Charge transfer through DNA

Laurens D.A. Siebbeles Opto-electronic Materials Section Delft University of Technology The Netherlands

December 7, 2007

Delft University of Technology

ACKNOWLEDGEMENTS

TU Delft, The Netherlands

Dr. K. Senthilkumar Dr. F.C. Grozema

Northwestern University, USA

Dr. Y.A. Berlin Prof. M.A. Ratner Prof. F.D. Lewis

VU, Amsterdam, The Netherlands

Dr. F.M. Bickelhaupt Dr. C. Fonseca Guerra

Funding

• Chemical Sciences Division of the Netherlands Organization for Scientific Research (NWO/CW)

December 7, 2007

Base pair stacking in DNA

C:G

T:A

December 7, 2007

G:C and A:T base pairing

G:C

A:T

π -orbitals on adjacent bases interact and can provide pathway for charge transport

two stacked guanines

December 7, 2007

DNA analogous to discotic liquid crystalline materials

discotic liquid crystals mobility 0.01 - 1 cm²/Vs

DNA?

December 7, 2007

Charge migration in DNA

Electrons and holes can be created in DNA by:

- radiation (UV, high-energy radiation)
- chemical reactions
- injection from electrodes

Insight into charge migration along DNA is important for:

- 1. Understanding biological damage due to charges
 - radiation induced mutations
 - oxidative reactions

2. Application in nanoscale molecular electronics

- DNA used as a molecular wire
- DNA used as a scaffold for conducting wire

Present work

- 1. Charge transfer in **Donor**-DNA-Acceptor systems
- 2. Mobility of charges on DNA
- 3. Selective photo-oxidation of specific guanines

Positive charges reside on guanine

December 7, 2007

Mechanism of charge migration between G's ?

Guanine-DNA-Guanine

Charge transfer rate often decays exponentially with distance:

$$k \propto e^{-\beta R}$$

R: Distance between donor and acceptor*β*: Fall of rate characterizes distance dependence

Aim of theoretical studies

- > Explain high (~ 1.0 Å⁻¹) and low (~ 0.1 Å⁻¹) experimental values of β
- Provide insight into factors governing absolute values of charge transfer rates

Quantum mechanical model

- Wavefunction of the charge is superposition of HOMO's on nucleobases

 $\psi(t) = \sum c_k(t) \Phi_k$

- Hamiltonian contains site-energies and electronic couplings from DFT (ADF) calculations

- $\begin{aligned} & E_{ii}: \text{ on-site energy} \\ & J_{ij}: \text{ electronic coupling} \\ & \Gamma: \text{ decay parameter at acceptor site} \end{aligned} \hat{H}_{el} = \begin{pmatrix} E_{11} & J_{12} & 0 & 0 \\ J_{21} & E_{22} & J_{23} & 0 \\ 0 & J_{32} & E_{33} & J_{34} \\ 0 & 0 & J_{43} & E_{44} i\Gamma \end{pmatrix}$
- Electronic couplings vary in time due to motion of base pairs (described classically)

Charge is initially localized on donor site and delocalizes when wavefunction is propagated in time $i\hbar \frac{\partial \psi(t)}{\partial t} = \hat{H}\psi(t)$

December 7, 2007

Distance dependence

Experimental studies by Meggers et al.

December 7, 2007

100

Decay of charge:
$$P(t) = e^{-k(R)t}$$

In case
$$k(R) = k_0 e^{-\beta R}$$

One gets linear behavior for

$$\ln[k(R)] = -\beta R + \ln[k_0]$$

December 7, 2007

Distance dependence

Charge migration rate through sequences I-IV shows exponential dependence on distance

Theoretical β value (0.85Å⁻¹) is close to experimental value (0.7Å⁻¹) of Meggers et al.

Charge tunnels through classically forbidden region of AT base pairs

Sequence dependence

Sequences of AT's interrupted with GC base pairs

Experiments by Giese et al. Angew. Chem. Int. Ed., 38(1999) 996

Sequence dependence - Theoretical results

Theoretical β value (0.09 Å⁻¹) agrees with experimental value (0.07 Å⁻¹) of Giese et al.

Transfer rate - Multi-step hopping

Charge transfer rate according to multi-step hopping:

December 7, 2007

Sequence dependence

Charge migration over 54 Å in sequence C is nearly as efficient as over 10 Å in sequence A (agrees with expts. of Meggers)

December 7, 2007

Population analysis

Charge distribution at three different times

Population on AT bridge is negligible at all times

December 7, 2007

Population analysis

Charge tunnels through AT bridge to next GC

Population analysis

Charge effectively hops between GC base pairs

December 7, 2007

Distance dependence depends on donor

Effect of injection barrier

Ionization potential of donor determines injection barrier ΔE_i

Charge distribution at three different times

December 7, 2007

Effect of donor energy

Distance dependence determined by donor energy

Donor used by Barton et al. is photoexcited ethidium: $\beta \sim 0.2 \text{ Å}^{-1}$

Donor used by Meggers et al. is guanine cation: $\beta \sim 0.7 \text{ Å}^{-1}$

December 7, 2007

Molecular wire behaviour

Low β due to small injection energy from donor to bridge

December 7, 2007

Absolute rates of charge transport from G to GG sites in DNA hairpins

Lewis et al. JACS 124 (2002) 4568 & JACS 125 (2003) 4850.

Kinetic analysis of transient absorption spectra

Kinetic scheme

$$\frac{dX}{dt} = -k_t X - k_{cr} X + k_{-t} Y$$

 $\frac{dY}{dt} = k_t X - k_{-t} Y$

December 7, 2007

Theoretical model of charge transport via twisting base pairs

Twisting motion F_{rot}

December 7, 2007

Effect of twisting on electronic coupling

Twisting enhances charge transfer rate

No Coulomb interaction between Sa⁻ and hole on DNA in calculations

Calculated decay time for 3b > 5b!

Disagreement with expt.

3b: 300 ns 5b: 1100 ns

5'-AGTGGA- 5'-T -TCACCT- -A

5′-T<mark>G</mark>ACC--ACT<mark>GG</mark>-

Relative rates reproduced by inclusion of Coulomb interaction in tight-binding calculations.

Absolute rates much too fast (~ factor 1000) !

Charge induces lattice distortion of nucleobase and polarizes surrounding water: reorganization energy to be included

Marcus or Holstein theory for charge transfer rate

Initial and **final** state energies

35

December 7, 2007

intermediate

initial

final

Initial and **final** states

Classical Marcus rate

• classical treatment of vibration $k_B T \gg \hbar \omega$

• start from Fermi Golden Rule

$$k(x) = \frac{2\pi}{\hbar} V^2 \delta (E_B(x) - E_A(x))$$

$$E_A(x) = \overline{E}_A + \frac{1}{2} C x^2 \qquad E_B(x) = \overline{E}_B + \frac{1}{2} C (x - b)^2$$

$$E_B(x) - E_A(x) = \overline{E}_B - \overline{E}_A + \frac{1}{2} C b^2 - Cbx \qquad \Delta E = \overline{E}_B - \overline{E}_A$$

$$k_{CT} \equiv \langle k \rangle = \int k(x) f(x) dx$$

$$f(x) = \sqrt{\frac{C}{2\pi k_B T}} e^{-E_A(x)/k_B T}$$

Boltzmann distribution of distances x

December 7, 2007

Classical Marcus rate

- classical treatment of vibration
- start from Fermi Golden Rule

$$k_{CT} = \frac{2\pi}{\hbar} V^2 \sqrt{\frac{C}{2\pi k_B T}} \int \exp\left[-Cx^2/(2k_B T)\right] \delta\left(E_B(x) - E_A(x)\right) dx$$

$$y = Cbx$$

$$k_{CT} = \frac{2\pi}{\hbar} V^2 \sqrt{\frac{C}{2\pi k_B T}} \frac{1}{Cb} \int \exp\left[-\frac{y^2}{2Cb^2 k_B T}\right] \delta\left(\Delta E + \frac{Cb^2}{2} - y\right) dy$$

$$k_{CT} = \frac{2\pi}{\hbar} V^2 \sqrt{\frac{1}{2\pi k_B T C b^2}} \frac{1}{C b} \exp\left[-\left(\Delta E + \frac{C b^2}{2}\right)^2 / \left(2C b^2 k_B T\right)\right]$$

December 7, 2007

Classical Marcus rate for charge transfer

Superexchange coupling V for tunneling through bridge

Superexchange coupling depends on *J* and $\Delta E (J \leq \Delta E)$:

$$V = \frac{J_{d,1}J_{n,a}}{\Delta E_{d,1}} \prod_{\substack{k=1}}^{n-1} \frac{J_{k,k+1}}{\Delta E_{d,k+1}}$$

December 7, 2007

Exptl. rates reproduced with reorganization energy near 1 eV

	Sequence	Exptl. rateCoupling K_{CT} (s ⁻¹) V (meV)		Reorg. energy λ (eV)	
2b	5´-A <mark>GAGG</mark> A- -TCTCCT-	6.0 x 10 ⁷	8.68	1.00	
3b	5´-A <mark>GTGG</mark> A- -TCACCT-	0.33 x 10 ⁷	2.15	1.46	
4c	5´-T <mark>G</mark> AA <mark>GG</mark> - -ACTTCC-	0.05 x 10 ⁷	0.49	1.09	
5b	5´-T <mark>G</mark> ACC- -ACT <mark>GG</mark> -	0.09 x 10 ⁷	0.42	1.00	

December 7, 2007

Polaronic hopping mobility with $\lambda = 1 \text{ eV}$

For $\lambda = 0$ mobility is few cm²V⁻¹s⁻¹; comparable with pentacene

Charge distribution on photo-oxidized DNA

BASE	€ (M ⁻¹ cm ⁻¹)	Φ	ION. PROB.	IP (VERT.)
G	25900	0.044	0.43	8.21 eV
С	19500	0.029	0.22	8.88 eV
Α	18600	0.033	0.23	8.54 eV
Т	5700	0.055	0.12	9.16 eV

Photocleavage is site-selective

Energy of charge at 5' G and 3' G are different: site-selective photo-oxidation

Site energy of 5' G lower than 3' G

	G site-energies in eV					
$E = \left< \Psi_{HOMO} \left H \right \Psi_{HOMO} \right>$ Charge	7.90 8.04	7.90 8.31	7.90 8.29			
	5'-A GG A-3'	5'-A G GC-3'	5'-A G GT-3'			
	3'-TCCT-5'	3'-TCCG-5'	3'-TCCA-5'			
$q_i = C_i^2 + C_i C_j S_{ij}$	7.96 8.04	7.96 8.31	7.96 8.29			
	5'-C GG A-3'	5'-C G GC-3'	5'-C G GT-3'			
	3'-GCCT-5'	3'-GCCG-5'	3'-GCCA-5'			
$J_{\rm GG} = 0.165 \ {\rm eV}$ $S_{\rm GG} = 0.012$	7.97 8.04 5'-T GG A-3' 3'-ACCT-5'	7.97 8.31 5'-T G GC-3' 3'-ACCG-5'	7.97 8.29 5'-T G GT-3' 3'-ACCA-5'			

Charge distribution in 5'-XGGY-3' sequences

December 7, 2007

Charge distribution in 5'-XGGGY-3' sequences

Conclusions

- Distance and sequence dependence of charge transfer through donor-DNA-acceptor systems can be understood by tight-binding model
- 2. Experimental rate constants were reproduced with reorganization energy near 1 eV.
- 3. Mobility along GC (AT) stacks $\sim 10^{-4}$ ($\sim 10^{-5}$) cm²/Vs
- 4. Selective photo-oxidation of specific G's due to different siteenergies

Donor-DNA-Acceptor

December 7, 2007

Positive charges reside on guanine

December 7, 2007

Tunneling vs. Hopping

Theoretical model of charge transport via twisting base pairs

Twisting motion F_{rot}

December 7, 2007

Site energy of a nucleobase B in 5⁻XBY-3⁻ triplets (X, B, Y = G, A, C, T)

Y —	→ G	А	С	Т	Y —	→ G	А	С	Т
G <mark>G</mark> Y	7.890	8.040	8.310	8.290	GCY	9.446	9.637	9.857	9.870
AGY	7.900	8.060	8.341	8.320	ACY	9.441	9.630	9.851	9.867
CGY	7.957	8.115	8.383	8.361	CCY	9.490	9.667	9.882	9.917
TGY	7.965	8.124	8.407	8.380	TCY	9.499	9.679	9.895	9.925
GAY	8.343	8.487	8.716	8.712	GTY	9.111	9.308	9.557	9.533
AAY	8.376	8.558	8.763	8.799	ATY	9.130	9.370	9.578	9.586
CAY	8.438	8.584	8.800	8.793	CTY	9.268	9.451	9.701	9.662
 TAY	8.434	8.630	8.810	8.858	TTY	9.273	9.499	9.705	9.699

* *E* strongly depends on neighboring bases

