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The Hamilton operator for a general 
system with n nuclei and N electrons
• The Schrödinger equation is:

with the Hamiltonian
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I,J label atoms with positions RI, RJ

i,j label electrons with positions ri, rj

electron-electron interaction electron-nucleus interaction
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nucleus-nucleus 
interaction

Nuclear 
kinetic energy

Electron 
kinetic energy



The Born-Oppenheimer 
Approximation

• The large difference between the electronic mass and the 
nuclear mass allows one to separate the electronic and the 
nuclear problem  (adiabatic approximation)

• The interatomic forces and potential energy are determined 
by the behaviour of the bonding electrons, which itself 
depends parametrically on the atomic structure

• Within the Born-Oppenheimer approximation:
)();(),( RRrRr χψ=ΨFull 

wavefunction

Atomic (nuclear) 
positions

Electron 
coordinates

Electron 
wavefunction 
for given 
nuclear 
positions R

Nuclear 
wavefunction



Classical Approximation for the nuclei
Newton equation with ab-initio potential

Nuclear Schrödinger equation Electronic Schrödinger equation

Born-Oppenheimer approximation

General Hamiltonian
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By using DFT:
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Car-Parrinello approach ⇐

R: nuclear coordinates

r: electronic coordinates



Why ab initio Molecular Dynamics ?



Molecular Dynamics: 
Classical approximation for the nuclear motion

• Assume the nuclei are heavy enough to be 
described with classical mechanics 

The quantum aspects of the nuclear motion, such as 
tunneling and zero-point motion, are neglected. 

• Instead of solving the Schrödinger equation for the 
nuclei we solve the Newton equation for N 
particles moving on the Potential Energy Surface
(PES)
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Force Field Methods:
empirical potentials

• Capture very simple interactions between atoms
• Predefined functional form for the interatomic potential
• Contain many parameters to be fixed according to 

experimental data or theoretical calculations 
• Usually work in situations where it is easy to identify 

individual `atomic’ charge distributions, and these do not 
vary strongly as the atoms move around

• Some popular Force Fields for treating bio-molecules:
– AMBER
– CHARMM
– GROMOS
– SYBYL



Force Field Energy
The force field energy (PES) is written as a sum of terms 
describing bonded and non-bonded interatomic interaction

– bonded terms

– non-bonded terms

• Each term contains a number of empirical fitting parameters

bondnonbondFFeff EEEV −≡ +=

torsionbendingstretchbond EEEE ++=

elvdwbondnon EEE +=− van der Waals and Electrostatic



The Stretch Energy
• The energy function for stretching a bond between 

two atoms A and B can be written as a Taylor 
expansion around the equilibrium bond length

• In the harmonic approximation

• Fitting parameters: 
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Non-bonded energy terms
Van der Waals term: Lennard-Jones potential
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Molecular Dynamics (1)

• Basic idea: simply follow the dynamical evolution 
according to Newton’s equations of motion for the atoms

• Break time into discrete `steps’ ∆t, compute forces on 
atoms from their positions at each timestep

• Evolve positions by, for example, Verlet algorithm:

• or the equivalent `velocity Verlet’ scheme
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Molecular Dynamics (2)

• Follow the `trajectory’ and use it to sample 
the states of the system: The system 
samples the ‘microcanonical’ (constant-
energy) thermodynamic ensemble, provided 
that the trajectory eventually passes through 
all states with a given energy (ergodicity)



Ensemble Averages and Time 
Averages (ergodic hypothesis)
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Time-correlation functions and 
transport coefficient

• They give a clear picture of the dynamics in 
a fluid

• Their time integral may be related directly 
to macroscopic transport coefficients (e.g. 
the diffusion coefficient)

• Their Fourier transform may be related to 
experimental spectra (e.g., vibrational DOS, 
infrared spectra)



Molecular Dynamics (3)

• Assuming forces are conservative, the total 
energy will be conserved with time (to order (∆t)2 

in the case of Verlet)

• Note: the energy conservation along the dynamics 
is also a test on the accuracy and stability of the 
numerical integration
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Molecular Dynamics (4)

• Refinements exist to allow simulations with 
– Constant temperature (an additional variable is 

connected to the system which acts as a ‘heat 
bath’)

– Constant pressure (the volume of the system is 
allowed to fluctuate)

– Constant stress (the shape, as well as the 
volume, of the system is allowed to fluctuate)

– Geometrical constraints



Technical details
Choice of time step:

– The time step ∆t must be smaller compared to 
the shortest oscillation period of the normal 
modes of the system 

Periodic boundary conditions (to overcome 
surface effects):
– The box is replicated throughout space to form 

an infinite lattice



Advantages and Limitations of 
Force Field Methods

• Advantages
– speed of calculations
– large systems can be treated (several thousands atoms 

with a PC)
– easy to include solvent effects and crystal packing 

• Limitations
– Lack of good parameters (for molecules which are out 

of the ordinary)
– The predicting power is very limited
– Transferability limited
– Cannot simulate bond breaking and forming



References on classical MD

• Allen MP and Tildesley DJ (1987) 
Computer Simulation of Liquids, Clarendon 
Press, Oxford

• Frenkel D and Smit B (1996) 
Understanding Molecular Simulation –
From Algorithms to Applications, 
Academic Press, San Diego



Ab initio Molecular Dynamics 
• Why  AIMD ? Overcome limitations of  (force-field) MD, 

specifically in simulating bond breaking and forming.
• How can we obtain the Potential Energy Surface (       ) ?

– By fitting ab initio results to a suitable functional form. 
This is very demanding and can be done only for 
extremely small systems; furthermore it is difficult to 
design a well-behaved fitting function

– The fitting step can be bypassed and the dynamics 
performed directly by calculating the interatomic forces 
(obtained from the electronic structure calculated on-the-
fly) at each time-step of an MD simulation

effV



Born-Oppenheimer Molecular Dynamics
• Calculate interatomic forces in Molecular Dynamics by 

solving the electronic structure problem for each nuclear 
configuration in the MD trajectory:

• Density Functional Theory is mostly used to solve the 
electronic structure (self-consistent solution of the Kohn-
Sham equations). However, in principle other methods can 
be used (HF, MCSCF, …)

• the direct BO-MD involves a SCF calculation of the wave 
functions at each time step
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Density Functional Theory
(Hohenberg and Kohn, 1964) 

• The ground-state electronic energy (E) of a N-electron 
system can (in principle) be uniquely determined by the 
electron charge density 

• This is so because two ground states for different 
potentials cannot have the same charge density

• A variational principle holds for the energy functional:
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Walter Kohn:  Nobel Prize in Chemistry, 1998



Density Functional Theory
(Kohn and Sham, 1965)

• Write total energy as

• Write density in terms of a set of auxiliary one-electron 
functions  
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noninteracting 
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density

Interaction with 
external potential: 
nuclei-electrons term
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2

)()( ∑=
N

i rr ϕρ
1=i



Density Functional Theory
(Kohn and Sham, 1965)

][][];[][];[ ncorrelatio-ExchangeHartreeextparticle-single ρρρρρ EERETRE +++=

K.E. of 
noninteracting 
particles at this 
density

Interaction with 
external potential: 
nuclei-electrons term

Interaction with 
Hartree potential 
(Coulomb energy)

ii
i

i drfT φφ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
−= ∫∑ 2

2
*

21

21
21

)()(
2
1][

rr
rrdrdrEH −

= ∫∫
ρρρ

Usually also the nuclear-nuclear 
term                 is added in the 
total energy functional

}{ IRU

∑∫ −
=

I I

I
ext Rr

ZrdrE )(ρ

contains the exchange energy, the 
correlation energy and the kinetic 
terms not included in

xcE
T



Density Functional Theory
(Kohn and Sham, 1965)

• By applying the variational principle for the functional 
with the constraint on the total number of electrons we 
obtain a set of self-consistent single-particle (Kohn-Sham) 
equations

• where the effective local potential is given by

• with the exchange-correlation potential defined as
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Basis Set approximation

• All calculations use a basis set expansion to 
express the unknown Kohn-Sham (Molecular) 
Orbitals

• Mostly used basis set are atom-centered functions 
that resemble atomic orbitals (Linear Combination 
of Atomic Orbitals)

• basis set used in practical calculations are 
– STO (exponential: Slater-type orbitals)
– GTO (Gaussian-type orbitals)
– Plane waves



Local Density Approximation (LDA)
• The Kohn-Sham approach enables one to derive an exact

set of one-electron equations
• Problem: all the nasty bits (including exchange) are now 

included into the unknown exchange-correlation energy
• A simple approximation, the Local Density Approximation, 

is surprisingly good: approximate exchange-correlation 
energy per electron at each point by its value for a 
homogeneous electron gas of  the same density (known 
from QMC results)

• Can be generalized to include spin polarization (LSDA)
∫= drrrE LDA
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Generalized Gradient Approximation 
(GGA)

• Though Local Density Approximation works quite 
well in many cases (metals and semiconductors), 
in general underestimates the exchange energy and 
gives poor results for molecules. 

• To improve over the LSDA, the exchange-
correlation energy should depend not only on the 
density, but also on derivatives of the density 
(gradient corrections) :

∫ ∇= drrrfrEGGA
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• GGA, as e.g. the BP (Becke-Perdew) or the BLYP 
(Becke-Lee-Yang-Parr) functional, can give 
accuracy of the same or better quality than MP2. 
Hybrid functionals, such as the B3LYP are also 
widely used.

• The search for increasingly accurate functionals is 
a current hot topic in the field:
– Meta-GGA have been also recently developed

∫ ∇∇=− drrrrfE GGAmeta
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Why DFT is the preferred 
choice for ab initio MD?

• Advantages
– General accuracy for geometries and 

vibrational frequencies similar or better than 
MP2

– Computational cost scales at most as N3 (N = 
number of basis functions)

• Limitations
– Weak interactions (vdW) are poorly described
– Lack of a systematic improvability  



Born-Oppenheimer Molecular Dynamics

• Molecular Dynamics with interatomic forces 
obtained using DFT for each nuclear 
configuration in the MD trajectory:

• the direct BO-MD involves a SCF solution of the 
Khon-Sham equations at each step 

computationally very demanding
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Car-Parrinello Molecular Dynamics 
• Car and Parrinello (1985) proposed an approach in which the 

electronic self-consistent problem has to be solved only for 
the initial nuclear configuration in the MD

• CPMD evolves in time the nuclear positions and the 
electronic degrees of freedom using an extended Lagrangian:

• This dynamics generates at the same time the nuclear 
trajectory and the corresponding electronic ground state.
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Car-Parrinello Molecular Dynamics 

• The corresponding equations of motion are:         

• which can be solved numerically using, for 
example, the Verlet algorithm
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Initial conditions 

• The electrons are in the ground state 
corresponding to the initial nuclear 
configuration: 
– Electron velocities and accelerations are zero
– The equations of motion for the electrons are 

equivalent to the Kohn-Sham equations



Why does the Car-Parrinello method work ?
• CPMD exploits a classical adiabatic energy scale 

separation between the nuclear and electronic degrees of 
freedom: By choosing the parameter                   the 
evolution of  the         can be decoupled from that of  

• The electrons oscillate around the instantaneous ground-
state BO surface with very low kinetic energy

• The physical total energy        behaves approximately like 
the strictly conserved total energy in classical MD
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• Under these conditions the CPMD 
trajectories derived from the extended 
Lagrangian
– reproduce very closely the true (Born-

Oppenheimer) nuclear trajectories
– approximates very closely the microcanonical

dynamics 



Vibrational density of states



Various energy terms for a model system



Comparison between 
Born-Oppenheimer and Car-Parrinello forces



How to control adiabaticity ?
• The electronic frequencies depend also on the 

electronic structure:

• warning: adiabaticity is broken when the gap 
between occupied and virtual orbitals is too small 
(problems with metals)
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Practical solution to broken adiabaticity

• Couple the electronic subsystem with a 
thermostat keeping the electron at low 
temperature

• Couple the nuclear subsystem with a 
thermostat at the desired physical 
temperature of the system 



Technical details

• Time step ∆t 
– Limited by the fast electronic motion
– Typical value ∆t ≈ 0.1 fsec

• Electronic mass µ:
– Adiabatic evolution if  µ/M << 1
– Typical value µ/M = 1/100



Technical details
• Supercell geometry

– Periodic boundary conditions

• Plane wave expansion of electronic states

– more suitable for extended systems: solids, liquids
– Only one parameter controls the accuracy 

– Fast Fourier transform (FFT) can be used 
– Evaluation of nuclear forces easy (no Pulay forces)
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The Hellman-Feynman theorem
• For a general electron state ψ the electronic energy 

depends on the state, as well as explicitly on the atomic 
positions

• In order to find the force on any particular atom, we would 
therefore have use the chain rule to write

• For the ground state (or indeed any electronic eigenstate) 
the electronic energy is stationary with respect to 
variations in ψ and we can therefore ignore the second 
term.
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Pseudopotentials

• To minimize the size of the plane wave basis
– only valence electrons are included explicitly
– core electrons are replaced by pseudopotentials

• First-principles pseudopotentials are built to 
– correctly represent the long range interactions 

of the core
– produce pseudo-wavefunctions that approach 

the full wavefunction outside a core radius rc



Car-Parrinello Molecular Dynamics 

• Advantages:
– More general applicability and predictive power 

compared to MD using “predefined potentials”
– In comparison with static quantum chemistry 

approaches allows for the inclusion of dynamical, 
entropic effects, and the possibility of treating 
disordered systems (e.g. chemical reactions in solution)

• Limitations:
– approximation in the exchange-correlation functional
– size: 100-1000 atoms

– time scale : 10 ps



Current developments

• QM/MM extension
• Excited state (TDDFT coupled with CPMD)
• Extension to localized basis set (Gaussians): 

more suitable for molecules, clusters



Hybrid QM/MM approaches:
quantum-mechanics/molecular-mechanics
• Systems of interest in computational biology are too large 

for a full quantum-mechanical treatment
• Need to integrate various computational chemistry 

methodologies with differing accuracies and cost.
• In QM/MM approaches this is done by embedding a QM 

calculation in a classical MM model of the environment

• Review paper: P. Sherwood, (2000), in 
– http://www.fz-juelich.de/nic-series/Volume1



QM/MM scheme 
• The system is divided in two subsystems:            

an inner region (QM) where quantum-mechanics 
is used and an outer region (MM) where a 
classical field is used, interacting with each other

QM

MM



Why and when QM/MM ?
• Interest in active sites of proteins / enzymes
• Geometry and Functionality of active site 

influenced by the protein environment
• Proteins still too large to be handled completely by 

quantum chemistry &
high quality (QM) description only needed for 
place of interest (active site)

• QM/MM schemes aim to incorporate 
environmental effects at an atomistic level, 
including mechanical constraints, electrostatic 
perturbations and dielectric screening



QM-MM Hamiltonian
• We can in general write a total Hamiltonian of the 

QM-MM system as follows:

• includes all the interactions between the 
particles treated with QM, 

• includes all the interactions between the 
classical particles, 

• accounts for all the interactions between 
one quantum particle and one classical particle 

QMH
MMQMMMQM HHHH /++=

MMH

MMQMH /



The choice of the QM method

• The choice of the QM method within a hybrid 
approach depends on the accuracy required and on 
the size of the QM region. 

• Implementation of QM-MM methods have been 
reported with almost any QM approach:
– The first application of Warshel and Levitt (1976) 

employed a semiempirical method. 
– More recently several implementation involving DFT 

and Car-Parrinello MD have been reported. This is a 
very interesting development since DFT can deal with 
relatively large QM regions and can be used also in 
combination with Molecular Dynamics.



The choice of the MM model

• The HMM term is determined by the specific 
classical force field used to treat the MM part. 

• The most popular force fields for hybrid QM-MM 
simulations are the same force fields mostly used 
for biomolecules:
– CHARMM 
– AMBER 
– GROMOS96



Handling the hybrid term

• The third term of the Hamiltonian, HQM-MM , is the 
most critical and the details of this interaction term 
may differ substantially in different implementations. 

• In terms of classification, we can distinguish two 
possibilities:

• (i) the boundary separating the QM and MM region, 
does not cut across any chemical bond; 

• (ii) the boundary cuts across at least one chemical 
bond. 



Handling the hybrid term

• (i) the QM-MM coupling term in the Hamiltonian 
contains the non-bonded interactions, i.e., 
electrostatic and short-range (van der Waals) 
forces. 

• The treatment of the electrostatic interactions 
varies for different implementations, but the most 
common is the electrostatic embedding, in which 
the classical part appears as an external charge 
distribution (e.g. a set of point charges) in the QM 
Hamiltonian. 



Handling the hybrid term

(ii) If there are bonds between the QM and MM regions, it is 
necessary to introduce some termination of the QM part. 

For termination of sites where a covalent bond has been 
broken, addition of a so-called link atom is the most 
common approach: An extra nuclear centre is introduced 
together with the electrons required to form a covalent 
bond to the QM dangling valences that will mimic the 
bond to the MM region. 

The simplest and most used choice is to add a hydrogen atom 
as link atom. Of course there are chemical differences 
between hydrogen and the chemical group it replaces. One 
possible approach to adjust the link atom interaction is to 
place a pseudopotential at the MM site to mimic the 
electronic properties of the replaced bond.



Applications:
From Materials Science to Biochemistry

• Semiconductors: silicon in crystalline and disordered 
phases

• Structural phase transitions of materials under pressure
• Diffusion of atoms in solids
• Surface reconstruction, chemisorption on surfaces
• Simulations of liquids, water, ions in water
• Clusters, fullerenes, nanostructures
• Chemical reactions (in gas phase or in solution)
• Polymerization reactions – Ziegler-Natta catalysts
• Zeolites, metallocenes
• Rhodopsin, enzymatic reactions, drug-DNA interactions
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