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Rare events 
Interesting transitions in complex systems  

–  solution chemistry 
–  protein folding  
–  enzymatic reactions 
–  complex surface reactions 
–  nucleation of phases 

These reactions happen on a long time 
scale compared to the molecular timescale 
(eg solvent motion)   

dominated by collective, rare events 
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Example: Autoionization in liquid water  

H+ 

OH- 

H+ 

OH- 
H2O 

M. Eigen and L. De Maeyer, Z. Elektrochemie 59, 987 (1955) 
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Average life time > 10 h 
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Smooth vs rough energy landscapes 

•  # saddle points limited 
•  reaction coordinate known 
•  pathways can be enumerated 
•  Arrhenius (TST) applies 

•  saddle points uncountable 
•  reaction coordinates unknown 
•  entropy important, many pathways 
•  Arrhenius still applies???? 

Dellago logoTM How do we explore? 
Usually by free energy surface   



Free energy for protein folding 

Taken from Dobson, Nature, 2003 



Questions 
•  How do we get free energy? (thermodyamics) 

•  How do we compute rate constants? (kinetics) 

•  How do find transition states? (mechanism) 

•  What is the reaction coordinate of a reaction/process? 

•  How do we know we have the correct reaction coordinate? 
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Outline 
•  Lecture 1 :Introduction molecular simulation 

–  Monte Carlo 
–  Molecular dynamics 
–  Application 

•  Lecture 2 : Rare events simulations 
–  Transition State theory 
–  Computing free energies 
–  Bennett-Chandler approach 

•  Lecture 3: Advanced trajectory based methods 
–  Transition Path Sampling 
–  Analyzing reaction coordinates 
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Molecular simulation of  
complex systems 
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  Molecular dynamics: solve 
equations of motion 

  Monte Carlo: importance 
sampling 
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Monte Carlo 
Aim : compute thermal averages (to obtain thermodynamics) 

Where  i labels all eigenstates of the system, and 



Phase space integral 
In the classical limit we replace the sum over quantum states by an integral 

over phase space 

 r is position vector and p is momentum vector. 
 N is number of particles 
 H is the Hamiltonian of the system  
 and β=1/kBT  

In replacing the sum by an integral, we have attributed  a “volume” h3N to 
every quantum state  



Hamiltonian is sum of potential and kinetic energy 

If A does not depend on momenta the integration of momenta can be done 
analytically (Gaussian integral) 



Problems with this integral 

•  We cannot compute the sum over all quantum states because there are 
so many  

•  And we cannot compute the classical integral either (except the 
integration over momenta).  

•  Consider “normal” numerical integration of 100 particles, 3 dimensions, 
10 points in every direction. 

•  Requires 10300 points for a very poor estimate of the integral… 



Daan Frenkel’s analogy  
A similar but much less 
serious problem:  

Measure the  depth of the 
Nile by quadrature. 

Not very efficient… 

© D. Frenkel  



The solution 
A better strategy:  
measure depth while walking 
around in the Nile  

Importance sampling 

© D. Frenkel  



Importance sampling 
We wish to perform a random walk in configuration space, such that the 

number of times that each point is visited, is proportional to its 
Boltzmann weight 

Then 

how to achieve such a random walk? 



Balance 
Whatever our rule is for moving from one point  to another, it should not 

destroy the equilibrium distribution.  

That is: in equilibrium we must have balance 



Detailed balance 
denoting o old configuration and n the new state reachable from o this 

balance condition is 

A stronger condition is 

for each pair of states o, n 

Detailed balance (automatically implies balance) 



Importance Sampling Random Walk 

A move starting from one point consist of generating a trial move and 
accept or reject such a move. 

Transition probabilities are a product of the generation probability and 
the  acceptance probability 

Detailed balance implies 



Metropolis algortihm 
Generation probabilities are often chosen symmetric. 

Therefore 

the choice of Metropolis, Rosenbluth, Rosenbluth,Teller and Teller (1953) 



Importance Sampling Random Walk 
A move starting from one point consist of generating a trial move and 
accept or reject such a move. 

Metropolis, Rosenbluth, Rosenbluth,Teller and Teller (1953) 

•  try to change energy state 

•  compute ΔE =Enew –Eold 

•  accept new state if ran < exp(ΔE/kT) 

•  reject otherwise 

•  sample the state of the system 

•  repeat 



Parallel tempering/Replica Exchange 

E 

phase space 

E 

phase space 

low T 

high T 

High barriers in energy 
landscape: difficult to sample 

Barriers effectively low: easy to 
sample 

Ergodicity problems can occur, esspecially in glassy systems: 
biomolecules, moleuclar glasses, gels, etc. 

The solution: go to high temperature 



Parallel tempering/Replica Exchange 
Simulate two systems simultaneously  
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system 1 
temperature T1 

system 2 
temperature T2 

total Boltzmann weight: 



Swap move 
•  Allow two systems to swap 
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system 2 
temperature T1 

system 1 
temperature T2 

total Boltzmann weight: 



Acceptance rule 
The ratio of the new boltzmann factor over the old one is 

the swap acceptance ratio is 
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Consider M replica’s in the NVT ensemble at a different temperature. 

A swap between two systems of 
different temperatures (Ti,Tj) is 
accepted if their potential 
energies are near.  

More replicas 

other parameters can be used: Hamiltonian exchange 



Molecular dynamics 
Is based on Newton's  equations. 

for  i=1 .. N particles 

the force F is given by the gradient of the potential 

given the potential, one can integrate the trajectory x(t) of the whole 
system as a function of time. 



Numerical integration 
This is an N-body problem, which can only be solved numerically (except in 
very special cases)  

at least, in principle.. 

Naïve implementation: truncation of Taylor expansion 
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Wrong!  
The naive “forward Euler” algorithm 
•  is not time reversible  
•  does not conserve volume in phase space  
•  suffers from energy drift  
Better approach: “Verlet” algorithm 



Verlet algorithm 
compute position in next and previous time steps 

or 
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Verlet algorithm 
–  is time reversible 
–  does  conserve volume in phase space 
–  (is “symplectic”) 
–   does not suffer from energy drift 

...but is it a good algorithm? 
i.e. does it predict the time evolution of the system correctly??? 
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Molecular chaos 
Dynamics of “well-behaved” classical many-body system is chaotic. 

Consequence: Trajectories that differ very slightly in their initial conditions 
diverge exponentially (“Lyapunov instability”) 
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Lyapunov instability 
The Lyapunov disaster in action...  
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Any small error in the numerical integration of the equations of moti on, 
will blow up exponentially.... 

always... 

...and for any algorithm!! 

SO: 
 Why should anyone believe Molecular Dynamics simulations ??? 
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Answers: 
1.  In fact, one should not… 

2.  Good MD algorithms (e.g. Verlet) can also be considered as good 
Monte Carlo algorithms –they therefore yield reliable STATIC 
properties (“Hybrid Monte Carlo”) 

3.  What is the point of simulating dynamics, if we cannot trust the resulting 
time-evolution??? 

4.  All is well (probably), because of... 
The Shadow Theorem. 
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Shadow theorem 
•  For any realistic many-body system, the shadow theorem is merely a 

hypothesis. 

•  It basically states that Good algorithms generate numerical trajectories 
that are “close to” a REAL trajectory of the many-body system. 

•  Question: Does the Verlet algorithm indeed generate “shadow” 
trajectories? 

•  Take a different look at the problem. 
–  Do not discretize NEWTON’s equation of motion… 
–  ...but discretize the ACTION 
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Lagrangian Classical mechanics 

•  Newton: 

•  Lagrange: 
–  Consider a system that is at a point r0 at time t=0 and at point rt at 

time t=t, then the system follows a trajectory r(t) such that: 

is an extremum. The Lagrangianis L defined as: 

Han sur Lesse 

kinetic energy 



Langrangian 
For example, if we use cartesian coordinates: 

What does this mean? 

Consider the “true” path R(t), with R(0)=r0 and R(t)=rt. 
Now, consider a path close to the true path: 

Then the action S is an extremum if  

what does this mean? 
Han sur Lesse 



Discretized action 

For a one dimensional system this becomes 
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Minimize the action 
Now do the standard thing: Find the extremum for small variations in the 
path, i.e. for small variations in all xi. 

Han sur Lesse 

This will generate a 
discretized trajectory that 
starts at time t0 at X,  and 
ends at time t at Xt. 



Minimizing the action 
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•  which is the Verlet algorithm! 

•  The Verlet algorithm generates a trajectory that satisfies the boundary 
conditions of a REAL trajectory –both at the beginning and at the 
endpoint. 

•  Hence, if we are interested in statistical information about the dynamics 
(e.g. time-correlation functions, transport coefficients, power spectra...) 
 ...then a “good” MD algorithm (e.g. Verlet) is fine. 
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Velocity Verlet 
Downside regular verlet algorithm: velocity is not known. 

Velocity verlet (Andersen 1983):  

(Is based on Trotter decomposition of Liouville operator formulation, 
also basis of Multiple time steps).  
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Lagrangian approach 
Lagrangian is sum of two terms  
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Newton : F=ma 



Hamiltonian approach 
The Hamiltonian is defined as  

Hamilton’s equations are then 

Integrating equations of motion (by Verlet) conserves the Hamiltonian  



Conservation of Hamiltonian 

So a solution to the Hamiltonians equation conserves the  TOTAL energy 
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MD generates NVE ensemble 
In general the MC phase space density is 

with x= {pN,rN} 

Integrating over momenta gives 

N! comes from indistinguishability of particles. 
But MD conserves Hamiltonian H= E = constant (and constant total P). 

with instantaneous temperature    
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Thermostat: From NVE to NVT 
Introduce thermostat in MD trajectory: 
•  stochastic thermostats 

–  Andersen 
–  Langevin  
–  Bussi (2007) 

•  deterministic thermostat 
–  Nose-Hoover 

All of these alter the velocities such that the trajectory samples the 
canonical NVT ensemble, and the partition function becomes 

These thermostats differ in how they achieve this 
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Andersen Thermostat 
•  Every particle has a fixed probability 

to collide with the Andersen demon 

•  After collision the particle is give a 
new velocity 

•  The probabilities to collide are 
uncorrelated (Poisson distribution) 
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goal: compute MD trajectory sampling NVT ensemble. 
Take kinetic energy out of the system and put it back in via a ‘piston’. 
piston can be seen as additional variable s storing kinetic energy 
Approach: extended Lagrangian 

Nose Hoover thermostat 
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extended variable 

+

effective mass 

constant to be set 



now define  

then it is possible to show that the partition function Znose is 

for g=3N+1 the system samples the canonical distribution if p’ is 
interpreted as the real momentum  

Nose-Hoover Thermostat 
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equations of motion follow from Hamilton's equations. 

Nose-Hoover Thermostat 
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Effect of mass Q 
Lennard-Jones fluid 

mean square displacement   temperature relaxation 
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Ergodicity theorem 
time  averages over a NVT MD trajectory 

ensemble average 

Ergodicity theorem states that for an ‘ergodic system’ 
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Practical MD 
•  Initialization 

–  Total momentum should be zero (no external forces) 
–  Temperature rescaling to desired temperature 
–  Particles/atoms/molecules start on a lattice/ or random positions 

•  Force calculations 
–  Periodic boundary conditions 
–  Straightforward force: Order N2 algorithm:  
–  neighbor lists, linked cell: Order N:  
–  Electrostatics: Ewald summation O(N1.5) or PME: O(NlogN) 

•  Integrating the equations of motion 
–  Verlet or velocity verlet 
–  Thermostat 
–  optionally : multiple time steps  
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Periodic boundaries 
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Saving CPU 
•  Cell list      Verlet List 
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Erice, CSCM 2005 

All-atom force fields for biomolecules 

•  Potential energy for protein 
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Erice, CSCM 2005 

Currently available empirical force fields 
•  CHARMm  (MacKerrel et 96) 
•  AMBER     (Cornell et al. 95) 
•  GROMOS   (Berendsen et al 87) 
•  OPLS-AA  (Jorgensen et al 95) 
•  ENCAD     (Levitt et al 83)  

•  Subtle differences in improper torsions, scale factors 1-4 bonds, united 
atom  rep. 

•  Partial charges based on empirical fits to small molecular systems  
•  Amber & Charmm also include ab-initio calculations  
•  Not clear which FF is best : top 4 mostly used 

•  Water models also included in description 
–  TIP3P, TIP4P 
–  SPC/E 

•  Current limit: 105 atoms, 1000 ns 



Photoactive Yellow Protein 
bacterial blue-light sensor 

N-terminal domain PAS domain 

Absorption of a blue-light photon triggers the photo cycle 
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J. Vreede et al. Biophys. J. 2005 
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Replica Exchange works for MD 

Consider M replica’s in the NVT ensemble at a different temperature. 

€ 

i→ j
j→ i

= exp− (βi −β j )(U( j) −U(i))[ ]

A swap between two systems of different 
temperatures (Ti,Tj) is accepted if their potential 
energies overlap.  
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phase space 

E 

phase space 

low T 

high T 

High barriers in energy 
landscape: difficult to sample 

Barriers effectively low: easy to 
sample 

Advantage: better sampling phase space 



Partial unfolding 
• Loss of α-helical structure 

• Exposure of hydrophobic groups 
• Increased flexibility in parts of the protein backbone 
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cis-chroH + Glu46- 
Force field MD (gromacs) 

Gromos96 - SPC water - PME 
Replica Exchange 

Molecular simulation 



EBSA July 2007 Exp: Bernard et al. Structure 2005 
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A REMD trajectory 


