Derivation of the Born-Oppenheimer approximation

Exact (non-relativistic) Hamiltonian

H=Th+Te+ V(,R)

with
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Electronic Hamiltonian (clamped nuclei)

He =Te+ V(r,R)



The total Schrodinger equation reads

HV(@r,R)=FEWV(r,R)

Expand the total wave function
W(r,R) => ¢r(r;R)xx(R)
k
in solutions ¢, (r; R) of the electronic Schrodinger equation

He ¢ (r; R) = E(R) ¢ (r; R)

and substitute it into the total Schrodinger equation.

Multiply by the function ¢./(r; R) from the left and integrate over the
electronic coordinates r. The electronic Hamiltonian He is diagonal

(¢ (r; R)[He|pp(r; R)) (p) = S Ek(R)

and the electronic wave functions are orthogonal

(o (ri R) | op(r; R)) () = Sk



This yields a set of coupled eigenvalue equations for the nuclear
wave functions

[Th+ Epy(R) — E] xw(R) =D [Fnlwr xx(R)
k
Coupling between different electronic states k/, k

[Fnli (R) = (¢ (r; R)|Th| 5 (r; R)) (py — T S,

occurs through the nuclear kinetic energy operator Tn.

When this coupling is neglected one obtains the Born-Oppenheimer
nuclear Schrodinger equation for electronic state k'

[Th + Ep(R)] xw(R) = Exp(R)



The (non-adiabatic) coupling terms are
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They are small because of the large nuclear masses M4 in the de-
nominator.
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In the first term one may write

<¢’|V aHe|¢>r
(T sty = LA

which shows that the coupling is small only when the electronic
energies E.(R) and E(R) are well separated. This is normally the
case, and the Born-Oppenheimer approximation holds.

For certain geometries R the energies E,(R) and E./(R) may be
equal: two (or more) electronic states are degenerate. The Born-
Oppenheimer approximation breaks down.



Breakdown of the Born-Oppenheimer approximation

Examples:

e Open-shell systems: radicals, molecules in excited states

Degeneracies at symmetric structures
= Jahn-Teller, Renner-Teller distortions

(Conical) intersections of different potential surfaces
important in photochemistry

e Metals



Jahn-Teller effect in Benzene™
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Potential surfaces

Two adiabatic potentials
corresponding to the FEj, state
as functions of the two vg

ep, NOrmal mode coordinates

Red circle shows the vibrational zero-point level

= dynamic Jahn-Teller effect



Conical intersection

between
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potentials
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Fast non-radiative transition to ground state through

non-adiabatic coupling prevents UV radiation damage in DNA
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For metals

Interatomic potential

Energy

Distance R

= electron-phonon (non-adiabatic) coupling



