Molecular rare event simulations

Peter Bolhuis van 't Hoff institute for Molecular Sciences University of Amsterdam, The Netherlands

Outline

- Part 1
 - Rare events
 - The need for unbiased transition paths
 - Sampling the path ensemble
- Part 2
 - Analyzing the path ensemble
 - Calculation of rate constants
 - Transition state ensemble and reaction coordinate
- Part 3
 - Application to protein folding

The reaction coordinate problem

If RC is not correct, transition states, rates and mechanism might be wrong.

Need for methods that create pathways without prior knowledge of the RC, e.g.

- -Parallel replica, hyperdynamics, metadynamics, etc
- -Nudged Elastic Band, string methods, etc
- -Transition path sampling

Breakdown of biased sampling

Free energy landscape has barrier

Calculate FE by umbrella sampling –by applying biasing potential –as a function of order parameter Q

Breakdown of biased sampling

Free energy landscape has barrier

Calculate FE by umbrella sampling –by applying biasing potential –as a function of order parameter Q

Finding the correct reaction coordinate is difficult!

Rare events by biasing along reaction coordinate

Hysteresis because reaction coordinate not known in advance

Mechanism and kinetics are not correct

Two ended methods

Methods that take the entire path and fix the begin and end point

Nudged Elastic Band

Suitable for finding saddle points on complex PES chain of states $\{r^{(0)}, r^{(1)}, \cdots, r^{(M)}\}$

define object function

$$S[r^{(0)}, r^{(1)}, \cdots, r^{(M)}] = \sum_{i=0}^{M} V[r^{(i)}] + \frac{k}{2} \sum_{i=1}^{M} [r^{(i)} - r^{(i-1)}]^2$$

that should be minimized.

$$f^{\text{NEB}}[r^{(i)}] = f^V_{\perp}[r^{(i)}] + f^s_{\parallel}[r^{(i)}]$$
$$\hat{\tau} = \frac{r^{(i+1)} - r^{(i)}}{|r^{(i+1)} - r^{(i)}|}$$

H. Jonsson et al. WorldScientific,Singapore, p.385(2000)

Minimize the action

problem : only one trajectory is obtained

Transition path sampling

Samples the path ensemble: all trajectories that lead over barrier

- Sampling by Monte Carlo
- Requires definition of stable states A,B only
- Results in ensemble of pathways
- Reaction coordinate is a result of simulation not an input
- Allows for calculation of rate constants

Apply when process of interest

- is a rare event
- is complex and reaction coordinate is not known

Examples: autodissociation of water, organic reactions in solution, protein folding

C. Dellago, P.G. Bolhuis, P.L. Geissler

Adv. Chem. Phys. 123, 1 2002

Path probability density

 $x(T) \equiv \{x_0, x_{\Delta t}, x_{2\Delta t}, \dots, x_T\}$ Path = Sequence of states

$$\mathcal{P}[x(\mathcal{T})] = \rho(x_0) \prod_{i=0}^{\mathcal{T}/\Delta t - 1} p(x_{i\Delta t} \to x_{(i+1)\Delta t})$$

Transition probabilities

Initial conditions

Canonical:
$$\rho(x) = \exp\{-\beta \mathcal{H}(x)\}/Q$$
 $Q(\beta) = \int dx \exp\{-\beta \mathcal{H}(x)\}$
Microcanonical: $\rho(x) = \delta[E - \mathcal{H}(x)]/g(E)$ $g(E) = \int dx \delta[E - \mathcal{H}(x)]$

Brownian dynamics

$$p(r_t \to r_{t+\Delta t}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(r_{t+\Delta t} - r_t + \frac{\Delta t}{\gamma m}\frac{\partial V}{\partial r})^2}{2\sigma^2}\right\}$$

$$\sigma^2 = \frac{2k_{\rm B}T}{m\gamma}\Delta t$$

Newtonian dynamics

$$\dot{r} = rac{\partial \mathcal{H}(r,p)}{\partial p}$$
 $\dot{p} = -rac{\partial \mathcal{H}(r,p)}{\partial r}$
 \dot{r}
 $\phi_t(x_0)$
 $p(x_t \to x_{t+\Delta t}) = \delta[x_{t+\Delta t} - \phi_{\Delta t}(x_t)]$

Transition path ensemble

 $\mathcal{P}_{AB}[x(\mathcal{T})] \equiv h_A(x_0)\mathcal{P}[x(\mathcal{T})]h_B(x_{\mathcal{T}})/Z_{AB}(\mathcal{T})$

$$Z_{AB}(T) \equiv \int \mathcal{D}x(T) h_A(x_0) \mathcal{P}[x(T)] h_B(x_T)$$
$$\int \mathcal{D}x(T) \equiv \int \cdots \int dx_0 dx_{\Delta t} dx_{2\Delta t} \cdots dx_T$$

Sampling the path ensemble

Monte Carlo simulation

transition path sampling

Metropolis MC of pathways

1. Generate new path from old one

$$x^{(o)}(\mathcal{T}) \longrightarrow x^{(n)}(\mathcal{T})$$

2. Accept **new** path according to **detailed balance**:

$$\mathcal{P}_{AB}[x^{(o)}(\mathcal{T})]\pi[x^{(o)}(\mathcal{T}) \to x^{(n)}(\mathcal{T})] = \mathcal{P}_{AB}[x^{(n)}(\mathcal{T})]\pi[x^{(n)}(\mathcal{T}) \to x^{(o)}(\mathcal{T})]$$

$$\pi[x^{(\mathrm{o})}(\mathcal{T}) \to x^{(\mathrm{n})}(\mathcal{T})] = P_{\mathrm{gen}}[x^{(\mathrm{o})}(\mathcal{T}) \to x^{(\mathrm{n})}(\mathcal{T})] \times P_{\mathrm{acc}}[x^{(\mathrm{o})}(\mathcal{T}) \to x^{(\mathrm{n})}(\mathcal{T})]$$

3. Satisfy detailed balance with the Metropolis rule:

$$P_{\rm acc}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})] = h_A[x_0^{(\rm n)}]h_B[x_{\mathcal{T}}^{(\rm n)}] \min\left\{1, \frac{\mathcal{P}[x^{(\rm n)}(\mathcal{T})]P_{\rm gen}[x^{(\rm n)}(\mathcal{T}) \to x^{(\rm o)}(\mathcal{T})]}{\mathcal{P}[x^{(\rm o)}(\mathcal{T})]P_{\rm gen}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})]}\right\}$$

Shooting moves

Shooting algorithm

$$P_{\text{gen}}^{\text{f}}[x^{\text{o}}(\mathcal{T}) \to x^{\text{n}}(\mathcal{T})] = \prod_{i=t'/\Delta t}^{\mathcal{T}/\Delta t-1} p\left(x_{i\Delta t}^{(n)} \to x_{(i+1)\Delta t}^{(n)}\right)$$
$$P_{\text{gen}}^{\text{b}}[x^{\text{o}}(\mathcal{T}) \to x^{\text{n}}(\mathcal{T})] = \prod_{i=1}^{t'/\Delta t} \bar{p}\left(x_{i\Delta t}^{(n)} \to x_{(i-1)\Delta t}^{(n)}\right)$$

$$P_{\text{gen}}[x^{(\text{o})}(\mathcal{T}) \to x^{(\text{n})}(\mathcal{T})] = p_{\text{gen}}[x^{(\text{o})}_{t'} \to x^{(\text{n})}_{t'}] \prod_{i=t'/\Delta t}^{\mathcal{T}/\Delta t-1} p\left(x^{(\text{n})}_{i\Delta t} \to x^{(\text{n})}_{(i+1)\Delta t}\right) \times \prod_{i=1}^{t'/\Delta t} \bar{p}\left(x^{(\text{n})}_{i\Delta t} \to x^{(\text{n})}_{(i-1)\Delta t}\right)$$

$$P_{\rm acc}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})] = h_A[x_0^{(\rm n)}]h_B[x_{\mathcal{T}}^{(\rm n)}] \min\left[1, \frac{\rho\left(x_0^{(\rm n)}\right)}{\rho\left(x_0^{(\rm o)}\right)} \prod_{i=0}^{t'/\Delta t-1} \frac{p\left(x_{i\Delta t}^{(\rm n)} \to x_{(i+1)\Delta t}^{(\rm n)}\right)}{\bar{p}\left(x_{(i+1)\Delta t}^{(\rm n)} \to x_{i\Delta t}^{(\rm n)}\right)} \times \frac{\bar{p}\left(x_{(i+1)\Delta t}^{(\rm o)} \to x_{i\Delta t}^{(\rm o)}\right)}{p\left(x_{i\Delta t}^{(\rm o)} \to x_{(i+1)\Delta t}^{(\rm o)}\right)}\right]$$

$$\frac{p(x \to y)}{\bar{p}(y \to x)} = \frac{\rho_0(y)}{\rho_0(x)}$$

$$P_{\rm acc}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})] = h_A[x_0^{(\rm n)}]h_B[x_{\mathcal{T}}^{(\rm n)}]$$

$$P_{
m acc}[x^{
m (o)}(\mathcal{T}) o x^{
m (n)}(\mathcal{T})] = h_A[x_0^{
m (n)}]h_B[x_{\mathcal{T}}^{
m (n)}]\min\left[1,rac{
ho(x_{t'}^{
m (n)})}{
ho(x_{t'}^{
m (o)})}
ight]$$

Standard TPS algorithm

- take existing path
- choose random time slice *t*
- change momenta slightly at *t*
- integrate forward and backward in time to create new path of length L
- accept if A and B are connected, otherwise reject and retain old path
- calculate averages
- repeat

Definition of the stable states

Parallel tempering

T. J. H. Vlugt and B. Smit, Phys. Chem. Comm. 2, 1 (2001).

Autoionization in liquid water

Average life time > 10 h

M. Eigen and L. De Maeyer, Z. Elektrochemie 59, 987 (1955)

Autoionization in liquid water

32 waters, BLYP functional CPMD code 10 uncorrelated trajectories of 200 fs,

P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, M. Parrinello, Science **291**, 2121 (2001).

Classical nucleation (1926)

- -Is classical nucleation theory correct?
 - •What is the barrier?
 - Rate constant

 $\Delta\mu$: chem. pot difference ρ: density

Path sampling of nucleation

TIS in NPH ensemble, as density and temperature change *(Daniele Moroni)* N=10000, P=5.68 H=1.41 (25 % undercooling)

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, *Phys. Rev. Lett.* 94, 235703 (2005)

Sampling paths is only the beginning

- Eugene Wigner: "It is nice to know that the computer understands the problem. But I would like to understand it too."
- Path ensemble needs to be further explored to obtain:
 - Rate constants
 - Free energy
 - Transition state ensembles
 - Mechanistic picture
 - Reaction coordinate
- Illustrative example: crystal nucleation

Free energy of paths

$$C(t) = \frac{\int \mathcal{D}x(t) h_A(x_0) \mathcal{P}[x(t)] h_B(x_t)}{\int \mathcal{D}x(t) h_A(x_0) \mathcal{P}[x(t)]} = \frac{Z_{AB}(t)}{Z_A}$$

P.G. Bolhuis, D. Chandler, C. Dellago, and P.L. Geissler, *Annu. Rev. Phys. Chem.* 53, 291 (2002)
C. Dellago and P. L. Geissler, *AIP Conf. Proc.* 690, (2003)
P. L. Geissler and C. Dellago, *JPC B* 108, 6667 (2004)

$$P_A(\tilde{\lambda}, t) = \frac{\int \mathcal{D}x(t) h_A(x_0) \mathcal{P}[x(t)] \delta[\tilde{\lambda} - \lambda(x_t)]}{Z_A} = \langle \delta[\tilde{\lambda} - \lambda(x_t)] \rangle_A$$

$$C(t) = \exp[-W_{AB}(t)] = \int_{\lambda_{\min}^B}^{\lambda_{\max}^B} d\lambda P_A(\lambda, t)$$

$$P_{A\mathcal{W}[i]}(\tilde{\lambda},t) = \frac{\int \mathcal{D}x(t) h_A(x_0) \mathcal{P}[x(t)] h_{\mathcal{W}[i]}(x_t) \delta[\tilde{\lambda} - \lambda(x_t)]}{\int \mathcal{D}x(t) h_A(x_0) h_{\mathcal{W}[i]}(x_t)}$$
$$= \langle \delta[\tilde{\lambda} - \lambda(x_t)] \rangle_{A\mathcal{W}[i]}.$$

$$\mathcal{C}(t) \equiv \frac{\langle h_{\mathcal{A}}(x_0)h_{\mathcal{B}}(x_t)\rangle}{\langle h_{\mathcal{A}}\rangle} \qquad \qquad k_{AB} = \frac{\langle h_{\mathcal{A}}(x_0)h_{\mathcal{B}}(x_0)\rangle}{\langle h_{\mathcal{A}}\rangle} = \frac{\langle \phi_{AB}\rangle}{\langle h_{\mathcal{A}}\rangle}$$

T. S. van Erp, D. Moroni and P. G. Bolhuis, *J. Chem. Phys.* **118**, 7762 (2003) T. S. van Erp and P. G. Bolhuis, *J. Comp. Phys.* **205**, 157 (2005)

 $P_{A}(\lambda_{i+1} \mid \lambda_{i})$ = probability that path crossing i for first time after leaving A reaches i+1 before A

$$k_{AB}^{TIS} = \frac{\left\langle \phi_{AB} \right\rangle}{\left\langle h_{\mathcal{A}} \right\rangle} = \frac{\left\langle \phi_{AB} \right\rangle}{\left\langle h_{\mathcal{A}} \right\rangle} \prod_{i=1}^{n-1} P_A(\lambda_{i+1} \mid \lambda_i) = \Phi_A \prod_{i=1}^{n-1} P_A(\lambda_{i+1} \mid \lambda_i)$$

TIS results for nucleation

$$\mathcal{P}_A(B|1) = \prod_{i=1}^{n-1} \mathcal{P}_A(i+1|i) = 8 \times 10^{-7}$$
$$\frac{\langle \phi_{A1} \rangle}{\langle h_A \rangle} = 1.29$$
$$k_{AB} = (1.0 \pm 0.8) \times 10^{-6}$$

Memory loss reasonable

Free energy follows directly Moroni, van Erp, Bolhuis, PRE, 2005

Agrees with ten Wolde (1995)

Structural analysis?

Committor (aka p-fold, splitting probability)

 $p_B(r,t) =$ Probability that a trajectory initiated at *r* relaxes into *B*

L. Onsager, *Phys. Rev.* **54**, 554 (1938).

M. M. Klosek, B. J. Matkowsky, Z. Schuss, *Ber. Bunsenges. Phys. Chem.* **95**, 331 (1991) V. Pande, A. Y. Grosberg, T. Tanaka, E. I. Shaknovich, *J. Chem. Phys.* **108**, 334 (1998)

Transition state ensemble

r is a transition state (TS) if $p_B(r) = p_A(r) = 0.5$

Committor distributions

Structure

Small and structured

Outline

- Part 1
 - Rare events
 - The need for unbiased transition paths
 - Sampling the path ensemble
- Part 2
 - Analyzing the path ensemble
 - Calculation of rate constants
 - Transition state ensemble and reaction coordinate
- Part 3
 - Application to protein folding

Folding of Trp-cage

20-residue protein NLYIQ WLKDG GPSSG RPPPS 2-state folder, experimental rate 4 μs (*Andersen et al, Nature 2002, Zhou et al. PNAS 2004, others*)

System: 1L2Y in 2800 SPC waters OPLSAA, PME, Nose-Hoover, GROMACS

What is folding mechanism in explicit water at 300K?

Strategy:

- Stable states by PT/REM
- Mechanism by path sampling

Jarek Juraszek and P.B., PNAS 2006

Replica exchange of Trp-cage

initially folded

initially unfolded

64 replicas Temp range 272-555K 30 ns per replica

barrier towards native state not crossed:

Path sampling

Acceptance problem

has problems with long paths (>1ps) because of molecular chaos (even with $dp \rightarrow 0$)

Modified path sampling

Long paths require stochastic sampling.

Shoot a trajectory using stochastic thermostat in just one arbitrary direction.

Path sampling indicators

Rates by Transition interface sampling

 $P_A(\lambda_{i+1} \mid \lambda_i)$ = probability that path crossing i for first time after leaving A reaches i+1 before A

$$k_{AB} = \frac{\langle \phi_{AB} \rangle}{\langle h_{\mathcal{A}} \rangle} = \frac{\langle \phi_{A} \rangle}{\langle h_{\mathcal{A}} \rangle} P_{A}(\lambda_{B} | \lambda_{A}) = \frac{\langle \phi_{A} \rangle}{\langle h_{\mathcal{A}} \rangle} \prod_{i=1}^{n-1} P_{A}(\lambda_{i+1} | \lambda_{i})$$

N-L folding and unfolding rate

Difference in folding rate might be caused by L state being different from U state.

TSE

TS can fall inside stable state in FE landscape

Water role in kinetics

We can do a committor analysis:

- Start with TS and randomize waters, calculate committor

I-N path

Role of water

- Water expulsion is last step upon folding.
- P_{fold} calculations show instantaneous configuration of water is not important in reaction coordinate (for both L-N and I-N pathways).
 - Average path length is 3 ns: more than enough time to equilibrate
- Water plays a role, as implicit solvent predict different pathways and TS structure. Possible solution: some water molecules can play structural role:
 - Average residence time < 50 ps
 - Special very strongly bound bridging water molecules > 1 ns.
- In improved implicit solvent models these waters should be treated differently.

Maximum likelihood estimation

- Suppose we have TPS information, how do we get reaction coordinate *r*?
- p(TP|x) is the probability to be on a Transition Path provided we are at x
- A model for this function could be

 $p(TP|r) \propto (1 - \tanh^2(r))$

 For diffusive dynamics (or dynamics that quickly loses memory) this changes into a function of the committor pB

$$p(TP|r) = 2p_B(r)(1 - p_B(r))$$

• The question: what is r(x)?

Peters & Trout, JCP 125 054108(2006)

Maximum likelihood estimation

- we are searching for a reaction coordinate r(x) that describes the reaction best.
- r(x) should be a combination of the collective variable q(x), e.g.

$$r(\mathbf{x}) = \sum_i lpha_i q(\mathbf{x}) + lpha_0$$

- suppose we have from aimless TPS shooting points x and the outcomes of the trajectories: {x^A} and {x^B}
- Then the likelihood of a model predicting this outcome would be $L(\alpha) = \prod_{i=1}^{N_B} p_B(r(q(\mathbf{x}_i^{(B)})) \prod_{i=1}^{N_A} (1 - p_B(r(q(\mathbf{x}_i^{(B)})))$
- maximize this likelihood to obtain the optimal parameters α

Reaction coordinate analysis

TPS

Conclusions

- Separate folding pathways can be sampled with TPS
- Transition state ensemble (TSE) :
 - characterized by solvation
 - water dynamics probably no part of RC at TSE, water structure is.
 - does not always correspond with a FE landscape saddle
 - In general FE should not be trusted for kinetics (solution: flux through graphs, MSMs)
- Calculated TIS rate constant compares good to experiment for unfolding and less for folding: possibly a force field issue.

Bridging time and length scales in biophysical problems requires a combination of techniques

Summary

- Rare events difficult to simulate
- need for good potentials
- need for good MD simulation
- need for free energy calculations
- need for order parameter free methods:
 - NEB, TPS , string method
- need for reaction coordinate analysis methods

Acknowledgements

Evert Jan Meijer

Elske Leenders

Jocelyne Vreede

Jarek Juraszek

Christoph Dellago David Chandler Phill Geissler Univ Vienna UC Berkeley UC Berkeley Daniele Moroni Cambridge Titus van Erp Univ Leuven

