
Derivation of the Born-Oppenheimer approximation

Exact (non-relativistic) Hamiltonian

H = Tn + Te + V (r,R)

with

Te = −
∑

i

~2

2m
∇2

i and Tn = −
∑

A

~2

2MA

∇2
A

V (r,R) =
∑

A>B

ZAZBe2

|RA − RB|
−

∑

i,A

ZAe2

|ri − RA|
+

∑

i>j

e2

|ri − rj|

Electronic Hamiltonian (clamped nuclei)

He = Te + V (r,R)



The total Schrödinger equation reads

H Ψ(r,R) = E Ψ(r,R)

Expand the total wave function

Ψ(r,R) =
∑

k

φk(r;R)χk(R)

in solutions φk(r;R) of the electronic Schrödinger equation

He φk(r;R) = Ek(R)φk(r;R)

and substitute it into the total Schrödinger equation.

Multiply by the function φk′(r;R) from the left and integrate over the

electronic coordinates r. The electronic Hamiltonian He is diagonal

〈φk′(r;R)|He|φk(r;R)〉(r) = δk′kEk(R)

and the electronic wave functions are orthogonal

〈φk′(r;R) |φk(r;R)〉(r) = δk′k



This yields a set of coupled eigenvalue equations for the nuclear

wave functions

[Tn + Ek′(R) − E ] χk′(R) =
∑

k

[Fn]k′k χk(R)

Coupling between different electronic states k′, k

[Fn]k′k (R) = 〈φk′(r;R)|Tn|φk(r;R)〉(r) − Tn δk′k

occurs through the nuclear kinetic energy operator Tn.

When this coupling is neglected one obtains the Born-Oppenheimer

nuclear Schrödinger equation for electronic state k′

[Tn + Ek′(R)] χk′(R) = E χk′(R)



The (non-adiabatic) coupling terms are

[Fn]k′k (R) = −
∑

A

~2

2MA

[

2〈φk′|
(

∇Aφk

)

〉(r) · ∇A + 〈φk′|
(

∇2
Aφk

)

〉(r)

]

They are small because of the large nuclear masses MA in the de-

nominator.

In the first term one may write

〈φk′|
(

∇Aφk

)

〉(r) =
〈φk′|

[

∇A, He

]

|φk〉(r)

Ek(R) − Ek′(R)
,

which shows that the coupling is small only when the electronic

energies Ek(R) and Ek′(R) are well separated. This is normally the

case, and the Born-Oppenheimer approximation holds.

For certain geometries R the energies Ek(R) and Ek′(R) may be

equal: two (or more) electronic states are degenerate. The Born-

Oppenheimer approximation breaks down.



Breakdown of the Born-Oppenheimer approximation

Examples:

• Open-shell systems: radicals, molecules in excited states

Degeneracies at symmetric structures

⇒ Jahn-Teller, Renner-Teller distortions

(Conical) intersections of different potential surfaces

important in photochemistry

• Metals



Jahn-Teller effect in Benzene+

Degenerate ground state E1g

Sixfold symmetry distorted

by Jahn-Teller coupling with

normal modes of e2g symmetry

π molecular orbitals



Potential surfaces

Two adiabatic potentials

corresponding to the E1g state

as functions of the two ν6

e2g normal mode coordinates

Red circle shows the vibrational zero-point level

⇒ dynamic Jahn-Teller effect



Conical intersection

between

excited S1 and

ground state S0

potentials

of ethene

C2H4

S1

S0

torsion angle wagging angle

Fast non-radiative transition to ground state through

non-adiabatic coupling prevents UV radiation damage in DNA



Metals
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For metals

Distance R
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Interatomic potential

⇒ electron-phonon (non-adiabatic) coupling


