp:

Qs = D Ulia)aps i) (0)s Vi)
(ia)a (jb)s



A Closer Look at the Coupling Matrix Elements

@ explicit expression for ,,,,,

QMAVB = /dl’]zz U(ia)AuA VW(ia)4 olA (75(1,1 /erfgctckZ U(fb)gl/g \/w(jb)g(/)jk@hg

(ia)a (b5

/ dr, / dry2p!, (1)l (02)



A Closer Look at the Coupling Matrix Elements

@ explicit expression for ,,,,,

QMAVB = /drlzz U(iﬂ)AHA v Wia) olA (75(1/-\ /erfgctckZ U(fb)BVB VW(jb)g (/)j;; @173

(ia)a (b5

/ dr, / dry2p!, (1)l (02)

= interaction between “transition densities” of local excitations



A Closer Look at the Coupling Matrix Elements

@ explicit expression for ,,,,,

QMAVB - /drlzz U“”)M‘A \/"mol;\ ¢“A /erfockZ UW’)BVB \/%(ﬁ.iff@hy

(ia)a (jb)s
/drl /drzzp,u.\ r Cxckpz/;;(rz)

= interaction between “transition densities” of local excitations
2

= kggT X ‘QMAVB



Coupled FDE: Interacting Dimers
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distance/ Angstroem

m — m* in benzaldehyde (BP86/TZP, 20 monomer states):



Coupled FDE: Interacting Dimers
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m — m* in benzaldehyde (BP86/TZP, 20 monomer states):

@ uncoupled FDE: slight shift in monomer excitation



Coupled FDE: Interacting Dimers
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m — m* in benzaldehyde (BP86/TZP, 20 monomer states):
@ uncoupled FDE: slight shift in monomer excitation

@ supermolecular TDDFT: splitting between monomer excitations



Coupled FDE: Interacting Dimers

495 T T T T T
490 B
3
3 e T T T T T TN T T T ST
% 485
]
B .
5 S R isolated monomer
3 e « =+ - FDE uncoupled
480 -~ —— supermolecule A
— — - FDE coupled
(%] (%]
5 L L L L 1
4 5 9 10

6 7 8
distance/ Angstroem

m — m* in benzaldehyde (BP86/TZP, 20 monomer states):
@ uncoupled FDE: slight shift in monomer excitation
@ supermolecular TDDFT: splitting between monomer excitations
@ coupled FDE: splitting is reproduced

JN, J. Chem. Phys. 126 (2007), 134116.
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@ main pigments: Bchl a

G. McDermott et. al, Nature 374 (1995), 517.
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Natural Light-Harvesting Complexes

Structure of LH2 of Rhodopseudomonas acidophila

@ main pigments: Bchl a
@ 9 pairs of {«, 3}-Bchl a in B850 unit, 9 Bechl a in B80O unit
@ 9 carotenoid pigments (rhodopin glucoside)

@ 9 «- and p-apoproteins
G. McDermott et. al, Nature 374 (1995), 517.



Protein—Pigment Interactions in LH2

Rhodopseudomonas acidophila

excitation energies (eV; SAOP/TZP/FDE) for B800 Bchl a:

environment 0, Oy

exp.! 1.60 2.15
— 1.61 1.95
a-Met1 1.61 1.90
(3-Arg20 1.55 1.85

Lin vitro, R.E. Blankenship, Molecular Mechanisms of Photosynthesis
Blackwell Science, Oxford, 2002.

@ shifts from FDE agree with conventional TDDFT results

Z. He, V. Sundstrém, T. Pullerits, J. Phys. Chem. B 106 (2002), 11606.

= protein environment can be described by FDE



Photosynthetic Light-Harvesting Complexes

T T
B850 |
: Q
BES0+BBOO
| : /\ |
700 800

wavelength / nm

(SAOP/TZP/FDEc; ca. 3800 atoms)
@ strong excitonic coupling in B850
@ B850 and B800 spectra do not interact strongly

JIN, J. Phys. Chem. B, 112 (2008), 2207.
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