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Notations

* Capital greek letters are N-electron wave
functions & &

* Caligraphic variables, t, are N-electron

variables

* Lower case greek letters are one-electron wave
functions @ X

 Bold variables, I, are one-electron variables



What are they good for?

* Modelling of molecules
e Structure and energy

* Reaction path

* Properties of molecules
* TDHF, TDDFT

* QM/MM

* TST

« CPMD
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Schrodinger equation

* If we BELIEVE in quantum mechanics then
H| o) = E|Po)
+ YAEVA+ Y paad |RAiRB|}

S S
At |Ra—r;]

* The Born-Oppenheimer approximation

H:Z%V§+vm(r)+zriirj
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HF Approximation

* General HF theory

+ Energy and wave function definition
+ Fock-, Coulomb- and Exchange operator
+ Local and non-local potential

+ Koopman's and Brillouin's theorem

* Roothaan equations
* Self-consistent field (SCF)



Definition of HF

* Energy the is expectation value of the exact
non-relativistic electronic Hamiltonian

* Variational principle applies
Eo < BT = (o (v)| H|Wo(v))

‘11}0( )> ‘QSPF? e IZ;IF>



Definition of HF

* The wave function is a single slater determinant
* It is composed of N orbitals (1e-wave function)
* N is the number of electrons

\:[f(t) — ‘¢37 SR Cbk)

¢i(r1) ... Pr(r)
U(ry,...,ry) = (N1)~1/2 : : :

Cbi(;f'f\f) %(-I‘N)




Find minimum

* Variation of orbitals
* Orbitals are kept orthonormal
* Lagrangian multipliers €

Fi(e) = i6u(x) with [ = — 2V + v (1) + T — K

¢ (r2)e;(r2

Z?fdl@ ﬁrl)_rg(‘ )%(1‘1)
¢; (r2)¢i(rz)
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HF energy

EMF = (W ()| H|Wo(v))

N

(o () HIWo(0)) = D (ilhle) + 5 D (Gidsl16:6,)

1

(Ditj|lpid;) = (Diti|lpjds) — (Psbj|Djdi)
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HF wave function

* Composed of N orbitals, often with loweste¢;
* |t is anti-symmetric
* Yields electron density

Mﬂ:N/FﬁWMﬁmeV

& o) = D 61 ()0



HF wave function and Hamiltonian

* HF wave function is eigenfunction of the HF
operator

HoWy(r) = EyUp(r)

Ho =) f()) =) [h(i) + v (D)

-

7

E{] — Ze‘:‘i
h(t) = —lvﬁ + Vet (r) and v (i) = T () — K(7)



Coulomb operator

Fu(x) = i6i(r) with [ = 397 F v (r) + T — K

Ti(ry) = Z/drg (r2)e; rz)(b@'(rl)

r1 — 1o
rQ ‘;bj PQ)
r1 Z/dz |I‘1—I‘2|
J(r1) = f ey P12

r1 — 1|

The Coulomb operator is local



Exchange operator

Fu(x) = i6i(r) with [ = 397 F v (r) + T — K

Koi(ry) Z/er r2)é rg)%‘ (r1)

Ty — 1o

* Exchange operator cannot be written as a
function of r

* |t Is said to be non-local



HF orbitals
foi(r) = €:¢i(r)

* HF orbitals aren't unique
* ¢;(r) are called canonical HF orbitals

* Unitary transform of the occupied orbitals
conserves the energy and density

* Unitary transform of the unoccupied orbitals
conserves the energy and density

* Shapes of orbitals are somewhat arbitrary



HF orbitals
foi(r) = €:¢i(r)

 Canonical HF orbitals
* (pi(r)|;(r)) = dij
* (il flog) = (Dilh|os) + (Didjl|Pidj) = €idi;

 Brillouin's theorem

— @13(}’52,---;@i_1,¢a3¢i+1j---j¢j\r>
« (U H|T) =0




HF orbitals
1) (r1) Z [ ar [(b R2)0) ) (g - D)

r1 — 13

* Orbitals “feel” all other occupied orbitals
* Occupied “feel” N-1 orbitals
* Unoccupied “feel” N orbital

 Koopman's theorem:

P ~—¢;, 1 <7< N (occupied)

« EA =~ —¢;;, N+ 1 <12 (unoccupied)



Summary

HF Is an independent particle model
HF theory Is a single slater determinant theory

HF wave function is eigenfunction of the N-
electron Fock operator

The orbitals are solutions of the one-electron
Fock operator

HF wave function is a slater determinant of N
independent particles

HF potential is non-local



Summary

* HF orbitals are orthonormal

* HF wave function doesn't mix with singly
excited wave functions (Brillouin's theorem)

* HF orbitals are defined up to a unitary
transformation

* HF orbital energies are approximations to
electron binding energies (Koopman's theorem)



Roothaan equations

* Introduction of M basis functions x:(r)
M
¢i(r) = Z Crixp(r)
7!

* Fock operator is expressed in basis set
* Yields a pseudo-eigenvalue matrix equation

F-C=S.C-¢

S = (Xu(r)|xw (1))



The Fock matrix

* Matrix elements are integrals of the operator
* Divide Fock matrix in two parts

F=H+G

Kinetic part and external potential

H,uy — T,uy + V,uy
T, = —1/2(xu|V?[x0)
Vi, = <X;L|Uext(r)|Xv>



The Fock matrix

* Matrix elements are integrals of the operator
* Divide Fock matrix in two parts

F=H+G

Electronic part

G, =, Porl(pv|oA) — 1/2{(uA|vo)]

cr)\ — Z*@:j CD'?,C)\_}
f Xp,(ﬁ Xy(rl)XU(rz)XA(TZ)dr

|r1 —r2]

(pv|o ) = 1dry



Self Consistent Field (SCF)
F-C=S5.-C-¢

* Calculate integrals in the orbital basis

* Find transformation, X, to orthonormalize basis
» Use guess to calculate F' (F'=X"FX)

* Solve eigenvalue equation and obtain new C'

* Calculate C=XC'

 Check difference between old and new C

+ Calculate new C' and then F' ...
+ Converged: Calculate energy and rest



Summary

Introduction of a finite basis set (Roothaan
equations)

HF operator depends on its own solution
Pseudo-eigenvalue equation
Solution is found by SCF procedure



Electron Correlation

HF is independent particle model
Electrons of opposite spin don't interact

* Wrong wave function, energies

Dynamical correlation

+ Electrons get too “close”

+ Electrostatics are treated only on average +"'" (7)
Static correlation

+ Energetically similar Slater determinant
+ A linear combination lowers the energy



Electron Correlation

H2 In the dissociation limit

oy =1lsp+1sn ou=lsp—lsp  6=aifs— asfh

W) 04(r1)oy(r2)0
[1.SL(I'1)1.SL (1‘2) -+ 1.5’3(1‘1)18}3(1’2)

+1sp, (I'l)lSR(I'Q) + 1SR(P1)1SL(I‘Q)]9

* |onic parts should have no contribution
* Only covalent parts should contribute



Electron Correlation

H2 In the dissociation limit

oy =1lsp+1sn ou=lsp—lsp  6=aifs— asfh

1) 0u(r1)ou(rz)6
[LS‘L (1‘1)18};(1‘2) -+ LS’R(I'l)lSR(I’Q)

—1SL(I‘1)1SR(I'2) — 1SR(P1)18L (I‘Q)]@

e Take a linear combination of both wave functions



Electron Correlation

H2 In the dissociation limit

oy =1lsp+1sn ou=lsp—lsp  6=aifs— asfh

[Wo) — [Wy)

|
DO
»
~



Configuration Interaction

* HF is only an approximation
* Energies are reasonable for Atoms

* Energies are reasonable for Solids
* Energies are bad for dissociation curves

e Reason

+ Only single slater determinant
+ Correlation energy
* Ec:orr — ED — EHF



Full Cl

Take HF wave function ¥H¥ (v)

Form all excited wave functions
+ singly ¥¢(v)
» doubly ¥ (v)

Expand the wave function in basis of excited
wave functions

(I)D(t) — C[)‘IIHF(I?) —+ ZC?‘I"G’ Z ﬂ’b\Ifab

ijab

(I)D(If) — Coqfo(t) + 031115(13) -+ CD‘IJD(I?) -+ CT\IIT(If) e



Full Cl

* Determine coefficients by diagonalization of

((%\ﬁ%) 0 <‘I’D\€|‘I’D> 0
\ o (Ur|HWs) (Up|H[Up) (Ur|H[T7) )

e Remember Brillouin's theorem

* Matrix elements of wave functions differing by
more than 2 orbitals are zero



Full Cl energy

Intermediate normalization

o &y =N(coUy+cp¥p+erUr...)

* (Yo|Pg) =1

Energy is then calculated

o H|®o) = &|Po) & (H — Ep)|P0) = Eeorr|Po)

o (To|(H — Ep)|®@0) = Eeorr

o Boowr = (Uo|(H — Eo)|N(coWy + csWs +cpUp + cpUp...))

¢ corr — CD<WD‘§‘IPD> — Z C?f(\l}ﬂﬁ‘l]}?jb}

17ab

Energy is determined by doubly excited states
Coefficients are determined by all states



Truncated CI

* FCl is usually too expensive

* Wave function is truncated

* CIS Pcrs = coV¥o +csV¥s

« CISD ®crsp = coVo +csVs+cp¥p

« CISDT ®crspr = coVo+csVs+cpUp +cpUp
* Computationally feasible

 Not size-extensive

+ Energy of two infinitely separated identical systems
is not equal to twice the energy of one system



Summary

* FCI gives exact energy in a given orbital basis

* Thus, it recovers all correlation energy

* |t is too expensive for most systems

Truncated CI| recovers some correlation energy
It is feasible for a lot of systems

It is not size-extensive

Error along the dissociation curve isn't constant
Because it is a single reference method



Complete active space SCF

* FCIl is too expensive
* Do FCI only for chemically interesting orbitals
* Choose core orbitals, which are kept fix

* Choose active occupied (n,m...) and virtuals
(d,e...)

| eave the rest untouched
* Make the linear combination

* Optimize both, expansion coefficents and
orbitals, for the whole CASSCF wave function



CASSCF
‘(I)CASSCF> — CO‘\IJO —|— Z ‘\de -+ Z > e

nmde

* Optimize the expansion coefficients and orbitals

* The orbitals are in general not the same as the
HF orbitals

* \We have a multi-reference wave function



CASSCF

* Chemical insight is needed

 Choose the number of electrons and the
number of virtuals

* Then do a FCI in this “complete active space”
* But also vary the orbitals



Multi-reference CI

Take an multi-reference wave function
E.g. a CASSCF wave function

For each determinant do a truncated CI
calculation

MRCI keeps error along the dissociation curve
approximately constant



Coupled Cluster (CC)

* Take a reference wave function (HF)

- Excite wave function with exp T

. ~ 1y 1~
. expTzl—l—T—|—§T2—|—§T?’...

* j::: jﬁ_—FfiE %—jﬁg...

» Single excitation operator 71|¥o) = » |0

» Double excitation operator 7,|W,) = ) 22| we?)
1jab



Truncated CC

* If 7 is not truncated we recover FCI
* Truncation of 7 yields

—— ——

«+ CCS 1T'=13
+CCSD T =T, + T
+ CCSDT T =T, +Ty+ T4
* Truncated CC still yields ALL excited wave

functions



CCSD

f:f1+fg j:?|\11[] Ztﬂflqjﬂ’ —|—Ztﬂ’b

i1jab
~ ~ o~ 1 ~ = 1
expT =1+ (17 +T15) + §(T1 +15)? + 3'(Tl—|—T2)
exp T|Wo) = |[Wo) + ) t{|Tf) + ) 7| W57)
1a 17ab
1
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tjab 17kabc
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Connected and Disconnected
Clusters Amplitudes

* All excited wave functions enter the CC wave
function

» For a given excited wave function |y2tedes

1y klmn
. abcde f
+ Connected amplitude ?;;x.n

. . d
+ Disconnected amplitudes t?fti.g;fﬂ

tfb tﬂCdE t?btlﬂdtt”‘f tftb tE’l tﬂﬂd

im - jkin 7 kl"mn Y1 "m nvjkl



Energy and Amplitudes
» Schrédinger equation H exp T'|¥,) = Fexp T|Vo)
* Projected equation exp(—T)H exp(T)|¥o) = E|¥)
* Energy equation (| exp(—T)H exp(T)|Vo) = E
« Amplitude equations (u|exp(—T)H exp(T)|Tg) = 0

+ (1] is an excited wave functions with connected

amplitude (e.g. singles and doubles for CCSD)



Summary

* Coupled cluster is an approximation to FCI
* |t is In principle variational

* But in actual calculations the projected

Hamiltionian is used . non-variational

e CC is size-extensive



Perturbation Theory (PT)

* Partitioning of Hamiltonian into two parts

+ Zeroth order Hamiltonian
+ Perturbation
* Solve zeroth order equations

+ Find wave function
+ Calculate energy

* Obtain solutions for exact Hamiltonian

* Choose Fock operator as zeroth order
Hamiltonian Ho|¥,) = E,|¥,)



Perturbation Theory (PT)

Hy = Z[h(z‘) +ot @) V= 7[7 T, i "

H()\):HU-F)\V

-

J

H(N)[®(N) = E(\)|®(N))
E(/\) — &g + Aeq —|—)\2<€2...
[D(N)) = |Po) + A[D1) + A7 Do) . ..

Ho|®o) = €0[|Po) = Eo|¥o)

(Ho — o)
(Ho — o)

(I)1> -+ (V — 61)
Do) + (V —e1)

Wo) =
Dy) —e2|Po) =0

v (1))



First order corrections

Energy:
(Wol(Ho — €0)|P1) + (Po|(V —e1)[Wo) =0
e1 = (Yo|V|¥o)

Wave function:
(Wp|(Ho —€0)[P1) + (Tp|(V —&1)[Wp) =0

(Up|V[To)
By) =) Up)
< Eo— E,

'¥,) are all excited wave functions of the HF solution



Second order corrections

Energy:
(Wol(Ho — €0)|P2) + (Yol (V — E1)|¢’1> —e2=0
(U, |V [Wo) 7
= (To|V|D1) = ) 5‘0 -
p7#0
Wave function:
(Upl(Ho — €0)[P1) + (Vp[(V —&1)|¥g) =0

(W,|V —e1|®y)
|Dg) = E pE =y v,)
p7#0 0 b

'¥,) are all excited wave functions of the HF solution




Summary

* Choose a partitioning
* Solve the zeroth order

* Calculate the higher order corrections
* NO OPTIMIZATION

* Collapse if degeneracy occurs

* Wigners 2n+1 rule

* If HF is used as zeroth order, the first order
energy is the HF energy



WFT vs. DFT

* WFT uses exact non-relativistic Hamiltonian
* |t approximates the wave function

* Restricting the wave function (HF is single SD)

* DFT models Hamiltonian

* |t doesn't approximate density (or wave
function)

* WFT is an approximation
* DFT is a model



Density functional theory (DFT)

* Hohenberg-Kohn (HK) theorems
* Thomas-Fermi model

* Kohn-Sham (KS) theorems

* Correlation in HF and KS-DFT

« Approximations to E _

* Analogue of Koopman's theorem



1. HK theorem

* There is a one-to-one map between

« The ground state wave function
+ The ground state density
* The external potential

* U(t) < p(r) o) = FE
* There is an energy functional of the density

* Bulp(n)] = Falp(e)] + [ o(e)p()dr

o Fuk|p(r)] = (U[p(r)]|T + WP [p(r)])



2. HK theorem

* The energy functional is such that

* The global minimum is unique

+ The global minimum is attained at the ground state
density

+ The ground state density yields the ground state
energy

o E.[p(r)] > & equality if p(r) = po(r)
* There iIs a variational principle



Thomas-Fermi Model

* Kinetic energy
. Trr[p(r)] = 0.3(31)%/3 f p%/3(r)dr

* Nuclear-electron and electron-electron energy

o Welnssic = —Z/ @dlw- 1/2 p(rl)p(rg)drldrg
r Ir1 — 19|

* Non-classical energy
 Exlp(w)] = Ox [ ple)%r
0 3 1/3
 Exalp®) = =3 (2) o [ pte)ar

T



Non-interacting reference system

* There is a non-interacting particle system
o [RSPES = [<1/2V7 4 ug o(r)]pfS = ey

* The KS wave function minimizes the
expectation value

. (DKS|FES|DKS) < (] K5 |@)

* |t shares the same density with the interacting
system

. / |(I)Ks(t)|2d1'2 co.dry = Z |¢iKS(I'1)|2 — Po(rl)



KS energy definition
¢ (r) = @ [p(r)](r)

E[®%°] = T5[®2°] + Wt [PF°] + Wieou [PFP] 4+ By [PRP]

1
TS[(I)KS] — <(I)KS| . §V2|(I)KS>

Wext [(I’KS] — <(I’KS|Vext(r)|(DKS>
I/VCDHI[(DKS] — <¢KS|VCDu1 (r)l(DKS>
Exc [(I)KS] — EU — TS — I/Vext — WCDul



Correlation in HF and KS-DFT

E p— T—'—W — T_I_IVCDUI _I_IVHCI
" KS-DFT
EHF:THF+W0uI+WQI;IF EKS:TKS_I_WDu]_I_WZII;(S

HE KS
Er: T Er: T

THF = O3 (@HF V) £ T =1

1

TS = —2 ) (¢ °IV20f) # T ="

7



Correlation in HF and KS-DFT

E:T—'—W:T+IVCDu]+IVHCI

HF KS-DFT
pHE = RE il g RE pRS RS g RS ks

EIHF :ATHF EKS — ATKS



Correlation in HF and KS-DFT

E:T—'—W:T+IVCDu]+IVHCI

HF KS-DFT
pHY — pHE L gy HE g aE s pRS RS g KRS kS
EIHF :ATHF EKS ATKS
1
Weoul = /pUVnuch+/pO(T1)pO(T2)rdTldTQ
12
1
Weou = /Po Vnucd’f”r/ﬁﬁl (T’l)PEF(?“z)Ed?"ld?"z

1
[Vcoul /PU Viuedr + /P(II}(S (Tl)P%}{S (72) Edrl drs



Correlation in HF and KS-DFT

E=T+W =T+ Weou + Whel

HF KS-DFT
pHE = HE Ly HE o HE S pRS RS RS kS
EM =AT™+ AW E2S = AT™S

coul



Correlation in HF and KS-DFT

E:T—'—W:T+IVCDu]+IVHCI

HF KS-DFT
pHY — pHE L gy HE g aE s pRS RS g KRS kS

EM =ATHY L AW ERS = AT®S

coul

WS = 2 S GGG # Wi =

(%]

Wi = ; S (GF GHF |G GET) £ Wiy =

%}



Correlation in HF and KS-DFT

E=T+W =T+ Weu + Whya

HF KS-DFT
ERF =R Wik + Wit BRS = TR  WES 4+ WS

coul
BN =ATH L AW A AWIE ERS = AT S L AWED

ncl

Correlation in HF is not the same as in KS-DFT



Optimization

» Guess a density (1)

* Calculate the potential

5[-[{;6}(13 + Weoul + EXC]
op(r)

* Calculate new density

. t’s(]ﬂ‘) = — Vext (I') + UCDUI(T) + Uxc (I')

* aigi(r) = [-1/2V7 + vs(1)] i (r)



Orbitals in KS-DFT

. fHF qSHF HF HHF . FKSHKS _ [KS KS

* non-local potential * local potential

* Orbitals don'tsumupto ¢ Orbitals sum up to correct
correct density density

c e TP i< N * AcKS ~ excitation energy

* e~ FEAi >N

KS orbitals are at least as good as HF orbitals



Approximations to E

* Write xc functional in the form
B = [ pe)eselple)dr

» £xc(p(r)) is the exchange-correlation energy per

particle
* Model &..(p(r))

* Split into exchange and correlation



Local Density Approximation (LDA)

* Model is the homogeneous electron gas
* Exchange part can be calculated analytically

* Correlation part is calculated from very
accurate quantum Monte Carlo calculations

* Exchange is the Slater exchange

* Correlation was developed by Vosko,Wilk and
Nusair

e |tis called SVWN



Generalized Gradient Approx.
(GGA)

* LDA doesn't take inhomogeneity into account

* Take also gradients of density
v Exe = exc(p(r), Vp(r))
* Named as first X then C

+ BLYP
- BP86
+ BPW91



Hybrid Functionals

* Obtain better results by adding exact exchange

* The amount of exact exchange is determined
empirically

* Most commonly used functional is the B3LYP
functional

* |t incorporates 20% exact exchange
 Error on the G2 data set is about 2 kcal/mol



Summary

« KS-DFT is a independent particle model
* |t is In principle exact
* The exact functional is not known

* There is no sequence that converges to the
exact energy

* Approximations have proven to be very good



Summary

* Solution is found by SCF-like procedure
* Correlation energy is not the same as in HF
* The potential is local

* Orbital energies approximate excitation
energies (analogue of Koopman's theorem)



XC functionals

LDA

GGA

Hybrids

Meta-GGA

Hyper-GGA
Orbital-dependent functionals



