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I. GENERAL INTRODUCTION
A. Outline of this work

The aim of this write-up is to provide some background information about the theory un-
derlying analytic molecular property calculations in both ground-state and time-dependent
DFT. Some results from perturbation theory and response theory are presented. Further-
more this work tries to give some insight into the strengths and weaknesses of the TDDFT
approach to excited states and place it in the framework of other theoretical methods to ob-
tain excited state properties. In the lectures, some illustrative examples are given to explain
what TDDF'T is typically used for.

B. Introduction: The place of DFT within correlated methods to electronic structure

In comparison to other correlated methods to electronic structure theory, like Configu-
ration Interaction (CI), Coupled Cluster (CC), Moller-Plesset Perturbation Theory, Density
functional Theory (DFT) takes a somewhat special place. Its aim is not to obtain a good
approximation to the ground state wave-function of the system, but rather to find the energy
of the system as a functional of the density, without reference to the wavefunction. That
such an approach is possible and is indeed formally justified was shown by Hohenberg and
Kohn in 1964 [1]. Their proof that all observables of a many electron system, including the
energy, are unique functionals of the electron density provides the theoretical basis for DFT.
This Hohenberg-Kohn theorem does not yet provide a practical approach for calculations.
For that the Kohn—Sham equations are needed. In their 1965 paper Kohn and Sham [2]
showed that if, for a non-interacting particle system, a local external potential exists (called
the Kohn—Sham potential), such that the density of the noninteracting particle system is
identical to the density of the interacting particle system, then this local potential must be
unique.

This provides a simple practical scheme for a system of non-interacting particles in a
local potential, which may in principle provide exact results for the ground-state. However,
the local potential is unknown and needs to be approximated. In practice the quality of
DFT results therefore depend on the reliability for the exchange-correlation (xc) potential
and energy functionals.

This DFT scheme has become very popular for applications in quantum chemistry for
various reasons. First of all, reliable xc functionals have been developed which enables one
the obtain accurate numbers for many types of properties, such as geometries, bonding
energies, vibrational frequencies, etc. Second, the efficiency of the DFT approach allows one
to treat large molecules (100 atoms or more) which occur in practical chemical problems.
In this respect DFT compares favorably to more expensive methods like MRCI and CC,
although these are preferable from a fundamental viewpoint. DFT is therefore a powerful,
quantitative predictive tool in theoretical chemistry.

Ordinary ground-state DFT is restricted however to the treatment of ground-state prop-
erties. Properties related to excited states or to external fields which are time-dependent
(such as the electric field from a laser beam) could not be treated with DFT. Because of



the usefulness of DF'T for ground-state properties people have been looking at ways to ap-
ply DFT to such problems as well. At the current point in time one can safely say that
time-dependent DFT (TDDFT) is the most successful and theoretically most elegant way
to treat excited states within a density functional context.

By now, TDDFT methods have been applied by many groups to various molecular
properties. It has become clear that the advantages and disadvantages of TDDFT are
similar to those of ground-state DF'T. In particular, it allows one to obtain reliable excited
state properties for fairly large molecules.

C. Useful references

A few references are given which may be useful for further study. Many text
books are available on ground-state density functional theory. The ones by Dreizler
and Gross [3] and Parr and Yang [4] are classics. The Dreizler-Gross book is more
formal, the Parr-Yang book is more ”chemical”. Good sections on perturbation and
response theory are to be found in Refs. [5,6]. Several reviews on time-dependent
density functional theory are available by Gross and co-workers [7-9]. A paper by
Casida [10] gives a nice overview of TDDFT through the eyes of a quantum chemist.
It makes direct connections to the time-dependent Hartree-Fock approach and intro-
duces the eigenvalue equation which is generally used for calculating excitation ener-
gies within TDDFT. The Bauernschmitt—Ahlrichs paper is also quite clear [11]. The
TDDFT approach in the Amsterdam Density Functional program (ADF) is described in
Refs. [12,13]. References to the practical examples discussed in the lectures are available at
http://tc.chem.vu.nl/~vgisberg/abstracts.html. Some applications of TDDFT to periodic
structures are available at http://theochem.chem.rug.nl/publications/index.html.



II. DENSITY FUNCTIONAL THEORY, HOHENBERG-KOHN THEOREM AND
KOHN-SHAM EQUATIONS

A. The Hohenberg—Kohn theorem

Is it possible to take the electron density as the basic variable for a many-electron problem
instead of the full wavefunction? If that is true it would, at first sight, imply a drastic
reduction in the complexity of the problem, as one considers a quantity which depends on
only 3 spatial coordinates, instead of the wavefunction which depends on the coordinates of
all electrons.

The Hohenberg-Kohn theorem tells us that the system is indeed fully specified by the
electron density. In order to understand why this is not so strange as it looks, we repeat
a famous (unpublished) argument by Bright Wilson. He explains that the electron density
determines the number of electrons in the system in a trivial manner (integrate the density
over all space). Furthermore the density determines the nuclear positions (the location of
the cusps in the density). The atomic numbers of the nuclei are determined by the slope of
the density at the nuclei. But if we know the position and atomic numbers of all nuclei and
the number of electrons in the system, we can write down the Schrodinger equation, solve
it (in principle) and calculate all properties of the system that we are interested in.

Although this argument is very clever and shows that the basic idea in DFT is not really
absurd, it is not obvious how this argument should be extended to the case where external
fields may be present. We therefore consider the original Hohenberg—Kohn theorem below,
in order to prove that the electron density can indeed be taken as the basic variable.

The following arguments were taken from Refs. [3,4]. Consider an N-electron molecular
system in the Born—Oppenheimer nonrelativistic approximation. The Hamiltonian H in the
Schrédinger Equation (SE)

ﬁ‘ll(xl,xg,...) :E‘I/(Xl,XQ,...) (1)

consists of the kinetic energy T, the nuclear-electron interaction Vne, and the electron-
electron interaction V.:

ﬁ:T'i_Vne'i"A/;e (2)
N

T=3%(-V)) (3)
i=1

R N N Za

Ve =0 = - Y ¥ 5 (4)
=1 i=1 a 't
N

Ve =3 — (5)
i<j Tij

The lowest energy of the system, Ejy, can be found from the Rayleigh-Ritz minimization
principle:
(Y|H|Y)

E, = m\gn W (7)



Wave function based methods attempt to search a suitable part of the space of trial functions.
(For example, in Hartree-Fock theory the best single Slater determinant is sought.) In order
to replace this with a search over densities, the Hohenberg—-Kohn (HK) theorem aims to
establish a one-to-one mapping between the electron density p:

p(x1) :/ | W(x1,Xs,...,Xn) |2 dxa...dxy (8)

and the external potential V,.. The part of the mapping
Vne — Vv —p 9)

is rather straight-forward. With each Vi we can connect a corresponding wavefunction ¥
by solving the SE. Then we can find the corresponding density by integrating the square of
the wavefunction (Eq. 8).

In order to show that p determines V. (that the arrows point in two directions), we
have to prove two things: i) if ¥ and ¥’ are different, they cannot lead to the same density.
i) if Vj, and V/, are different (by more than a constant) they will not lead to the same
wavefunction.

For a nondegenerate ground state, this goes as follows: Starting with ii), one has:

(T + Vee + Voo ) |¥) = Eg| W) (10)
(T + Vee + V2o |¥') = Ep|¥) (11)

If O =V we get
(Vae = Vao) |9) = (Egs — Eg)|¥) (12)

In other words, if the external potentials differ by more than a constant, the wavefunctions
are not identical, which is what we were trying to prove.
In the case of i) one proves that U # ¥’ implies p(r) # p'(r).

Ey, = (V|H|T) < (V'|H|V) (13)

(Here the strict <-sign holds only because of the demanded nondegeneracy of the ground
state)

(W[HW) = (W'H' + Vye =V, [V') = B} + /drp'(r) [Vae(r) = Viie(r)] (14)
Similarly we have
By < By + [ dup(®)[V,(r) = Vae(r)] (15)
Together this leads to the contradiction
Ey+ E,, < Eg + Ey, (16)
These two proofs show that the maps between Vne, U, and p, are bijective (one-to-one).
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Vie <— U > P (17)

As a consequence of the bijective map ¥ <— p, every observable O of the system is a unique
functional of the density:

([pl|O1¥[p]) = Olp] (18)

The map p — Vie tells us that p determines the external potential and thus the entire
Hamiltonian. Additionally, the HK theorem tells us that for the energy functional of a
system in a particular external potential vg

Eulp] = (U[pl|T + Vee + Vaeo ¥ o)), (19)
the exact ground state density can be found by minimization of E,,[p]:

By = min F, [ (20)

The part of the energy functional, Fyk|[p], which does not involve the external potential is
a universal density functional:

Eugo) = Fxlpl + [ drog(x)p(r) (21)
Farielp] = (W[p]|T + Ve ¥ o]) (22)

It is the same for atoms, molecules or solids. Usually V,. is the Coulomb potential, but it
can be anything in principle.

All this does not yet provide a practical scheme to get good approximations to the
ground-state density or to the energy, because it does not tell us what Fyg is or how to
perform the map p — V¥ in practice. For that one needs to go a step further: to the
Kohn—-Sham equations.

B. The Kohn—Sham equations

Kohn and Sham [2] considered a system of non-interacting (i.e. Ve = 0) electrons moving
in an external potential V;y. The SE for this system reads:

(-5 #0060 = 200 (23)

The density of this system is determined by the N lowest energy orbitals

ps(r) = ; [i(r)[”. (24)

The kinetic energy of this noninteracting electron system is given by:

N

Ti[p] =D (il — V?/2|5) (25)

i=1



The central assumption in the Kohn-Sham (KS) scheme is that, for each interacting
electron system with external potential vy, a local potential v, o(r) exists (nowadays called
the Kohn-Sham potential) such that the density of the noninteracting system equals the
density of the interacting system. The HK theorem then tells us that this potential must
be unique.

In order to find a useful expression for the Kohn—Sham (KS) potential, we rewrite the
total energy of the system as:

Elp) = Tilpl + [ dreo(x)p(x) + / [ dvdr "’ ) + By (26)

where the xc energy functional Ey.[p] has been introduced:

E.lp] = Fuxlol - Tlpl — 3 [ [ drar 22T (27)

r—r|

According to the HK theorem, the energy functional should be stable against small variations
dp(r) around the exact density po(r):

6E[p] |p=po=0 (28)

However, we can also look at variations with respect to orbital changes, provided we apply
certain constraints to the non-interacting orbitals, such as orthonormality:

| 6i@);(xydr =5, (29)

which keeps the density normalized and the expression for the kinetic energy formula valid.
Introducing these constraints in the form of Lagrangian multipliers ¢;;, we get:

{6} = Elol = 3 Xy [ drg;(1)65(x) (30)
oQ{gi}] =0 (31)

This leads to the KS equations (after a unitary transformation which makes the e-matrix
diagonal)

= e+ [P+ o= st v

In other words, the Kohn-Sham potential is given by:

Vso(r) = vo(r) + / = r,| PO 4 v (x), (33)
where
e (1) = S,JE(;C) (34)

is the xc potential.



As the KS potential depends on the density, the equations have to be solved self-
consistently, i.e., from an initial guess for the orbitals one calculates the KS potential, which
can be used in the next iteration to get a new set of orbitals and the density. This continues
until no more changes occur.

What has been achieved by setting up the Kohn-Sham equations? One aspect is that
it provides a direct route to calculate the density, and from that the energy of the system,
once an approximation for F,. is made. Another advantage is that the kinetic energy of the
noninteracting system can be calculated exactly from the orbitals. Instead of finding a good
density functional for the full kinetic energy T[p], one only has to find a good approximation
for T'[p] — Ts[p]- In other words, the xc part of the energy should be a relatively small part
of the total.

C. The time-dependent Kohn—Sham equations

If we want to arrive at a set of time-dependent Kohn—Sham equations, several differences
with respect to the static case arise, which severely complicate the derivations. For that
reason, we shall not attempt to be rigorous in this section, but merely point out a few
important differences with respect to the static case and merely sketch how one arrives at
the time-dependent Kohn—Sham equations.

Starting from the TD SE [§],

0 -
i U(t) = HEU(), (35)

where the external potential can now be time-dependent:
H=T+W+V(t) (36)

we shall consider densities evolving from a fixed initial many-particle state ¥ (ty) = Wo.
(This is the first difference with respect to the static case, where there is no such initial
state dependence). For each initial state Wy, the TD SE defines a map

v(r,t) — U(t) (37)
and from the wavefunction we can get the density:

U(t) — p(r,t) = ()| p(r)[¥(2)) (38)

Together this defines a map v — p. A time-dependent analogue of the HK theorem requires
the proof that this map is invertible, in this case up to a purely time-dependent function
c¢(t) [in the ground state case this was an arbitrary constant].

A rough sketch of the proof goes as follows: Assume that the external potentials can
be expanded in a Taylor series around ¢ = t;. Show that, if two external potentials v and
v' differ by more than a purely time-dependent function c(t), the corresponding current
densities j and j’ will be different. Then use the continuity equation

o (e ) = =V j(x,) (39)



to show that the densities p and p' must also differ. For the full proof, see Refs. [14,8].
From this we can conclude that the many-particle wave function is a functional of the
density up to a purely time-dependent phase factor:

U(t) = e O lp)(1) (40)

The expectation value of any operator O is consequently a unique functional of the density
because the phase factor drops out of the equation:

Olp](t) = (2[pl(1)[O(t)|®[p] (%)) (41)

This was the equivalent of the HK theorem for the static case. Now we want to move on
and write down the time-dependent KS equations. Again we know that the local potential
Kohn—Sham potential v,(r,t) of a noninteracting density system which yields the exact
time-dependent density p(r,?) is unique if it exists. We again have to assume that such a
potential indeed exists.

Under that assumption, the density of the interacting particle system p(r,t) is equal to
the density of the noninteracting particle system ps(r,t), which is the sum of the squares of
the time-dependent Kohn—Sham orbitals:

N

p(r,t) = pu(r,t) = 3 [i(r,t))" (42)

i=1
where the time-dependent KS orbitals are again obtained from the noninteracting particle
equations:

z%@aw=(~§+mmuw)@mm (43

where the single-particle potential is written as

vs[p](r, t +/d !

+ Vxe (T, 1) (44)

Here v(r,t) is the time-dependent external field, [ dr' L (r ,)| is the time-dependent Hartree
potential, and the remainder, vy (r,t), is called the tlme dependent xc potential.

In the static case, the variational principle dE[p] = 0 was used to derive an expression
for the static xc potential. In the time-dependent case one instead has the condition that
the action A is stationary, dA[p] = 0, with:

Al = [ a @A)l — H OO, (45)

Because of the 1-1 mapping between W¥(r,t) and p(r,t) we can obtain the correct density
from the Euler equation

0Alp] _
Ip(r, 1)

Analogous to the HK functional Fjyx one can define a universal density functional and an
xc part of A, A,.. The time-dependent xc potential its functional derivative:

0Ax|p]
op(r,1)

(46)

Uxe(T, 1) = (47)
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1. The adiabatic approximation

For slowly-varying external potentials one can show that:

t1
A = / Eelpdt (48)
to

where p; is the density at time t. In the adiabatic approrimation the TD xc potential
simplifies to:

_ 6 Axc[p] —~ 6 Exc|pi] - r
o DR AT (49)

In other words, the time-dependent xc potential is identical to the ordinary, static xc poten-
tial of DFT, but evaluated at the density at time ¢. Similarly, the functional derivative of
Uxe, called fy., which we will need later, simplifies to the derivative of the static xc potential
in this approximation:

Ve p](r, 1)

stat r

Jre(r e’ 1 t") =~ 6(t — tl)%rg))'
In almost all applications of TDDFT this adiabatic approximation has been invoked for
the simple reason that no reliable time-dependent xc kernels are yet available. Except for
certain special cases this approximation seems to be quite reasonable. The acronym ALDA
is sometimes encountered. It stands for the adiabatic approximation in combination with
the local density approximation for the static xc potential.

(50)
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IITI. GENERAL (TIME-INDEPENDENT) RESPONSE THEORY
A. Second-order perturbation theory

Consider a Hamiltonian H which consists of a part Hy (for which the solutions (151(0) are
known) and a small perturbation H' with perturbation strength A\ << 1:

H = Hy+ \H' (51)
The solutions of the unperturbed system are assumed to be known:
Hogy) = Vo)), (52)
We want to find good, approximate solutions for F,,, ¢, for the full Hamiltonian
Héy = By (53)
The solutions of Hy (which is Hermitian) form an orthonormal set
(@ 167) = 6 (54)

In perturbation theory it is assumed that the energies and eigenvectors of H can be expressed
in a Taylor series with respect to A:

E, =Y NEY (55)
7=0
b = SN0 (56)
j=0
This leads to:
(Ho+ M) (69 + A + X260 +..) = (57)
(EQ + AED + 22ED + .. ) (00 + Ad + A26P +..) (58)

Equating powers of A left and right (for the first order) yields

Hogy) + H'¢) = B4, + B¢y (59)

EXERCISE: the (2n + 1)-rule of perturbation theory.

e A) By left multiplication with ¢(®* and integration over all coordinates, derive E{!) =
(6D [H'|6)

e B) Write down the expressions for the A? and A3 terms.
e C) Similar to A) derive explicit expressions for E(?) and E®).

e D) Show that E(® can be determined from first-order quantities (¢{), E()) only.

n n
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e E) (Optional): Show that E®Z*+1) can be determined from the knowledge of
{%...¢®)} and EQ) ... E®),

If one expands the first-order wave functions in the basis of the unperturbed functions
2 aly oy, (60)
one can derive the ground-state energy expression up to second order:

H ¢ ¢(0) H' ¢(O)
E, :ESO) + 80)‘HI‘¢0 Z | | k >< k(0|) [$0”)
k#0 EO — E,

(61)

In the case of two different perturbations H' and H? the two terms H' in the 2nd order
perturbation term have to be replaced by H' and H? respectively (and a term with H' and
H? interchanged has to be added).

B. Second-order molecular properties

For a mixed second derivative in the energy, we have

Hy Hpy + Hy Hy,

B =3 (62)
k40 EO - Ek
Note that if (H' = H?) this will always give an energy lowering because E; > F.
For the case H' = Fz, H?> = Fz, we have
=Y ZOk-TkO + L0k k0 (63)

k#0 — Ej

This is proportional to a, (+a,z) , the zz-component (+zz-component) of the static polar-
izability tensor. In fact the energy change due to a static uniform electric field F is usually
written as:

AE:—Z'u,a a Q'ZaaﬁF Fﬂ—52ﬁag7F FﬁF 4' nyaﬁ’YdF FﬁF F5+
@ T afy afyd

(64)

This defines the static polarizability («), first hyperpolarizability (3) and second hyper-
polarizability () tensors. However, note that experimentalists usually employ a different
definition of § and 7, due to a different prefactor (factor 2 for § and factor 6 for 7).
We obtain the sum-over-states expression for the static polarizability:
k=0 Ek - EO

Similar expressions exist for the magnetizability (2nd derivative with respect to uniform
magnetic field) and for many more properties.

13



Perturbation 1 Perturbation 2 Name Effect

Magn. Fld Magn. Fld Magnetizability
El. FId El. Fld Polarizability («) Rayleigh scattering
Magn. Fld El. Fld magnetic-electric (o)  Optical activity, CD
El. Fld Nucl. displ. Atomic Polar tensor IR intensities
Nucl. displ. Nucl. displ. Force Const. matrix IR freq., normal modes
Magn. Fld Nucl. displ. Atomic Axial tensor Vibrational CD
2 El. Flds Nucl. displ. normal-mode der. of « Raman int.
Magn. field Magn. mom. on nucl. NMR
Nucl. Magn. mom. Nucl. Magn. mom. spin-spin coupl.

The response theory treated here is more generally applicable than just electric fields.
Also magnetic perturbations and nuclear displacements can be treated. However, for mag-
netic effects one has to take gauge dependence into account and in case of nuclear displace-
ments the basis functions depend upon the perturbation (because they move along with the
displaced atom). This makes electric perturbations the simplest ones.

C. Coupled perturbed Hartree-Fock and KS equations

Here, the analytic solution of second order molecular properties in the Hartree—Fock (HF')
or KS theories will be briefly treated starting from the matrix form of the SCF equations
of HF or DFT (see Ref. [5]). Denoting the Fock (KS) matrix by F', the density matrix by
P, the one-electron part of F' by h and the Coulomb and exchange (or xc) part by G(P) (it
depends on the density matrix), we can write:

F =h+G(P). (66)
The converged result is obtained when the Fock and density matrix commute:
FP—-PF=0 (67)

If we now introduce a perturbation (such as static external field) with strength )\, we can
expand all matrices in different orders of this perturbation:

P=pPO 4+ pL 4 (68)

and similarly for the other matrices. Taking together the first order terms one has
FOpt) _ p)p) L pQ)p0) _ pO) 1) — o (69)
There is an additional constraint: the density matrix should be idempotent. That leads to
pOp® L p()pl) — pQ) (70)

This shows that the first-order density matrix must have only occ-virt and virt-occ blocks
and that these blocks should be the transpose (for z real) of each other.

PO =g 4 ot z=(1-POYMPO, (71)

14



Here M is arbitrary (1 — P(O)) is a projection operator on the virtual subspace and P(® on
the occupied subspace.
After some algebra, this leads to

FOgz —2FO® 4 (1 — pOYFOPO = (72)

Writing  in terms of occupied and virtual HF or KS orbitals (z = ;. Pi(al)gbi%) leads to
(again after some algebra)

Lia = ' T (73)

Because F(!) depends on P (so also on z) this is usually solved iteratively, starting from,
for example, x = 0.

D. Sum-over-states versus finite field versus analytic solution
1. Finite-field calculations

Because the static polarizability tensor is determined by a second-order change in the
energy it can be determined by performing energy calculations at various electric fields.
This is convenient as it can be applied to any method which calculates the energy of the
system. An alternative (for the polarizability) would be to take the first derivative of the
dipole moment with respect to a electric perturbation:

— lim (12 (Fz)) — lim (e (FY))

_ : (E(Fy, FY))
Qp, = —2 lim ~——=2~ F pm

Fp—0,0,—0  FLF, Fz—0

(74)

In a wariational theory, like HF or DF'T, these two approaches will yield identical results
in principle. However, in MP2, for example, these two expressions are not identical, which
gives some arbitrariness for a (usually one takes the energy derivative).

The main advantage of finite-field (FF) methods has been mentioned already, they are
almost universally applicable. The disadvantages are important however.

e Numerically difficult, many accurate digits needed in a calculation. This is especially
problematic in DFT where one uses numerical integration to calculate the xc terms.

e Only static properties are accessible, not time-dependent properties.

e A lot of handwork (calculations with many different external fields have to be combined
to obtain the desired property tensor).

2. Sum-over-state (SOS) approaches
In an SOS calculation for the polarizability (or other properties) one exploits the expres-

sion in terms of the exact eigenfunctions and excited state energies of the system (similar
expressions exist for hyperpolarizabilities and other properties):

15



. 2 Z ZkakO (75)
k;éO — Ey

In the frequency-dependent case this expression will also contain the frequency w.

The advantage is that this can be done immediately if one has a method which provides
these quantities, such as CIS or various semi-empirical approaches like INDO, etc. The
disadvantages are:

e The sum includes all the continuum states.

e Often many terms in the sum have a nonnegligible contribution, which means many
excited states are needed. Also the convergence pattern with respect to increasing
number of excitations may be very irregular, which makes it unclear how reliable the
results are.

The SOS approach is particularly useful if only a few terms are important in the SOS
expression. In that case one can employ a few-level model, of which the 2-level model is the
simplest variant.

For the average ( this takes the simple form:

,u2

B2

B o (free — Hgg) 1 (76)

where fiee, tlgq, Hge, Ege are the excited state dipole moment, ground state dipole moment,
transition dipole moment and excitation energy, respectively. This is often used for the
description of hyperpolarizability of push-pull systems, where a large hyperpolarizability
often originates from one charge-transfer excitation in a donor-acceptor molecule. In that
case the knowledge of the properties of only this single excited state provides a qualitative
understanding of why the hyperpolarizability is (or is not) large.

3. Analytic, density-matriz based

This is the approach usually called coupled-perturbed HF (or KS) in the static case and
TDHF or TDDFT in the time-dependent case. The main disadvantage is that it requires
a significant amount of programming. Its advantages are that it is easy to use (technically
accurate in contrast to FF), it gives results identical to FF (if both are carefully performed),
time-dependent properties and static properties are calculated in the same framework (i.e.
the static limit of the TD results will give the FF result). In terms of the density matrix P
of the molecule, the dipole moment in direction x is obtained from

The polarizability, the linear change in the dipole moment due to an electric field is obtained
from the linear change in the density matrix 6 P due to the field:

aij = Te[r's P = Y [r'6 P, = Y 1i,0 P, (78)

a a,b
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Similarly one could get the second-order change in the dipole moment (the first hyperpolar-
izability) from

Bik = Tr[r' o PI*] = ST [rs P7*) 0 = S 1 6P (79)

a a,b

and so on. However, because of the (2n + 1)-rule there are more efficient ways to obtain the
hyperpolarizability tensor.

By considering the (change in the) expectation value of the electric quadrupole or higher
multipole moments, one can also calculate the electric dipole-electric quadrupole polariz-
ability tensor once §P7 is known. Similarly one can calculate the mixed magnetic electric
polarizability, and so on. Turning this around: if the density change due to a external
quadrupole field is known, the change in the expectation value of the dipole moment gives
the electric quadrupole - electric dipole polarizability. This is an example of the interchange
rule, which shows two routes to mixed derivatives.
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IV. TIME-DEPENDENT LINEAR RESPONSE
A. General linear response (exact eigenfunctions)

See Refs. [6,5] for further details.

1. Pictures

We will need different pictures of quantum mechanics in the following. In the
usual Schrédinger picture (operators like 7 and p time-independent, wavefunctions time-
dependent) one has

0 .
i [ Us() = H|s(1)) (80)
which has the formal solution:
W (t)) = e =10 Wg(t0)) (81)

If the Hamiltonian consists of two parts Hy and H' where the solutions to Hy are known, it
can be useful to work in the interaction picture, which is defined by:

Ur(1)) = 0w (1)) (82)
Exercise: proof that the time-evolution of |[¥(¢)) is determined by
S (1)) = B (1) ¥ (1) (53)
H'(t) = etfot f'e—iHot (84)
Finally, in the Heisenberg picture,
T (1) = 7O Ts (1) (85)

the state vector is time-independent (£ |¥y/(t)) = 0), and the operators are time-dependent.

2. Interacting and noninteracting density-density response functions

Consider a Hamiltonian which consists of a time-independent part Hy, and a time-
dependent perturbation H'(t) which is switched on at ¢ =0

H=Hy+ H'(t), (86)
where
H(t) =0 (t < 0) (87)
H'(t) = / dep(r, o™ (r,1) (¢t >0) (88)
(89)
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We would like to know how the expectation value of an operator A changes in time by the
influence of the external perturbation. The change in the operator at time ¢ is given by:

54 = §(A)(t) = (W) AN(D)) — (To| AlWo), (90)

where W) is the solution for the Hamiltonian Hy (situation before ¢ = 0) and |¥(¢)) is the
solution for the Hamiltonian Hy + H'(t).
It is convenient to introduce solutions in the Heisenberg picture with respect to Hy:

Wi (1)) = e 00w (1)) (91)
The time evolution of this wave function in the Heisenberg picture is then given by:

9 N

iV () = H'u|Vu(t) (92)

(Exercise: show that (H')p is related to (H')s by (H')g = e!fot(H')ge *0t). Consequently,
the time evolution of [y (¢)) can be written as

Wi(0) = |00 — i [t ['(¢)], 19 (2) (93)

This can be solved iteratively by inserting the equation for |Wy(t)) repeatedly on the right
hand side. If we are interested in linear terms only:

W) = [Wo) = [ e (E'(0)) W) + O((H'P) (94)

In linear response theory we are interested only in the linear effect of H'. The idea is that H'

represents a small perturbation on the system and that terms of the order of (H')? are usually

negligible (except of course if one is interested in properties like hyperpolarizabilities!).
This expression allows us to calculate the expectation value of A as a function of time:

(Vu@)|A®) | Vu(t) = (Yol Au(t)[To) — ’i/ot dt' (Vo | Ay () H' (¢')) | ¥o) (95)
* i/ot dt' (Wo|(H'(t')) A (t) | To)) + O(H')?) (96)
~ (Yol An|Wo) — i/ot dt' (Wo|[Am, Hyy ()] W) (97)

For the change in the expectation value we get:
() = =i [ e (W] [Au(0), By ()] o) (98)
If we are interested in the linear change of the density, dp(r,t), due to a perturbation
Hy (1) = [ depu(e, )0 (x, 1) (99)
we obtain
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5p(r, 1) = / dt’ / dr'x(r, 7', ¢, ) (', 1), (100)
0
Here x(r,r',¢,t') is given by

X(I‘, I", 12 t,) = _iG(t - tl)<\I’0‘ [p(I‘, t)Ha p(rl’ tl)HH\Il0> (101)

and is called the density-density response function or sometimes the generalized susceptibil-

ity. The Heaviside function ©(¢) is equal to 1 for ¢ > 0 and 0 for ¢ < 0 and allows us to

extend the time integration range to infinity (it assures the causality principle is obeyed).
Now we can use the resolution of the identity

Z ‘\I}m><‘1’m‘ =1, (102)

where the sum runs over all eigenstates (including continuum states) and rewrite

(Wol[p(r, ), p(x', )] [ Wo) = 3 [(Wol p(r, 8) 1 [V ) (U | p(x', ') 11 Po) (103)
— (Wolp(x', ') 1 [ W) (V| p(x, 1) 1| Wo)] (104)

We insert the density in the Schrodinger picture again to rewrite

(Dollo(r, ), o, ) m]W0) = 3 [(Wole!™p(x) se 10! W) (W e p(x') e 0" [ Wg)  (105)

m

— (Tole™ p(x')ge Mo [ W, ) (T |0t p(x) s 0! W) | . (106)
Because ¥, and ¥,, are eigenfunctions of H this reduces to:

(Tollp(r, ), p(', ) g [Wo) = D [eF0EmE) (g | p(x) g W) (T | p(x') 5| W) (107)

m

— B0 B (G (1) 5[ W) (T ()5 T)]  (108)

which shows that x(r,r’,¢,t') depends only on the time difference (¢ —t'), which is physically
clear, because the results should not depend on the arbitrary choice of the zero point in time.
We obtain finally for the linear density-density response function in the time domain:

Xt = 1) = =i0(t =) 3 [T E Wy p(x) W) (U () o) (109)
= I (g () [ W) (U () [0} (110)

A Fourier transform with respect to (¢ — t') yields the response function in its frequency
representation:

: (Wo|p(x) [ Wm) (¥ |p(r')[Wo)  (Wolp(r')[Yim)(¥m|p(r) Po)
x(r,r,w):; o~ (Fo— Ey) - ot (B Eo) (111)

[If we would have started from an external potential which is switched on infinitely slowly
(e"v®™(r,t)) we would have obtained a positive infinitesimal in the denominator (w —
w+1n).]
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The convolution theorem:
a(t) = / dt'b(t — t')e(t') — a(w) = b(w)&(w) (112)
implies that we can write the Fourier transformed equation as

dp(r,w) = /dr'x(r,r’,w)vext(r',w). (113)

Clearly, the response function has the excitation energies as poles. This means that a
determination of the response function gives access to the excitation energies.

In case of a noninteracting particle system (KS or HF) the wavefunctions are Slater
determinants built from the KS (HF) orbitals. The density operator is simply a delta
function. The Slater rule for one-electron operators is:

(WolH|Wy) = (¢i|h|¢a) (114)

where ¢; and ¢, are the one-electron orbitals in which the ground and excited state deter-
minants differ (if they differ by more than one, the matrix element is zero). Using this, we
get:

(e ) _hngb* Dou)B)6() 61 () du(r) 81 (0)i(x) 15)

€0 — (€q — €i) + i€ w+ (g4 — &;) + 1€

B. Linear density response in TDDFT

In normal response theory the first-order density change dp(r,w) is obtained from the
interacting response function x and the external perturbation vey:

dp(r,w) = /dr'x(r, ') W) Vet (', W) (116)

Similarly, the first-order change in the TDDFT case is determined by the KS (noninteracting)
response function y, acting upon the change in the KS potential, dv,:

dps(r,w) = /dr'xs(r, r', w)dvs(r', w) (117)

Because of the TD HK theorem, we know (assume!) that there exists a unique dv, such that
the density changes in the interacting and noninteracting particle systems will be identical:

dp(r,w) = dps(r,w) (118)

We would like to determine what dv, looks like. It is equal to the difference in the TD
KS potential for the unperturbed system [with density po(r)] and the TD KS potential for
the perturbed system, specified by the density po(r) + dp(r,t). Remembering that the KS
potential is given in terms of the density as:

Vs (T, 1) = Ve (T +/d P Vxe (T, 1) (119)

lr—r’l .
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(1) = o+ 3p)(x,1) = el r,1) (120)

= l o(r) 4 Vess (T, +/d Polx +ff"(r ) 1 elpo + 6p)(r. 1) (121)

_ lvo —l—/d Zal t|) + e o] (r, )] (122)

From the functional derivative of v, this results in:

,5 5ch
505(T, 1) = Ve (T /d iy /d /dt ,t,)|p WO 1), (123)

where dv,./dp is called f., the exchange-correlation kernel.
To summarize, the exact density change to an external time-dependent perturbation
Vext (T, t) can be determined either from the exact response function, in shorthand notation

0p = XVext (124)
or from the KS response function and the change in the KS potential

0p = Xs0s- (125)
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V. TDDFT EQUATIONS FOR EXCITATION ENERGIES AND
POLARIZABILITIES

A. Derivation of the TDDFT equations for excitation energies and polarizabilities

From the general expression for the noninteracting response function

oo (e1,0) = Gy T ;.;,(r)ja_(,((lrg)ag;i(;i?w(r') B fa(r'iqsf((;: Eaijj)fzﬁia(r) (126)

it is clear that the first order change in the density can be written in terms of products of
occupied and virtual KS orbitals:

Noce Nyirt

Op(r,w) = 3 D2 D Piao (@) 056 (r)$io(r) + Paio (@) Pa () 85, (r) (127)

where we have employed the usual convention that %, denote occupied orbitals, and a,b
denote virtual orbitals. The occ-virt block of P is sometimes called the particle-hole (ph)
block and the elements P,; are referred to as hole-particle (hp).

From the relation (in short-hand notation) dp = xsdvs, we see that

_[5Us]ia(f
Pioo = 128
(5110 - 52’0) +w ( )
Priy = —100slaio (129)

(‘Sao - 51'0) —w

where [00s]4i0 18 [ dr'¢% (") 6vs(r") dip (2').

This expression can be compared directly to those for time-independent coupled per-
turbed HF or KS equations given earlier, to which they reduce for w — 0. (There we
explicitly proved that the first order density matrix should have the occ-virt form.)

As in the time-independent case, the problem with these equations is that the v, matrix
elements depend upon the desired density change dp. There are two ways to handle this.
The first approach is iterative and usually leads to a rapidly converged result for the density
matrix elements Pj,,. It starts from a guess for the first-order change in the Kohn—Sham
potential. The external potential can be used for that. This yields approximations for P;,,
and P,,. From that one can calculate dp which is needed to get approximations for the
Coulomb and xc terms in dv;. The new approximation for dvs yields new approximations
for the density matrix elements. Using DIIS or similar techniques this yields a converged
solution within a few cycles. Then the polarizability at frequency w can be calculated.

However, this iterative approach is not the only way to go, and we will now show how the
density matrix elements can be obtained directly from a set of linear equations. That set of
linear equations also will lead us to an eigenvalue equation which determines the excitation
energies and oscillator strengths of the system.

We first write
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i =155+ a6 | dr’%wﬂ(r,r',w) )+ S22 0) | us0) (130

= fﬁ-i‘/dww {/ dr' Y | Pipr (w) (1) i (') +ijr(w)¢br(r')¢;7(r')] (131)
]bT
L 0) )| b ) (132
Fy—y r,r,w oo (T
= Uze;(; + Z[Kiaa,ijf)ij + Kiaa,bj’rpbj’r]a (133)
jbr
where
Kugr = [ [ @065, @)600) [ 2+ 22000 @)t 6), (13
to arrive at
Z [50751']'60.1)(6(1.0 Eio + w) + Kzaa,ij] jbt + Z Kzaa b]TPb]T = _U;Z(; (135)
byt byt
Z [6075ij5ab(5a0 — &g — w) + Kaia,ij] ijr + Z Kaio,bjTijT = _UZ;'(; (136)
byt byt

Using TDHF notation this gives
{[ﬁ*@) ﬁ(@))] - [_01 (1)]} (ii) = (‘}/x:t(z‘;))) , (137)

ijT = Ljbr
Yier = Pyjr
Ajgojbr = 00r0ab0ij (Eac — €iv) + Kiao,jbr

where

)
)
)
Biwopir = Kiaopjr )

For a particular external perturbation V' we now have a set of coupled equations from which
we can extract Pj,,, the density change and a variety of molecular properties, starting with
the frequency-dependent polarizability.

As is well-known, a(w) has poles at the excitation energies of the system. This should
somehow be reflected in the equations above. At the poles, the system exhibits resonant
behavior, i.e. a infinitely small external perturbation has a huge effect on the density change.
This can only occur if the matrix on the left has a zero eigenvalue (is not invertible) at the
excitation energy. In other words:

Aw) Bw) | (X)) _ |-10]| (X
[B(w) A [\v ) =9 o 1]y (142)
The TDHF equations for excitation energies have the same form, except that the f,. matrix
elements have to be replaced by exchange matrix elements in that case. The TDHF equations
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are slightly more complicated for that reason than the TDDFT equations in the adiabatic
approximation.

If we assume a closed-shell system, where ¢+ = ¢, for all m, these matrix equations
can be split in separate singlet and triplet problems by the unitary transformation

1
ia — /= Piu + Pia 143
u \/5( 1 ') (143)
1
Vig = —(HaT - f)ia,],) (144)

V2

Assuming real orbitals we can rewrite:
(A-B)(A+B)(X+Y)=w*(X +Y) (145)

This reduces the dimension of the problem by a factor of two. The problem is still non-
Hermitian though. Because (A— B) is trivial (diagonal) in adiabatic TDDFT, we can rewrite
once again:

(A—B)Y*(A+B)(A— BY*(X +Y) =w*(X +Y) (146)
OF; = W F, (147)

where (X +Y)" = (A — B)"Y2(X +Y) has been introduced. The remaining equation has
the form of a standard Hermitian eigenvalue problem. In case of a symmetric molecule this
problem blocks out: each irrep gets its own block. This may again reduce the computational
expense drastically.

The eigenvalue equation may be solved directly with a standard diagonalization routine.
However, the linear dimension of €2 is N°“ NI the cost of a diagonalization is proportional
to N3, which results in N° scaling. The same is true for the straight-forward solution of
the set of linear equations for the density matrix elements. Both are too expensive for
application to medium-sized or large molecules. Besides the CPU problem there is also a
memory problem with the Q2-matrix.

Fortunately the eigenvalue equation can be solved iteratively by the Davidson or Lanczos
methods, where typically one is interested in the few lowest excitation energies of a certain
irrep. This is the most frequent case, because these are usually the excitations in the visible
spectrum. Then the time-determining step is the matrix-(test)vector product Q - v, which
scales like N3 (or better if linear scaling techniques are applied). This makes the cost of an
excitation energy or polarizability comparable to that of an SCF.

The approximation B = 0 is known as the Tamm-Dancoff Approximation (TDA), which
is also called CI Singles (CIS) in the TDHF formalism. In the TDHF case, this simplifies
the equations somewhat at the cost of an additional approximation. It basically decouples
the particle-hole and hole-particle blocks of the matrices.

B. Calculating the polarizability.

For the polarizability, we need only the real part of the density change, as given by,
2ROP = X + Y. Starting from

25



([d9 2] o[ 3 (F)=- (=),

AX + BY +wX = —[V*] (149)
BX + AY —wY = —[VI)* (150)

we obtain:

Summing and subtracting the two equations leads (for a real perturbation like an electric
field) to

(A+B) (X +Y)+w(X -Y) =28V (151)
(A-B)(X-Y)+wX+Y)=0, (152)

which gives
[(A+ B)—w*(A—B) '] (X +V) = 2RV (153)
[(A+ B) —w*(A - B) ' R(6P) = —RV*™ (154)

Defining S = (A — B)™!
ST2[(A+ B) — S| STV2SVPR(6P) = =S PRV (155)
[ST12(A+ B)S™? — w?| SYPR(6P) = =S /PRV (156)
R(OP) = —SY2[S2(A+B)S 2 —w?] | STPRVE (157)
Finally one obtains
(ROP)(w) = 572 {1 - Q)} STV (w) (158)
where
Qw) = —-S ?(A+ B)S /2, (159)

where 2 is the matrix of the previous section. As a result, we obtain for the polarizability
tensor component o,

s () = 271 {5—1/2 [Qw) — 1] 5—1/2} 7 (160)

In the adiabatic approximation € is frequency independent and we can replace the inverse
with the spectral representation of this operator,

1 FiF}

[Q(w) —w21] = L

I

— 161

w? —w?’ (161)
where F; and w? are the eigenvectors and eigenvalues of €2, respectively. (This expression
can be checked by acting on an arbitrary vector as a linear combination of Fy). Comparing

the resulting expression shows that
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FSVPE, = w2 (Vo £, (162)

Recalling the SOS expression for «

(Er — Eo)(Wo|&[¥r)(¥;|2[¥0)
Oy (W) ; (Br — Eo)? — (163)
wr = E[ — EO (164)
2 . N A
fr= Jwr([(Wol2| U + (WolgWr)[” + [(Lo|2[¥1) ") (165)
1
av = 166
@) =¥ 57 (166)
we obtain an expression for the oscillator strength of excitation I:
2 —
fr=5 (1#'S™PEP +y+2) (167)

In a complete basis the oscillator strengths satisfy the Thomas-Reiche-Kuhn (TRK) sum
rule

> fr=N,, (168)
I

where N, is the number of valence electrons.

C. Example: the Hs molecule in minimal basis

This example was taken from Casida [10]. If we only have an s function on atom A and
an s function on atom B, the MOs can only be:

sa(r) + sp(r)
¢g r)=
) V2(1+ (salsB))

o — Sa(r) — sp(r)
bu(r) Bl —{salsa) (170)

(169)

(171)

If we define eg4,, = £, — £, the eigenvalue equation, which has dimension NNVt Nspin —
1 x 1 x 2 looks like this:

gap

Eaap + 2€gap K11 2egap Kty
2egap K1y 5§ap + 2egap K|y

] ﬁ] = w%ﬁ’} (172)

Switching to another basis, using u and v from the previous section (Eq. 144) leads toa 1 x 1
matrix for the singlet-singlet problem and a 1 x 1 matrix for the singlet-triplet problem. Also
without this transformation it is easily verified that the solutions to this eigenvalue equation
are:
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Fsziﬂ (173)
FT:Llll, (174)

where the subscripts S and 7' already hint at the fact that these are the singlet and triplet
excitations respectively. (It is clear that a symmetric vector like Fs does not change the
total up and down spin densities.) The excitation energies are given by

ws = /Egap (Egap + 2(Kty + K1) & cgap + K + Koy (175)
wr = \/egap(Egap + 2(Kyp — K1) & €gap + Ky — Ky (176)
, (177)

where we have used that Ky = K|, K4+ = K ;. The approximation is valid if the K-matrix
elements are small corrections to the orbital energy differences.

These expressions give some support for the often used interpretation of KS orbital energy
differences as approximate excitation energies. Furthermore they provide a very efficient
way to estimate TDDF'T excitation energies, by calculating a simple matrix element. This
approach is known as the Single Pole Approzimation. It works reasonably well if, i) there is
little mixing between different one-orbital excitations ¢ pec — @3 pirt a0 P2 pec — D3 pirt (0
case of two occupied levels) and ii) the K matrix element is small compared to the orbital
energy difference.

Another, slightly better but equally inexpensive, approximation can be used: the di-
agonal approximation, which is just the expression under the square root in the previous
equations, without the Taylor expansion of the square root. This does not assume that
the K matrix elements are small, but still assumes diagonal dominance for the {2g and
matrices (in other words: no mixing of one-electron excitations). It also requires only a
single matrix element to be calculated.

However, there are many cases where the mixing of different one-electron excitations
is crucial to get a good description of the physics. We shall give examples on porphyrins,
where the low intensity of the Q-bands and high intensities of the B-bands is explained from
precisely such mixing.

For this reason, the approximations just mentioned are not widely used in quantum
chemical programs. The alternative, the iterative solution of the full matrix equation is not
very expensive computationally, so there is little reason to introduce new approximations.
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VI. PRACTICAL ASPECTS OF RESPONSE PROPERTY CALCULATIONS
A. Basis set considerations

For calculations on (high-lying) excitation energies and (hyper)polarizabilities, larger
than normal basis sets may be required for reliable results than are needed in ground-state
calculations like geometry optimizations. The reason is that high-lying virtuals (which in
fact provide a discrete representation of the continuum) are important for those proper-
ties, whereas they are not important for normal calculations. In order to obtain a good
description one needs diffuse functions. Another way of putting this is to say the the (hy-
per)polarizabilities probe the outer region of the molecule.

An example of basis set effects is shown in Tab. I where the excitation energies and
(hyper)polarizability of CO is shown. It should be clear that such large effects are to be
expected mainly for small molecules. For larger molecules the important excitations involve
usually the low-lying virtuals (the outer region also becomes relatively unimportant). For
example, the o and «y values for polymers can be well described by ordinary double-zeta basis
functions if one considers the tensor components along the molecular axis. For the accurate
description of tensor components perpendicular to the molecular axis diffuse functions may
still be needed, because there is no basis set sharing in this case.

Another example is given in Tab. II, where basis set effects are studied for the low-lying
excitation energies of free base porphin. Good convergence is observed already with standard
basis sets such as the double-zeta-polarized basis set III.

B. Different methods for calculating excitation energies

There are many methods available for calculating excitation energies. They differ wildly
in computational cost and in the accuracy of the results.

On the accurate end of the scale one has the multi-reference CI and coupled-cluster
methods, with a computational scaling of N® or worse. These methods can be used for
accurate results on small molecules and for calibration of more approximate and cheaper
methods.

Somewhat less well-known approaches are the solution of the so-called GW and Bethe-
Salpeter equations, which is popular in solid-state physics, but which have only recently
been applied with some success to molecules. The same is true for Quantum Monte Carlo
which is a potentially very accurate method, as it makes no assumptions on the form of
the wavefunction. It also has been applied only recently to molecular excited states with
interesting results, but too few to enable a definite assessment.

Next in line are perhaps the SAC-CI, CASPT2, MRMP, STEOM-CC and TDDFT meth-
ods. The Symmetry-Adapted-Cluster-CI method by Nakatsuji and coworkers is basically a
CI in which not all determinants are taken into account. The rules by which it is decided
which determinants can be ignored introduce a slight arbitrariness and this approach is
therefore somewhat less ab initio than the methods mentioned before. However, the great
advantage is that it enables calculations on large systems. Applications to molecules with
about 100 atoms have already been shown.
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The CASPT2 (complete-active-space second-order perturbation theory) by Roos and
coworkers and MRMP (Multi-reference Moller-Plesset) by Hirao and coworkers methods
are based on CASSCF. The CASSCF method is a cheaper variant of MCSCF which scales
like N5 with system size. The MCSCF excitation energies should improve over TDHF,
but in many cases dynamic correlation is important (transition metal compounds) and the
CASSCF/MCSCEF excitation energies may be off by several eV. MRMP and CASPT?2 solve
this problem. The typical error of these methods is in the order of 0.2 eV. An important
advantage is that they also treat double excitations. The system size which can be treated
depends strongly on the number of active orbitals. A system like MnO, cannot yet be treated
by CASPT2 because too many active orbitals have to be taken into account. However,
successful applications to porphyrines have already been demonstrated. Chemical intuition
from the user is required because it is crucial for the reliability of the results that the correct
active orbitals are identified. Furthermore some technical knowledge of the algorithm is also
required because there may be a problem with intruder states which is not so easy to get
rid of. This restricts the practical usefulness of CASPT2 somewhat to expert users.

The STEOM-CC (similarity-transformed equation-of-motion coupled-cluster method) is
a modification of the ordinary EOM-CC method (usually at singles and doubles level) in-
tended to be much more efficient (by Nooijen and coworkers). Certain approximations are
made in this process which in some cases make the results less reliable. Initial results are
promising but further testing seems needed for a definite assessment.

TDDFT is computationally cheaper than the methods in the same list (formally O(N?),
closer to O(N) with distance cut-offs). Many tests have been performed. In many normal
cases, TDDF'T performs quite well and is of similar accuracy to the methods just mentioned.
The method is easy to use, technically. The only freedom of choice is for the xc function-
als. As in the ground-state case, popular functionals like B3LYP perform well. Special xc
potentials have also been devised for use in TDDF'T calculations. These usually perform
very well. Some problems have not yet been solved in TDDFT (in other words: the current
xc functionals are not always good enough). A serious problem in linear chains has been
identified where polarizabilities are (strongly) overestimated and excitation energies under-
estimated. Another problem is that double excitations cannot be predicted yet, although,
surprisingly, excitations with a considerable amount of double excitation character are often
still quite well described in practice. The lowest singlet excitation in dissociating Hs is in-
correctly described, which should give a warning for application to some types of potential
energy surface calculations. There may be a triplet instability problem for triplet excitation
energies.

The TDHF method is of similar expense as TDDFT (formally N*). The results are
much poorer in standard cases. It shares the problems of TDDFT (except the linear chain
problem). There are not so many other cases where TDHF is to be preferred over TDDFT.

Semi-empirical methods come in various varieties (ZINDO/S, INDO, MNDO, etc.). They
usually include a single or double CI and may be especially parametrized for spectroscopic
applications (as indicated by /S). They are inexpensive, but are somewhat risky to use
outside the domain for which the parameters have been optimized. In particular applications
to difficult systems containing transition metals may fail.
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TABLES

TABLE 1. Basis set effects on «, 8, w;

BASIS a B Iy, gl
11 (DZ) 10.200 9.7564 14.24 8.58
111 (DZP 11.017 6.8376 13.97 8.76
V (TZ2P 11.472 14.599 12.61 8.57
VI (TZ3P) 12.689 22.316 11.25 8.57
VIIDIFF (TZ3P-+1diff) 12.979 23.790 11.37 8.55
VI2DIFF (TZ3P-+2diff) 13.010 23.394 10.77 8.55
VI3DIFF (TZ3P+3diff) 13.012 23.177 10.80 8.55
Ref. 13.08 26.6 10.78 8.51

TABLE II. Basis set effects on BP/ALDA dipole-allowed singlet excitation energies and oscil-
lator strengths of free base porphin up to 5.6 €V in the experimental geometry

Sym. Nr.  SZ(I)? DZz(II)> DZP(ID)®  TZP(IV)*  TZ2P(V)* TZ2PAE(V,ae)®
B;, 1 2320.001 2.99 0.001 3.10 0.0004 3.10 0.0005  3.08 0.0005 3.08 0.0005

2 5.46 0.004 5.94 0.001 5.91 0.002 5.21 0.003 5.22 0.003  5.22 0.003
By, 1 246 0.001 2.37 0.0006 2.31 0.00005 2.29 0.0000003 2.29 0.000002 2.29 0.000009

2 3.26 0.03 3.04 0.03 292 0.03 295 0.05 2.95 0.05 2.95 0.05

3 4.00 1.150 3.59 1.081 3.51 1.026  3.46 0.9985  3.47 1.002  3.46 1.000

4 454 0.135 4.0 0.1  4.04 0.08  4.05 0.08 4.05 0.08 4.05 0.08

5 563005 527006 518 0.04 5.16 0.07 517 0.07  5.17 0.07

6 5.81 0.102 5.41 0.04 5.35 0.05  5.32 0.07 5.33 0.07  5.33 0.07

7 590 0.1068 5.65 0.1  5.50 0.08  5.35 0.05 5.37 0.05 5.36 0.05

8 6.24 0.002 5.87 0.006 5.71 0.0004 5.63 0.0005  5.64 0.0004 5.64 0.0004
By, 1 202003 213002 210 0.1 2.09 0.008 2.10 0.008  2.10 0.007

2 3.00 0.02 288 0.03 2.80 0.04  2.83 0.07 2.83 0.07  2.83 0.07

3 3.80 0.440 3.59 0.826 3.51 0.797 3.47 0.7722  3.48 0.7811  3.48 0.7793

4 427002 3.95 003 3.93 002  3.94 0.01 3.94 0.02 3.94 0.02

5 450 0.824 4.32 0.448 4.22 0.4265 4.21 0.415 4.22 0.4059  4.21 0.4079

6 5.78 0.384 5.46 0.06 5.33 0.05 530 0.1299  5.31 0.1255 5.31 0.1264

7 595 0.01 5.63 0.1689 5.52 0.1659 5.43 0.1359  5.44 0.1345  5.44 0.1357

8  6.47 0.1006 6.01 0.1018 5.84 0.063 5.71 0.02 5.71 0.02 5.71 0.02

aSTO basis sets from the ADF basis set database were used. SZ, DZ, DZP, TZP, TZ2P,
TZ2PAE are, respectively, short for valence single zeta, valence double zeta, valence double
zeta with a polarization function, valence triple zeta with a polarization function, valence
triple zeta with two polarization functions, and finally all-electron valence triple zeta with
two polarization functions. In parentheses the ADF names for these basis sets are given.
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