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1 Reaction Rate and Cross Section

Consider a chemical reaction between reactants A and B, forming products C
and D:

A4+B* o4 p. 1)

The temperature-dependent rate of product formation is given by:

A~ keryap) ®)
where [ - ] is in units of inverse volume, so k(T') is in units of volume per time.
In the classical hard-sphere model, reaction in assumed to occur when two par-
ticles collide. The scattering cross section o¢ for two hard spherical particles A
and B moving at relative velocity v = v4 — vp is defined as shown below:
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where r = r 4 +7rp. The kinetic theory of gases provides the machinery to derive
collision rates, mean free paths etc. for ideal gases. The reactive scattering cross
section (o) for reactants A and B is defined such that only collisions that lead
to formation of C' 4+ D contribute to the cross section. The connection between
k(T) and o is given by:

k(T) = (vo) = /0 ~ dv o (B)P(o)0?, (3)

where ( - ) denotes an expectation value, v is the relative velocity: v = |[v4—vg]|,
scattering energy E = % pv? and

e B/kT

P(v) = WJ (4)

represents Maxwell’s relative velocity distribution. Notice that like the classical
cross section ¢ is in units of area, but that the reactive cross section differs
from the classical cross section in that it is no longer independent of scattering
energy.

Scattering processes are usually divided into inelastic, elastic and reactive
processes. In inelastic scattering events, the collision partners A and B ex-
change momentum only, and the internal structure of the colliding particles is
conserved, as in ideal gases for instance. During inelastic scattering events,
the colliding particles may exchange energy. Examples are spin-flip collisions



or collision-induced vibrational relaxation. In reactive scattering events parti-
cles can be exchanged, like in chemical reactions. In principle, cross sections
for these processes can be computed quantum mechanically. In this course we
focus on the quantum mechanical description of elastic scattering processes.

2 Flux

Consider a 1-particle probability density function p(r,t) in a 1-D region [a, b]:

p(z,t)

a b "
The chance P,; to find the particle in [a, b] is given by:

b
A%w=/deﬁ- (5)

The fluz j(x) through a point is defined via the change in time of the probability
Pab:

b
Pult) = /¢W@ﬁEﬂM<ML (6)

where the dot denotes the time-derivative d/dt.
Similarly we can regard the 1-particle density p(r,t) in three dimensions.
The chance P to find the particle in some volume V' of space is given by:

Py(t) = fjf p(r,t)dV, (7)
v

where dV denotes the volume element. In Cartesian coordinates we have dV =
drdydz. The flux j through a point is a quantity with a direction and a magni-
tude, i.e. it is a vector. It is defined by:

Py(t) = fﬂ plr, AV = ﬂj AdS = gjﬂj -dS (8)
4 S S

where S is the surface enclosing V' and # the unit vector normal to the local
surface. So the change in probability of finding a particle in some region V is
given by integration over all flux normal to the surface S enclosing V. Next,
we develop an expression for quantum mechanical flux associated with the wave
function, but before we continue we need the following theorem from vector



calculus:

Green’s symmetrical theorem:

{[[ (0v?) —vv29) av = {f(6Vy - 4Vg) - (9)
Vv S

proof: for the proof we need Gauss’ theorem, which relates a volume integral
to a surface integral[Sch]:

fjfv-adV:ﬁSa-dS. (10)
1% S

First write the vector function a as a scalar function multiplied by the divergence
of another scalar function:

a = ¢V (11)
Using Eq. (11) we get:
Va=V($Vy) = (Vo) - V¢ + $V7y. (12)

Now, substitute Eq. (12) into Eq. (10) once as it is, and once with the arguments
¢ and 1 exchanged. Subtracting the two results yields:

] (V) - Vo + ¢v*)av — [{[(Ve) - Vo +yV>g)dV
v v
= {J(eve)-as - (fyve-as 13)
S S
[]] (V>0 —wv?¢) av = {f(¢Vy —9Ve) -dS. O
v s

The quantum mechanical probability density is given by:

p =P =, (14)
where 1 is the wave function, which obeys the Schrédinger equation:
i) = Hy. (15)

The time derivative of p is given by:
. d * i %
p = a(iﬁ ¢)—fb Y+ YTy
(AP VN
= G- oAy
= W HY — Ry, (16)



where we used ¢ = —i / KH 1 in the second line. The Hamiltonian for two collid-
ing particles in the center-of-mass frame is effectively a 1-particle Hamiltonian:

5 R,
H=-3 ¥+ V) (17)

where 1 is the reduced mass and V (r) is the inter particle potential. Substituting
H into Eq. (16) gives:

)
po= %Z_u (W [V + V(@)W — [V + V()]¥*)
- %w*v%ﬁ — V),

(18)

where we used in the second line that V (r) is real so that ¢*V (r) is also real.
We now compute the change in density and apply Green’s symmetrical theorem:

Po) = fffpav =g [[forvie—vvien av
|4 Vv

ih
= — * - *) - dsS. 19
R LA (19)
Comparing this with Eq. (8) we define:
ih h
—i= 5, 0TV — V) = Sy VY) (20)

where we introduced the minus sign in our definition to make sure that positive
flux causes a decrease in density in volume V', and we used that z — 2* = 2iG[z]
for any complex z. So the quantum mechanical flux j is given by:

(e, 1) = Z%Wr, HVH(r, 1)) (21)

Since the Hamiltonian (Eq. 17) does not depend on time, energy is conserved
and the wave function may be written as:

p(r,t) = e Py r), (22)
where FE is the total energy of the system, and (r) obeys the time-independent
Schrédinger equation:

F(r) = B(r) (23)
Substituting Eq. (22) into Eq. (21), we find that the flux is also time-independent:

) (24)

= ey (1) Ve )] (25)

) = 2 E V)L (26)



3 Free Particles

In this section we discuss properties of eigenfunctions of the time-independent
free-particle Hamiltonian Hy:

. R
The time-independent eigenfunctions are plane waves:
- h2k?
Holpx) = Elx) = o [thx) (28)
¢k(r) — eik-r — eils:,gnE ez’kyry ez’kzrz' (29)

where k is the wave vector. The flux associated with plane waves is readily
computed using Eq. (21):

. [N,
J = ﬁg[tb V] (30)
j e—thara g—ikyTy p—ik.T: ieikmrm etkyTy gik=T>
Jz — E(\} efikm’r'zefikyryefz’kzrzieikmrzt?ikyryeikzr, (31)
js 12 e—ikeTe g—ikyTy g—ik.T2 d_eikmrz ikyTy kT2
2z
A ik
= G| ik 32
Y
B ik,
hk
b= — (33)
I
The plane waves have a well-defined momentum p:
Plyx) = —ihVe™™ = hk|yi) (34)
= plix). (35)
In polar coordinates, the Hamiltonian reads:
- R 1 & 12
Hy = ——-= (36)

2ur a’ T 2ur?’

where 1 is the angular momentum operator acting on the polar angles (6, )
given by 1 = x p. The commutation relations for components of 1 follow from
Heisenberg’s canonical commutation relations for # and p and are given by:

[ij7ij] = ithAkEijk, (37)
k

where ¢;;, is the Levi-Cevita tensor which is 1 for €, and cyclic permutations
of the indices, —1 for acyclic permutations of x, y and z, and zero otherwise.



Proof : using

Ik = (Fxph= > iipjein (38)
j
[Fi,05] = ihdy; (39)

[li:lAj]= Z emniem’n’j[fmﬁn;fm’ﬁn’]

mm’nn’

= E Emni€m/n'jTm’ [Tmpnapn’] - [Tm’ y Tmpn]pn’
mm'nn’

= E Emni€m/n’j

mm'nn’
X fm’([ﬁm;ﬁn’]ﬁn - fm[ﬁn’;ﬁn]) - (rAm [fm’;ﬁn] - [rAm; ﬂn]ﬁn)ﬁn’

= ih § €Emni€m/n’j (rAm’ﬁn‘sn’m - TAmﬁn’ 6m’n)

mm'nn/

= Zh( Z 6n’nien’jm’T'Am’ﬁn - Z 6nz’menn’j'r/\mﬁn’)
m/nn' mnn’

= Zh(Z[én](szm’ - (Snm’(sij]f'm’ﬁn - Z[(szn’ 5mj - (sij(smn’]fmﬁn’)
m'n mn'

= lh(f,ﬁ] — T‘Ajﬁz) = Zﬁ(f‘ X f))k = ithAkQ'jk,

k

where we used the commutator property [a, bc] = b[a, c]—[b, a]c and the property
of the Levi-Cevita tensor Ez €ijk€ilm = jlékm — (Sjmékl. O
Using Egs. (37-40) we also get:

[12512] = [fai] = 07 (41)
and furthermore we have:
(A1 =[H,1]=0. (42)

Using the commutation relations Eq. (37) the spectrum of simultaneous eigen-
functions of 12 and [, can be derived:

2lim) = R0+ 1)|im) (43)
Illm) = hmlim). (44)

If we now write the total wave function as a product of a radial function ¢;(r)
and angular functions |lm), and let the Hamiltonian Hy work on this product,
we get:

l K21 d2 i2

_RPiée h? 1 d? (1 +1)
2,urdr2r 2ur?

]‘ﬁl(r)”m) = _EFWT‘FW $u(r)|lm),



so the Schrédinger equation for the radial function can be written as:

[1£ I(1+1) +2uE] ) =0, 5)

rarr 2 h?
where we recognize the term 2uF/h? = k*. Now substitute x = kr, so d/dr =
kd/dz, and write ¢;(r) = fi(kr), we get:

1d 10+

z dx x2

; 1] file) = 0, (46)

applying the substitution f;(z) = g;(z)/z, and multiplying the resulting equa-
tion with x from the right gives:

Z 1(l+1)
[ﬁ -T2 + 1:| gi(z) =0. (47)
The solutions for | = 0 are very simple:
sin(z) o) =
- d = z 48
90(2) {cos(m) and fo(a) {y (o) — it (48)

The solutions j, and yo are spherical 0" order Bessel functions of the first
and second kind[A&S]. In the following exercises we will show that the general
solutions to Eq. (46) are given by Spherical Bessel functions of It order.

Exercise 1: Show that Eq. (46) is equivalent with the standard differential
equation:

22 fll +2zf +[2° —n(n+1)]fn =0, (49)
by using the identity:

1 & ? 2d

vd?” " a2 T ek (50)
Show that the f,, obey the following recursion relations:
2n+1
1 z fn = fn—l + fn+1 (51)
2 2n+1)f =nfn1— (n+1)frg1. (52)

Exercise 2: Prove the following recursion relation using Egs. (51) and (52):

n d
fn+1 - |:E - %] fn (53)
Exercise 3: Derive the general equation:
1d]"
fu= e |2 2] 1o (54)



Exercise 4: Show that for large z:

) = O (55)
Yn(z) = m@mj (56)

Hint: prove this for jo and yo and use Eq.(54).

Finally, we derive an expression for the radial flux in spherical coordinates
for some direction @ = (6,¢). Recall Eq. (8). The radial flux j.d{) in some
direction is given by:

Jrd€2 =j-ds, (57)

dS = #r?d cos dp

where dS reads:

dS = 7r?d cos fd¢ = 7r2dQ. (58)
Using Eq. (26) we get:

jrdQ = %%va] - 7r2dQ (59)

= %%[¢*(F- V)¢lr?dQ (60)

The inner product 7- V gives:

Vo= Z”an ; r 6?‘, (61)
- %71? or; Br (62)
Here we used that:
%r _ %rf': 7 (63)
$0 % =7 = % (64)



Substitution into Eq. (60) gives:
h a . .
- dQ = —S[y* —)ridQ.
a8 = S0 Sylrtd (65)

Since j;(kr) and y;(kr) are real it they both have zero flux. However the Hankel

functions hl(l)(kr) and hl(z)(kr) have the following definition and asymptotic
behayvior:

hY = iy = —i(kr)teikriy) (66)
W = =iy =ikr) e D), (67)
The radial flux associated with these functions is given by:
L
kp
@ - P
l k,u/ ’
which is why they are also referred to as outgoing and incoming functions respec-
tively. Compare this with the flux of the plane waves [Eq. (33)]. It is common

to use Hankel functions as a basis for description of radial time-independent
scattering wave functions.

Ge[h] (68)

Jrlh (69)

4 The Partial Wave Expansion

We now look for a way to express the plane waves [Eq. (29)] in terms of radial
and angular functions. Choose k as z-axis, so the angles 0 and ¢ are the polar
and azimuthal angle of r with respect to the k-axis system. Now, ¥y (r) may be
expanded as:

[e's) !

Yelr) = €T =3 S 4 (k)Y (0, ), (70)

=0 m=-—1

where Y}, = (0, ¢|lm) form a complete basis for square integrable functions on
the sphere, and the Ay, (kr) are r-dependent expansion coefficients. Using that:

k-r=krcosb, (71)
we see that iy (r) is actually independent of ¢, and hence m = 0. Using:

20+1

Yio(0,9) = 1 Dilcosd), (72)
we get:
et o8t ="y (kr) P (cosb), (73)

=0
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where the P, are ordinary Legendre polynomials[A&S] and

a(kr) = Apm (kr)y [ 22—;15,”0. (74)

The Legendre polynomials are orthogonal:

2
(P Py) / PP ()P (2)e = b . (75)
The P,(z) are generated by the following recursion relation:
P()(Z) =1 (76)
Pi(z) = =z (77)
20+ 1 l
—PF —PB
Pryi(2) Tr1 1(2) — i 1(2)- (78)

To find expressions for a;(kr), we project Eq. (73) with Py:

1
/ d(cos 8) Py (cos §)etrr cos?
-1

o 1
Z/ d(cos8)a; (kr)P/(cos 6) P;(cos ), (79)
/1

which gives the expression:

w(z) = 2”1/ dz Py(2)e". (80)

For [ = 0, this integral is very simple:

i
ao(z) =1 me

= ijo(x). (81)
In fact, it is easy to show that:

ay(z) = i' (2 + 1) ji(). (82)

Proof : Take the derivative of a; with respect to x to obtain the recursion:

d 2l+1/ &z 2B ()"

d:cal( z) =
21+1 !
— izz P
(/ dz 2l+1P’+le / Az oy P’ )

2 I+ 2

1% 21+12(1—1)+1 G T Dy 1 (83)
where we used Eq. (78). It is easy to show that:
it l 4—(=1) I+1 i—(+1)
A+1" T A+1 [2(1—1)+1‘”‘1] T+l [2(l+1)+1‘”+l] (84)

11



which is the recursion relation for spherical Bessel functions Eq. (52). O
So the plane waves can be expressed in terms of the partial wave expansion:

Y (r) = etkreost — iil(Zl-{-l)jl(kr)B(cosG) (85)
0

~
I

it(21+ 1)

5 (2" (kr) + h{? (kr)]Pi(cosh).  (86)

I
NE

~
Il
<

5 Elastic Scattering

Consider a classical particle moving with a velocity v, scattering of a spherical
potential V' (r) with impact parameter b as indicated in the picture.

The conserved classical angular momentum is given by:
I=rxp=ypurxv. (87)

We may express the initial and final components I, and I, in terms of the impact
parameter b:

l, = prusing = pvbd (88)
Il = pr'v'sing = po't’ (89)

Since angular momentum is conserved, we have I, = I/, and from conservation
of kinetic energy we get v = v', implying b =b'.
The quantum mechanical radial Hamiltonian for this problem is given by:
h? d? Rl +1)
H=—r—r+ ——-— .
QNT'dT2T' + Sr? +V(r) (90)
The discussion that follows is valid for potentials that fulfill the following con-
ditions [Tay]:

V(r) =2 0@ 37F), withe >0 (91)
V) 2% o@F3t), withe >0, (92)

12



and V(r) must be continuous everywhere, except possibly at a finite number of
singularities. These conditions are always met for collisions involving neutral
molecules or atoms, and in collisions where one of the particles is charged. No-
tice however, that collisions between charged particles are excluded by the first
condition since the Coulomb potential has 1/r behavior. With these conditions,
the wave function can in the long range be written as a linear combination of
incoming and outgoing spherical waves:
—i(kr—1%) ei(krflg)

@i | S - s Pileosd) (99)

IR

%(r)

= % Zil@l + 1) + BN Sy (k)] Pi(cos ). (94)
!

The coefficients S;(k) form the S-matrix or scattering matriz. The S-matrix
contains all information that can be obtained from a scattering experiment. We
will not prove here that the conditions are necessary for Eq. (93) to be valid.
In stead we make some remarks on the S-matrix. If we compare Eq. (93) with
the asymptotic form of the plane wave expansion Eq. (86), we see that if V(r)
is zero everywhere we have S;(k) = 1. Furthermore we notice that since there
are no sources of flux, the total flux must be zero even if V(r) # 0. This implies
the very strict condition that S is unitary and:

1Su(k)| = 1. (95)
We may rewrite Eq. (93) by defining the T-matrix as follows:

T=1-2S5, (96)

so that Eq. (93) becomes:
VORERE. 2,3(21 +1it | z(k; - eZ(kTT & +i 'Ty(k) el:r P,(cost)
= e | LS (@4 1T (k) Pi(cos e)] - (97)

2k -

ikr

= eik"+f(0,<p)er , (98)

where we defined f(6, ) in the last line. The angle ¢ is redundant here, but we
re-introduced it for sake of completeness. The wave function in the long range
[Eq. (98)] can thus be written as the sum of an unperturbed plane wave having
flux of magnitude jx = hk/p in direction k and a term with a radial flux JrdQ
that depends on the polar angles (6, ) (see figure below). The differential cross
section is defined as:

do _ j. _ |f6,0)Phk/p _
W= =Her, (99)

where we used Eq. (33) and Eq. (65) to compute ji and j, respectively.

13
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The total cross section is obtained by integration over 6 and ¢:

1 27

d
a:/de—g ://|f(0,(,0)|2dcost9dcp. (100)

-10

Note that the conventional notation do/dSQ is in fact erroneous since o does not
really depend on € (it is defined by a determined integral), which means that
the derivative do /dQ2 = 0. The notation is used for historical reasons. The total
cross section is computed using the expression for f(6, ¢):

1 27w

a=//|f(0,<p)|2dcos0dgo

—-10
1

Z /(2l + 1)(2U' + 1)T}* (k) Ty (k) Py (cos 8) Py (cos 8)d cos 6
w Y

= 5 FDITHmI. (101)
l

2
4k2

This equation is often written in the form:

4

U:ﬁ

(21 + 1) sin® &; (k), (102)
l

this is easily obtained by recognizing that any function obeying Eq. (95) may
be written as:

Si(k) = ek, (103)
so that:
. 2 .
Ty(k) =1— <e’61(k)) = —2ie®) gin §, (k). (104)

The conditions given in (91) and further ensure that the sum in Eq. (102) con-
verges. This may be compared with the classical case [Eq. (89)] where particles
with higher angular momentum correspond with a larger effective impact pa-
rameter and thus smaller interaction with the potential.

14



6 The Log-Derivative Method

We derive a recursive method to handle a one-dimensional scattering problem
numericaly. Consider the radial Schrédinger equation [see also Eq. (45)]:
1d  I(l+1) 2uE

" dr? 2 FV(T) +E*| ¢u(r) = 0. (105)

The boundary conditions are given by:

#0) = 0 (106)

oi(r) 22 B (kr) + b (k) Sy (k). (107)
If we make the following definitions:

40y = Tl (108)

wie) = WD BBy e (109)
Eq. (105) can be rewritten in the form of the following differential equation:

xi'(r) = Wi(r)xa(r), (110)
subject to the boundary conditions:

xi(0) = 0 (111)

xi(r) = —w(r) +u(r)Si(k), (112)

where we defined wu;(r) = —rhl(2) (kr) and v(r) = rhl(l)(kr). Now, write the
derivative of x;(r) in terms of the log-derivative matrix Y (r):

xi(r) = Yi(r)x(r). (113)

Using Eq. (112), we can find a formal expression for the S-matrix. In the long-
range we have:

—uy(r) + o (r)Si(k) =Y (r)[—wi(r) + v (r)Si(k)] (114)
Si(k) = vy(r) = Yi(r)ui(r)]~*ug (r) = Yi(r)ui (r)]- (115)
So, to compute the S-matrix we now need the Y-matrix. Using (113) we have:
Y = xx! (116)
1 n, —1 1 =19 Xm_ll
Y= s Hxaba T =Wk Yoa— (117)
= Wi—Yx Yx (118)
Y/(r) = Wir) = Y2(r). (119)

Solving the nonlinear differential equation (119) is thus equivalent to solving the
27d order equation (110). We now derive a recursion relation for Y;. Suppose

15



we found a solution 9 (r) to the problem (110) on some range [r',r"]. Define
the invariant imbedding matriz L(r',r'"") such that:

Led 1= (R 26 ) s ] 2

It is easy to see that the matrix L is in fact independent of the boundary condi-
tions, provided a solution exists. So L(r',r") can be determined by finding two
linear independent solutions ¥ on [r', "] which fulfill the following boundary
conditions:

v ={ 1 wen={5. (121)

Notice that the solution to (110-112) on [r',r""] can be written as a linear com-

bination of 4+ and v ~. Expanding Eq. (120) we get:
xi(r') = =Li(r',r")xa(r') + La(r', 7" (r") (122)
xi(r") = =Ls(r',r")x(r') + La(r',r")a (r"). (123)
Multiply Eq. (122) with x; *(r'), and Eq. (123) with x; ' (r"):
XX () = —La(r', ") + La(r' " xa(r")xg () (124)
Xi(r")x ") = =La(r' "l )xg (") + La(r' ") (125)
from Egs. (124) and (113) we get:
i) ") = [Y0) + La(r e T L (") (126)

substitution into (125) and using (113) again gives a recursion relation for the
Y;:

Yi(r") = La(r',r") = L', () + LG )] L0 r). (120)

This recursion relation is the basis for several types of log-derivative algo-
rithms. We will not derive an actual algorithm here, but in stead refer to
some literature[Joh][Mru][Man].

16



7 Summary of Notation and Literature

vector or vector function

vector elements, i € (z,y, 2)
unit vector in the direction of v
length: v =|v|

scalar operator

vector operator

Do, s <
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