Valence bond theory and the (delocalised) chemical bond

Remco W. A. Havenith Theoretical Chemistry Group Utrecht University The Netherlands

Delocalised (π -)systems

- Multiple structures mandatory
 - Orbitals may delocalise or be kept strictly atomic
- Resonance energy according to Pauling
 - Energy difference between total energy and the energy of the most stable structure
 - Measure for *aromaticity*
 - What is a proper description for the hypothetical, nonaromatic reference compound?

Valence bond description of benzene

• Multi-determinant wavefunction for 1,3,5-cyclohexatriene

p-orbitals:

Strictly Atomic (VB-Atomic)

Partial Delocal (VB-Partial)

Delocal (VB-Delocal)

Compare with two resonating 1,3,5-cyclohexatrienes:

Block-Localised-Wavefunctions[†]

- BLW can be built using orbital restrictions, as in the strictly atomic or partial delocal VB
- Hartree-Fock like (one-determinant) description of localised reference molecule

Localised, ethene-like bonds due to restrictions of orbitals

Note that the orbitals can be orthogonalised!

Compare to HF benzene or two resonating BLW's:

or

^{*t*}see Y. Mo, P. v. R. Schleyer, *Chem. Eur. J.* **2006**, *12*, 2009-2020.

Resonance Energies (Kcal/mol)

Spin overlap : 0.25; Overlap between separate-opt structures 0.89 Overlap between together-opt breathing structures 0.55

Benzene and hexatriene

1,3,5-Cyclohexatriene geometries

6-31G basis set

$R_{C=C}$ $R_{C=C}$	Model	$R_{\text{C=C}}$ (Å)	R _{C-C} (Å)
	VB-Atomic	1.368	1.509
	VB-Partial	1.343	1.512
	VB-Delocal	1.369	1.433
	BLW	1.322	1.511

Delocal benzene (not shown)in excellent agreement with the experimental value Delocal cyclohextriene looks like linear polyenes (1.368 Å and 1.458 Å) Unfortunately "accepted" resonance energy is say 60 Kcal/mol

₩-7

Clamped benzenes

Does clamping lead to electron localisation?

• Inspired by aromaticity studies

- Aromaticity criteria
 - Ability to sustain an induced, diatropic ring current
 - Extra stabilisation: Pauling resonance energy

Ring current

Pauling resonance energies

cf. benzene: E_{res} = 20 kcal/mol

Perceived discrepancy between magnetic and energy criterion

see also: J. G. Hill, P. B. Karadakov, D. L. Cooper, *Mol. Phys.*, **104** (2006), 677-680.

Properties of 1,3,5-cyclohexatriene and benzene

	One-structure		Two-structure			
Property	P_{xx}, P_{yy}	P_{zz}	P_{xx}, P_{yy}	P_{zz}		
Polarisability	62.91	19.44	61.15	18.14		
Magnetisability	-40.57	-53.00	-40.63	-52.83		
Similar response for benzene and 1,3,5-cyclohexatriene!						
CI space:	\hat{O} symmetries:		CI response:			
$\psi_0 = \phi_1 + \phi_2 (A_{1g})$ $\psi_1 = \phi_1 - \phi_2 (B_{2u})$	(<i>x</i> , <i>z</i>	$\begin{array}{l} y) E_{1u} \\ A_{2u} \end{array}$	$\sim \left\langle \Psi_0 \right $	$\frac{(x,y)}{z} \left \psi_1 \right\rangle = 0$		

Conclusions

- Chemical concepts can be explored by the application of orbital restrictions in valence bond theory
- No causal relationship between Pauling resonance energy and considered response properties
- Nature of the bonds in a valence bond structure are determined by the whole molecular environment: spin-coupled bonds are not independent, localised bonds