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Chapter 1

Clarifications

1.1 What do we learn here?

I
was asked what is the difference between ”Quantum Mechanics” and

”Quantum Physics” and why do I insist calling this course Mathemati-
cal Foundations of Quantum Physics?

Quantum physics is the set of quantum theories:

• quantum mechanics - a first quantized or semi-classical theory in which particle
properties are quantized, but not particle numbers, fields and fundamental
interactions.

• quantum field theory or QFT - a second or canonically quantized theory in which
all aspects of particles, fields and interactions are quantized, with the excep-
tion of gravitation. Quantum electrodynamics, quantum chromodynamics and
electroweak theory are examples of relativistic fundamental QFTs which taken
together form the Standard Model. Solid state physics is a non-fundamental
QFT.

• quantum gravity - a third quantized theory in which general relativity, i.e., the
theory of the gravitational force, is also quantized. In spite of the monumental
effort such a theory remains outside the grasp of human knowledge.

A first quantization of a physical system is a semi-classical treatment of quantum
mechanics, in which particles or physical objects are treated using quantum wave
functions, but the surrounding environment (for example a potential well or a bulk
electromagnetic field or gravitational field) is treated classically. First quantization is
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6 CHAPTER 1. CLARIFICATIONS

appropriate for studying a single quantum-mechanical system being controlled by a
laboratory apparatus that is itself large enough that classical mechanics is applicable
to most of the apparatus. This flavor of quantum mechanics is the subject studied
in most undergraduate quantum mechanics courses, and in which the Schrödinger
equation and Heisenberg matrix mechanics (together with bra-ket notation) are most
simply applied. It may be contrasted with the so called second quantization, which
includes quantum-mechanical uncertainty effects in all aspects of an experiment in-
cluding the controlling fields and boundary conditions. That is to say, the system is
no longer isolated but in interaction with the environment 1.

1.2 Purpose

The ”mathematical foundations” in this course are mainly the mathematical founda-
tions of the first two ”elements” of the ”quantum physics set”, with a definite accent
on the first. The purpose is to give the reader an idea of the underlying mathematical
structure of the theory. Some proofs have been omitted because their presence would
not do any good at this level – their result being much too intuitive – or because
they are too complex for the purpose of this course. If at the end of this course, the
reader has acquired a general, intuitive image of how the mathematical objects are
interconnected in order to substantiate the Dirac formalism, then the very purpose
of this course will be achieved.

The exercises in this course are intentionally easy ones since their role is to show to
the reader, from time to time, the underlying grounds – which he already knows from
basic quantum mechanics – of the abstract mathematics. Where physical intuition
comes to the rescue, the exercises are also missing.

1This can be seen in the symmetrization of the wave function.



Chapter 2

The Hilbert space

T
he rapid development of quantum mechanics asked for the development
of an underlying mathematical structure. Although they were moments
when, because of the rapid development, a not so rigorous formalism was
used, this formalism was always set up later and rigorously proved from

the mathematical point of view.
The first synthesis was realized by John von Neumann, by developing the op-

erators theory in Hilbert’s space. A Hilbert space is a generalization of the idea
of a vector space that is not restricted to finite dimensions. Thus it is an inner
product space, which means that it has notions of distance and of angle - especially
the notion of orthogonality. Moreover, it satisfies a completeness requirement which
ensures that limits exist when expected. Even if this theory is perfectly true, von
Neumann’s approach does not consider more general spaces - like the distribution
spaces - which, even if they are not directly implicated in the interpretation of the
theory, they cannot be ignored if one wants to understand the subtile points of the
mathematical formulation. This larger frame of quantum mechanics, which com-
bines the Hilbert space with the theory of distributions, was created a bit later, by
the russian mathematician Israel Moiseevich Gelfand (b. 1913). He introduced the
famous rigged Hilbert space, or the Gelfand triplet 1.

What is, in fact, the rigged Hilbert space? A rigged Hilbert space is a set which

• has an algebraic structure of a linear space

• it is equipped with a nuclear topology with respect to witch the completion

1At the time this course was first given, Israel Moiseevich Gelfand was still alive. He died nearly
three years later, at the age of 96, near his home in Highland Park, New Jersey.
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8 CHAPTER 2. THE HILBERT SPACE

gives Φ′

• has a second topology introduced into it by a scalar product, with respect to
which this linear space is completed to give a Hilbert space H

• has a third topology, the topology of the dual space Φ′ of Φ

In this chapter, we will set up the mathematical foundations of the day-by-day
Dirac formalism and, for that, we will go as low as in topology, in order to settle,
with a relatively high rigorousity and with the hope the reader will feel challenged
to prove what we leave unproven, these mathematical foundations.

2.1 Some basic definitions and clarifications

We start with a rough map of mathematical physics, let’s say. We will follow, in
class, this map and fill in some of the missing arrows.

2.1.1 Topology

In this section I have defined a few fundamental concepts of topology. Because I
will usually explain the terms as they will come in the way, I have inserted most of
the definitions in the text or in the footnotes. These, on the other hand, did not fit
anywhere, so here they are. We will reefer to them during the lectures.

Let X be any set and let p(X) = {Y |Y ⊂ X} be the set of all subsets of X. A
subset T of p(X) is called a topology of X iff ( i.e. ”if and only if” ) the following
conditions are fulfilled:

• Both the empty set, ∅ ∈ T, and X are elements of T.

• The union of arbitrary many elements of T is an element of T.

• Any intersection of a finite number of elements of T is an element of T.

If T is a topology on X, then X together with T (also denoted, sometimes, by the
pair (X,T) is called a topological space. A set in T is called open set.

A sequence of points a1, a2, . . . , an . . . ∈ X is said to converge to a ∈ X if for every
open set O with a ∈ O there exists an integer N(O) such that an ∈ O ∀ n > N(O)

Exercise
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LetX be a set and p(X) = {Y |Y ⊂ X} the set of all subsets ofX and Z = {φ,X}.
Prove that:

1) p(X) is a topology of X
2) Z is a topology on X
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2.1.2 Vectors in Rn

We will assume the reader is familiar with the space R3, where all the points in space
are represented by ordered triplets of real numbers.

The set of all n-tuples of real numbers, denoted by Rn, is called n-space. A
particular n-tuple in Rn

u = (a1, a2, . . . , an)

is called vector. The numbers ai are called coordinates, components, entries or ele-
ments of u. Two vectors u and v are said to be equal if they have the same number
of components and if the components are equal.

Consider two vectors u,v ∈ Rn, with u = (a1, a2, . . . , an) and v = (b1, b2, . . . , bn).
Their sum, written u+v, is the vector is the vector obtained by adding corresponding
components from u and v. That is:

u + v = (a1 + b1, a2 + b2, . . . , an + bn)

.
The scalar product between a vector and a scalar from Rn, is defined like

ku = k(a1, a2, . . . , an) = (ka1, ka2, . . . , kan)

.
The sum of vectors with different number of components is not defined. The

negatives and the subtractions, called differences, are defined in Rn an follows:

−u = (−1)u; u− v = u + (−v)

. For any vectors u,v,w ∈ Rn and any scalars k, k′ in R we have:

• (i) (u + v) + w = u + (v + w),

• (ii) (u + 0) = u,

• (iii) u + (−u) = 0,

• (iv) u + v = v + u,

• (v) k(u + v) = ku + kv,

• (vi) (k + k′)u = ku + k′v,

• (vii) (kk′)u = k(k′u),
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• (viii) 1u = u.

If u and v are vectors in Rn for which u = kv for some nonzero scalar k ∈ R, then
u is called a multiple of v. Also, u is said to be the same or opposite direction as v,
according as k > 0 or k < 0.

Consider two arbitrary vectors u,v ∈ Rn ; say:

u = (a1, a2, . . . , an) v = (b1, b2, . . . , bn)

. The dot product or inner product or scalar product of u and v is denoted and defined
by

u · v = a1b1 + a2b2 + . . .+ anbn

That is, u · v is obtained by multiplying corresponding components and adding the
result products. The vectors u and v are said to be orthogonal (or perpendicular if
their dot product is zero, that is u · v = 0

For any vectors u,v,w ∈ Rn and a scalar k ∈ R :

• (i) (u + v) ·w = u ·w + v ·w,

• (ii) (ku) · v = k(u · v),2

• (iii) u · v = v · u,

• (iv) u · u ≥ 0 and u · u = 0 iff u = 0

The space Rn with the above operations of vector addition, scalar multiplication
and dot product is usually called Euclidean n-space.

The norm or length of a vector u ∈ Rn , denoted by ‖u‖, is a real number that
represents the ”size” of the vector, defined to be the nonnegative square root of u ·u.
In particular, if u = (a1, a2, . . . , an), then

‖u‖ =
√

u · u =
√
a2

1 + a2
2 + . . .+ a2

n

A vector u is called unit vector if ‖u‖ = 1 or, equivalently, if u · u = 1. For any
nonzero vector v ∈ Rn , the vector

v̂ =
1

‖v‖
v (2.1)

2Note that: u · (kv) = (kv) · u = k(v · u) = k(u · v). In other words, we can ”take k out” also
from the second position of the inner product.
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is the unique unit vector in the same direction as v. The process of finding v̂ from
v is called normalizing v.

The Schwarz and Minkowski inequalities are two of the most important ingredi-
ents in different branches of mathematics.

The Schwarz inequality: For any two vectors u,v ∈ Rn , we have:

|u · v| ≤ ‖u‖‖v‖ (2.2)

Proof: ∀ t ∈ R

0 ≤ (tu + v) · (tu + v) = t2(u · u) + 2t(u + v) + (v · v) = ‖u‖2t2 + 2(u · v)t+ ‖v‖2.

Let a = ‖u‖2, b = 2(u ·v) and c = ‖v‖2. Then, for every value of t, at2 +bt+c ≥=
0. This means that the quadric polynomial cannot have two real roots, which implies
a discriminant D = b2− 4ac ≤ 0 or equivalently b2 ≤ 4ac. Substituting and dividing
by 4 we have the inequality proven.

The Minkowski inequality: For any two vectors u,v ∈ Rn , we have:

‖u + v‖ ≤ ‖u‖+ ‖v‖. (2.3)

Exercises
1. Let u = (2, 4,−5) and v = (1,−6, 9). Compute: u + v, 7u, −v, 3u− 5v and

(6v − u)− 3v.
2. Let u = (1,−2, 3),v = (2, 7, 4) and w = (4, 5,−1). Find which two vectors

are orthogonal.
3. Suppose u = (1, 2, 3, 4) and v = (6, k,−8, 2). Find k so u and v are orthogonal.
4. Let u = (1,−2,−4, 5, 3). Find ‖u‖ and normalize u.
5. Using the Schwarz inequality and the properties of the scalar product, prove

the Minkovski inequality.

2.1.3 A brief reminder of complex numbers.

Any complex number can be written in the form

z = a+ bi (2.4)

where a ≡ Re z and b ≡ Im z are, respectively, the real and imaginary parts of z,
and i =

√
−1. The mathematical operations are structured as follows: ∀ z, w ∈
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C where z = a+ bi, w = c+ di

z + w = (a+ bi) + (c+ di) = a+ c+ bi+ di = (a+ c) + (b+ d)i (2.5)

zw = (a+ bi)(c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (bc+ ad)i (2.6)

−z = −1z with w − z = w + (−z) (2.7)

The conjugate of a complex number z is denoted by z, and defined by

z = a+ bi = a− bi (2.8)

The sum and the product of complex numbers can be easily derived by using
commutative and distributive laws

z + w = (a+ bi) + (c+ di) = (a+ b) + (c+ d)i (2.9)

zw = (ac− bd) + (ad+ cb)i (2.10)

and also the negative of a complex number and the subtraction in C by

−z = −1z and (2.11)

w − z = w + (−z) (2.12)

Complex Conjugate, Absolute Value and Inverse

As we said before, the conjugate of a complex number is denoted and defined by
z = a+ bi = a− bi. Then

zz = (a+ bi)(a− bi) = a2 + b2.

If we take a complex number λ ∈ C , with λ = u+ iv, we can plot this number,
and its complex conjugate, in a complex plane, as shown in the Fig.2.1.

The absolute value of z, denoted by ‖z‖, is defined to be the nonnegative square
root of zz. Namely,

zz =
√
zz =

√
a2 + b2 (2.13)

Note that ‖z‖ is equal to the norm of the vector (a, b) ∈ R2.
Let z 6= 0. Then the inverse z−1 of z and the division, in C , of w by z are given,

respectively, by

z−1 =
z

zz
=

a

a2 + b2
− b

a2 + b2
i and

w

z
=
wz

zz
= wz−1.

Exercises
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Figure 2.1: The representation of a the complex number, λ = u+ iv, and its complex
conjugate, in the complex plane.

1. Let z = 2 + 3i and w = 5− 2i. Calculate: z + w, zw, z̄, w/z and |z|.
2. Find the complex conjugate of each of the following: 6 + 4i, 7− 5i, 4 + i,−3−

i, 6,−3, 4i,−9i.
3. Find zz̄ and |z| when z = 3 + 4i.
4. Prove that ∀ z, w ∈ C, z + w = z̄ + w̄, zw = z̄w̄ and z̄ = z.

2.1.4 Vectors in Cn

A set of n-tuples of complex numbers, denoted by Cn , is called complex n-space. The
elements of Cn are called vectors and those of C are called scalars. Vector addition
and scalar multiplication, on Cn , are given by

[z1, z2, . . . , zn] + [w1, w2, . . . , wn] = [z1 + w1, z2 + w2, . . . , zn + wn] (2.14)

z[z1, z2, . . . zn] = [zz1, zz2, . . . , zzn] (2.15)

where zi, wi ∈ C .

The inner product in Cn

Let u,v ∈ Cn with u = [z1, z2, . . . , zn] and v = [w1, w2, . . . , wn]. The inner product
of u and v is denoted and defined by

u · v = z1w1 + z2w2 + · · ·+ znwn (2.16)
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When v is real, this definition reduces to the real case, since in this case wi = wi.
The norm of u is defined by

‖u‖ =
√

u · u =
√
z1z1 + z2z2 + · · ·+ znzn =

√
|z1|2 + |z2|2 + · · ·+ |zn|2 (2.17)

This Cn space, with the above operations of vector adition, scalar multiplication
and dot (inner) product, is called complex Euclidean n-space. The properties from
Rn hold with minor modifications. Let u,v,w ∈ Cn and a scalar k ∈ C :

• (i) (u + v) ·w = u ·w + v ·w,

• (ii) ku · v = k(u · v)

• (iii) u · v = v · u,

• (iv) u · u ≥ 0 and u · u = 0 iff u = 0

BUT! There is an interesting and important property of the scalar product in
Cn ! From (ii) and (iii), we immediately see that:

u · kv = kv · u = k(u · v) (2.18)

This interesting fact allows us to say that the scalar product is antilinear in respect
to the first term and linear in respect to the second term.

The Schwarz’s and Minkowski’s inequality, are true for Cn without changes, that
is:

The Schwarz inequality: For any two vectors u,v ∈ Cn , we have:

|u · v| ≤ ‖u‖‖v‖ (2.19)

and
The Minkowski inequality: For any two vectors u,v ∈ Cn , we have:

‖u + v‖ ≤ ‖u‖+ ‖v‖. (2.20)

Exercises
1. Find the dot products u · v and v · u when: u = (3 − 2i, 4i, 1 + 6i) and

v = (5 + i, 2− 3i, 7 + 2i)
2. Prove: For any vectors u,v ∈ Cn and any scalar z ∈ C: (i) u · v = v · u, (ii)

u · (zv) = z̄(u · v)
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2.1.5 The Metric Space

Let X be a set. Then a metric on X is a function d : X × X → R which satisfies
the following three conditions - also known as the metric space axioms - for all
x, y, z ∈ X:

(i) d(x, y) = 0 iff x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

A metric space is a pair (X, d), where X is a set and d is a metric on X.

Examples / Exercises

(i) The usual distance in R is given by d1(x, y) = |x− y| for x and y in R . This
defines a metric on R which we call the usual metric on R .

(ii) Similarly, for any subset A of R we define the usual metric on A to be the
metric d(x, y) = |x− y|, for x, y ∈ A.

(iii) d∞ = max{|xj − yj|, 1 ≤ j ≤ n}
(iv) The usual metric on C is given by d(z, w) = |z−w| for z, w ∈ C . As for the

R above, the same formula is used to define the usual metric on any subset of C .

(v) For n ∈ N, the usual metric on Rn is the Euclidean distance, denoted by
d2, which comes from Pythagorass Theorem (or using the Euclidean norm): for
x, y ∈ Rn, with x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn),

d2(x, y) =

√√√√ n∑
j=1

|xj − yj|2 (2.21)

The same is used to define the usual metric on any subset of Rn.

(vi) (Generalisation of d1 and d2) For any real number p ⊂ [1,∞) , we may define
a metric dp by

dp(x, y) =

(
n∑
j=1

|xj − yj|p
) 1

p

(2.22)

(vii) (The discrete metric) Let V be any set and

d(x, y) =

{
0, if x = y

1, otherwise
(2.23)
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2.2 The Hilbert Space

A complex vectorial space, with scalar product and complete under a norm, is called
Hilbert space. We will denote the Hilbert space with H. A subset of elements from
H, with the scalar product from H, is also a Hilbert space and is called subspace.
The null space, {0} ⊂ H and the whole Hilbert space are two trivial spaces. We can
construct a subspace of H starting from an arbitrary set Φ ⊂ H. First we determine
the linear span, L(Φ), of the set Φ. This is formed by all the linear combinations
(with complex coefficients) of the elements in Φ3

span(v1,v2, . . .vr) = {λ1v1 + λ2v2 + · · ·+ λrvr|λ1, λ2, . . . , λr ∈ C} (2.24)

The closure of the linear span, L̃(Φ) will be a subspace of H. If L̃(Φ) = H then Φ is
said to be fundamental in H.

Because we have defined the scalar product, we are able to introduce the orthogo-
nality with all the known properties known from the euclidean spaces. Two elements
ϕ,κ ∈ H are orthogonal ϕ ⊥ κ if the scalar product of the two vectors is zero

< ϕ,κ >= 0 (2.25)

Nota bene: For convenience and for familiarity, until now we have denoted the
scalar product by a · b. From now on we will denote it by < a, b >. This will both
allow a natural transition to the bra-ket formalism and a consistency of symbols from
this point on.

Exercise

Let V be the space of nonzero square integrable continuous complex functions in
one variable. For every pair of functions, define

< f, g >=

∫ +∞

−∞
f(x)g(x)dx

Show that with this definition V is an inner product space.

Hint: Prove that < f, g >= < g, f >, < f + f ′, g >=< f, g > + < f ′, g > and
< αf, g >= α < f, g >

3Actually, the linear span is constructed given a vector space V over a field K, the span of a set
S (not necessarily finite) is defined to be the intersection W of all subspaces of V which contain S.
When S is a finite set, then W is referred to as the subspace spanned by the vectors in S.
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Naturally, an element ϕ is orthogonal on a subset Φ ⊂ H if it is orthogonal on
each element from it:

ϕ ⊥ Φ iff < ϕ, vn >= 0 ∀ vn ∈ Φ (2.26)

Two subsets Φ1,Φ2 ∈ H are orthogonal on each other, if every element from Φ1 is
orthogonal on every element from Φ2

Φ1 ⊥ Φ2 iff < v1n , v2n >= 0 ∀ v1n ∈ Φ1, v2n ∈ Φ2 (2.27)

If an element ϕ is orthogonal on a subset Φ ⊂ H then, from the linearity of
the scalar product, it will be orthogonal also in the linear span L(Φ). On the other
hand, from the continuity of the scalar product, if we have a convergent sequence
κn → κ and an element ϕ orthogonal on every element κn of the sequence, then ϕ
will be orthogonal also on the limit κ. This implies that if ϕ ⊥ L(Φ) and implicitly
on every convergent sequence from L(Φ), then ϕ will also be orthogonal on the set

of the limits of these sequences, which in fact is the subspace L̃(Φ) (the closure of

the linear span). So, the orthogonality of ϕ ⊥ Φ implies ϕ ⊥ L̃(Φ). In particular,

if ϕ ⊥ Φ and Φ is a fundamental set in H, then ϕ ⊥ L̃(Φ) = H, which means that
ϕ = 0, because is orthogonal on itself.

The set of all ϕ elements orthogonal on a subset Φ ⊂ H, does form a subspace
because the fundamental sequences of this set and their limits are orthogonal on
Φ. Moreover, from the above considerations, this subspace, denoted by H1 will be
orthogonal on the H2 = L̃(Φ). the H1 subspace is called orthogonal complement of
the set Φ or of the subspace H2. In general, any subspace X of a product space E
has an orthogonal complement X⊥ such that E = X ⊕X⊥.

Given a subspace H2 ⊂ H and H1 his orthogonal complement, then every element
ϕ ∈ H can be uniquely decomposed in

ϕ = ϕ1 + ϕ2 (ϕ1 ⊥ ϕ2) (2.28)

where ϕ1 ∈ H and ϕ2 ∈ H2. The element ϕ1 is called projection of ϕ on the subspace
H1 and ϕ2 is called projection of ϕ on the subspace H2.

With this decomposition, the norm of ϕ can be calculated by:

‖ϕ‖2 =< ϕ,ϕ >= ‖ϕ1‖2 + ‖ϕ2‖2 (2.29)

This is, in fact, a generalization of the theorem of Pythagoras of Samos4.

4He a Greek philosopher who lived around 530 BC, mostly in the Greek colony of Crotona in
southern Italy. According to tradition he was the first to prove the assertion (theorem) which today
bears his name: If a triangle has sides of length (a, b, c), with sides (a, b) enclosing an angle
of 90 degrees, then a2 + b2 = c2.
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The relation (2.28) represents a decomposition of the Hilbert space in orthogonal
subspaces, denoted by:

H = H1 ⊕H2 (2.30)

We say that the Hilbert space H is the orthogonal sum (or direct sum) of the H1 and
H2 subspaces. By continuing the decomposition of H in subspaces, in the end we will
have a decomposition in subspaces, Hj, orthogonal on each other (Hi ⊥ Hj, ∀i 6= j),
denoted by

H =
∑
i

⊕Hi (2.31)

Any element ϕ ∈ H can be uniquely written as

ϕ = ϕ1 + ϕ2 + . . . =
∑
i

ϕi (2.32)

where ϕi is the projection of ϕ on Hi.
For the finite dimensional case there is a maximal decomposition in unidimensional

spaces generated by a vector from the orthonormal basis. For the infinite dimensional
case, the problem is much more difficult, since even obtaining an orthonormal basis
faces the problem of convergence.

2.3 Orthonormal Bases in the Hilbert Space

Let H be a Hilbert space. A system of elements is a subset {φα}α∈A ⊂ H indexed
after an arbitrary set of indices, A. If A = N, then the system is called countable.

A system {φα}α∈A is called orthonormal if for every α, β ∈ A, the orthonormal
condition is satisfied

< φα, φβ >=

{
1 α = β

0 α 6= β
(2.33)

Starting from a countable system, {θn}n∈N of linear independent elements, we can
always construct an orthonormal system through an orthonormalization procedure.
(This procedure is known from the classical physics or from basic mathematics, as
”Gram-Schmidt orthogonalization”.) We fist take φ1 = θ1

‖θ1‖ . We construct φ2 =

λ1θ1 + λ2θ2 with (λ1, λ2 ∈ C) and we search for λ1 and λ2 for which < φ1, φ2 >= 0
and < φ2, φ2 >= 1. We continue with φ3 as a linear combination of the first three
elements of the system {θn}. As we mentioned in the beginning of the paragraph,
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from a system of linear independent elements we can, in this way, always construct
an orthonormal system. Therefore, we will consider only orthonormal systems.

An arbitrary system {φα}α∈A is called complete if it satisfies one of the two
equivalent conditions:

• the system is fundamental in H(L̃{φα}) = H

• the only orthogonal element on {φα}α∈A is the zero element 0 ∈ H

A Hilbert space, H, in which every orthonormal and complete system is also
countable, is called separable Hilbert space. Obviously, any orthonormal system be-
longing to a separable space, is also countable (i.e. finite), but not any countable
system is also complete.

Let {φn}n∈N be an orthonormal countable system, not necessary complete, from
the separable space H. The orthonormality relation reads

< φi, φj >= δij, i, j ∈ N (2.34)

Consider an element ψ ∈ H. The complex numbers < φi, ψ >, (i ∈ N) are called
Fourier coefficients of the element ψ in respect to the considered system. With this
elements, we can construct a sequence {Sn}n∈N which has as elements the partial
sums Sn defined as

Sn =
n∑
i=1

< φi, ψ > φi (2.35)

The partial sums sequence is convergent. This can be shown using the above
relations in the following way:

‖ψ − Sn‖ =< ψ − Sn, ψ − Sn >= ‖ψ‖2 −
n∑
i=1

| < φi, ψ > |2 ≥ 0 (2.36)

From this we have the so called Bessel inequality:

n∑
n=1

|φi, ψ|2 ≤ ‖ψ‖2, ∀n ∈ N (2.37)

For n→∞ we have the convergence condition for the sequence

∞∑
i=1

| < φi, ψ > |2 ≤ ‖ψ‖2 (2.38)
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From the convergence we see that the sequence {Sn}n∈N is a fundamental sequence,
because

‖Sn+p − Sn‖2 =

n+p∑
k=n+1

| < φk, ψ > |2 → 0,when n→∞ (2.39)

As every fundamental sequence from H is also convergent, the sequence of partial
sums is also convergent. The limit of this sequence will be denoted by

ψs =
∞∑
i=1

< φi, ψ > φi (2.40)

and this limit will belong to L̃({φn}) ⊂ H.
Taking the limit of (2.35) for n → ∞ we see that the partial sums sequence

(2.36) is convergent to ψ(‖ψ − Sn‖ → 0, for n→∞) iff the relation

∞∑
i=1

| < φi, ψ > |2 = ‖ψ‖2 (2.41)

is satisfied. This relation is called closure equation for the element ψ. Now then!
Every element ψ ∈ H, for which the closure equation is satisfied, is the limit of the
corresponding sequence of partial sums and it can be represented by the Fourier
series

ψ =
∞∑
i=1

< φi, ψ > φi (2.42)

If for an element the closure equation is not satisfied, then it differs from the limit
ψs of the partial sums sequence, and it can be written like:

ψ = ψs + (ψ − ψs) (2.43)

Using (2.40), after simple manipulations, we obtain:

< ψ,ψs >=< ψs, ψs >=
∞∑
i=1

| < φi, ψ > |2 (2.44)

which shows that ψs and ψ − ψs are orthogonal. Because the orthogonal decompo-
sition is unique, ψs is the orthogonal projection of ψ on the subspace L̃({φn}) ⊂ H
and ψ − ψs is the projection on its orthogonal complement. From this we have a
very important consequence: if the closure equation is not satisfied for at least one
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element in H, then L̃({φn}) has an orthogonal complement H1 6= {0} and, as a
consequence {φn}n∈N is not complete.

If the orthonormal system {φn}n∈N is complete then the only orthogonal element

on L̃({φn}) = H is the zero element. This means that the closure relation is satisfied
for every element ψ ∈ H because ψ − ψs = 0. Reciprocal, if the closure equation is
satisfied ∀ ψ ∈ H then we will always have ψ = ψs which means that the subspace
L̃({φn}) has as orthogonal complement the element zero so the system {φn}n∈N is
complete. In conclusion, the necessary and sufficient condition for an orthonormal
system to be complete is for the closure equation (2.41) to be satisfied ∀ ψ ∈ H.
Then every element can be written as (2.42).

The Fourier series (2.42) can be interpreted as a decomposition, in an orthogonal

sum of unidimensional spaces, of the space H. Denoting by Hi = L̃(φi), the unidi-
mensional space generated by φi, it is easy to motice that the quantity < φi, ψ > is
the projection of ψ on H. Because the subspaces {Hi}i∈N are orthogonal on each
other, we obtain a maximal decomposition in unidimensional subspaces

H =
∞∑
i=1

⊕Hi (2.45)

The scalar product of two elements ψ1, ψ2 ∈ H can be written in terms of their
Fourier coefficients. From

< φi, φj >= δij and ψ =
∞∑
i=1

< φi, ψ > φi

after some simple manipulations, we have

< ψ1, ψ2 >=
∞∑
i=1

< ψ1, φi >< φi, ψ2 > (2.46)

Up to now, we have been investigating the way in which an arbitrary element
of a separable Hilbert space can be expanded in a Fourier series in respect to an
orthonormal and complete system, {φn}n∈N. The inverse problem can also be ad-
dressed. We will present here the main lines of this problem, without any proof. The
inverse problem is: under what circumstances a countable set of complex numbers
{αi}i∈N can be identified with the set of the Fourier coefficients of an element from
a separable Hilbert space? It can be shown (The Riesz- Ficher theorem) that any
sequence of (real or complex) numbers, αi satisfying the condition

∞∑
i=1

|α|2 <∞ (2.47)
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uniquely determines an element

ψ =
∞∑
i=1

αiφi ∈ H (2.48)

such that

αi =< φi, ψ > and ‖ψ‖2 =
∞∑
i=1

|αi|2 (2.49)

From now on, we will use, interchangeably, the term base for orthonormal and
complete system and the term components for Fourier coefficients.

Linear isometry

Let H1 and H2 be two Hilbert spaces with the scalar products <,>1 and <,>2.
If there is a bijective correspondence between them realised by a linear application
f : H1 → H2

f(αϕ+ βκ) = αf(ϕ) + βf(κ)

< ϕ,κ >1 = < f(ϕ), f(κ) >2 (2.50)

then we say that the two spaces are linear isometric. If the application is antilinear

f(αϕ+ βκ) = αf(ϕ) + βf(κ)

< ϕ,κ >1 = < f(κ), f(ϕ) >2= < f(ϕ), f(κ) >2 (2.51)

the spaces are called antilinear isometric. For constructing an isometry it is enough to
establish a linear or antilinear correspondence between an orthonormal and complete
system from H1 and one from H2. For the separable spaces, where these systems are
countable, it can be shown that a linear correspondence can always be established
(f(φ

(1)
n ) = φ

(2)
n , n ∈ N), so all the separable Hilbert spaces are linear isometric

spaces.
The most simple model of separable Hilbert space is the l2 space. It contains all

the vectors of the form

ϕ = (ϕ1, ϕ2, . . . , ϕn, . . .) with ϕn ∈ C,
∞∑
n=1

|ϕn|2 <∞ (2.52)

with

ϕ+ κ = (ϕ1 + κ1, ϕ2 + κ2, . . . , ϕn + κn, . . .)
αϕ = (αϕ1, αϕ2, . . . , αϕn, . . .) (2.53)
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and the scalar product is a generalization of the scalar product defined on Cn. It is
defined

< ϕ,κ >=
∞∑
i=1

ϕiκi (2.54)

In l2 there is an orthonormal and complete system

ϕ1 = (1, 0, 0, . . . , 0, . . .)

ϕ2 = (0, 1, 0, . . . , 0, . . .)

etc.

satisfying the orthogonality relation < ϕi, ϕj >= δi,j. The Fourier coefficients of
an element ϕ ∈ H are < φi, ϕ >= ϕ. These Fourier coefficients are the vector
components of ϕ.

It can be shown that l2 is separable and that all the linear isometric and separable
Hilbert spaces are linear isometric with l2.

2.4 The L2 space

From the prerequisites to quantum mechanics we know that the wave functions can be
physically interpreted if they are square integrable. From the superposition principle,
we can intuitively see that the set of all this functions can be viewed as a complex
vectorial space. These two observations drive us towards organizing the wave function
space as a Hilbert space.

A function ϕ : Rx → C (the simplest case) is called square integrable if the
function |ϕ(x)|2 is locally integrable and if∫ +∞

−∞
|ϕ(x)|2dx (2.55)

is finite. If ϕ1 and ϕ2 are square integrable, then any combination α1ϕ1+α2ϕ2 (α1, α2 ∈
C) will be a square integrable function. So the set of all these functions is organized
in a complex vectorial space.

The integral (2.55) might seem a norm but it cannot be a norm since the norm
has to be zero only for ϕ = 0 and this is not true for ϕ. Now then! If we want that
integral to be zero, then what we have to do is to make it zero almost everywhere5,

5In measure theory (a branch of mathematical analysis), one says that a property holds almost
everywhere if the set of elements for which the property does not hold is a null set, i.e. is a set
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which means that the function can have non-zero values on a finite, negligible interval.
This difficulty can be overcome if instead of the function ϕ we consider an entire class
of functions (called almost everywhere equivalence class) formed by all the functions
which differ from ϕ on a negligible set. This class can be represented by any member
of it. The space of classes is a complex vectorial space if the operations between
classes are defined as:

• the sum of two classes represented by two functions ϕ1 and ϕ2 is the equivalence
class of the function ϕ1 + ϕ2

• by multiplying a class represented by the function ϕ with α ∈ C we understand
the class of the function αϕ

In this space, the set of all almost everywhere null functions forms a class (so, an
unique element) which is neutral in respect to addition (0). From these considerations
we see that the integral (2.55) is the square of the norm of this space.

This mathematical construction is in perfect agreement with the physical inter-
pretation. The probability density |ϕ(x)|2 cannot be measured point by point. What
is in fact measured is the probability of localization on a finite interval which is given
by the integral on that interval of the function |ϕ(x)|2. As a conclusion we can say
that all the functions which are equal almost everywhere (from the same
equivalence class) describe the same physical state. So, to a particular
physical state we do not attach a wave function but an entire correspond-
ing class of equivalence.

The complex vectorial space of the almost everywhere equivalence classes has a
scalar product (defined through representatives)

< ϕ,κ >=

∫ +∞

−∞
ϕ(x)κ(x)dx (2.56)

It even has a mathematical name and that is L2(Rx). It can be shown that this
is a separable Hilbert space. From now on, for simplicity, we will understand that
ϕ ∈ L2(Rx) means the equivalence class and not the function itself.

Because the space is separable, ∃ {φn}n∈N a countable system, orthonormal and
complete. So ∀ ψ ∈ L2(Rx) we can write

ψ =
∞∑
i=1

φi < φi, ψ > (2.57)

with measure zero - a measure is a function that assigns a number, e.g., a ”size”, ”volume”, or
”probability”, to subsets of a given set. The concept has developed in connection with a desire to
carry out integration over arbitrary sets rather than on an interval as traditionally done, and is
important in mathematical analysis and probability theory.
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where the Fourier coefficients are given by the integral

< φi, ψ >=

∫ +∞

−∞
φi(x)ψ(x)dx (2.58)

Starting from this we can give the proof of one of the most important relations in
quantum physics. Let’s define the following quantity

∞∑
i=1

φ(x)φ(y) = δ(x, y) (2.59)

and do the following calculation∫ +∞

−∞
δ(x, y)ψ(y)dy =

∞∑
i=1

φ(x)

∫ +∞

−∞
φi(x)ψ(y)dy =

∞∑
i=1

φ(x) < φi, ψ >= ψ(x)

(2.60)
We see that δ(x, y) = δ(x − y) (known as the Dirac function) and we obtain the
relation

∞∑
i=1

φ(x)φ(y) = δ(x− y) (2.61)

This is true for any orthonormal and complete system and is called closure equation.

2.5 Linear and Antilinear Functionals. The Gen-

eralized Scalar Product.

The Hilbert space theory is the base of the mathematical structure of quanyum
physics: the hilbertian triad or the Gelfand triad/triplet. This theory is very broad
but we will set here the blueprint of it, in accordance with the purpose of this short
course.

Let’s start with the definition of a functional. Given a Hilbert space, H, and a
subset Φ ⊂ H - which is a linear space of H - we will call functional an application
F : Φ → C which assignees to every element ϕ ∈ Φ a complex value F (ϕ). If
∀ ϕ,κ ∈ Φ and α, β ∈ C we have

F (αϕ+ βκ) = αF (ϕ) + βF (κ) (2.62)

we say that the functional, F , is antilinear. If ∀ ϕ,κ ∈ Φ and α, β ∈ C we have

F ∗(αϕ+ βκ) = αF ∗(ϕ) + βF ∗(ϕ) (2.63)
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we say that the functional, F ∗, is linear.

The set Φ is the domain of the functional and the set from H for which the
functional is zero is called the kernel of the functional. If the kernel coincides with
the domain than the functional is null.

The above properties of linearity and antilinearity suggest a certain resemblance
with the scalar product. This resemblance is not casual and we will use the theory
of functionals for defining a generalized scalar product. For this purpose we will
introduce a new notation, a notation adequate to the formalism of quantum physics.

A linear functional will be denoted by 〈F | and its values with 〈F |ϕ〉 ≡ F ∗(ϕ).
An antilinear functional will be denoted by |F 〉 and 〈ϕ|F 〉 ≡ F (ϕ). These symbols,
〈|〉, shall not be confused, for now, with the scalar product < , >, used for the scalar
product in H.

The relations for the functional dependence will read:

〈G|(ϕ) = 〈G|ϕ〉 (2.64)

|F 〉(ϕ) = 〈ϕ|F 〉 (2.65)

This notation is somehow ugly or inconvenient, but we will soon replace it with the
definitive one. The linear and antilinear properties will be rewritten as:

|F 〉(αϕ+ βκ) = α〈ϕ|F 〉+ β〈κ|F 〉 (2.66)

〈G|(αϕ+ βκ) = α〈G|ϕ〉+ β〈G|κ〉 (2.67)

To every linear functional |F 〉 we can assign a conjugate functional 〈F | such that

〈ϕ|F 〉 = 〈F |ϕ〉, ∀ϕ ∈ Φ (2.68)

In general the domain on which the functionals are defined, Φ, is not a subspace from
H but an arbitrary subset, in which we suppose that we can introduce a topology
in order to define the convergence of the sequences in Φ. If ∀ {ϕn}n∈Φ convergent
towards ϕ, in this topology, we have 〈F |ϕn〉 → 〈F |ϕ〉, then we say that the functional
〈F | is continuous. In the same time, the functional 〈F | is bounded: |〈F |ϕ〉 ≤
C‖|ϕ〉‖, ∀ ϕ ∈ Φ.

The set of all antilinear and continuous functionals, defined on Φ form a vectorial
space, denoted by Φ′, in respect to addition and multiplication with scalars:

(〈F1|+ 〈F2|)(ϕ) = 〈ϕ|F1〉+ 〈ϕ|F2〉 (2.69)

(α|F 〉)(ϕ) = α〈ϕ|F 〉 (2.70)
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Analogous, for the linear functionals we have a vectorial space Φ
′
, called the dual

space of Φ′. In it there are defined the operations

(|F1〉+ |F2〉)(ϕ) = 〈F1|ϕ〉+ 〈F2|ϕ〉 (2.71)

(α〈F |)(ϕ) = α〈F |ϕ〉 (2.72)

The relation (2.68) establishes a bijection between Φ′ and Φ′, bijection which is
antilinear since to α1|F1〉+α2|F2〉 ∈ Φ′ it corresponds, by conjugation, the antilinear
combination α1〈F1|+ α2〈F2| ∈ Φ′.

The extension of the domain

Let’s consider F : H → C. We will denote by H ′ the vectorial space of the antilinear
functionals (in theH topology) and byH

′
the vectorial space of the linear functionals.

H
′

is the dual space of H ′ and these two are antilinear isometric spaces.
Given the strong topology of H we can define the norms of the (conjugate)

functionals

‖|F 〉‖ = ‖〈F |‖ = sup
‖ϕ‖≤1

|〈ϕ|F 〉| (2.73)

To every element ϕ ∈ H we can associate a pair of conjugate functionals |Fϕ〉 and
〈Fϕ| with the values

〈Fϕ|κ〉 =< ϕ,κ >, 〈κ|Fϕ〉 =< κ, ϕ >, ∀ κ ∈ H (2.74)

On the other hand, we know, from the Riesz theorem, that to any arbitrary pair
of conjugated functionals, continuous on H, we can assign an unique element ϕF ∈ H
and we can write the value of the functionals (∀ κ ∈ H):

〈F |κ〉 = < ϕF ,κ > (2.75)

〈κ|F 〉 = < κ, ϕF >

and have the equality

‖|F 〉‖ = ‖〈F |‖ = ‖ϕF‖

In conclusion, we can establish the following correspondences:

• there is a linear correspondence between H and H ′

• there is an antilinear correspondence between H and H
′
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If we consider two pairs of conjugate functionals (|F1〉, 〈F1|) and (|F2〉, 〈F2|), con-
tinuous on H, and the elements ϕF1 , ϕF2 ∈ H corresponding to each pair of function-
als (see Riesz theorem), then we can construct the quantity

〈F1|F2〉 ≡< ϕF1 , ϕF2 > (2.76)

which has a twofold interpretation:

• the scalar product of the functionals |F1〉, |F2〉 ∈ H denoted by (|F1〉, |F2〉) =
〈F1|F2〉

• the scalar product (〈F1|, 〈F2|) = 〈F1|F2〉 = 〈F2|F1〉 of the conjugated function-

als from H
′

(We have inverted here the order to ensure the compatibility with

the antilinear correspondence between H ′ and H
′
.)

With this insertion of scalar products, the spaces H ′ and H
′

become Hilbert spaces.

Simplifying the notation: We established before that H ′ is linearly isometric
with H and the dual H

′
is antilinear isometric with H. We can ”merge” H and H ′

by setting ϕ ≡ |Fϕ〉, getting rid of the ′ in H ′. We than have only two spaces:

• the H space, with antilinear functionals

• the dual space H of linear and continuous functionals on H

Because of the identity between H and H ′, we will denote the elements ϕ ∈ H with
the symbol for antilinear functionals |ϕ〉 instead of ϕ (|ϕ〉 ≡ |Fϕ〉), and the scalar
product of two elements |ϕ〉, |κ〉 ∈ H with 〈ϕ|κ〉 ≡< ϕ,κ >. The elements from H
from now on will be denoted by the symbol of the linear functional. For example,
the conjugate of the element |ϕ〉 ∈ H will be 〈ϕ| ∈ H.

Now we go back to the case Φ ⊂ H. By restraining the continuity domain of the
functionals, their space will be enriched by those functionals which are bounded on
Φ but unbounded on H − Φ. We then have the following inclusion relations:

Φ ⊂ H ⊂ Φ′

Φ ⊂ H ⊂ Φ
′

(2.77)

where Φ
′

is the set of linear functionals conjugated with the elements of Φ′, which
means that Φ

′
is the dual of Φ′.6 (If you consult other books or articles - specially of

6The dual of a space X, in mathematics, means the set of linear functionals on X, denoted by
X ′. In this sense Φ is the dual of Φ and Φ′ is the dual of Φ
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mathematics -, pay attention to the definition of the ”dual”. We use a slightly modi-
fied definition which serves our purpose very well and does not affect the consistency
of the theory. See also the footnote.)

The triplet of spaces (2.77) are not of much use unless we have defined a topology
on Φ and a precise relation between the spaces. This step is rather complicated so
we will just blueprint the general frame of the theory.

We say that Φ is dense in H if all the elements in H are the limit of a sequence
from Φ (in the sense of the topology of H). The triplet Φ ⊂ H ⊂ Φ′, where Φ is
dense in H, and H is separable, will be called hilbertian triad if it exists at least one
orthonormal and complete system of H contained in Φ.

In a Hilbertian triad we can generalize the definition of the scalar product, by
giving up the continuity requirement and we can also define a generalized norm.
How? We recall that the functionals from Φ′ are continuous and bounded on Φ. So
if we have a functional |F 〉 ∈ Φ′ and an element ϕ ∈ Φ, the value of the functional,
〈ϕ|F 〉, will be finite. This quantity can be interpreted as the scalar product of the
elements |ϕ〉 ∈ Φ ⊂ Φ′ and |F 〉 ∈ Φ′. From the above hypothesis, there is at
least one orthonormal and complete system, denoted now by {|φi〉}i∈N ∈ Φ. This
means that the quantities 〈φi|F 〉 are finite (|F 〉 is continuous on Φ). By arbitrary
choosing another functional |G〉 ∈ Φ′ we obtain again a set of finite numbers 〈φi|G〉.
Considering that 〈G|φi〉 = 〈φi|G〉 we will define the generalized scalar product of the
functionals |G〉 and |F 〉, as a direct generalization of the earlier obtained (2.46):

〈G|F 〉 =
∞∑
i=1

〈G|φi〉〈φi|F 〉 (2.78)

This generalized scalar product has necessary properties of linearity and anti-linearity
(〈F |G〉 = 〈G|F 〉).

Starting from (2.78), we can define a generalized norm of an element |F 〉 ∈ Φ′

‖|F 〉‖2 = 〈F |F 〉 =
∞∑
i=1

|〈φi|F 〉|2 (2.79)

This is an extension of the orthogonality notion to the entire Φ′ space. Two ele-
ments |F 〉, |G〉 are orthogonal if 〈F |G〉 = 0. The discussion about the orthogonal
decomposition has no meaning here.
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2.6 Fourier Transforms, ρ space and Temperate

Distributions

2.6.1 The Fourier transform and the ρ space

We have defined earlier a space called L2 as being the vectorial space of the almost ev-
erywhere equivalence classes. In order to prove the existence of the Fourier transform
for the square integrable functions (recall the wave function) we need to relay on the
L2 space. The Fourier transform of a function ϕ : Rx → C is a function ϕ̂ : Rp → C.
The two functions are connected through the direct and inverse transformations

ϕ̂(p) =
1√
2π~

∫ +∞

−∞
ϕ(x)e−

i
~pxdx, ϕ(p) =

1√
2π~

∫ +∞

−∞
ϕ̂(x)e

i
~pxdx (2.80)

The transforms give the same result for all almost everywhere equal functions. Un-
fortunately the elements of L2 do not always have Fourier transforms, in the sense of
the above relations, since there are square integrable functions for which the above
integrals are improper. We can still define the Fourier transform of any element from
L2 following a specific procedure.

We start from an space ρ(Rx) of functions ϕ : Rx → C called test functions, which
are indefinitely derivable (they admit continuous derivatives, ϕ(k), of any order) and
they satisfy the condition (1 + |x|l)|ϕ(k)(x)| ≤ C(l, k, ϕ) <∞, x ∈ Rx, ∀ k, l ∈ N.
The test functions decay to zero, when |x| → ∞, faster than any power of |x|−1. This
will ensure the convergence of the integrals over this functions. A typical example
can be exp(−x2).

The test functions are integrable and implicitly square integrable. Therefore the
space ρ(Rx) is a subset of L2(Rx) and ρ(Rp) is a subset of L2(Rp). Still without
a proof we state that ρ(Rx) is a dense subset of L2(Rx) and that ρ(Rp) is a dense
subset of L2(Rp). So, we can now see the test functions and their Fourier transforms
as elements from L2(Rx) and L2(Rp).

Considering the scalar product we have

< ϕ,κ >=

∫ +∞

−∞
ϕ(x)κ(x)dx =

1√
2π~

∫ +∞

−∞
ϕ(x)

(∫ +∞

−∞
κ̂(p)e

i
~pxdp

)
dx (2.81)

Inverting the integration order and considering the equation

ϕ̂(p) =
1√
2π~

∫ +∞

−∞
ϕ(x)e

i
~pxdx (2.82)
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we obtain

< ϕ,κ >=

∫ +∞

−∞
ϕ̂(x)κ̂(p)dp =< ϕ̂, κ̂ > (2.83)

These considerations allow the extension of the notion of Fourier transforms to the
entire space L(Rx). It can be shown that this is also the case for L(Rp) and that the
Fourier transform establishes a linear correspondence between L(Rx) and L(Rp).

2.6.2 Temperate distributions (D)

Continuing with functions spaces we notice that we already have two important
terms for constructing a Hilbertian triad i.e. the spaces ρ ⊂ L. For obtaining the
third one we have to construct linear and continuous functionals on ρ – temperate
distributions.

As in the above section we consider the unidimensional case, and we will call
temperate distribution a linear or antilinear functional, continuous on ρ(Rx) and
with the codomain C. We will denote by 〈D| the linear distributions and by |D〉
the antilinear distributions. Obviously, to every linear distribution it corresponds an
antilinear one, and vice versa. The study of continuity is a bit more complicated,
because we would have to make use of the topology of ρ(Rx), so we will just say that
these functionals are bounded on ρ i.e. they cannot have infinite values on ρ).

With D(Rx) we denote the set of all linear distributions and with D(Rx) the
set of all antilinear distributions – the dual space of D(Rx). If we consider the
above unproven statements it follows that D and D are antilinear isometric spaces.
Identifying the space of antilinear distributions defined on L2(Rx) with itself (L′ ≡ L)
we obtain the following inclusion relation:

ρ(Rx) ⊂ L2(Rx) ⊂ D(Rx) (2.84)

ρ is dense in L2 so we can show that there is an orthonormal basis {φi}n∈N of L2

contained in ρ. So, this triplet is a Hilbertian triad. Before using this, we will give
a few examples and we will define the operations with distributions.

The most common distributions are the function type distributions. Using a local
integrable function D(x), which satisfies the condition |D(x)| ≤ C|x|n ∀ x ∈ Rx, we
can construct the values of the conjugate distributions |D〉 and 〈D|, calculated for
an arbitrary test function |ϕ〉 ∈ ρ(Rx)

〈D|ϕ〉 =

∫ +∞

−∞
D(x)ϕ(x)dx

〈ϕ|D〉 =

∫ +∞

−∞
ϕ(x)D(x)dx (2.85)
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These integrals are convergent due to the presence of the test function.

There are also distributions which do not admit the integral representation (we
reefer here to Lebesgue integrability). The typical example are the Dirac distribu-
tions, denoted here by |x〉 and 〈x|, and defined by

〈x|ϕ〉 = ϕ(x)

〈ϕ|x〉 = ϕ(x) (2.86)

for all |ϕ〉 ∈ ρ(Rx). It can be checked that there is no locally integrable function with
which is possible to write the Dirac distribution in the form (2.85). Nevertheless,
these distributions are often written down using the ”delta Dirac function”, δ(x−y):

〈x|ϕ〉 =

∫ +∞

−∞
δ(x− y)ϕ(y)dy = ϕ(x)

〈ϕ|x〉 =

∫ +∞

−∞
ϕ(y)δ(x− y)dy = ϕ(x) (2.87)

These integrals are simple rules of formal calculus and not Lebesgue integrals. This
representation is very useful and that’s why is very convenient to represent any
distribution in its integral form, which can be

• Lebesgue integrals if D(x) is locally integrable

• formal integrals when D(x) cannot represent a function

In the last case D(x) will be still called distributions or generalized functions. They
must be regarded as symbolic quantities for calculation, having non determined val-
ues in the classical sense. Moreover, these quantities will never appear in the final
result of calculation.

2.6.3 The derivative and the Fourier transform of a distri-
bution

The derivative of a distribution is defined considering that the derivative of a test
function is still a test function. We say that the distribution 〈D(n)| is the n-th
derivative of the 〈D| distribution, iff

〈D(n)|ϕ〉 = (−1)n〈D|ϕ(n)〉, ∀|ϕ〉 ∈ ρ (2.88)
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This definition and the equations (2.85) follow from the following formal rule∫ +∞

−∞
D

(n)
(x)ϕ(x)dx = (−1)n

∫ +∞

−∞
D

(n)
(x)ϕ(n)(x)dx (2.89)

which applies regardless if D(x) is a function (derivable or not) or a distribution.
Let’s consider a test function |ϕ〉 ∈ ρ(Rx) and its Fourier transform |ϕ̂〉 ∈ ρ(Rp).

We call Fourier transform of the distribution 〈D| a new distribution 〈D̂| defined as
a linear and continuous functional on ρ(Rp) satisfying the condition

〈D̂|ϕ̂〉 ≡ 〈D|ϕ〉, ∀ |ϕ〉 ∈ ρ(Rx) (2.90)

The |D̂〉 distribution will be represented in integral form

〈D̂|ϕ̂〉 =

∫ +∞

−∞
D̂(p)ϕ̂(p)dp (2.91)

Denoting by D̂(Rp) the space of all Fourier transforms of the distributions D(Rp),
we see that between the two spaces there is a linear correspondence. In this way a
new hilbertian triad appears:

ˆρ(Rp) ⊂ L̂2 ⊂ D̂(Rp) (2.92)

with the corresponding triads.
Finally, in the two hilbertian triads, ρ(Rx) ⊂ L2(Rx) ⊂ D(Rx) and ˆρ(Rp) ⊂ L̂2 ⊂

D̂(Rp), we can introduce the generalized scalar product 〈G|F 〉 =
∑∞

i=1〈G|φi〉〈φi|F 〉.
Let’s take the first triad and consider an orthonormal and complete system of L2(Rx),
{|φi〉}i∈N ⊂ ρ(Rx). Then the scalar product of two distributions |D1〉, |D2〉 ∈ D(Rx)
will be

〈D1|D2〉 =
∞∑
i=1

〈D1|φi〉〈φi|D2〉 (2.93)

where the quantities 〈D1|φi〉 and 〈φi|D1〉 are finite (|φi〉 ∈ ρ), but the result of
this sum can be anything. Using this generalized scalar product we can show that
〈D1|D2〉 = 〈D̂1|D̂2〉. From here we have the linear isometry, in generalized sense, of
the spaces D(Rx) and D̂(Rp).

Let’s write the generalized scalar product for a Dirac distribution:

〈x|y〉 =
∞∑
i=1

〈x|φi〉〈φi|y〉 (2.94)
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Because |ϕi〉 ∈ ρ(Rx) we can apply (2.86) and (2.89) and we obtain

〈x|y〉 =
∞∑
i=1

φi(x)φi(y) = δ(x− y) (2.95)

If we take the generalized scalar product between a distribution |D〉 and a Dirac
distribution |x〉, we obtain the formula:

〈D|x〉 =
∞∑
i=1

〈D|φi〉〈φi|x〉 =
∞∑
i=1

φi(x)〈D|φi〉 (2.96)

which is meaningless! But if we formally integrate with a test function ϕ(x) we
obtain ∫ +∞

−∞
〈D|x〉ϕ(x)dx =

∞∑
i=1

〈D|φi〉〈φi|ϕ〉 (2.97)

where considering that |ϕ〉 =
∑
|φ〉〈φi|ϕ〉 and that the distribution |D〉 is antilinear,

we have ∫ +∞

−∞
〈D|x〉ϕ(x)dx = 〈D|(|ϕ〉) = 〈D|ϕ〉 (2.98)

which allows us to identify the scalar product 〈D|ϕ〉 with the distribution D(x),
obtaining a generalization of (2.86) (valid only for ρ) i.e.

〈x|D〉 = D(x)

〈D|x〉 = D(x) (2.99)

∀ |D〉 ∈ D(Rx).
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2.7 The States Space

In this section we will gather together the terminology and the definitive rules for
calculations within the space associated with the dynamical states of the physical
systems.

From the perquisites to quantum mechanics, we know that dynamical states must
be described by a normalized wavefunction i.e. by elements from L2. In practice
though, we may deal with wavefunctions which are not-normalized or distributions
which, even if they do not have a direct physical interpretation, they cannot be elim-
inated from the theory. It results from here that the typical mathematical structure
of quantum mechanics is the rigged Hilbert space (or the Gelfand triplet) ρ ⊂ L2 ⊂ D.

As a general rule, we will accept that for every dynamical state of a physical
system we can have a state vector, |〉, called ket vector or simply ket. For every ket
we have a conjugate state vector, denoted by 〈|, and called bra vector or simply bra.

We will denote with the same letter two conjugates state vectors: |α〉 and its
conjugate 〈α|. The set of all ket forms the states space and the set of all bra the dual
space.

We will make the hypothesis that the state space has a Gelfand triad structure
Φ ⊂ H ⊂ Φ′, and that only the vectors fom H correspond to dynamical states of the
physical system. We denote here by Φ′ the space of all the ket vectors and by Φ′ the
space of all the bra vectors. As we have seen, these spaces are antilinear isometric,
so that to every arbitrary linear combination

|3〉 = α|1〉+ β|2〉 (2.100)

of ket vectors from Φ′ it corresponds, by conjugation, the antilinear combination

〈3| = α〈1|+ β〈2| (2.101)

As showed before, to every pair of vectors |α〉, |β〉 ∈ Φ′ we can associate a complex
number 〈α|β〉, called generalized scalar product. This product is hermitic (〈α|β〉 =
〈β|α〉 and has known properties of linearity and antilinearity. If |α〉 and |β〉 ∈ H ⊂ Φ′

we find the normal scalar product from H. For simplicity, the generalized scalar
product will be called from now on, scalar product.

The scalar product 〈α|β〉 represents, in the same time, the value of the linear
functional 〈α| calculated for |β〉 and the value of the antilinear functional |β〉 for the
vector 〈α| from the dual space. This functional dependence suggests the following
rule for formal calculus, introduced by Dirac: every time when a vector bra meets a
ket vector, they come together giving a scalar product.
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This operation is called scalar multiplication and is denoted by (·). The scalar
product of |α〉 and |β〉 is obtained by scalar multiplication between the vector 〈α|,
conjugated by |α〉, with the vector |β〉:

〈α| · (|β〉) ≡ (〈α|) · |β〉 ≡ (〈α|) · (|β〉) ≡ 〈α|β〉 (2.102)

With this rule we immediately have fulfilled the linearity and antilinearity properties
of the dot product. That is:

〈4|3〉 = 〈4| · (α|1〉+ β|2〉) = α〈4|1〉+ β〈4|2〉
〈3|4〉 = (α〈1|+ β〈2|) · |4〉 = α〈1|4〉+ β〈4|2〉 (2.103)

This notation also puts us out of the danger of confusing state vectors with other
quantities.

The properties of this generalized scalar product are those from Cn . Only one
specification is needed here and that is:

‖|α〉‖ =
√
〈α|α〉 (2.104)

is the norm (and not the generalized norm) of a vector |α〉. This norm is finite only
when |α〉 ∈ H. If |α〉 ∈ H − Φ′ the norm will be infinite.

2.8 Summary of the chapter

It is now time to gather together the main results of this chapter, regarding the
Hilbertian triad, Φ ⊂ H ⊂ Φ′. The Hilbert space, H, is a separable space and it has
an orthonormal, countable and complete system of vectors {φi}i∈N – a base. Any
vector ket |α〉 ∈ H, can be represented in an unique way through a Fourier series

|α〉 =
∞∑
i=1

|φi〉〈φi|α〉 (2.105)

satisfying the completeness equation

〈α|α〉 =
∞∑
i=1

〈α|φi〉φiα <∞ (2.106)

The equivalent expansion for 〈α| is

〈α| =
∞∑
i=1

〈α|φi〉〈φi| (2.107)
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The Fourier coefficients 〈φi|α〉 = 〈α|φi〉 will be called components in the given base.
If we consider the base to be orthonormal 〈φi|φj〉 = δij we can calculate

〈α|β〉 =
(∑∞

i=1〈α|φi〉〈φi|
)
·
(∑∞

j=1 |φj〉〈φj|β〉
)

= (2.108)

=
∑∞

i,j=1〈α|φi〉〈φi|φj〉〈φj|β〉 =
∑∞

i,j=1〈α|φi〉〈φi|β〉 (2.109)

obtaining (2.46) written in the new notation.
The orthonormal and complete systems from H are not the only systems in

respect to which the vectors of this space can be expanded. If we consider the
Hilbertian triad ρ ⊂ L2 ⊂ D, in the D space there is a system of vectors {|x〉}x∈Rx

(the Dirac distribution) with the property

〈x|x′〉 = δ(x− x′), ∀ x, x′ ∈ Rx (2.110)

By choosing |α〉 ∈ L2 we know that it represents a function (in fact an entire equiv-
alence class) which values are determined (up to a discrete set of points) according

to 〈p|D〉 = D̂(p), 〈D|p〉 = D̂(p), by 〈x|α〉. The scalar product of two vectors
|α〉, |β〉 ∈ L2 is defined by

〈α|β〉 =

∫ +∞

−∞
〈α|x〉〈x|β〉dx (2.111)

Everything is just like we would represent the vectors |α〉 and |β〉 in the form

|α〉 =

∫ +∞

−∞
|x〉〈x|α〉dx, |β〉 =

∫ +∞

−∞
|x′〉〈x′|β〉dx′ (2.112)

and we would calculate the scalar product using the above equations.



Chapter 3

Linear Operators and Basic
Elements of Spectral Theory.

I
n this chapter we will study the properties of the linear operators acting on
the vectorial spaces described in the previous chapter. These operators will
play the role of the observable from the classical physics. But the existence
of these operators and the beauty of the solid mathematical foundation

described (in relative extenso) earlier, would mean nothing unless we are able to
extract the necessary numerical values for the description of the physical world.
Keep in mind that we have been talking about abstract infinite dimensional complex
spaces, up to now... The numerical values are extracted from the so called eigenvalue
problems of the operators, and this is the task of the spectral theory.

Initially the spectral theory was introduced by David Hilbert, but it was (par-
tially) shaped according to the needs of quantum theory, by John von Neumann.
The final form of the spectral theory was given by Gelfand.

3.1 Linear Operators

Te most important quantities in quantum mechanics are the linear operators, because
they are associated with observables. We know from the perquisites of quantum
mechanics that mean values for physical observables are calculated by applying a
certain operator on the wavefunction

Aϕ = κ or (Aϕ)(x) = κ(x) (3.1)

With the notations from Chapter 2 the action of an operator A on a vector ket is

A|ϕ〉 = |κ〉 (3.2)

39
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where ϕ and κ are, in general, vectors from Φ′. In principle an operator can be
defined over the whole Φ′ space, but because this space contains vectors of infinite
norm controlling the continuity of these operators is a very difficult task. For this
reason we will only consider operators defined on the Hilbert space H or on Φ ⊂ H
of the Gelfand triplet.

The action over ’Kets’

Let’s consider operators of the form A : H → H1 ⊆ H. An operator is linear iff

A(α|1〉+ β|2〉) = αA|1〉+ βA|2〉, with α, β ∈ Cn and |1〉, |2〉 ∈ H (3.3)

The space H is the domain and the space H1 ⊆ H is the codomain.
The kernel of the operator is defined as the set of vectors from H which under

the action of the operator A correspond to the null vector, 0; and is denoted by
H0 = kerr(A).

It is an obvious thing that an algebraic operation with operators has as a result
an operator with a codomain formed by the intersection of the codomains of the
operators used in the algebraic operation.

The algebra

We organize the set of all operators defined on H as an algebra, defining:

• The vectorial space operations:

A = B + C, A|A〉 = B|ϕ〉+ C|ϕ〉 (3.4)

αA, (αA)|ϕ〉 = α(A|φ〉 (3.5)

• Multiplication

AB, (AB)|ϕ〉 = A(B|ϕ〉) (3.6)

with the properties:

(AB)C = A(BC) (3.7)

A(B + C) = AB + AC (3.8)

(A+B)C = AC +BC (3.9)

(αA)B = A(αB) = αAB (3.10)
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• The unit operator, I which for every operator A is

IA = AI = A (3.11)

• By definition, the null operator, O, of the algebra, is the operator obtained by
multiplication of ∀A ∈ H with 0 ∈ C:

A0 = 0A = O (3.12)

and has the property: ∀A ∈ H, OA = 0 where 0 ∈ H is a vector.

Commutator, Anticommutator and Inverse

In general AB 6= BA. The measure of the noncommutativity of two operators is
given by the commutator. For any two operators A,B ∈ H we have:

[A,B] = AB −BA (3.13)

If AB = BA, then the two operators commute. For the commutator, one can use
the following properties and relations:

[A,B] = −[B,A] (3.14)

[A, (B + C)] = [A,B] + [A,C] (3.15)

[A, (αB)] = α[A,B] (3.16)

[A,BC] = [A,B]C +B[A,C] (3.17)

[A, [B,C]] + [B, [C,A] + [B, [C,A]] + [C, [A,B]] = 0 (3.18)

The anticommutator of two operators, A and B, is defined as:

{A,B} = AB +BA (3.19)

The main use of the anticommutator is in defining the product of two operators in
the form:

AB =
1

2
[A,B] +

1

2
{A,B} (3.20)

A linear operator can be inverted only if it realizes a biunivocal correspondence
between the vectors from the domain and those from the codomain. For this to
happen it is necessary for the domain and the codomain to have the same dimension
and for the nucleus of the operator to be the trivial subspace {0} ∈ H. If this is the
case, we will say that A−1 is the inverse of A if it satisfied the relations:

A−1A = AA−1 = I (3.21)

The product of two invertible operators, A and B, is an invertible operator

(AB)−1 = B−1A−1 (3.22)
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The action over ’Bras’

To every vector ket from H it corresponds a conjugate vector bra from H. We
will define the action of an operator over vectors from H. Let A|ϕ〉 = |κ〉, with
|ϕ〉, |κ〉 ∈ H and a vector 〈α| ∈ H. It exists a vector 〈β| so that:

〈α|κ〉 = 〈β|ϕ〉 (3.23)

By definition, 〈β| is the result of acting with the operator A and we will write:

〈β| = 〈α|A (3.24)

We have the following rules:

• an operator acts to the right for the ket vectors and to the left for bra vectors

• the scalar product between 〈α| and A|ϕ〉 is equal with the scalar product
between 〈α|A and 〈ϕ|:

〈α|A|ϕ〉 ≡ (〈α|A) · |ϕ〉 ≡ 〈α| · (A|ϕ〉) (3.25)

The Hermitian conjugate of an operator

To every operator A, it corresponds an adjoint operator - or a Hermitian conjugate
operator - denoted by A† (pronounced ”A dagger”), which satisfies the condition:

〈α|A†|ϕ〉 = 〈β|A|α〉 for ∀ |α〉, |β〉 ∈ H (3.26)

It is easy to notice that conjugating |β〉 = A|α〉 we obtain 〈β| = 〈α|A† Properties:

(αA+ βB)† = αA† + βB† (3.27)

(AB)† = B†A† (3.28)

(A†)† = A (3.29)

I† = I (3.30)

The operator A is called hermitic iff A =† or, in terms of the scalar product
〈α|A|β〉 = 〈β|A|α〉 for ∀ |α〉, |β〉 ∈ H. If an operator satisfies the condition
A† = −A than it is said to be anti-Hermitian1. As a definition, we state that any
operator can be written as the sum between a hermitic operator and an antihermitic
one:

A =
A+ A†

2
+
A− A†

2
(3.31)

1The diagonal elements of the matrix representation of an anti-Hermitian operator are pure
imaginary
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Unitary operators

An operator U is called unitary if it is the inverse of its adjoint:

U † = U−1 (3.32)

which implies that
U †U = UU † = I (3.33)

The product of two unitary operators is an unitary operator:

(UV )−1 = V −1U−1 = V †U † = (UV )† (3.34)

As linear operators form an associative algebra and thus a ring. More generally, in
view of the above definitions, an operator A is nilpotent if there is n ∈ N such that
An = 0 (the zero function).

Analytical functions of operators

An ordinary analytical function f(x) can be expanded in a Taylor series:

f(x) = f(0) +
∞∑
n=1

1

n!
f (n)(0)xn (3.35)

In a similar manner, if we replace the powers of the argument with the same powers of
an operator A, we obtain - by definition - the corresponding function of an operator:

f(A) = f(0)I +
∞∑
n=1

1

n!
f (n)(0)An (3.36)

For example, the inverse of the operator I − A is denoted by

(I − A)−1 =
1

I − A
(3.37)

and by this we understand the geometric series

1

I − A
= I + A+ A2 + · · ·+ An + · · · (3.38)

Example
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Given [A,Bn] = n[A,B]Bn−1 show that [A,F (B)] = [A,B]F ′(B), where F ′(B)
is the ordinary derivative of F in respect to B.

Solution Expanding F (B) in a power of series

[A,F (B)] =

[
A,

∞∑
n=0

bnB
n

]
and using the equality [A,B + C] = [A,B] + [A,C], we have[

A,
∞∑
n=0

bnB
n

]
=
∞∑
n=0

bn[A,B]Bn−1 = [A,B]
∞∑
n=0

bnnB
n−1

Given a power series expansion g(x) =
∑
anx

n, then g′(x) =
∑
annx

n−1, and so∑∞
n=1 bnnB

n−1 = F ′(B). Therefore, we have [A,F (B)] = [A,B]F ′(B).

A very useful function is the exponential function

eA = I +
1

1!
A+

1

2!
A2 + · · ·+ 1

n!
An (3.39)

This is a real function, therefore if A is hermitic then it will represent a hermitic
operator.

The product of two exponential functions will be an exponential function but
here, the operator at the exponent will not be, in general, the sum of the exponents
- as in algebra. By direct calculation we can prove that

eA · eB = eA+B+ 1
2

[A,B]+ 1
4

([A,B],A]+[[A,B],B])+··· (3.40)

If the operators A and B comute, then eA · eB = eA+B.
We can mention here, also leaving the task of looking up the proof to the reader,

another very useful relation:

eAxe−A = x+
1

1!
[A, x] +

1

2!
[A, [A, x]] + · · · (3.41)

To every function of operator, f(A) it corresponds a hermitic conjugate function
f(A))† = f(A†) of the form:

f(A†) = f(0)I +
∞∑
n=1

1

n!
f

(n)
(0)(A†)n (3.42)

If the function is real (f
(n)

(0) = f (n)(0)) and the operator A is hermitic, then the
operator function will be a hermitic operator.



3.2. ORTHOGONAL PROJECTORS 45

The continuity of linear operators

A linear operator A is continuous on the Hilbert space H if for every convergent series
|ϕn〉 → |ϕ〉 from H we have A|ϕn〉 → A|ϕ〉. The necessary and sufficient condition
for a linear operator to be continuous is for it to be bounded, that is: ∃C ∈ R+ such
that

‖A|α〉‖ ≤ C‖|ϕ〉‖, ∀ |α〉 ∈ H (3.43)

For every bounded operator a norm can be defined:

‖A‖ = sup
‖|α〉‖≤1

‖A|α〉‖ <∞. (3.44)

Exercises
1. ForA,B and C show that the following identities are valid: [B,A] = −[A,B], [A+

B,C] = [A,C] + [B,C] and [A,BC] = [A,B]C +B[A,C]
2. Suppose thatA,B commute with their commutator i.e. [B, [A,B]] = [A, [A,B]] =

0. Show that [A,Bn] = nBn−1[A,B] and by using the result that [An, B] = nAn−1[A,B].
3. Show that [A,B]† = −[A†, B†]
4. If A,B are two Hermitian operators, show that their anticomutator is Hermi-

tian. ({A,B}† = {A,B})

3.2 Orthogonal Projectors

In simple words the spectral theorem provides conditions under which an operator
or a matrix can be diagonalized (that is, represented as a diagonal matrix in some
basis). This concept of diagonalization is relatively straightforward for operators on
finite-dimensional spaces, but requires some modification for operators on infinite-
dimensional spaces. Examples of operators to which the spectral theorem applies
are self-adjoint operators or more generally normal operators on Hilbert spaces. The
spectral theorem also provides a canonical decomposition, called the spectral decom-
position, or eigendecomposition, of the underlying vector space on which it acts.

A hermitic operator Λ ∈ H, which satisfied the condition:

Λ2 = Λ (3.45)

is called projection operator or projector2.

2Note that the null operator and the unit operator are projectors
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If Λ is a projector then I − Λ is also a projector. It is trivial to see that

Λ(I − Λ) = Λ− Λ2 = 0 (3.46)

which means that Λ and I − Λ are orthogonal.
The role of this orthogonal projectors is to decompose the Hilbert space in two

orthogonal subspaces. Any vector |ϕ〉 ∈ H can be uniquely decomposed in a sum of
two orthogonal vectors

|ϕ〉 = Λ|ϕ〉+ (I − Λ)|ϕ〉 (3.47)

which represent the projections of this vector on the two orthogonal subspaces.
In the same way, starting from an orthogonal decomposition H = H1 ⊕H2, one

can define an operator Λ such that Λ|ϕ〉 = |ϕ1〉 ∈ H1. In this case, I−Λ will project
the vector on H2 - the orthogonal complement OF H1. The subspace H2 is the kernel
of the Λ projector, and the space H2 is the kernel of the I − Λ projector.

Let’s consider an arbitrary decomposition of the Hilbert space, H:

H =
N∑
i=1

⊕Hi (3.48)

in respect to which every vector |ϕ〉 ∈ H can be uniquely written as

|ϕ〉 = |ϕ1〉+ |ϕ2〉+ · · ·+ |ϕN〉. (3.49)

For every subspace Hi the Λi projectors are defined as

Λi|ϕ〉 = |ϕi〉 ∈ H (3.50)

If we successively apply two operators, we get

ΛiΛj|ϕ〉 =

{
|ϕi〉 i = j

0 i 6= j
(3.51)

which means that we can have the orthogonality relation:

ΛiΛj = ΛjΛi = Λiδij (3.52)

The set of all projectors, {Λi} (i = 1, 2, . . .) satisfying the orthogonality relation
(3.52) forms a system of orthogonal projectors corresponding to the decomposition
(3.48). If Λi ∈ Hi,Λj ∈ Hj, where Hi and Hj are orthogonal subspaces, then the
sum Λi + Λj ∈ Hi ⊕Hj.
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An orthogonal system of projectors is said to be complete when the sum of all the
projectors equals the projector for the entire space H - the unit operator, I. That is

I = Λ1 + Λ2 + · · ·+ ΛN (3.53)

This is also called unit decomposition.
Taking into consideration the fact that the projectors are hermitic, it is easy to

show, by rewriting the equations above, that any projection operator on H is also a
projection operator on H 3.

If the projector makes a projection on an unidimensional space, than it is called
elementary projector. An unidimensional subspace H1 contains vectors like: α|ϕ〉
(with 〈1|1〉 = 1, α = C). Such an elementary projector can be represented as:

Λ1 = |1〉〈1| (3.54)

Let’s consider a separable Hilbert space, H, with a countable system of vectors,
|n〉n∈N, orthonormal and complete. Every normed vector of the basis, |n〉, determines
an unidimensional space Hn with an elementary projector Λ = |n〉〈n|. If the basis is
orthogonal (as supposed earlier), than we have

〈n|m〉 = δn,m (3.55)

ΛmΛn = |n〉〈n|m〉〈m| = 〈n|δm,n = Λnδm,n (3.56)

This shows that the countable set of projectors {Λn}n∈N does form a system
of orthogonal projectors. The only orthogonal vector on this system is the vector
0 ∈ H, which has as orthogonal complement the entire Hilbert space, H. So, the
sum of all the orthogonal projectors Λ will be the projector on all the Hilbert space
H, namely, the unit operator. Hence, we can write the unit decomposition:

I =
∞∑
n=1

Λn =
∞∑
n=1

|n〉〈n| (3.57)

This relation represents the necessary and sufficient condition for the orthonormal
system |n〉n∈N to be complete. It is called closure relation.

Exercises
1. Is the sum of two projectors, P1, P2 a projector? Prove it.
2. Determine if the product of two projection operators is still a projector.
3. A = |a〉〈a| − i|a〉〈b| + i|b〉〈a| − |b〉〈b| Is A a projection operator? (Hint: test,

again, the conditions: A = A† and A = A2)

3When multiplied or added, only the projectors from an orthogonal system have as a result
another projector.
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Generalized basis

The generalized basis are those basis with a discrete and countable part, |n〉n∈N ⊂ H,
and a continuous part, |λ〉n∈D ⊂ Φ′ − H , formed by vectors of infinite norm For
the discret part, we can construct an orthogonal system of of elementary projectors
which, in this case, is not complete. The sum of this elementary projectors will be
the projector

Λd =
∞∑
n=1

|n〉〈n| (3.58)

on the subspace Hd ⊂ H in which the discrete basis was introduced. We can show
that considering the generalized orthonormality relations ths Hd space is orthogonal
on the space Hc of the vectors

|ϕ〉 =

∫
D

|λ〉〈λ||ϕ〉dλ ∈ H (3.59)

for which the continuous basis {|λ〉}λ∈D was given.The projector Λc on the space Hc

can be represented as an integral:

Λc =

∫
D

|λ〉dλ〈λ|. (3.60)

It can be directly verified, using the generalized orthonormality relation 〈λ|λ′〉 =
δ(λ− λ′), that if ϕ ∈ Hc then Λc|ϕ〉 = |ϕ〉.

The quantity |λ〉〈λ|, in the equation (3.60), is not a projector! It is a projector
density, since the square of it has no sense:

(|λ〉〈λ|)(|λ′〉〈λ′|) = |λ〉〈λ|λ′〉〈λ′| = |λ〉〈λ′|δ(λ− λ′) (3.61)

Performing an integration on the domain ∆ ⊂ H, we obtain the projectors in Hc:

Λ(D) =

∫
∆

|λ〉dλ〈λ|. (3.62)

Let ∆1,∆2 ⊂ D (⊂ R) two intervals which define the operators Λ(∆1) and Λ(∆2).
Using (3.61) we have:

Λ(∆1)Λ(∆2) =

∫
∆1

dλ

∫
∆2

dλ′|λ〉〈λ|δ(λ− λ′) (3.63)

Using the propertied of the delta function (δ(x) = δ(x)) we obtain:

Λ(∆1)Λ(∆2) = Λ(D1 ∩D2) (3.64)
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This means that two projectors defined like in (3.62) are orthogonal iff their definition
intervals are disjoint4. So, we can construct an arbitrary system of projectors by
choosing an arbitrary partition of disjoint intervals. It can be shown that the space
Hc and all the spaces obtained by applying tha projectors Λ(∆) are spaces with
countable basis and hence infinitely dimensional. (This proof is not necessary here.)

Summarizing, for the generalized basis in the Hilbert space the necessary and
sufficient condition for being complete can be written as the following unitary de-
composition:

I = Λd + Λc =
∞∑
i=1

|n〉〈n|+
∫
D

|λ〉dλ〈λ| (3.65)

The typical example of generalized basis (which have only continuous part) are
the basis of distributions {|x〉}x∈Rx and {|p〉}p∈Rp introduced for the Hilbert space
L2(Rx). For this basis we have

I =

∫ ∞
−∞

dx|x〉〈x|, I =

∫ ∞
−∞

dp|p〉〈p| (3.66)

From now on, we will be able to write any operatorial relation in components.

Exercise
Show that the expansion of a ket, |Ψ〉, in a continuous orthonormal basis |α〉 is

unique.

3.3 Matrix Operators

For finite dimensional spaces, when we have a base, to each operator will correspond a
matrix. This kind of correspondence is also to be established for infinite dimensional
spaces.

Let’s consider the bounded operator A : H → H, a countable basis {|n〉}n∈N inH
and the orthonormality condition 〈n|n′〉 = δn,n′ . Using the unitary decomposition of
the A operator we have:

A = IAI =
∑
i,j

|i〉 〈i|A|j〉︸ ︷︷ ︸
elements

〈j| (3.67)

The quantities 〈i|A|j〉 are nothing more than the matrix elements of the operator
A. These matrix elements are complex numbers and the first index represents the

4Two sets are said to be disjoint if they have no element in common. For example: {1, 2, 3}
and {4, 5, 6} are disjoint sets.
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columns and the second index represents the rows. This is called matrix of the
operator A in the base {|n〉}n∈N and is the natural generalization of a matrix from
the finite dimensional spaces.

Properties of the matrix operators

• the matrix of the sum of two operators is the sum of the corresponding matrices
calculated element by element

• the matrix of the operator αA is obtained by multiplying every element of the
matrix with the scalar α

• the matrix of the productAB is given by 〈i|AB|j〉 = 〈i|AIB|j〉 =
∑∞

k=1〈i|A|k〉〈k|B|j〉

• the matrix of the A† operator is the hermitic conjugate of the matrix of the
operator A - i.e. transposed and complex conjugated:

〈i|A†|j〉 = 〈j|A|i〉

In a given base the actions of the operators can be written in matrix form. For
example, the equation |ϕ〉 = Aκ can be written as

〈i||ϕ〉 = 〈i|AI|κ〉 =
∞∑
n=1

〈i|A|k〉〈k|ϕ〉 (3.68)

or, in other ”words” (with i ∈ N)
〈1|ϕ〉
〈2|ϕ〉
〈3|ϕ〉

...

 =


〈1|A|1〉 〈1|A|2〉 〈1|A|3〉 · · ·
〈2|A|1〉 〈2|A|2〉 〈2|A|3〉 · · ·
〈3|A|1〉 〈3|A|2〉 〈3|A|3〉 · · ·

...
...

...
. . .



〈1|κ〉
〈2|κ〉
〈3|κ〉

...

 (3.69)

where the operator A is represented by its matrix.
Let’s consider, now, an arbitrary orthogonal decomposition of the Hilbert space

H =
∑∞

i=1⊕Hi and the corresponding system of orthogonal projectors {Λi}i=1,...,N .
Using the closure relation (3.57) we can write down the following decomposition:

A = AIA =

(
N∑
i=1

Λi

)
A

(
N∑
j=1

Λj

)
=

(
N∑

i,j=1

ΛiAΛi

)
(3.70)
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in which operators of the form Ai,j = ΛiAΛj appear. If i = j than Aij is called the
projection of the operator A on the subspace Hi. If i 6= j then the operators Aij are
nilpotent:

(Aij)
2 = ΛiAΛj ΛiAΛj = 0 (3.71)

Important! In general, an operator Aij acts on the subspace Hj and has the
codomain in Hi. The matrices of these operators, in a base formed by the union
of the basis of the subspaces H1, H2, . . . , Hn (in this order), represent subtables of
the operator A, with a number of columns equal to dimHi and a number of rows
equal to dimHj. These subtables are called blocks. The matrix of the operator is
decomposable in blocks: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

... A11
... A12

...
... · · · ... · · · ... · · ·
... A21

... A22
...

... · · · ... · · · ... · · ·

...
...

...
... · · · ... · · · ... · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.72)

and every block represents the matrix of an operator Aij.

A subspace Hk is said to be an invariant subspace of the operator A if ∀|ki〉 ∈ Hk

we have A|ki〉 = |kj〉 where |ki〉, |kj〉 ∈ Hk. In other words, acting with the operator
A on any vector from Hk produces another vector from Hk. This means that all the
Aik operators are zero for i 6= k and so the matrix of the operator A will have all the
blocks on the k column zero; the only nonzero block will be the block corresponding
to the Akk operator. This matrix is called reducible matrix.

If the orthogonal complement of Hk is also an invariant subspace, it will be
impossible to obtain the vectors from Hk by acting with the operator on the vectors
from its orthogonal complement. In this case, also the operators Akj with j 6= k will
be zero, which is equivalent with the proposition: the operator A commutes with
the projector Λk. Now, the matrix will have also the blocks from the k row zero; the
only nonzero block will be the block corresponding to the Akk operator. This matrix
is called completely reducible.

From 〈i|A†|j〉 = 〈j|A|i〉 it follows that if the operator is hermitic and its matrix
reducible, then the matrix is also completely reducible. So, if the operator is hermitic
and it admits an invariant subspace, then also its orthogonal complement will be an
invariant subspace. In general a hermitic operator, A, can admit more invariant
subspaces H1, H2, . . . , HN which will form an orthogonal, complete system. In a
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base formed by the union of the basis of these spaces, the operators’ matrix will have
the form: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

... A11
... 0

... 0 . . .
... 0

...
... · · · ... · · · ... · · · ... · · · ...
... 0

... A22
... 0 . . .

... 0
...

... · · · ... · · · ... · · · ... · · · ...

... 0
... 0

...
. . .

...
...

... · · · ... · · · ... · · · ... · · · ...

... 0
... 0

...
... ANN

...
... · · · ... · · · ... · · · ... · · · ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If the projectors on the invariant subspaces are denoted by Λ1,Λ2, . . . ,ΛN we see

they will commute with the operator A so in the decomposition

A = AIA =

(
N∑
i=1

Λi

)
A

(
N∑
j=1

Λj

)
=

(
N∑

i,j=1

ΛiAΛi

)

only invariant subspaces will appear:

A =
N∑
i=1

ΛiAΛi =
N∑
i=1

ΛiA =
N∑
i=1

AΛi (3.73)

Wen the matrix elements of an operator A in the base {|n〉n∈N have the form

〈i|A|j〉 = aiδij (3.74)

the matrix is called diagonal. That is: the operator can be diagonalized in this basis.
In the following, we will see that the basis in which an operator becomes diagonal is
its basis of eigenvectors.

3.4 The Eigenvalue Problem for Operators

Matrix diagonalization is the process of taking a square matrix, n × n, and con-
verting it into a special type of matrix - a so-called diagonal matrix - that shares
the same fundamental properties of the underlying matrix. Matrix diagonalization
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is equivalent to transforming the underlying system of equations into a special set
of coordinate axes in which the matrix takes this canonical form. Diagonalizing a
matrix is also equivalent to finding the matrix’s eigenvalues, which turn out to be
precisely the entries of the diagonalized matrix. Similarly, the eigenvectors make up
the new set of axes corresponding to the diagonal matrix.

The remarkable relationship between a diagonalized matrix, eigenvalues, and
eigenvectors follows from the mathematical identity (the eigen decomposition) that
a square matrix A can be decomposed into the very special form

A = PDP−1 (3.75)

where P is a matrix composed of the eigenvectors of A, D is the diagonal matrix
constructed from the corresponding eigenvalues, and P−1 is the matrix inverse of P .
According to the eigen decomposition theorem 5, an initial matrix equation

AX = Y (3.76)

can always be written
PDP−1X = Y (3.77)

(at least as long as P is a square matrix), and premultiplying both sides by P−1 gives

DP−1X = P−1Y (3.78)

Since the same linear transformation P−1 is being applied to both X and Y, solving
the original system is equivalent to solving the transformed system

DX′ = Y′ (3.79)

where X′ ≡ P−1X and Y′ ≡ P−1Y. This provides a way to canonicalize a system
into the simplest possible form, reduce the number of parameters from n× n for an
arbitrary matrix to n for a diagonal matrix, and obtain the characteristic properties
of the initial matrix.

The eigenvalue problems from quantum mechanics are a generalization to the
infinite dimensional case of the matrix diagonalization procedure, described above.
The eigenvalue problem for the operators defined on the Hilbert space depends very
much upon the nature of the operators. We can distinguish two types of operators:
bounded operators and unbounded operators.

5Let P be a matrix of eigenvectors of a given square matrix A and D be a diagonal matrix with
the corresponding eigenvalues on the diagonal. Then, as long as P is a square matrix, A can be
written as an eigen decomposition A = PDP−1 where D is a diagonal matrix. Furthermore, if A
is symmetric, then the columns of P are orthogonal vectors.
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3.4.1 The Eigenvalue Problem for Bounded Operators

The bounded operators are the operators for which the domain and the codomain is
the entire Hilbert space. Such an operator is hermitic if 〈α|A|β〉 = 〈β|A|α〉, ∀ |α〉, |β〉 ∈
H. Considering a hermitic operator A, the equation

A|a〉 = a|a〉, |a〉 ∈ H (3.80)

is called the eigenvalue equation in H. To it, it corresponds a conjugate, equivalent
equation in the dual space H

〈a|A = a〈a| (3.81)

These equations admit a trivial solution |a〉 = 0, ∀ a ∈ C. If the solutions are not
trivial (|a〉 6= 0) we say: the vector |a〉 is the eigenvector corresponding to
the eigenvalue a. More eigenvectors, |a, 1〉, |a, 2〉, . . . can correspond to an arbi-
trary eigenvalue, a. Every linear combination of eigenvectors is a new eigenvector
so every vector from the subspace Ha = L̃({|a, 1〉, |a, 2〉, . . .}) will be an eigenvector.
This subspace will be called eigensubspace corresponding to the eigenvalue a. Ev-
ery eigensubspace is an invariant subspace. If the eigensubspace is unidimensional
then the eigenvalue is called nondegenerate. Otherwise it is called degenerate and
degeneration degree, g(a) is given by the dimension of the eigensubspace:

g(a) = dimHa (3.82)

If the eigenvalue is zero, the eigensubspace H0 contains all the |α〉 eigenvectors
for which A|a〉 = 0. Obviously, H0 = kerr A. If H0 6= {0} then the operator will not
be invertible.

The set of all eigenvalues of an operator, A, forms the spectrum of that operator,
denoted by S(A). This spectrum is called simple spectrum if all the eigenvalues are
nondegenerated.

The eigenvalues of a hermitic operator

Let’s consider two nontrivial eigenvectors |a1〉 and |a2〉 corresponding to the eigen-
values a1 and a2, which satisfy the equations:

A|a1〉 = a1|a1〉 A|a2〉 = a2|a2〉

Multiplying the first with |a2〉 and the second with |a1〉 we obtain:

0 = 〈a2|A|a1〉 − 〈a1|A|a2〉 = (a1 − a2)〈a2|a1〉 (3.83)
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• If |a1〉 = |a2〉 (and implicitly a1 = a2) then, because |a1〉 is a nontrivial eigen-
vector, we will have 〈a1|a1〉 6= 0 which implies that a1 = a1. Hence, all the
eigenvalues of a hermitic operator are real numbers.

• If a1 6= a2 then the above equation will hold only if 〈a1|a2〉 = 0. This means that
two eigenvectors, corresponding to two different eigenvalues, are orthogonal.
Hence, the corresponding eigenspaces Ha1 and Ha2 are orthogonal.

To every eigenvalue from the spectrum it corresponds an eigensubspace. These
subspaces will be orthogonal on each other. It can be proven that the direct sum of
these eigensubspaces coincides with the whole Hilbert space, H:

H =
∑

a∈S(A)

⊕Ha (3.84)

which means that the system of eigensubspaces is complete.
A separable Hilbert space admits a countable basis and hence a maximal count-

able orthogonal decomposition in unidimensional orthogonal spaces. Because the
eigensubspaces can orthogonally decompose the Hilbert space in orthogonal spaces,
follows that the set of these eigensubspaces is countable (finite or countable). Obvi-
ously the corresponding spectrum will be countable i.e. a discrete spectrum.

Because the system of eigensubspaces is a complete one, the set of all projectors
{Λan}an∈S(A) - where Λan is the projector of the subspace Han - is complete. Such,
we have:

I =
∑

an∈S(A)

Λan (3.85)

With this system of orthogonal projectors we can define the spectral decomposition

A =
∑

an∈S(A)

anΛan (3.86)

In this sum, each term represents a projection of the operator A on an eigensubspace.
If the operator has a simple spectrum, the eigensubspaces are unidimensional. We

can take from every subspace a normed vector and build a countable system (obvi-
ously!), orthonormal and complete, of eigenvectors, {|an〉}an∈S(A), and the projection
operators will be elementary: Λan = |an〉〈an|. The above spectral decompositions
will be written, in this case:

I =
∑

an∈S(A)

|an〉〈an|, A =
∑

an∈S(A)

|an〉〈an|an (3.87)
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and the orthonormal relations will be:

〈an|a′n〉 = δn,n′ (3.88)

If the spectrum is not simple, the eigensubspace Han has a dimension g(an) > 1.
We can choose an arbitrary orthonormal basis from Han , {|an, rn〉}rn=1,2,...,g(an), for
which the orthonormal condition is written

〈an, rn|a′n, rn〉 = δn,n′δrn,r′n (3.89)

Considering the union of all these basis, we will obtain an orthonormed and complete
system in H, with the above orthonormal condition. In this base the Λan projectors
are expanded as

Λan =

g(A)∑
rn=1

〈an, rn|a′n, rn〉 (3.90)

and, as a consequence, the spectral decompositions are

I =
∑

an∈S(A)

g(A)∑
rn=1

|an, rn〉〈a′n, rn|, A =
∑

an∈S(A)

an

g(A)∑
rn=1

|an, rn〉〈a′n, rn| (3.91)

The matrix elements of the operator A in its basis of eigenvectors, are nonzero only
if they are diagonal

〈a′n, rn|A|an, rn〉 = anδn,n′δrn,r′n (3.92)

So, like in the finite-dimensonal case, the basis in which the matrix of an operator is
diagonal, is the basis of the eigenvectors of this operator.

We can now consider the inverse problem: Taking an arbitrary countable basis
{|n〉}n∈N ⊂ H we can always construct a hermitic operator, A, diagonal in this basis.
For this it is enough to have a finite series of natural numbers {an}n∈N which will
represent the spectrum S(A) of the operator A. In this case the operator can be
written as

A =
∞∑
n=1

|n〉an〈n| (3.93)

Obviously, every vector from the base is an eigenvector of A, corresponding to the
eigenvalue an.

This method of construction (think a bit to it!), shows clearly that an operator is
fully determined by its spectrum. From the spectrums’ structure it must be visible
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if the operator is or not bounded. We can impose the bounding condition, by firstly
calculating:

‖A|ϕ〉‖2 = 〈ϕ|A2|ϕ〉 = 〈ϕ|

(
∞∑
n=1

|n〉an〈n|

)
|ϕ〉 =

∞∑
n=1

a2
n|〈n|ϕ〉|2 (3.94)

and considering that ‖A‖ = sup
‖|α〉‖≤1

‖A|α〉‖ <∞ we obtain

∞∑
n=1

a2
n|〈n|ϕ〉|2 ≤ C2‖|ϕ〉‖2 ≡ C2

∞∑
n=1

|〈n|ϕ〉|2. (3.95)

This relation should be satisfied ∀ |α〉 ∈ H. This happens only if the sequence of the
eigenvalues is inferiorly and superiorly bounded (|an| < C) or, in other words, the
spectrum is bounded.

3.4.2 The Eigenvalue Problem for Unbounded Operators

From the usual problems of quantum mechanics, we see that the operators attached
to the observables have always an unbounded spectrum. This mean that we have
to work, in general, with unbounded operators. The difficulties arise right from
the beginning, when we have to define the domain on which these operators are
defined. We choose to illustrate these difficulties on a special class of operators with
an unbounded spectrum, S(A) = {an}nN

, defined by (3.93). This class is particular
because we have chosen the operators with discrete spectrum which admit a complete
system of eigenvectors in H. We will see that there are operators which neither admit
a discrete spectrum nor eigenvectors in H. For the following discussion the operators
defined by (3.93) are enough.

Let’s take a an operator A with an eigenvalue system of the form an = nk where
k ∈ N. The domain will be defined only by those operators |ϕ〉 inH which satisfy the
condition (3.95). This fact ensures that the operator is bounded and also ensures
the continuity. In other words, the definition domain will contain only vectors for
which the sequence

∑
n n

2k|〈n|ϕ〉|2 is convergent. These vectors must have Fourier
coefficients 〈n|ϕ〉 which go to zero faster than 1/nk, when n→∞. Their set, denoted
by εk, can be considered to be the definition domain of the operator A. We can do
this only if we give up doing algebraic operations, because the spectrum of the A2

operator will diverge like the sequence n2k, being defined only in Φ2k ⊂ Φk. It is
obvious now, that the definition domain of the unbounded operators must be taken
at the intersection of all the Φk sets. This forms the inclusion relation Φk+1 ⊂ Φk.
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To each Φk se t it corresponds a set of antilinear functionals Φ′k. These sets of
antilinear functionals are also ordered by the above inclusion relation, Φk+1 ⊂ Φk,
because as the definition domain becomes smaller, the functionals’ space becomes
richer. In this way we get the sequence:

. . .Φk ⊂ Φk−1 ⊂ . . .Φ1 ⊂ HΦ′1 . . .Φ
′
k−1 ⊂ Φ′k ⊂ . . .

According to the above logic, the definition domain of the unbounded operators
will be the set:

Φ =
∞⋂
k−1

Φk

So, this set contains all the vectors which have Fourier coefficients exponentially
decaying to zero when n→∞. These vectors are not just a few, they are quite many
so the set is pretty large. It can be even shown that this set is dense in H.

On the set Φ we can define antilinear and continuous functionals which will belong
to the set

Φ′ =
∞⋃
k=1

Φ′k

We obtain a hilbertian triad (or a Gelfand triad) Φ ⊂ H ⊂ Φ′ in which Φ is the
definition domain for the unbounded operators. It can be shown (but that’s beyond
the purpose of this course) that by taking H = L2(Rn

x), this construction method
leads to the known Gelfand triad: ρ(Rn

x ⊂ L2(Rn
x) ⊂ D2(Rn

x).
In the quantum mechanics we will use only those unbounded operators which are

defined on Φ and which through their action: i) to the right on any vector from Φ
will produce a vector which is also from Φ and ii) to the left on any vector from
Φ will produce a vector which is also from Φ . Mathematically, we denote this by
A : Φ→ Φ.

In practice we need to extend the action of these operators on the whole Φ′ space,
space which contains both vectors of finite norm and infinite norm. This is done
through a procedure which resembles very much with the definition of derivatives
in the case of distributions, starting from the test functions from ρ. As we have
shown in the previous chapter, in spite the fact that the derivation is defined, in
the sense given by mathematical analysis, only for those functions in ρ which are
infinitely derivable, it can be extended in the weak sense of the distributions, to
all the distributions fromD. We will proceed in the same way for the unbounded
operators defined on Φ.

Let’s consider an arbitrary vector 〈ϕ| ∈ Φ. The operator A acts to the left on this
vector, producing 〈κ| = 〈ϕ|A. We further consider a vector |F 〉 ∈ Φ′. We know that
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the scalar product 〈κ|F 〉 is finite, because the space Φ′ is the space of the antilinear
and continuous functionals defined on Φ. By definition we will say that the vector
|G〉 ∈ Φ′ is the result of the action of the A operator on the vector |F 〉 and we will
denote this by

|G〉 = A|F 〉 (3.96)

if the equality
〈ϕ|G〉 = 〈κ|F 〉 (3.97)

with 〈κ| = 〈ϕ|A, is valid ∀ 〈ϕ| ∈ Φ′. Analogous we can define the action at the left
on the vectors from Φ′. For this we will take |ϕ〉 ∈ Φ and |κ〉 = A|ϕ〉 ∈ Φ. The
vector 〈G| is the result of acting with A on 〈F |

〈G| = 〈F |A (3.98)

if the equality
〈G|ϕ〉 = 〈F |κ〉 (3.99)

is satisfied, ∀ |ϕ〉 ∈ Φ.
Like in the case of the operations defined for distributions, the relations (3.96) and

(3.98) must be considered to be formal relations from which we, in fact, understand
that the equalities (3.97) and (3.97) are satisfied vor every vector from Φ and Φ.

An unbounded operator A is called symmetric if ∀ |κ〉, |ϕ〉 ∈ Φ we have

〈κ|A|ϕ〉 = 〈ϕ|A|κ〉. (3.100)

If a symmetric operator is given, this satisfies the condition

〈F |A|G〉 = 〈G|A|F 〉 (3.101)

for all vectors |F 〉, |G〉 ∈ Φ for which this condition is finite, we will say that the
operator is hermitic and we will write A = A†.

The spectral analysis of unbounded operators, is a much more complicated subject
for the purpose and the length of this lectures, which is why we do not discuss it
here.


