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1.1 Introduction
A common approach to solve a time-independent Schrodinger equation
HU = E¥ (1.1)

is the variational method. In this method one chooses a n-dimensional basis
{¢1,...,%n}, in which one expands the wave function

U= iciipi. (1.2)
i=1

The expansion coefficients c¢; and the energy E are found by solving the matrix-
eigenvalue problem

Hc = FEkc, (1.3)
assuming that the basis is orthonormal, i.e., (1;|1;) = d;;. The column vector
c contains the expansion coefficients, ¢ = [c1,c2,...,cn]T, and His an x n
matrix consisting of matrix elements H;; of the Hamiltonian H:

Hij = (¢iH[t;) (14)

In the context of the DVR method this matrix-representation is sometimes
referred to as the variational basis representation (VBR).



In 1965, Harris, Engerholm, and Gwinn (HEG) from the University of
Berkeley, California, published a paper with the title: Calculation of Ma-
trix Elements for One-Dimensional Quantum-Mechanical Problems and the
Application to Anharmonic Oscillators [1]. In this paper they consider a one-
dimensional problem in which the Hamiltonian can be written as

H= ffo + 1% (1-5)

where Hj is the harmonic oscillator Hamiltonian and V is some “complicated”
potential energy operator. If one chooses a basis of harmonic oscillator eigen-
functions,

Ho; = €i; (1.6)
the hardest part of the calculation is computing the matrix elements
WlVIs) = [ i@V (@) da. (17)

HEG propose a convenient numerical method to approximate the integrals.
Three years later, Dickinson and Certain [2] show that for any basis that con-
sists of orthogonal polynomials (such as the harmonic oscillator eigenfunctions)
the method of HEG is equivalent to Gaussian quadratures. When in a varia-
tional calculation the matrix elements are approximated with some quadrature
of course the results, strictly speaking, need not be upper limits to the true
eigenvalues. Therefore, such a representation of the potential energy operator
is sometimes referred to as a finite basis representation (FBR) to distinguish
it from a wariational representation (VBR).

The term discrete variable representation (DVR) is introduced by Lill,
Parker, and Light in 1982 [3]. In this representation the basis functions are
associated with (quadrature) points and the potential energy operator is rep-
resented by a diagonal matrix, where the diagonal elements, apart from some
weight factor, are simply the values of the potential in those points. Lill et
al. point out that the approximation involved in the DVR. is identical to the
approximation involved in a FBR, and the FBR and DVR are related by a
unitary transformation. This unitary transformation in fact already appeared
in the paper of HEG, so that’s where we’ll start in the next section.

1.2 Computing matrix elements

To compute the potential energy matrix elements [Eq. (1.7)] HEG assume that
the potential may be expanded in a Taylor series:

V(z) = v +viz +vex? +.... (1.8)

For a harmonic oscillator basis the matrix elements (v;|<"|+;) may be com-
puted analytically. HEG propose to compute first

Xij = (Yilal;). (1.9)



Since the matrix X represents the multiplicative operator x, one may take the
matrix X™ as a representation of the operator x". For a complete basis this
procedure is exact. For example, to compute the matrix for 22 we insert the
resolution of identity:

L= [tn){thnl (1.10)

n=0

into

(Wile®|vy) = (wilelzl;) (1.11)
= Y (wileln) (Yalzly;) (1.12)

n=0
= iXianj (1.13)

n=0

We see that in a finite basis, where the summation is truncated to some finite
value the procedure is, in general, not exact. Actually, since X turns out to
be tri-diagonal we find for a N-dimensional basis, i.e., 7,5 = 0,..., N — 1 that
matrix elements for £ computed with this procedure are exact for i 4+ j <
2(N —n).

The potential matrix V' can now be computed as

V=vl+vX +v:X>+... (1.14)

Since this involves many matrix multiplications, the amount of work may be
reduced by diagonalization of the matrix X:

Xu; = \ju;. (1.15)
With
U= [u1u2...un] (1.16)
and
Ai
A=| - (1.17)
An

we may write this in matrix notation as
XU =UA. (1.18)
Since X is a real symmetric matrix, U is unitary, i.e.,
vt =vut =1 (1.19)

and we have

X =UAU! (1.20)



and also

X? = UAU'UAU! (1.21)
UA%U (1.22)
and similarly for higher powers of X. Thus, we may write
V =U(vol +viA +veA? +..)UT (1.23)
or .
vV = yydaeyt (1.24)

where V428 is a diagonal matrix with diagonal elements
(V9980 = g + v\ + 0202 + ... = V(). (1.25)

In the last step we see that with this method of computing the matrix V,
we don’t really need the Taylor expansion of the potential. If we assume
that it exists it is sufficient to know the values of the potentials in the points
Ai- The transformation matrix U and the eigenvalues A; are determined by
diagonalization of the x operator, which is independent of the potential.

1.3 Quadrature approximation

A straightforward method to compute potential energy matrix elements

Vi = [ i@V @) ds (1.26)
is the use of a quadrature approximation. A n-point quadrature consisting of
the abscissas {x1,...,2,} and the weights {w1,...,w,} gives

~ \/FBR _ - *
Vig = Vig PR =3 ] () V (k)b () (1.27)
k=1
Thus if we define .
Agi = wi Yi(z) (1.28)
and the diagonal matrix _
V,Slag = 5le(.'17k), (1.29)
we have n
x 1rdi
VEBR =N " A5 Vit Ay (1.30)
k=1
or, in matrix notation .
VEBR = Alydias g (1.31)

This expression looks very similar to Eq. (1.24). We will show that they are
indeed equivalent if a Gaussian quadrature approximation is used.



1.4 Orthogonal polynomials

The theory of Gaussian quadratures is intimately linked with the theory of
orthogonal polynomials. For a given weight function w(z) > 0 on the interval
[a,b] (where a and b may be +00) we define the scalar product (f|g) between
the real functions f and g as:

b
(flg) = / w(z)f (2)9(z) da. (1.32)

Two functions are orthogonal if (f|g) = 0. For each choice of a scalar product,
i.e., an interval and a weight function, a set of orthogonal polynomials may be
defined by

po(z) =1 (1.33)

and the recursion relation

p_7|-77|p1>
pi+1(z) = zpi( E (1.34)
‘ ‘ =0 p]lp]>

One can easily see that p;1(x) is orthogonal to all pg(z) with k£ < 7 since

p Z|p
(pelpist) = (pelelps) Z<p 1py) Bille) (1.35)
p]|p3>

Thus, if we assume that for k5 < ¢ the polynomials are already orthogonal,
only the term with j = k survives in the summation and we get

(Pe|z|pi)

(Dklpr) o (1:36)

(Pelpiv1) = (px|z|pi) — (Pr|pK)

Furthermore, for & > i + 1 we have by definition

(Pk|piv1) =0 (1.37)

hence we find, by substituting the recursion relation Eq. (1.34) into this ex-
pression:

0= <pk|.’1}|pz> (138)
Because the scalar product is symmetric we find that

(pilz|pj) =0, for |i —j| > 1, (1.39)

so the recursion relation for orthogonal polynomials simplifies to a three term
recursion relation

pi+1(z) = zpi(z) — aipi(z) — Bipi-1(z) (1.40)



with
o; = (pilz|p:) (1.41)
Bi = (pilzlpi-1). (1.42)

If we take the weight function w(z) = 1 and the interval [a,b] = [— 1 ,1]
we obtain the Legendre polynomials and the weight function w(z) =e —=* on
[—00, +00] gives the Hermite polynomials. Many more examples can be found
in Chapter 22 of Abramowitz and Stegun [4].

1.5 Gaussian quadratures

With the definition of the scalar product Eq. (1.32), the integral

b
1] = [ w@)f(@)do (1.43)
a
may be written as
I[f] = (pol f)- (1.44)
A Gaussian quadrature {(zg,w),),k = 1,...n} is defined by the condition that
n
I[f] =) wif(ax) (1.45)
k=1
is exact for the first 2n orthogonal polynomials py, ..., pon—1. This is possible

since there are precisely 2n parameters (zy, w),) that may be chosen.
In order to eliminate the weight function w(z) from the definition of the
scalar product we introduce the functions

$i(z) = Nyw(z)2pi_i(z), i=1,....n (1.46)

where the normalization NNV; is chosen such that, with the new definition of the
scalar product,

b
wily) = [ ile)ws(e)de = 0 (147
a
Note that in the case of Hermite polynomials the functions v;(z) are harmonic

oscillator eigenfunctions. By adjusting the Gaussian quadrature weights

/
Wi

wg = 1.48
w(er) (149

we find that the quadrature approximation to the overlap matrix
sz’] Z wsz Tk ¢J (zk) (1'49)

k=1



is exact. In fact, since the Gaussian quadrature is exact for polynomials of
degree 2n — 1 we find that also the quadrature approximations of the matrix
elements

Xij = (Wilzlep) =Y witpi(n)zrth () (1.50)
k=1

are exact.
If we substitute the definition of the matrix A [Eq. (1.28)] into Eq. (1.49)
we find
n n
D Aridr; =Y wptbiar)j(ar) = (AT A)y; = 65 (1.51)
k=1 k=1
Thus, the matrix A is unitary and AT = A1
Furthermore, from Eq. (1.50) we have

n
Xij =Y ApizrAr; (1.52)
k=1
or, in matrix notation _
X = Af xdiag 4 (1.53)
where X;:liag = kakl, i.e.,
XAl = Al xdiag, (1.54)

By comparing this with Eq. (1.18) we see that indeed the HEG method is
equivalent to the Gaussian quadrature approximation of the matrix elements,
with AT = U and z = \.

It may be of interest to point out that the Gaussian quadrature points
xp happen to be the roots or the orthogonal polynomial p,(z). Also, the
recursion relation Eq. (1.34) shows that the matrix X is a tridiagonal matrix.
Diagonalizing this matrix is actually one of the easiest ways to find the roots
of pp(z). Finally, note that we can find the (unadjusted) Gaussian quadrature
weights w), from

!

A =ufia(en) = (o0 ) Mu@oim) 09

=

i.e, w;c == |Ak,1/N1‘2.
A mathematically more rigorous—and still quite readable—treatment of
Gaussian quadratures can be found in Stoer and Bulirsch[5].

1.6 DVR

So far, we have seen that the method of HEG to compute potential energy
matrix elements is equivalent to using a Gaussian quadrature in the case of



a basis of orthogonal polynomials. In this so called FBR (finite basis repre-
sentation) the potential matrix can be written as a unitary transformation of
a diagonal matrix. The idea of a DVR (discrete variable representation), as
proposed by Lill, Parker, and Light[3], is to apply the unitary transformation
to the basis such that the potential matrix is diagonal:

z) = ZAki¢i(m>. (1.56)

Evaluating the DVR functions ¢(z) in the quadrature points gives

-
-

ZAkz¢z 1) ZAszlzwl > = 0w, (1.57)

Thus, we can easily verify that any multiplicative operator is diagonal in this
basis if the quadrature approximation is used:

(:V'|5) Zwk¢z zk)V (zk) 9 (k) Z&kV zx)djk = V(xg)di; (1.58)

k=1

Clearly, the kinetic energy matrix is not diagonal in a DVR. Thus, in one-
dimensional problems there is no clear advantage of this Gaussian-quadrature
based DVR over the FBR.

1.7 Multi-dimensional DVRs

The main advantage of discrete representations becomes evident in multi-
dimensional problems. In a two-dimensional problem we may take the direct
product of two one-dimensional DVR bases to obtain a N = n, x ny, dimen-
sional basis:

Xii(@y) = 8P @) (y), i=1,...,n0, j=1,...,ny. (1.59)
In this basis the potential energy matrix is diagonal:
Vigseg = (@760 V1657 0)) = 61085V (i, ). (1.60)
When the kinetic energy operator has the form

. 1 92 1 8 .
T=—_— - _ = 7@ 4 7) 1.61
2m, 0z 2m, dy? ’ (161)

the corresponding matrix is sparse, i.e., has many zeros:



Hence we see that in the DVR the calculation of the Hamiltonian matrix is
very cheap compared to the diagonalization. In a conventional matrix diag-
onalization we need memory in the order of N2, while the cpu-time scales
as N3, which becomes not practical for N in the order of 10%. In iterative
methods, which are typically more efficient if we are interested in only a few
eigenvalues/eigenvectors, however, we only need to compute matrix vector
multiplications Hx. This is also true for wave-packet propagation methods
that may be used for either time-dependent or time-independent methods.
If the kinetic energy operator has cross-terms like

82

Tley) —
Ozxdy

= tyty, (1.63)
the kinetic energy matrix is not sparse, since,
(zy) _ (=), (y)

Tij,i,j, =ty ti (1.64)

Still, the factorization helps to compute matrix-vector products. To compute
iljl

gnf/ operations. Instead, we apply one factor

4!

for all (i) we don’t need N? = n
at a time:

which costs nxnz = Nn, operations, and then
Yij = Z tz(f;)zz"j, (1.67)
l"

which costs nZn, = Nn,.

For complicated kinetic energy operators there are sometimes different pos-
sibilities to represent it. An example of how to treat such a case can be found
in Ref. [6].

1.8 Changing representations, the pseudospectral
method

In a one-dimensional problem changing between a localized (DVR) and a de-
localized (FBR) representation costs N® = n2 operations. For example, if

U(x) = vi(z)ei = Y dr(x)ds (1.68)
i P



and ¢y, and v; are related via the unitary transformation A = Ut [Eq. (1.56)]
then
ci = (Yilor)dr = Apidy =Y _ Uipdy. (1.69)
k k k
In two-dimensional problems the transformation factorizes for a direct product
basis

il

and we can apply the same one-coordinate-at-a-time transformation as before.
Thus, going back and forth between a representation where the potential ma-
trix is diagonal (the DVR) and another representation in which the kinetic
energy is diagonal, or at least simple, is affordable. These transformations are
discussed in some detail in a paper by Bramley and Tucker Carrington [7].

It is even possible to have more points than functions, in which case the
transformation matrices become rectangular. Although the inverse of a rect-
angular matrix does not exist we can still go from the pointwise representation
to the delocalized basis by projecting onto the basis. In this case it is impor-
tant to use the delocalized basis as the primary representation, i.e., to use this
basis to represent the Hamiltonian. This approach is called the pseudo spectral
method.

A very nice example of the power of this method is the calculation of a
number of bound states of the water-dimer by Leforestier et al.[8]. In this
calculation the monomers were rigid, which still leaves six degrees of freedom.
This paper also explains how to treat the rotational part of the problem, which
does not have a direct product structure, and how to use symmetry.

The idea of switching representations is also used in the Fourier method[9].
For a periodic coordinate the wave function may be represented on an equally
spaced grid, which may be transformed to a Fourier expansion for which the
kinetic energy operator is diagonal. In this case, fast Fourier transformation
(FFT) can be used, which scales more favorable than matrix multiplication,
although for a small number of points per coordinate this advantage is not
very important.

1.9 Potential-optimized DVR

When the potential is not at all harmonic a Gauss-Hermite DVR may not be
the best option. In the case of a multi-dimensional problem we may try to
construct the best possible DVR for each coordinate separately, and then use
a direct product of these one-dimensional DVRs. One way to do this is the
potential optimized DVR (PO-DVR) [10].

This method follows almost exactly the original HEG method. However,
the delocalized basis the HEG method starts with is not a set of orthogonal
polynomials, but rather a set of functions that was computed with a DVR

10



method. The idea is to start with a grid of many (ng) points which gives es-
sentially fully converged one-dimensional eigenfunctions. Then all (n;) eigen-
functions with eigenvalues below a certain cut-off energy E,.x are used in the
HEG procedure to construct a n1(< mg) point grid representation. This grid
is subsequently used to construct a direct product grid.

1.10 Sinc-function DVR

This DVR was first presented in 1985 by Charles Schwartz of the physics de-
partment of UC Berkeley[11] and reinvented in 1992 by Colbert and Miller[12]
of the chemistry department of the same university. Here we give an alterna-
tive derivation of Groenenboom en Colbert [13], which shows where the name
“sinc”-function DVR. comes from. This last paper also shows how to imple-
ment efficiently a multidimensional DVR when points in a direct product grid
are eliminated, e.g., because the potential in those points is above a specified
cutoff energy Viax-

This DVR is not derived from orthogonal polynomials. It is most conve-
nient to define the sinc-function basis set {|n >,n = —o0, ..., 00} in frequency
(w) space and then use a Fourier transform to get the z-representation of the
basis set.

In w-space we have a Fourier basis on the interval —wmax - - - Wmax:

1 ein?r wn:)ax for |w‘ < wmax
an(w) =< w|n >= V2wmax ._ (1_71)
0 otherwise.

After Fourier transformation we obtain a basis that is complete for all band-
limited functions, i.e. functions that have no frequency components above a
certain frequency wmax:

1 © .
) =<zln> = — e <wln > dw 1.72
bala) =<1l =/ | (.72
- 1 /wmax e~ N G dw (1.73)
2y/TWmax J —wmax '
= wl:rax sinc(wmax® — N7, (1.74)
where
sinc(z) = s1n:§x) (1.75)
Hence, with
27 ™
max — N — A 1.
Wma XA (1.76)
we get:
¢ (@) = —=sinclr(% — n) (1.77)
n(2) = — w(= —n)]. }
VA A



Since sinc(nm) = dp o it is easy to verify that the quadrature z; = iA, i =

—00,...,+00 and weights w; = A is exact for the overlap integrals:
<nlm> = / 60(2) b (z)d (1.78)
o . . . -
_ Z Asmc[ﬂ'(z — n)] sinc[m(i —m)] (1.79)
R VA VA
o0
= > Ginbim =Onm- (1.80)
i=—00

. 2
To calculate matrix elements of the 3% and % operators we can use the

fact that the derivatives of band limited functions are also band limited, i.e. if

flz) = /00 h(w)e™?dw with h(w) =0 for |w|> Wmax, (1.81)
then
gn fl@) = /_ o; h(w) (i)™ doo (1.82)

= /00 g(w)e™®dw (1.83)

—0o0

and so the derivatives are also band limited, with the same bandwidth:
g(w) = h(w)(iw)" =0 for |w| > wWmax- (1.84)

This means that we can use the quadrature to evaluate the matrix elements:

k 00 k
< n|%|m > = / dm%SinC[W(ﬁ - ”)]B—Siﬂc[ﬂ(£ —m)] (1.85)

oo A Oxk A
=Y sineln(i - )] Losine [n(5 —m)|  (1.86)
. Oxk AT mia
i=—00
ok x
= ——si — 1.87
gk i (7TA) o m)A (1.87)
This gives for k = 1:
0 0 n=m
< - >= —_1yn—m 188
n|6$|m { %(;)_m ntm ( )
and for k = 2 we get:
32 _1lx —
<nlZfm>={ A& . T (1.89)
Ox —AT (emE P #m



Note that for the diagonal term we need the second derivative of the sinc
function at x = 0, which is most easily done by using Taylor series:

9* sin(z) _ 9 T LA TR _ .t (1.90)

oz« |,_, Ox? x 3

- z=0

If we have the boundary condition ¥(0) = 0 we can use (forn =1,2,...,00):
o () =<z|n™ > = ¢p(z)— dn(—2x) (1.91)

1 . x . x
= 7A {smc[?r(z —n)] — SlIlC[?T(K + n)]} .(1.92)

This basis is orthonormal on the range 0... oo and:
_ 1 1 .

¢n (zl) = ﬁ(&hn - 5ia_n) = ﬁdi,n, (Zvn > O) (193)
Thus, we have the quadrature points z; = 1A, ¢ = 1,2,...,00 and weights

w; = A.
For the matrix elements of the a% operator we can not use the quadrature
since:

0 ,_
4 (2)lao £ 0 (1.94)
but for 6‘9—; we get:

0 = : 0
< n_|w|m_ > = Z{smc[w(k —n)] — sinc[w(k + n)]}@d),;(xk)(l.%)

k=1
& . Z . x
= W{smc[w(z —m)| — smc[7r(z +m)|}z=na- (1.96)
Hence,
7'.2 (_1)n+m .
82 _%F + % ntm)2 n=m
e Tz [(_1)”"5‘1 2—1)’”’"] ngm %
A? | (n—m)? (n+m)?

Beware of the sign-mistakes in the corresponding equation in Ref. [13].

13



Bibliography

[1] D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Chem. Phys. 43,
515 (1965).

[2] A. S. Dickinson and P. R. Certain, J. Chem. Phys. 49, 4209 (1968).

[3] J. V. Lill, G. A. Parker, and J. C. Light, Chem. Phys. Lett. 89, 483
(1982).

[4] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Washington, D.C., 1964.

[5] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer,
New York, 1980.

[6] P. E. S. Wormer, G. C. Groenenboom, and A. van der Avoird, J. Chem.
Phys. 115, 3604 (2001).

[7] M. J. Bramley and J. Tucker Carrington, J. Chem. Phys. 99, 8519 (1993).

[8] C. Leforestier, L. B. Braly, K. Liu, M. J. Elrod, and R. J. Saykally, J.
Chem. Phys. 106, 8527 (1997).

[9] R. Kosloff, J. Phys. Chem. 92, 2087 (1988).
[10] J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992).
[11] C. Schwartz, J. Math. Phys. 26, 411 (1985).
[12] D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

[13] G. C. Groenenboom and D. T. Colbert, J. Chem. Phys. 99, 9681 (1993).

14



