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Size Consistency in CI

SIZE CONSISTENCY AND THE CI METHOD.

§1 The size consistency problem

A condition to be fulfilled by any method in quantum chemistry is the following : the

quality of the results should be independent of the size of the system, that is, the number of nuclei

and electrons in the molecule. This condition is not automatically satisfied, as we will see below.

In general it is not easy to check whether the condition is satisfied in practice. However, for some

model systems, it may be checked theoretically.

We will discuss a model system containing two subsystems, which do not interact (which

are far from each other). The total energy EAB should then satisfy

E E EAB A B= + (1.1)

This condition is called the size consistency condition.

If the subsystems are far from each other, the Hamiltonian may be taken as :

H H HAB A A B A A Bn n n n= + + +( ... ) ( ... )1 1 (1.2)

Eq (1.2) implies that the electrons may be divided into two groups, each belonging to one

of the subsystems, and that the interactions in HAB between the particles of one subsystem with

the particles of the other subsystem may be ignored. Moreover, exchange effects between the two

subsystems may then be ignored. Therefore the normalised wave function for the total system

may be represented by :

Ψ Ψ ΨAB A A B A A Bn n n n= + +( ... ) ( ... )1 1 (1.3)

if ΨA and ΨB are also normalised and if
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(1.4)

where it is assumed that the orbitals in ΨA and ΨB are localised on either subsystem.

From Eqs (1.2) and (1.3) it then follows that Eq (1.1) holds.

Here we have used the exact eigenfunctions for the subsystems. However, Eq (1.1) may

be satisfied even if Eq (1.4) does not hold, provided that Eq (1.3) holds. For variational methods

the energy is calculated as the expectation value of the optimized wave function and Eqs (1.2) with

(1.3) then imply Eq (1.1) :

E E EAB A B A B A B A A A B B B A B=< + >=< > + < >= +Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ| | | | | |H H H H (1.5)

Both Eqs (1.3) and (1.5) may be used in order to check whether a variational method is

size consistent.
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As will be seen below, the two extremes, the HF method and the Full CI (FCI) method, are

size consistent. However, any CI with the same restriction on the excitation level for A, B and

A+B is not.

§2 The HF method

The HF method satisfies the size consistency condition. In order to show this we start

with orbitals localised on the subsystems. First it is to be shown that Eq (1.3) may be used.

The HF function for the total system is given by :
ΨAB

HF
i
A

j
B=| ... ... ... |ψ ψ (1.6)

The antisymmetrisation generates exchange integral contributions to the HF energy,

otherwise the energy is the same as for a simple product function. Eq (1.6) differs from the

product form of Eq (1.3) by terms containing permutations of electrons on A with electrons on B.

However, these permuted terms in Eq (1.6) do not contribute to the energy, since the subsystems

are far apart. Therefore the product form of Eq (1.3) yields the same energy as the function of Eq

(1.6) and thus Eq (1.5) is satisfied.

If delocalised MSOs are used, the complete function Eq (1.6) has to be used. However,

the determinant is invariant under transformations of the occupied orbitals. Therefore the orbitals

may be transformed back to the localised ones and the HF determinant of the total system will still

yield the same energy, satisfying Eq (1.5).

Note that the HF method is variational, that is, the energy is minimised for each case.

Since the variational space for the total system is the sum of the subsystem variational spaces, the

HF MOs for AB will be equivalent to the direct sum of the monomer HF MOs.

§3 The FCI method

The FCI method gives the best possible result for a given basis set (basis set limit). As

expected for a method which is in principle exact (for an infinite basis set), this method also

satisfies Eq (1.5). This may be rationalised as follows. For the total system the same MOs are

used as for the subsystems. The FCI dimer configuration set contains all possible configurations

with NA electrons in orbitals on subsystem A and with NB electrons in orbitals on subsystem B.

This is the direct product of the variational spaces of the subsystems. As in the HF case each

configuration may be replaced by the corresponding product of functions of the form of Eq (1.3).

There are also configurations corresponding to A+B− etc. However, these do not interact with the

previous ones, since the subsystems are far apart. Therefore Eq (1.3) may be used if localised

MOs are used in the dimer calculation. Moreover, for a given AO basis set the FCI result is
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independent of the MOs. Therefore Eq (1.5) also holds if delocalised MOs are used in the dimer

calculation.

Exercise  1.1

Show that Eq (1.3) satisfies Eq (1.1) if Eq (1.4) holds.

_______________________________________________________

§4 The DCI method

A CI function is a linear combination of determinants, where the coefficients are

determined variationally (by minimizing the energy).
Ψ ΦCI K

K
Kc= ∑ (1.7)

with
ΦK I N=| ... ... |ψ ψ ψ1 (1.8)

where the ψI are the Molecular Spin Orbitals (MSOs). We will now discuss the Double

excitation CI (DCI) method. The corresponding wave function may be written as :

Ψ Φ ΦDCI I J
A B

A BJ
I J
A Bc c= + ∑∑0 0

1
,
,

,,
,
, (1.9)

where Φ0 and ΦIJ
AB  correspond to the HF function and the doubly excited determinants

respectively.

The essential disadvantage of such CI calculations is, that the degree of excitation w.r.t. the

HF determinant is constrained. This constraint makes for tractable calculations, but the variational

treatment then destroys the size consistency.

This may be shown by a simple example : two H2 molecules without interaction, using the

minimal AO basis set. For each molecule two determinants are needed :
Φ

Φ

g g g

u u u

=

=

| |

| |

σ σ

σ σ
(1.10)

where
σ

σ

g g A B

u u A B

N s s

N s s

= +

= −

( )

( )
(1.11)

Φg is the HF determinant, Φu is the only double excitation and the single excitation is not

needed, since it has a different symmetry.

The monomer FCI result is obtained by solving the 2×2 secular problem for the two

functions in Eq (1.10). The lowest eigenvalue is denoted by Ef. The corresponding (monomer)

wave function is given by :
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Ψ Φ Φf g g u uc c= + (1.12)

Since the molecules do not interact, the total FCI energy of the two molecules is then given by :

E EF f= 2 (1.13)

However, the DCI energy for the total system turns out to be higher than EF.

g2g1

u2u1

The HF determinant Φo 

×  ××  ×

g2

u2

g1

u1

×  ×

×  ×

g2g1

u2u1

The quadruple excitation Φu1Φu2

×  ××  ×

g2

u2

g1

u1 ×  ×

×  ×

Φu1Φg2 ≡ Φd1 Φg1Φu2 ≡ Φd2

Fig 2.1 The determinants in the FCI for two H2 molecules.

The correct wave function ΨF for the dimer is given by :

Ψ Ψ Ψ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ

F f f g g u u g g u u

g g g g u u g g u u u u

c c c c

c c c c

= = + + =

= + + +

1 2 1 1 2 2

2
1 2 1 2 1 2

2
1 2

[ ][ ]

[ ]   
(1.14)

whereas the DCI wave function corresponds to :
Ψ Φ Φ ΦDCI d d dc c= + +0 0 1 2( ) (1.15)

The HF function Φ0 is identical to Φg1Φg2. The double excitation on molecule 1, Φd1 is

identical to Φu1Φg2 and Φd2 is identical to Φg1Φu2. The coefficients for Φd1 and Φd2 are equal,
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since the molecules are equivalent. The remaining function Φu1Φu2 in Eq (1.14) does not appear in

Eq (1.15), since it is a quadruple excitation. Therefore the DCI function does not yield the correct

energy. In fact the DCI energy is higher than the FCI energy since one configuration is missing.

Also, the coefficient cd in Eq (1.15) will be different from the coefficient cgcu in Eq (1.14).

However, there is no reason why the number of independent variables in the dimer calculation

should be higher than in the monomer calculation, since we know a priori that the dimer energy

equals twice the monomer energy. First we note that the monomer calculation has two coefficients,

but that  the normalisation condition determines a relation between these two. Therefore we have

only 1 independent variable. Because of Eq (1.14) the FCI dimer calculation also has 1

independent variable, just like the monomer calculation. The coefficient for the quadruple

excitation Φu1Φu2 may be calculated directly from the other coefficients :
c c c cu u g g

2 2 2= ( ) / (1.16)

Therefore ΨF contains as much information as either Ψf or ΨDCI. This fact may be used in

order to calculate a correction to the DCI energy.

Note that the size consistency problem is inherent to the CI method if the degree of

excitation is somehow restricted, since the function for the total system will always contain higher

excitations than were present in the monomer calculations.

§.5 CI calculations with intermediate normalisation

The norm of the wave function must be finite. The usual normalisation to 1 is useful for

interpretational purposes and for variational calculations using the Lagrange multiplier method.

However, it is not always the most practical choice. In the methods designed to yield size

consistent results usually intermediate normalisation is used, as in perturbation theory. The

intermediate normalisation is defined by :
< >=Ψ Φ| 0 1 (1.17)

where Φ0 is the reference function (HF in Single Reference CI). The relation to the usual

normalisation is given by :
| | | [| | ] |

| ( )

var

/ /

Ψ Φ Φ Φ Φ Ψ

Ψ Ψ

>= > + >= > + > = >

=

=< > = +

∑ ∑

∑− −

c c c d c

with

d
c
c

or

c d

k
k

k k
k

k IN

k
k

IN IN k
k

0 0 0 0 0

0

0
1 2 2 1 21

(1.18)
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where Ψvar is normalised to 1 and ΨIN has intermediate normalisation. The advantage of

the intermediate normalisation is that it simplifies the construction of a size consistent wave

function.

In order to simplify the comparison between CI functions and size consistent functions we

now rewrite the CI secular equations to the form which corresponds to the intermediately

normalised CI function ΨIN with E0 = < Φ0 | H | Φ0 > as the reference energy. The CI equations

in matrix form are given by :

E c c0 int
≤

int ex

H

H H c c+


















 =











=< >

=< − >=< > −

E
E

with

H

H E E

CI

k k

ex kl k l k l kl

0

0 0

0

0 0

I

H

H H

( ) | |

( ) | | | |

int Φ Φ

Φ Φ Φ Φ δ

(1.19)

E0 is the HF energy and I is the unit matrix.

Eq (1.19) is equivalent to :

0 int
≤

int ex

H

H H d d

















=










= −

=

 
1 1

0

0

E

with

E E E

d
c
c

corr

corr CI

k
k

(1.20)

The solution of Eq (1.20) is equivalent to the solution of Eq (1.19)

Exercise 1.2

Derive Eq (1.20) from Eq (1.19)

______________________________________________________________________

Eq (1.20) suggests an alternative way of finding the solution for the CI problem. Eq

(1.20) may be separated into :
Hint

≤ d = Ecorr (1.21a)

H H d dint + =ex corrE (1.21b)

or equivalently :
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d I H H= − −( ) intEcorr ex
1 (1.22a)

By substituting Eq (1.21c) into Eq (1.21a) we find :
E Ecorr corr ex= − −H I H Hint

≤
int( ) 1 (1.22b)

From this equation Ecorr may be calculated without the need of calculating the coefficients

dk. The result is equivalent to the lowest eigenvalue of the CI matrix. However, since Eq (1.22b) is

an implicit equation for Ecorr, an iterative method is needed to solve it (as is true for the

diagonalisation method used for solving Eq (1.19)). A useful zero-order approximation is given

by :
Ecorr ex

0 1= − −H H Hint
≤

int (1.23)

It will be shown below that this is the most simple way to get a size consistent result.
However, Ecorr

0 is not very accurate : the total energy E Ecorr0
0+  is not variational and in fact it is

lower than the FCI result for our model system. In practice the solution to Eq (1.23) is in general

comparable in accuracy to the converged solution to Eq (1.22), i.e. the CI result. If there are small
diagonal elements in Hex (near-degeneracy with the HF function), Ecorr

0  is even worse than Ecorr
DCI ,

since Ecorr
0  is very sensitive to near-degeneracies due to the inversion of Hex in Eq (1.23).

§6 Size consistency corrections to CI calculations

From the above relations it is possible to derive simple formulas relating the FCI result to

the DCI result for a system of n identical 2-electron systems without interaction. These may be

used to correct the DCI result for the size consistency error. In practice these formulas appear

also to be useful for SDCI calculations for electron pairs with interactions, that is, for a general

molecular calculation.

We now consider a model system of n H2 molecules, using the minimal AO basis. Using

intermediate normalisation we have for the DCI function :

| | | | |Ψ Φ ΦDCI i
i

n

i i
i

n

d D d D>= > + >= > + >∑ ∑0 0 (1.24a)

where
Φ Φ Φ Φ Φ0 01 02 0 0= .... ....i n (1.24b)

and | Di > is the double excitation on the ith H2 molecule :

Di di n= Φ Φ Φ Φ01 02 0.... .... (1.24c)

The energy is calculated by using Eq (1.22b) with :

( ) | |

( ) ( | | ) ,

intH D K for all i

H E for all i j

i i

ex ij i i ij ij

=< >=

= < > − =

H

H

Φ

Φ Φ ∆
0

0 δ δ
(1.25)
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Note that all off-diagonal elements of Hex vanish, since Φi and Φj ( i ≠ j ) differ in more

than 2 orbitals. Since the subsystems are identical, all interactions K have the same value, just as

the excitation energies ∆.

From Eqs (1.22b) and (1.25) we have :

E
nK

Ecorr
DCI

corr
DCI=

−

2

∆
(1.26)

We thus have a quadratic equation for Ecorr
DCI . The solution is :

E
nC

corr
DCI =

− +∆[ ]1 1
2

(1.27a)

where

C
K

=
4 2

2∆
(1.27b)

The coefficient d in Eq (1.24a) is then given by Eq (1.21a) :

d
E
nK

nC
n C

corr
DCI

= =
− +1 1

(1.28)

Eq (1.27a) again shows that the DCI method is not size consistent, since Ecorr
DCI  does not

depend linearly on n. Eq (1.28) shows that d also depends on n.

The FCI function, on the other hand, may be written as :
Ψ Ψ Ψ Ψ Φ Φ Φ Φ Φ ΦF f fi fn g g u u g gi u ui g gn u unc c c c c c= = + + +1 1 1.... .... [ ]....[ ]....[ ] (1.29)

and therefore the coefficient of the double excitations is given by :

d
c c

c
c
cFCI

u g
n

g
n

u

g

= =
−1

(1.30)

and this result does not depend on n. For n = 1 the DCI and the FCI calculations give the

same result. Since the FCI energy depends linearly on n, we have, using Eq (1.27a) for n = 1 :

E nE n
n C

corr
FCI

corr
FCI= = =

− +
( )

[ ]
1

1 1
2

∆
(1.31)

The relative size consistency correction thus follows from :
∆E
E

E E
E

n C
nC

corr
DCI

corr
DCI

corr
FCI

corr
DCI

corr
DCI=
−

=
− +

− +
−

[ ]
)

1 1
1 1

1 (1.32)

The Pople correction.

Eq (1.32) may be used in order to find a generally useful size consistency correction for

SDCI calculations. Using Eq (1.28), Eq (1.32) may be rewritten into a form, which may be

applied to any SDCI calculation. In order to do this we relate the correction to the number of

pairs, the CI correlation energy and the CI coefficients, as follows. First we express C in d, using

Eq (1.28) :
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C
d

d n
=

−
4

1

2

2 2( )
(1.33)

Now we revert to the usual normalisation :

| cos |
sin

|Ψ ΦDCI i
in

D>= > + >∑θ
θ

0 (1.34)

Exercise 1.3

Derive Eq (1.33) from Eq (1.28)

______________________________________________________________________

Exercise 1.4

Show that the function Eq (1.34) is normalised.

______________________________________________________________________

By comparing Eq (1.34) to Eq (1.18) we see that

d
n

tg=
1

θ (1.35)

By substituting this into Eq (1.33) and then into Eq (1.32) we find:

∆E
E

n n tg ncorr
Pople

corr
DCI =

+ −

−
−

2 22

2 1
1

 θ

θsec
(1.36)

Finally we assume that the single excitations may be treated in the same way. In order to

make Eq (1.36) applicable to open shell systems n may be replaced by N/2 (N = the number of

electrons), yielding :

∆E
E

N N tg Ncorr
Pople

corr
SDCI =

+ −

−
−

2 22 2

2 2 1
1

 θ

θ(sec )
(1.37a)

where (because of Eq (1.34)) :
cosθ = c0 (1.37b)

This is the Pople correction.

In practice Eq (1.37) yields useful results for medium-sized molecules without near-

degeneracy effects. It works better for closed shell systems than for open shells, particularly if a

spin-adapted algorithm is used, since in the latter case the single excitations may become

important (spin recoupling effects).
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Exercise 1.5

Show that the Pople correction vanishes for N = 2, as it should.

______________________________________________________________________

Exercise 1.6

Why is the Pople correction not exact for an open shell system like H2 + H• ?

______________________________________________________________________

The Davidson correction.

Another approximate method was introduced by Davidson in a rather intuitive way. It may

also be obtained by substituting the power expansion for 1 + x  into Eq (1.31) and assuming that

K << ∆, i.e. C << 1 and tg2θ = 2sinθ. Again n must not be too large and ∆ should not be too small

(no near-degeneracies). The result is :
∆E c Ecorr

Davidson
corr= −( )1 0

2 (1.38)

This is the Davidson correction.

Note that this formula is not exact for N = 2, where the size consistency error should

vanish.


