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MR CEPA

THE   MULTI CONFIGURATION REFERENCE  CEPA   METHOD

§1 Introduction

There are several methods for generalising the CEPA method for a multi-configuration

reference function, e.g. the Multi-Reference Averaged Coupled Pair Functional (MR-ACPF)

(Ahlrichs). This is a generalisation of the Coupled Pair Functional method for single-configuration

reference functions. These two methods use a functional (the Correlation Energy Functional instead

of the Energy Expectation Value) for optimising the energy. It has the advantage that is is adapted to

calculating energy gradients relatively easily. However, it appears that functionals may only be

constructed for wave functions with a rather simple structure.

In the following a more direct generalisation of the CEPA method will be discussed. For this

purpose we first introduce the concept of the Excitation Class.

§2 Excitation Classes

The reference function is given by :
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The MOs are divided into three subgroups :

1) The inactive MOs : these are doubly occupied in all reference functions | R >.

2) The active MOs : these are the MOs with variable occupations in the reference set.

3) The virtual or external MOs : these are the MOs which are not used (empty) in the

reference set.

The Multi-Reference Coupled Cluster (MRCC) function is defined by :

| exp( ) |ΨMRCC >= + >T T1 2 0 (4.2)

where T1 and T2 represent the single and double excitations respectively. These operators

include the corresponding coefficients (amplitudes).
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where τ is an excitation operator and t is the corresponding coefficient.

The excitations may be classified as follows. Each class (k,l) contains all configurations with

k holes in the inactive MOs and l particles in the virtual space. If n = the number of electrons in the
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active space for | 0 >, the class (k,l) configurations have (n+k−l) electrons in the active space. In

order to have a consistent framework, we have to use a Complete Active Space (CAS) reference

(configuration) space, i.e. we assume that class (0,0) is complete.

By combining the excitation operators we see that :

  τ τ τ( , ) ( ©, ©) ( ©, ©)k k k kl l l l= + + (4.4)

In the following we will use the projection operator Pkl. This operator projects to the space

spanned by the class (k,l) configurations. The space spanned by the excitations generated by

exp(T1+T 2) is divided into three subspaces by defining the projection operators :
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P0 projects to the reference space {| R >}, Pa projects to the interacting space of | 0 > and Pb

projects to all higher excitations. From the definition it follws that :

P P P 10 + + =a b (4.6)

We assume that the Mult-Reference CEPA (MRCEPA) function may be written as :

| ( ) |Ψ ΨC a MRCC>= + >P P0 (4.7)

This is the function for which we want to calculate the diagonal shifts needed to obtain size

consistency (as far as possible).

§3 The MR CEPA diagonal shift

We start with the MR-CC equations :

< − >=0 0 0| ( )exp( ) |H TE (4.8)

< − >=τ | ( )exp( ) |H TE 0 0 (4.9)

where the reference function is defined by Eq (4.1). The first equation is obtained by taking a

linear combitation of the secular equations for the reference configurations. In the actual calculation

the coefficients cR are varied individually. We will, however, use the contracted form Eq (4.8), since

this is more useful for our purpose, i.e. the "derivation" of an expression for the diagonal shift. The

contracted form, however,  does not imply that the coefficients are fixed to the variationally obtained

values, e.g. from a previous CASSCF calculation.
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Since Pa projects to the full interacting space of the reference set {| R >}, the first equation is

equivalent to the first MRCEPA equation :

< − >=0 0| |H E CΨ (4.10)

Eq (4.9) may be rewritten by using Eqs (4.6) and (4.7) :
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The last line of Eq (4.11) defines the diagonal shift ∆Eτ. We use the second term in the

middle part of Eq (4.11) to calculate this shift. We see that :

∆ Ψ ∆E E tC b bτ ττ τ τ< >= =< >= < >| | exp( ) | | |HP T HP T0
1
2

02 (4.12)

where the coefficient t of | τ >  in ΨC is given by < >τ | ΨC . In Eq (4.12) only the first term in

the expansion of exp(T) contributing to the shift is kept. This result is analogous to the (Single

Reference) CEPA result :
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For the Multi Reference case, however, 
1
2

2
T  is replaced by 

1
2

2
P Tb . The projection with Pb is

needed since the interacting space configurations do not contribute to Eq (4.12). In the single

reference case (and neglecting the single excitations) the projection is not needed since there the

interacting space only contains the double excitations and consequently 
1
2

2
T  only contains

quadruple excitations.

§4 Approximations

We start with the direct term approximation.

The H-matrix element equivalence relation is used in the following way :
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The projection operator   Pc( )k
b

l  projects to all excitation classes which together with class (k,l)

generate an excitation outside the interacting space of the reference function (see Eq (4.4)). Here
c(k,l) is the complement of class (k,l). For example, if k = l = 1,   Pc( )kl  projects to the classes (2,i)

and/or (j,2) with 0 ≤ i,j ≤ 2. For k = l = 0   Pc( )kl  does not exist, i.e. there is no shift for the reference
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configurations. The shift contributions which are projected out by   Pc( )kl  are not included since they

represent interactions which are already present in the MRCI H-matrix, whereas the shifts are

introduced to take account of interactions with excitations outside the interacting space of the
reference function. Therefore the contributions which are projected out by   Pc( )kl  are called the

Variationally Interacting (VI) terms. Handling the VI terms correctly is important for both obtaining

accurate correlation energies and for the size consistency behaviour of the method.

Finally we use Eq (4.8) in order to express the shift ∆Ekl in terms of the correlation energy

contributions of the various classes. We have :

  
E Ecorr C k

k

=< >= ∑0 | |H Ψ l
l

(4.15)

where

  Ek k Cl l=< >0 | |HP Ψ (4.16)

represents the correlation energy contribution of the class (k,l) excitations. The shift for

  | τkl > is then given by :
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These are the correlation energy contributions from all classes which combined with class

(k,l) correspond to a "higher" excitation.

EPV terms.

T always contains τ itself. Since τ2 = 0 because of the Pauli exclusion principle, the

corresponding contributions from T2 vanish. However, in the direct term approximation these

contributions are nevertheless included in the shift and therefore they are called the Exclusion

Principle Violating (EPV) terms. These may be avoided in several (approximate) ways. For the

inactive space it is possible to define pair correlation energies, just as in the CEPA1 method.

Inactive space EPV corrections may then be calculated analogous to the CEPA1 method. For the

active space, however, this is not possible. The EPV corrections corresponding to the active space

excitations may, however, be incorporated in an average way, analogous to the (MR-)ACPF

method. In this method a damping factor is used :

∆E
n

n
Ecorrτ =

− 2

for any excitation. For the (Single Reference) ACPF method it may be proven that this choice

yields size consistent results. In the MR-ACPF method, however,  the correction for the VI terms
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is not applied and this appears to lead to reletively large size consistency errors, in contrast to the

MRCEPA results.

§5 Comments

1) By comparing our result to the original CEPA0 method, we see that the shifts depend on the

excitation class of the configuration for which the shift is calculated. In the CEPA0 method we

have only single (class (1,1)) and double (class (2,2)) excitations. In the original "derivation"

only the double excitations appeared explicitly and the role of the single excitations in SR-CEPA

is not quite clear. On the other hand, if HF MOs are used, the single excitations will not be

important numerically, since then the single excitations do not contribute to the first CEPA

equation (Brillouin Theorem). The only effect of the single excitations is then that they affect the

coefficients of the double excitations

2) In contrast to the CEPA0 equations the MRCEPA equations are not linear. A linear system of

equations would be obtained by generalising the CEPA0 equations directly :

E E EC c=< >= +0 0| |H Ψ (4.18)

< − >=< − + >=τ τ| | | |H HE E EC c C0 0Ψ Ψ (4.19)

In Eq (4.19) all correlation energy contributions are included into the shift. In this case the VI

terms are neglected. As a result this method appears not really to perform better numerically than

the MRCI method.

3) There are some formal problems with the Multi-Reference case. In Eq (4.3) the indices R and/or

S may coincide with the indices T and/or U of another excitation operator if both indices

correspond to active MOs. If this is the case, the corresponding excitation operators do not

commute. As a consequence the expansion of exp(T) is not straightforward. In our method all

non-zero commutators are ignored. This is in fact an important reason why it is difficult to

develop the MR-CC method in a rigorous way.

4) The H-matrix element equivalence only works under the following conditions :

a) The original matrix element only contains 2-electron contributions (the configurations are

doubly excited with respect to each other)

b) T and τ in Eq (4.14) have no orbital indices in common.

The first condition is not satisfied if | τ > is singly excited wih respect to | R >, since the

Brillouin Theorem in the Multi-Reference case only holds for certain linear combinations of the

reference functions. Therefore the H-matrix element equivalence in the form of Eq (4.14) does

not hold in this case.

The second condition leads to the EPV terms.
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Excitation Classification in MRDCEPA
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MR-ACPF Average EPV corrections (damping factor)

MRDCEPA VI corrections

MR-CEPA/aver VI corrections + Average EPV corrections

MR-CEPA1 VI corrections + CEPA1-type EPV corrections (inactive space) +

 Average EPV damping (active space)
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