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The 1-D Gaussian wave packet: V=0

• the time evolution of a free Gaussian wave packet is given by:

xt = x0 +
p0

m
t

pt = p0

αt =
α0

1 + 2ih̄α0t
m

• expectation values 〈x〉, 〈p〉 move classically !

〈x〉(t) = 〈x〉(t = 0) +
〈p〉(t = 0)

m
t

〈p〉 = 〈p〉(t = 0)

• wave packet shows dispersion

∆x = ∆x0

√√√√√1 +
4h̄2α2

0

m
t2



The 1-D Gaussian wave packet: V = 1
2
mω2x2

• the time evolution of a Gaussian wave packet is given by:

xt = x0 cos(ωt) +
p0

mω
sin(ωt)

pt = p0 cos(ωt) +mωx0 sin(ωt)

αt = a



α0 cos(ωt) + ia sin(ωt)

iα0 sin(ωt) + a cos(ωt)




here: a = mω
2h̄

• expectation values 〈x〉, 〈p〉 move classically !

• width of wave packet changes periodically, except for α0 = a !

corresponds to the width of the ground state wavefunction

=⇒ coherent state

• this is an extremely good (fast) test for any numerical

propagation scheme !



Quantum-classical correspondence: Ehrenfest’s theorem

• Q: do the expectation values always move

according to classical mechanics ?:

ih̄
∂χ(x, t)

∂t
=



p2

2m
+ V (x)


χ(x, t)

consider a time-independent observable A and a wavefunction χ:

〈A〉 = 〈χ|A|χ〉
d〈A〉
dt

= 〈χ̇|A|χ〉 + 〈χ|A|χ̇〉

=
1

ih̄
〈χ|[A,H]|χ〉

• specifically, for A = x and A = p we find:

d

dt
〈x〉 =

〈p〉
m

(1)

d

dt
〈p〉 = −〈∂V

∂x
〉 (2)

if

〈∂V
∂x
〉 ?=

∂V

∂x

∣∣∣∣∣∣
x=〈x〉

holds, eq. (1,2) form a closed set of differential equations

corresponding to Hamiltons equations in classical mechanics

check: true for constant, linear, harmonic potential

not true in general

approximately true for a well-localized wavepacket:

(hint: expand potential around center of wave packet,

if harmonic approximation to potential holds

across the width of wave packet =⇒: OK

• wave packet dynamics with Gaussians (E. Heller)
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Maxwell’s equations and Electromagnetic Potentials

electric and magnetic fields:

∇×E = −1

c

∂B

∂t
∇ ·E = 0

∇×B =
1

c

∂E

∂t
∇ ·B = 0

scalar and vector potential:

E = −∇φ− 1

c

∂A

∂t
B = ∇×A

A and φ obey:

∇2φ = 0

∇2A =
1

c2
d2A

dt2

hence a free-space solution is:

A(r, t) = A0 sin(k · r− ωt)

which implies

E(r, t) =
ω

c
A0 cos((k · r− ωt) ≡ εE0 cos((k · r− ωt) (3)

B(r, t) = A0(k× ε) cos((k · r− ωt) (4)

electromeagnetic energy in volume V:

E =
1

8π

∫

V
d3r

(
E2 + B2

)



Energy density, photon flux and absorption spectrum

electromagnetic energy in volume V:

E =
1

8π

∫

V
d3r

(
E2 + B2

)

using eq.(3,4) with E,B constant in volume V we obtain:

E = V
E2

0

8π

Einstein relation: energy of a single photon is quantized: h̄ω, hence

E = Nh̄ω

relation between photon density N
V

and classical electrical field amplitude E0:



N

V


 =

E2
0

8πh̄ω

photon flux:

number of photons per unit area per unit time passing a particluar location:

photon flux =



N

V


 c =

E2
0c

8πh̄ω

absorption spectrum:

σ(ω) =
transition rate

incident photon flux



Field-Matter interaction

• Dipole approximation:

typical values for molecular spectroscopy in the optical range:

laser wavelength: λ = 600nm

dimensions of atom/molecule: 10 Å

=⇒ fields are spacially constant at atomic level

=⇒ neglect k · r electric and magnetic fields:

A(r, t) ≡ A(t)

E(r, t) ≡ E(t)

B(r, t) ≡ B(t)

• Molecular field-free Hamiltonian with masses mj and charges qj:

H0 =
1

2

∑

j
mjp

2
j + V (r1, · · ·)

• Molecule-field interaction: minimal coupling,

pj −→ pj − qj
c
A, identical to Lorenz force:

HC(t) =
1

2

∑

j
mj

(

pj −
qj

c
A(t)

)2
+ V (r1, · · ·)

Hamiltonian has become time-dependent by virtue of A(t)



Field-Matter interaction 2

• field-free Hamiltonian:

H0 =
1

2

∑

j
mjp

2
j + V (r1, · · ·)

• minimal coupling Hamiltonian HC:

HC(t) =
1

2

∑

j
mj

(

pj −
qj

c
A(t)

)2
+ V (r1, · · ·)

• time-dependent Schrödinger equation:

ih̄
∂ψC(t)

∂t
= HC(t)ψC(t)

change gauge by unitary transformantion:

ψ(t) = e−
i
h̄

∑
j

qi
c rj ·A(t) ψC(t)

leads to

ih̄
∂ψ(t)

∂t
= (H0(t)− µ · E(t)) ψ(t)

with µ being the dipole moment:

µ =
∑

j
qjrj

• note: no weak field assumption, only dipole approximation



Time-dependent perturbation theory

• for weak electric fields, the interaction energy W (t) = −µ ·E(t)

can be viewed as time-dependent perturbation:

ih̄
∂Ψ

∂t
= (H0 +W (t)) Ψ(t)

• change to interaction representation:

Ψ̃(t) = eiH0tΨ(t) W̃ (t) = eiH0tW (t)e−iH0t

Schrödinger equation in interaction representation:

ih̄
∂Ψ̃(t)

∂t
= W̃ (t)Ψ̃(t)

interaction starts at t0, one can integrate from t0 to t:

Ψ̃(t) = Ψ̃(t0)−
i

h̄

∫ t
t0
dt′ ˜W (t′)Ψ̃(t′)

iteration yields perturbative expansion:

Ψ̃(t) = Ψ̃(t0)︸ ︷︷ ︸
zero

− i

h̄

∫ t
t0
dt′ W̃ (t′)Ψ̃(t0)

︸ ︷︷ ︸
first

− 1

h̄2

∫ t
t0
dt′

∫ t′

t0
dt′′W̃ (t′)W̃ (t′′)Ψ̃(t0)

︸ ︷︷ ︸
second

+ · · ·

First order expression in Schrödinger representation:

Ψ(t) = e−
i
h̄
H0(t−t0)Ψ(t0)−

i

h̄

∫ t
t0
dt′ e−

i
h̄
H0(t−t′)W (t′)e−

i
h̄
H0(t

′−t0) Ψ(t0)



Electronic excitation by time-dependent perturbation theory

• First order expression in Schrödinger representation (t0 = 0):

Ψ(t) = e−
i
h̄
H0tΨ(0)− i

h̄

∫ t
0
dt′ e−

i
h̄
H0(t−t′)W (t′)e−

i
h̄
H0t
′
Ψ(0)

• suppose that the field induces a transition from an electronic

ground state |g〉 to an electronic excited state |e〉:

|g>

|e>

• Born-Oppenheimer separation:

Ψ(t) = ψg(r, t)︸ ︷︷ ︸
nuclear wf

|g > + ψe(r, t)︸ ︷︷ ︸
nuclear wf

|e >

if initially the molecule is in its electronic ground state |g >
the light interaction leads to excitation

=⇒ transfer of population to the excited state |e >.



Electronic excitation by time-dependent perturbation theory

• To calculate the excited state wavefunction, we project onto |e〉:

ψe(r, t) = − i
h̄

t∫

0

dt′ e−
i
h̄He(t−t′)µegE(t′)e−

i
h̄Hgt

′
ψg(r, 0)

with

Hg(r) = 〈g|H0|g〉 = Tr + Vg(r)

He(r) = 〈e|H0|e〉 = Tr + Ve(r)

µeg = 〈e|µ|g〉(r)

• this general expression is valid for arbitrary field shape:

=⇒ cw-absorption spectroscopy

=⇒ femtosecond spectroscopy

=⇒ control through pulse shaping



Absorption cross section from wave packet dynamics

• central relationship between absorption and dynamics

σ(ω) =
2πω

3h̄c

∞∫

−∞
dt 〈φe(0)|φe(t)〉︸ ︷︷ ︸

C(t)

e−
i
h̄(Eg−h̄ω)t

• properties of the correlation function:

C(t) = C∗(−t)

(=⇒ σ(ω) is real)

• practical calculation:

1. calculate ground state ψg (←− wave packet dynamics)

2. multiply ψg with transition dipole moment µeg: promoted state φe
3. propagate φe on excited state surface (←− wave packet dynamics)

4. calculate C(t)

5. take Fourier transform of C(t)

• key quantity:

C(t) = 〈φe(0)|φe(t)〉

• φe(t) is a wave packet on the excited state surface

=⇒ exhibits time dependence

• How to calculate φe(t) ?

• wave packet propagation:

φe(t) = e−
i
h̄Het φe(0)



Summary

Part 1
General aspects

Gaussian wave packets

connection with classical mechanics: Ehrenfest’s theorem

Part 2
Field-matter interaction

Time-dependent perturbation theory

Photoabsorption spectra from a time-dependent view

Key references

• wave packets: general aspects, Gaussian wave packets:

C. Cohen-Tannoudji, B. Diu, F. Laloë,

Quantum mechanics, Vol 1 (Wiley, NY, 1977)

E. J. Heller, J. Chem. Phys. 62, 1544 (1975), ibid. 65, 4979 (1976)

• spectra from correlation functions:

E. J. Heller, Acc. Chem. Res. 14, 368 (1981)

E. J. Heller, S. Tomsovic, Physics Today, July 1993

R. Schinke, Photodissociation Dynamics, Cambridge University Press (1993)



Lecture 2

• Numerical methods of wave packet propagation

• Representation of wavefunctions

grids

basis

pseudospectral methods

DVR

• Propagation methods

Second Order Differencing

Cayley’s method (Crank-Nicholson)

Split-Operator

A critical comparison

(Chebyshev, Lanczos)

Time-dependent self consistent field (TDSCF)
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Numerical methods for exact time propagation

• time-dependent Schrödinger equation:

ih̄
∂

∂t
χ(t) = Hχ(t)

χ(t) = e−
i
h̄
Ht

︸ ︷︷ ︸
propagator

χ(0)

problems:

• represent χ(0), χ(t) on computer

(=⇒: approximation through truncation)

• calculate/approximate propagator

• apply propagator (or approx. prop.) to wavefunction representation

Numerical methods for time-independent Schrödinger equation

Hχ = Eχ

problems:

• represent χ on computer

(=⇒: approximation through truncation)

• calculate/approximate Hamiltonian

• apply Hamiltonian to wavefunction representation



Representation of wavefucntions on a computer

grids
basis 
functions

DVR

pseudo-
spectral

• how to represent χ(r) ?

• how to calculate Hχ(r) ?



Represenatation of wavefunctions on a grid

• choose grid of N points: rn
• wavefunction is represented by a vector of length N

χ(g)
n = χ(rn)

• potential operator by multiplication with potential at grid points:

V (r)χ(r) ≈ V (rn)χ
(g)
n

• kinetic operator by finite differences:

Tχ(r) = − h̄
2

2m



χ

(g)
n+1 − χ(g)

n

rn+1 − rn
− χ(g)

n − χ
(g)
n−1

rn − rn−1




or higher order finite differnces

• advantages: conceptually simple

• disadvantages: only precise with large number N of points



Represenatation of wavefunctions in a set of basis functions

• choose basis set |φj〉 of N orthgonal functions:

χ(r) ≈ χ(s)(r) =
N∑

j=0
cjφj(r)

=⇒: Schrödinger equation becomes a matrix equation

• potential operator by matrix multiplication

with potential matrix Vjj′ = 〈φj|V |φj′〉
N∑

j′=0
Vjj′cj′

• kinetic operator by matrix multiplication

with kinetic matrix Tjj′ = 〈φj|T |φj′〉
N∑

j′=0
Tjj′cj′

• or in general: multiplication with Hamiltonian matrix

with kinetic matrix Hjj′ = 〈φj|H|φj′〉
N∑

j′=0
Hjj′cj′

• disadvantage:

for high dimensions calculation of matrix elements expensive

time-dependent Hamiltonians: redo every timestep !

Hjj′ might be large



Pseudospectral methods

• choose basis set |φj〉 of N orthonormal functions

• choose set of N grid points rn

χ(r) ≈ χ(s)(r) =
N∑

j=0
cjφj(r)

• we impose:

χ(rn) = χ(s)(rn)

from which we can define the function values on the grid points:

χ(g)
n =

N∑

j=0
cjφj(rn)

• define the collocation matrix Rjn

Rnj = φj(rn)

if Rnj can be inverted, one can switch between representations:

cj =
N∑

n=0
R−1
jn χ

(g)
n

• application of potential energy operator: grid representation

V (rn)χ
(g)
n

• application of kinetic energy operator: spectral representation:

Tχ(g)
n =

N∑

j=0
(Tφj(r))r=rn cj =

N−1∑

j=0
(Tφj(r))r=rn︸ ︷︷ ︸

analytic



N−1∑

n′=0
R−1
jn′χ

(g)
n′




=
N−1∑

n′=0



N−1∑

j=0
(Tφj(r))r=rn R

−1
jn′




︸ ︷︷ ︸
constant

χ
(g)
n′

=
N−1∑

n′=0
Mnn′︸ ︷︷ ︸

T−matrix

χ
(g)
n′



DVR: discrete variable representation

• aim:

use basis: kinetic energy (derivatives) can be calculated exactly

use grid: potential is diagonal (multiplication with potential at grid points)

• choose basis set |φj〉 of N orthgonal functions:

χ(r) ≈ χ(s)(r) =
N−1∑

j=0
cjφj(r)

• construct position matrix:

Mjj′ = 〈φj|r|φj′〉

• diagonalize postition matrix Mjj′

U†MU = D

the transformation matrix defines a second orthogonal basis set: δn(r)

(the eigenvectros of a hermitian operator are orthogonal)

’DVR basis’

χ(r) ≈ χ(s)(r) =
N−1∑

j=0
χ(g)
n δn(r)

choose as grid points the eigenvalues of M

• hence by construction we have:

〈δn|r|δn′〉 = rnδnn′

due to truncation of the initial basis |φj〉 the

|δn〉 are also only approximately complete:

N−1∑

n=0
|δn〉〈δn| ≈ 1 (= 1 forN →∞)



DVR: discrete variable representation

• potential matrix elements in the δn〉-basis are well-approximated by:

〈δn|V (r)|δn′〉 = V (rn)δnn′

proof: expand V (r) in a Taylor series

• application of potential energy operator: grid representation

V (rn)χ
(g)
n

• application of kinetic energy operator: spectral representation:

Tχ(g)
n =

N−1∑

j=0
Unj

N−1∑

j′=0
Tjj′

N−1∑

n′=0
U∗j′n′

︸ ︷︷ ︸
Knn′

χ
(g)
n′



Propagators

• aim:

approximate the quantum mechanical propagator:

e−iHt

• 2 classes:

global: approximate e−iHt

iterative: e−iHt = e−iH∆t · · · e−iH∆t t = N∆t, approximate e−iH∆t

• global only for time-independent Hamiltonians

• for femtosecond pulse interaction: iterative procedure

χ(t + ∆t) = e−
i
h̄
∆tHχ(t)

• Taylor expansion: not stable upon iteration !

χ(t + ∆t) =


1− i

h̄
H − 1

h̄2H
2 + · · ·


χ(t)

• in general: stability upon iteration if also the

approximate short time propagator in unitary:

χ(t + ∆t) = Uappχ(t)

(Uapp)†Uapp = 1 exactly!

• why ? norm is strictly conserved also upon approximate propagation

〈χ(t + ∆t)|χ(t+ ∆t)〉 = 〈χ(t)| (Uapp)†Uapp|χ(t)〉
= 〈χ(t)|χ(t)〉

• this does not mean that the propagation is exact !

watch out for effects of finite ∆t

always converge final results (observables) with respect to ∆t



Short-time propagators

• Second order differencing

• (implicit) Cayley’s method

• Split-Operator method

• short iterative Lanczos

• (time-dependent self consistent field)

• (Multi-Configuration Time-Dependent Hartree) (MCTDH)

Global propagators

• Chebyshev

• Lanczos



Second-order differencing

use backward/forward first order expression:

χ(t + ∆t) =


1− i

h̄
∆tH


χ(t)

χ(t−∆t) =


1 +

i

h̄
∆tH


χ(t)

combine:

χ(t + ∆t)− χ(t−∆t) = −2i

h̄
∆tHχ(t)

χ(t + ∆t) = χ(t−∆t)− 2i

h̄
∆tHχ(t)

• storage requirements: χ(t), χ(t−∆t)

• operations: Hχ(t)

can be done with any representation

• characteristics:

stable for sufficiently small ∆t: at least: ∆t < h̄
Emax

conservation of Re〈χ(t)|χ(t + ∆t)〉
• requires Hermitian Hamiltonian



Implicit Cayley’s method

• use backward/forward expression for intermediate time t + ∆t
2 :

χ(t +
∆t

2
) = e

i
h̄

∆t
2
Hχ(t + ∆t) = e−

i
h̄

∆t
2
Hχ(t)

• first order expressions for the short-time propagators

1 +

i

h̄

∆t

2
H


χ(t + ∆t) =


1− i

h̄

∆t

2
H


χ(t)

χ(t + ∆t)− χ(t) = − i
h̄

∆t

2
H (χ(t + ∆t) + χ(t))

define an increment function δ(t) = χ(t + ∆t)− χ(t)

δ(t) = − i
h̄

∆t

2
H (δ(t) + 2χ(t))

iteration to fixpoint:

• algorithm:

χ(t) known

take δ(0)(t) = 0

calculate:

δ(n+1)(t) = − i
h̄

∆t

2
H

(
δ(n)(t) + 2χ(t)

)

until convergence δ̄(t)

update χ(t + ∆t) = χ(t) + δ̄(t)

• storage requirements: χ(t), δ(t) (iteration can be done in place)

• operations: Hχ(t)

can be done with any representation

• characteristics:

at each timestep iteration required

however: with ∆t small (required in any case) fast convergence



FFT-Split-Operator method

• works only for Hamiltonians of the form H = T (momenta)+V (position)

• approximate short time propagator as:

χ(t + ∆t) = e−
i
h̄
∆tHχ(t) = e−

i
h̄

∆t
2
V e−

i
h̄
∆tT e−

i
h̄

∆t
2
V

• extremely efficient with

Fourier pseudo-spectral representation of wavefunctions

χ(g)
n (t + ∆t) =

e
− i

h̄
∆t
2
V (rn)

︸ ︷︷ ︸

e
− i

h̄
∆t
2

V

N−1∑

j=0

1√
N
ei

2πjn
N

︸ ︷︷ ︸
FFT−1

e
− i

h̄
∆t
(

h̄2

2mk
2
j

)

︸ ︷︷ ︸

e
− i

h̄
∆tT

[ N−1∑

n′=0

1√
N
e−

2πjn′
N

︸ ︷︷ ︸
FFT

e
− i

h̄
∆t
2
V (rn′)

︸ ︷︷ ︸

e
− i

h̄
∆t
2

V

χ
(g)
n′ (t)

]

• algorithm:

χ(g)
n (t + ∆t) = e−

i
h̄

∆t
2
V FFT−1←− e−

i
h̄
∆tT FFT←− e−

i
h̄

∆t
2
V χ(g)

n (t)

• storage requirements: χ(g)
n (t)

• advantage:

e−
i
h̄

∆t
2
V is local in grid representation

e−
i
h̄∆tT is local in momentum representation

• characteristics:

time-reversal symmetry: replace ∆t −→ −∆t

(Uapp)†Uapp = 1:

conserves norm even for finite ∆t

• efficient algorithm: calculate discrete Fourier transform by FFT:

scaling ∼ NlogN =⇒: fast

• works also for time-dependent Hamiltonian



Comparison

Hamiltonian Hamiltonian Hamiltonian

time-dep. non-herm. w/ cross-terms repr. grid

(fs-pulses) (abs. pot) (spher. coo.)

SOD + - + any any

Imp. Cayley + + + any any

FFT-SO + + - FFT equidist.

posivive negative

SOD • flexible: any representation • no absorbing potentials

• time-dep. Hamiltonian • for large spectral radius:

=⇒ small ∆t

Implicit • flexible: any representation • iteration for each timestep

Cayley • unitary

• time-dep. Hamiltonian

FFT- • fast + efficient • equidistant grid

SO • unitary • no cross terms in Hamiltonian

• time-dep. Hamiltonian



Chebyshev scheme

• global propagator or

iterative propagation with long timesteps

• idea: polynomial approximation to the propagator

e−
i
h̄
Htχ(0) ≈

N∑

n=0
anPn


− i

h̄
Ht


χ(0)

for a given order, Chebyshev yields the polynomial approximation

with the smallest maximal error in the interval [−1, 1]

in comlex plane: convergence in unit circle ([-i,i]) on imaginary axis

=⇒: spectral range shifting of H necessary

hint: consider χ(0) as eigenfunction of H with eigenenergy E

• disdvantage: outside [−1, 1] polynomial expansion does not converge:

=⇒: spectral range shifting of H important

• advantage: big timesteps (one)

• not unitary

• disadvantage:

works only for time-independent Hamiltonians



Lanczos scheme

• global or iterative (short iterative Lanczos SIL)

• idea: express propagator in an optimal basis that is different

at each timestep and for each initial wavefunction

e−
i
h̄Htχ(0) ≈ χ(0)

︸ ︷︷ ︸
q0

− i
h̄
Hχ(0)
︸ ︷︷ ︸

q1

− 1
h̄2 H

2χ(0)
︸ ︷︷ ︸

q2

− i

h̄3 H
3χ(0)

︸ ︷︷ ︸
q3

+ · · ·

use qn = Hnχ(0) as a basis set in which the propagator is developed

• advantage: flexible

high order −→ big timestep

low order −→ small timestep (SIL)

• disdvantage: time-independent Hamiltonian

for SIL H can be time-dependent, but less efficient



Time dependent self consistent field (TD-SCF)

• for many degrees of freedom (∼ 4) quantum mechanics becomes hard

• approximation: TD-SCF

• suppose two degrees of freedom x, y

• TD-SCF: express 2-dimensional wavefunction as product at all times

χ(x, y, t) = a(t) φ(x)(x, t) φ(y)(y, t)

note: this decomposion is not unique

phases and real valued factors can be shifted between factors

constraints:

〈φ(x)|φ̇(x)〉 = 〈φ(y)|φ̇(y)〉 = 0

fixes phases and imposes normalization of the φ(x), φ(y)

into Schrödinger’s equation:

ih̄ȧ(t) = H̄a(t)

ih̄φ̇(x)(t) =
(
H(x) − H̄

)
φ(x)(t)

ih̄φ̇(y)(t) =
(
H(y) − H̄

)
φ(y)(t)

H̄ = 〈φ(x)|〈φ(y)|H|φ(y)〉φ(x)〉
H(x) = 〈φ(y)|H|φ(y)〉
H(y) = 〈φ(x)|H|φ(x)〉

2-dim Schrödinger equation is replaced by

two 1-dim Schrödinger equations

x-DOF experiences a mean potential averaged over y-DOF

and vice versa

• note: even with H time independent, H(x) and H(y) are time dependent

−→ need propagators that allow time-dependent Hamiltonians

• allows quantum propagations for many DOF

• disadvantage: approximate, quality of approximation hard to estimate



Multi-Configuration time-dependent Hartree (MCTDH)
(Meyer, Manthe, Cederbaum)

• for many degrees of freedom (∼ 4) quantum mechanics becomes hard

• method: MCTDH

• approximate, but converges to exact

• suppose two degrees of freedom x, y

• MCTDH: express 2-dimensional wavefunction as sum over product

χ(x, y, t) =
N∑

n=1

M∑

m=1
anm(t) φ(x)

n (x, t) φ(y)
m (y, t)

for N,M −→∞ this is exact

note: this decomposion is not unique

phases and real valued factors can be shifted between factors

constraints:

〈φ(x)
n |φ̇

(x)
n′ 〉 = δnn′ 〈φ(y)

m |φ̇
(y)
m′ 〉 = δmm′

fixes phases and imposes normalization and orthogonality of the φ(x)
n , φ(y)

m

• into Schrödinger’s equation yields:

coupled equations of motion for the functions |φ(x)
n 〉, |φ(y)

m 〉
• for N −→∞,M −→∞ the |φ(x)

n 〉, |φ(y)
m 〉 are complete:

=⇒ MCTDH becomes exact

|φ(x)
n 〉, |φ(y)

m 〉 become time independent

• advantages: storage of wavefunction possible

• can be combined with any representation: DVR, Fourier grid, basis sets

individually for each degree of freedom

if Nb and Mb basis vectors (DVR points, grid points) are required for the

x and y DOF respectively, storage is:

N ∗Nb +M ∗Mb as compared to Nb ∗Mb

in general: Nb >> N,Mb >> M

• gain even more drastic for more degrees of freedom



Multi-Configuration time-dependent Hartree (MCTDH)
(Meyer, Manthe, Cederbaum)

χ(x, y, t) =
N∑

n=1

M∑

m=1
anm(t) φ(x)

n (x, t) φ(y)
m (y, t)

constraints (other constrains possible):

〈φ(x)
n |φ̇

(x)
n′ 〉 = 〈φ(y)

m |φ̇
(y)
m′ 〉 = 0

fixes phases and imposes normalization and orthogonality of the φ(x)
n , φ(y)

m

into Schrödinger’s equation:

ih̄ȧnm(t) = H̄nn′mm′an′m′(t)

ih̄
N∑

n=1
ρ

(x)
n′n|φ̇(x)

n 〉 =
(
1− P (x)

) N∑

n=1
H

(x)
n′n|φ(x)

n 〉

ih̄
M∑

m=1
ρ

(y)
m′m|φ̇(y)

m 〉 =
(
1− P (y)

) M∑

m=1
H

(y)
m′m|φ(y)

m 〉

H̄nn′mm′ = 〈φ(x)
n |〈φ(y)

m |H|φ
(y)
m′ 〉|φ

(x)
n′ 〉

H
(x)
nn′ =

M∑

m=1

M∑

m′=1
a∗n′m′anm〈φ

(y)
m′ |H|φ(y)

m 〉

H
(y)
mm′ =

N∑

n=1

N∑

n′=1
a∗n′m′anm〈φ

(x)
n′ |H|φ(x)

n 〉

P (x) =
N∑

n=1
|φ(x)
n 〉〈φ(x)

n | P (y) =
M∑

m=1
|φ(y)
m 〉〈φ(y)

m |

ρ
(x)
nn′ =

M∑

m=1
a∗n′manm ρ

(y)
mm′′ =

N∑

n=1
a∗nmanm′

• coupled equations of motion for the functions |φ(x)
n 〉, |φ(y)

m 〉
• for N −→∞,M −→∞ the |φ(x)

n 〉, |φ(y)
m 〉 are complete:

=⇒ P (x) = P (y) = 1 |φ(x)
n 〉, |φ(y)

m 〉 become time independent,

eq. for anm becomes normal spectral representation

of Hamiltonian in a time independent basis



Summary

• Numerical methods of wave packet propagation

• Representation of wavefucntions

grid, basis, pseudospectral methods, DVR

• Propagation methods

Second Order Differencing

Cayley’s method (Crank-Nicholson)

Split-Operator

A critical comparison

(Chebyshev, Lanczos)

Time-dependent self consistent field (TDSCF)

Multi-Configuration Time-Dependent Hartree (MCTDH)
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Lecture 3

• Simulation of Pump-Probe spectra

realisation of wave packets: femtosecond pulse excitation

time dependent perturabtion theory with arbitrary pulse shapes

wave packet dynamics induced by femtosecond pulse excitation

detection of moving wave packets: the pump-probe scheme

examples of pump-probe spectra in small molecules

• Classical simulations of pump-probe spectra



Molecular spectroscopy

• excitation of internal degrees of freedom with electric fields

(ABC)i
h̄ω−→ (ABC)f
h̄ω−→ (ABC)+f + e−

h̄ω−→ (AB)f + Cf ′

h̄ω−→ combinations of the above

Excitation of internal degrees of freedom

• rotation (microwave)

• vibration (infrared)

• electronic (visible, UV)

here:

electronic and vibrational excitation

ionization



Molecular spectroscopy with cw-pulses:

• pulse duration: τ (pulse) ∼ nanoseconds

• molecular timescales (example: Na2(X))

electronic ∼ 2 femtoseconds

vibrations ∼ 200 femtoseconds

rotations: ∼ 10 picoseconds

τ (pulse) >> τ (el), τ (vib), τ (rot)

• in energy domain: excitation of stationary states

r

V(r)

ωE( )



Molecular spectroscopy with short pulses:

• pulse duration: τ (pulse) ∼ 100 fs

• molecular timescales (example: Na2(X))

electronic ∼ 2 femtoseconds

vibrations ∼ 200 femtoseconds

rotations: ∼ 10 picoseconds

τ (pulse) < τ (vib), τ (rot)

• in energy domain: excitation of vibrational/rotational wave packets

r

V(r)

ωE( )



Calculation of short-pulse excitation:

• how to calculate short pulse excitation with realistic pulse shapes

• suppose weak pulses =⇒ time-dependent perturbation theory

ψe(r, t) = − i
h̄

t∫

0

e−
i
h̄
He(t−t′)µegE(t)e−

i
h̄
Hgt
′
ψg(r, 0)

with

Hg(r) = 〈g|H0|g〉 = Tr + Vg(r)

He(r) = 〈e|H0|e〉 = Tr + Ve(r)

µeg = 〈e|µ|g〉(r)

this expression is valid for arbitrary fields

• suppose short pulse starting at t = 0

E(t) = εE0f(t) cos(ωt) = εf(t)
E0

2

(
e−iωt + e−iωt

)

f(t) = plulse shape

yields:

ψe(t) = − i
h̄

E0

2

t∫

0

e−
i
h̄
He(t−t′)

(
µegε

)
f(t) e−iωt

′
e−

i
h̄
Hgt
′
ψg(0) resonant

− i
h̄

E0

2

t∫

0

e−
i
h̄
He(t−t′)

(
µegε

)
f(t) eiωt

′
e−

i
h̄
Hgt
′
ψg(0) non− resonant

if h̄ω ≈ Ve − Vg in the Franck-Condon region,

the resonant term dominates

ψe(t) = − i
h̄

E0

2

t∫

0

e−
i
h̄
He(t−t′)

(
µegε

)
f(t) e−iωt

′
e−

i
h̄
Hgt
′
ψg(0)



Numerical calculation by wave packet propagation

• discretize time integral:

ψe(t) = − i
h̄

E0

2
∆t

N∑

n=0
e−

i
h̄
He(N−n)∆t

(
µegε

)
f(n∆t) e−iωt

′
e−

i
h̄
Hgn∆t ψg(0)

t′ = n∆t, t = N∆t

• this can be written in an iterative way:

ψe(t + ∆t) = e−
i
h̄
He∆tψe(t)−∆t

i

h̄

E0

2︸ ︷︷ ︸
C

(
µegε

)
f(t + ∆t) e−iω(t+∆t)e−

i
h̄
Hg∆t ψg(t)

• further simplifications if the system is initially

in an eigenstate of energy Eg:

ψe(t + ∆t) = e−
i
h̄
He∆tψe(t)− C

(
µegε

)
f(t + ∆t) e−

i
h̄(Eg+h̄ω)(t+∆t) ψg(0)

• =⇒ first order short pulse excitation can easily be performed

within any iterative propagation scheme

• algorithm:

1. start at t = 0 with ψe(r, t = 0) ≡ 0

2. propagate ψe(r, t) −→ ψe(r, t + ∆t)

3. add:

ψe(r, t + ∆t) := ψe(r, t + ∆t)− C
(
µegε

)
f(t + ∆t) e−

i
h̄(Eg+h̄ω)(t+∆t) ψg(0)

4. loop over 2.+3.

after the pulse has finished, f(t) is zero and

2. propagate ψe(r, t) −→ ψe(r, t + ∆t)



The pump-probe scheme

• fs-pulse excitation leads to wave packet creation

• wavepackets=non stationary states: dynamics

• how to detect wp-dynamics experimentally ?

=⇒ pump-probe scheme:

1. use a first femtosecond laserpulse to create a wave packet

2. use a second, time-delayed laserpulse for detection:

detection:

excitation to higher electronic state −→ fluorescence

ionisation −→ electron or ion signal

• recorded signal as function of pump-probe delay

=⇒ detection of molecuar dynamics in real time

pump delay T

probe

fluorescence ionization

e-



Calculation of probe step: electronic excitation + fluorescence

• probe pulse starts interacting with the molecular sample at T

• probe pulse excites molecule to higher electronic state |s〉
experimental detection: fluorescence

=⇒ signal ∼ total population in state |s〉
consider weak pulses: time-dependent perturbation theory

equivalent expression for the probe step:

ψs(t) = − i
h̄

E0

2

t∫

T

e−
i
h̄Hs(t−(t′−T )) (µseε) f(t− T ) e−iω(t′−T )e−

i
h̄He(t

′−T ) ψe(T )

• note difference between pump-pulse:

’initial’ state ψe(T ) is not stationary

• total population in electronics state |s〉 after the end of the pulse:

Ps(T ) = lim
t−→∞

〈ψs(t)|ψs(t)〉

• experimental possibilities: detect Ps(T )



Numerical calculation of probe excitation

• discretize time integral:

ψs(t) = − i
h̄

E0

2
∆t

N∑

n=0
e−

i
h̄
Hs(N−n)∆t (µseε) f(n∆t) e−iωt

′
e−

i
h̄
Hen∆t ψe(T )

t′ = n∆t, t = N∆t

• this can be written in an iterative way:

ψs(t + ∆t) = e−
i
h̄Hs∆tψs(t)︸ ︷︷ ︸
propagation

−∆t
i

h̄

E0

2︸ ︷︷ ︸
C

(µseε) f(t + ∆t) e−iω(t+∆t) e−
i
h̄He∆t ψe(T )

︸ ︷︷ ︸
propagation

• propagation on surface |e〉 and |s〉 in parallel:

• algorithm:

1. start at t = T with ψe(r, t = T ) and ψs(r, t = T ) ≡ 0

2. propagate ψe(r, t) −→ ψe(r, t + ∆t)

3. propagate ψs(r, t) −→ ψs(r, t + ∆t)

4. add:

ψs(r, t + ∆t) := ψs(r, t + ∆t)− C
(
µegε

)
f(t + ∆t)e−iω(t+∆t) ψe(t + ∆t)

4. loop over 2.-4.

after the pulse has finished, f(t) is zero and

3. propagate ψs(r, t) −→ ψs(r, t + ∆t)

but Ps remains constant



Summary

• Simulation of Pump-Probe spectra

realisation of wave packets: femtosecond pulse excitation

time dependent perturabtion theory with arbitrary pulse shapes

wave packet dynamics induced by femtosecond pulse excitation

detection of moving wave packets: the pump-probe scheme

examples of pump-probe spectra in small molecules

• Classical simulations of pump-probe spectra
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Femtochemistry, A. Zewail, World Scientific (1994)


