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FOrster Resonant Energy Transfer
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Han-sur-Lesse 2009 — p. 2/18



T. Forster, Ann. Phys. 2, 55 (1948)

Fermi Golden rule:
2T
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Coupling matrix element

Vi, = (DRA"|V|D*A), Ef = Ej+ ¢ — P

Dipole-dipole contribution:
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FRET (continued)

Combined:

The trick:

Result:
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Measuring distance

Competition between energy transfer
r(ET) ., p—6
and donor fluorescense gives FRET efficiency:

1
¥ T TV (R/Ro)

Typical range: Ry = 10...100 A

Correction for medium refractive index: n—*

Shorter distances: wave function overlap (Dexter) ~ e~k
Longer distances: real photons (QED) ~ R~*
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Bio applications
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Sapsford et al., Angew. Chemie 45,
4562 (2006)

quote:
P. R. Selvin, Nature struct. biol. (2000):

“Tsien et al.®> and other workers have de-
veloped several GFP FRET constructs
that are used to monitor the biochemical
environment inside living cells.”

Single molecule FRET
time-resolved FRET
Multi-chromophoric FRET
Quantum dot FRET

Two-photon FRET

Polarized FRET

o000 0l

Company: Black Hole Quencher ™
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Light Harvesting systems

Coherence in the B800 Ring of Purple Bacteria LH2
Cheng and Silbey, Phys. Rev. Lett. (20006)

n=m=1

McDemott et al., Nature (1995)
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Coherence in B80O

Fit with 100 000 Monte Carlo simulations:
® J=-27cm!

# Intercomplex disorder: o; = 10 cm~—!
# Intracomplex disorder: op = 60 cm~—!
r

Nearest neighbor coupling disorder: op = 60 cm~—!

9
Pa=3 len|
n=1

Localized: P, =1
Delocalized: P, =1/9
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Application organic solar cells

Available online at www.sciencedirect.com
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Absiract

The spectral range of sunlight absorbed by a luminescent solar concentrator (LSC) is increased by using multiple dyes. Absorption,
fluorescence, and fluorescence excitation spectra, and relative light output are reported for LSCs made with one. two, or three BODIPY
dyesin a thin polymer layer on glass. Losses caused by multiple emission and reabsorption events are minimized by optimizing resonance
excitation energy transfer between dyes. Increases in the outputs from the multiple-dye LSCs are directly proportional to increases in the
number of photons absorbed. The output of the three-dye LSC is 45-170% higher than those of the single-dye LSCs.

©) 2006 Elsevier B.V. All rights reserved.
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FRET In transition metal complexes

Hauser et al., Top. Curr. Chem. 241, 65 (2004)

Fig.3 a The building blocks [Cr{ox)s]* and ICrl[bpy);]“. b Space-filling model of the
three-dimensional oxalate network (dark) encapsulating the tris-bipyridine cation (light)
as in [NaCr{ox)s][Cr{bpy)s]Cl04

Doped in photophysically inert [Rh(bpy)s][NaAl(0x);]ClOy,.
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Hauseret al. Top. Curr. Chem. 241, 65 (2004
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Hauseret al. Top. Curr. Chem. 241, 65 (2004
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Fig. 17 Scheme for the resonant energy migration within the R; line of [Cr{ox)s]” in
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Solid line: experiment, dashed line: rate model
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Gas phase FRET

Clear Evidence of Fluorescence Resonance
Energy Transfer in Gas-Phase Ions

Maxim Dashtiev, Vladimir Azov, Vladimir Frankevich,
Ludwig Scharfenberg,” and Renato Zenobi

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH
Honggerberg, CH-8093 Ziirich, Switzerland

Fluorescence resonance energy transfer (FRET) is a distance-sensitive method that correlates
changes in fluorescence intensity with conformational changes, for example, of biomolecules
in the cellular environment. Applied to the gas phase in combination with Fourier transform
ion cyclotron resonance mass spectrometry, it opens up possibilities to define structural/
conformational properties of molecular ions, in the absence of solvent, and without the need
for purification of the sample. For successfully observing FRET in the gas phase it is important
to find suitable fluorophores. In this study several fluorescent dyes were examined, and the
correlation between solution-phase and gas-phase fluorescence data were studied. For the first
time, FRET in the gas phase is demonstrated unambiguously. (] Am Soc Mass Spectrom 2005,
16, 1481-1487) © 2005 American Society for Mass Spectrometry
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Gas phase FRET

1482 DASHTIEV ET AL. ] Am Soc Mass Spectrom 2005, 16, 1481-1487
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Figure 1. Structures of dyes and their derivatives. Compounds 1, 4, 6, 7, rhodamine 6G, and its
derivatives (absorption/emission maxima for 1 are at 530/556 nm in ethanol). Compounds 2 and 5,
sulforhodamine B, and its derivative (556,575 in ethanol); compound 3, sulforhodamine 101 (578 /597
in ethanol), compounds 8 and 9, and rhodamine #G covalently bound with sulforhodamine B,
compound 10, BODIPY (529/542 nm in CHCL,).
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S,/S, exciton splitting in the (2-pyridone), dimer
Mduller, Talbot, and Leutwyler, J. Chem. Phys. 116, 2836 (2002)

Frenkel exciton theory
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Energy
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A * B - A B *k FIG. 2. Schematic energy level diagram for the Frenkel exciton splitting in
a slightly unsymmetrical molecular dimer, such as (2PY),-"*C ar
‘ Sl > p— (2PY),-d,. V44, Vgg are Coulomb integrals of the individual chro-

mophores corresponding to the monomer Sp+— Sp transition energies, &
2 =| V44— Vgg| is the difference of monomer exciiation energles, AE is the

5, /5, exciton splitting energy.
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Exciton splitting

AE =|Ey — E_| = /(Vaa — Vpp)? +4Vip
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Leutwyler et al

FIG. 1. Geometric structure of (2FY); [B3LYF/G-311++Gid.p) ] and in-
teraction between the elecironic transition dipole moments @4, @p of the
2-pyridone moieties: {a) in-phase combination or paralle]l alignment, corre-
sponding to the allowed 5,5, (1B, ~ lA.!I'] electronic transition, (b} out-
of-phase combination or antiparallel alignment, corresponding to the forbid-
den §,—5, (JAJH IAJ]I transition. Ryp="5.36 A is the center-of-mass
distance between the dimers.
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FIG. 7. Schematic representation of the observed exciton splittings and the
5)++ 8, and Sz++ 5y transition energles of (k) (2PY) ;- fip, (c) (2PY) 24,
and (d) (2PY),-d,, represented by thick horizontal lines. UV transition
wave numbers are marked on the left. The observed exciton splittings
and 5+ 5, deuteration shifts are labeled with boldface numbers. On the
left and right are calculated exciton splittings of (a) (2PY),-d, and id)
(2PY);—d;. which are marked with dotted lines. the splittings are labeled
in standard font. For details of the model calculations, see the text.
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ADb Initio

Assessment of quantum chemical methods and basis sets for excitation energy transfer

R. F Fink et al., Chem. Phys. 346, 275 (2008)

Test: Benzene dimer
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Fig. 6. Electronic coupling parameter of the states with 1'#,,-character as function
of the distance, R, obtained with the cc-pVDZ basis and different approaches.
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Conclusion

® FRET is fun
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