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1. Introduction

Many experiments that one would like to describe theoretically have a common
(idealised) form: one starts by perturbing the system one wants to study by an external
agent (such as a laserpulse) and after a certain time interval one probes the system by
measuring one of its dynamical variables such as its polarisation (dipole moment). In
other words the dynamical response of the system to an external perturbation is
measured. Often the system of interest, such as a liquid, is macroscopic in nature and
it becomes impossible to describe the motion of all its individual constituents in full
detail and one has to resort to the methods of statistical (quantum)mechanics. In this
case it is often profitable to divide the system into two parts, a small subsystem
(hereafter simply called “the system”) which is described in full detail (e.g. a
molecule in a liquid) and the rest of the system (called “the environment” or “the
bath”) which is treated only statistically and which interacts with the system proper.
At the start of the experiment one assumes that the system and the bath are in
stationary equilibrium and can be described by equilibrium thermodynamics. The
external perturbation then excites the system in various ways, taking it out of
statistical equilibrium. Subsequently the system interacts with the bath and will tend
to loose (dissipate) its excess energy to its environment and will eventually return
(relax) back to thermodynamic equilibrium. One can now study this relaxation
process by measuring the value of some observable of the system as function of the
delay since the system was excited (the dynamic response function of this
observable), thus obtaining information about the system bath interaction (the
intermolecular forces in a liquid for example). If the delay is long enough one expects
the system to have relaxed to equilibrium and one simply measures the equilibrium
value of the response (which usually vanishes, e.g. the average dipole moment of a
molecule in a liquid is zero, due to random orientations).
In this short course we will discuss the theoretical tools which are needed to describe
the type of experiment discussed above. There are apparently three ingredients we
will have to treat which are absent in the description of the groundstate properties of
isolated molecules.
• We will have to decide how to describe a quantum system statistically rather than

by specifying its wavefunction.
• We will have to describe the time dependent interaction with the external

perturbing agent and the subsequent influence of this perturbation on the
properties of the system as a function of time.

• Finally we will have to study the interaction of the system with its environment
and decide on how to model the relaxation processes introduced above.

We will start with a brief summary of the quantum description of isolated systems and
then we will address each of these three problems in turn and study how they come
together in the description of quantum statistical response.
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2. Summary of Quantum Mechanics

The Postulates of Quantum Mechanics

Quantum mechanics can be based on the following abstract postulates with which the
reader is assumed to be familiar and which are repeated here in order to set the stage
for subsequent developments.

A. The state of a quantum system is fully described by a vector in a (usually
infinitely dimensional) vector space (Hilbert space). This state vector is often but
not always represented by a wavefunction. The vector space has an inner product
which is called the overlap of two state vectors.

B. The observables (measurable quantities) of a quantum system are described by
(Hermitian) operators working in this Hilbert space.

C. All measurements of an observable A have one of the eigenvalues an of the
corresponding operator A as their result.

A n = an n (1)

The corresponding eigenvector |n> is called an eigenstate of the operator.  The
eigenstates form a complete orthonormal set of states in the Hilbert space, i.e. any
state vector can be expressed as a linear combination of these eigenvectors:

Ψ = n n Ψ
n
∑

n m = nm

(2)

It is in principle impossible to predict which of the eigenvalues will be measured,
even if the state (state vector) of the system is exactly known. Quantum
mechanics can only predict the probability with which a particular eigenvalue can
be found. Note that this indeterminacy has nothing to do with an incomplete
knowledge of the state of the system and is unrelated to the statistical description
of macroscopic systems by statistical mechanics to be treated later.

D. The probability P(an) of measuring an eigenvalue an in a system described by a
state vector |Ψ> is given by the square of the overlap of  |Ψ> with the eigenstate

|n> corresponding to the eigenvalue an.:

P(an) = n Ψ
2

(3)

E. From a knowledge of the state vector at any point in time, one can predict the state
vector at a later time through the time dependent Schrödinger equation:

i
Ψ
t

= HΨ (4)
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where H is the operator of the total energy (the Hamiltonian).

Projection Operators

Note that the expression |n><n| in equation (2) can be considered as an operator
working on the state vector |Ψ>, the result being a vector proportional to |n> with a

coefficient equal to the overlap <n|Ψ>, i.e. the projection of the vector |Ψ> on the

vector |n>. The operator |n><n| is therefore called the projection operator on the state
|n>. The completeness relation (2) can then be written in terms of these projection
operators as:

n n
n

∑ = 1 (5)

Similarly one can write any operator A in terms of its eigenvalues and eigenvectors:

A Ψ = A n n Ψ
n
∑ = an n n Ψ

n
∑ ⇒ A = an n n

n
∑ (6)

We can then derive a compact expression for the average value measured for an
observable using (3) and (6):

A = P(an )an
n
∑ = Ψ n an n Ψ

n
∑ = Ψ A Ψ (7)

The Schrödinger Picture

Equation (4) can be formally solved as

Ψ(t) = e−iH ( t −t 0 ) Ψ(t0 ) ≡ U(t,t0 ) Ψ(t0)

i
t
U(t ,t0) = HU(t,t0)

(8)

where  U(t,t0) is called the evolution operator, which propagates the state vector from
time t0 to a later time t.

In this formulation of quantum mechanics, called the Schrödinger Picture the
operators are independent of time, while all the dynamical information is carried by
the state vector.

The Heisenberg Picture

An alternative equivalent (in fact the oldest) formulation of quantum mechanics is
obtained by transforming all operators and all state vectors with the unitary operator
U of equation (8):

AH (t) = U†(t,t0 )AU(t ,t0) ΨH = U †(t ,t0) Ψ(t) = Ψ(t0) (9)
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In this Picture the state vector is independent of time, but the operators evolve in time
according to the Heisenberg Equation of motion, found by combining (8) and (9):

AH (t)

t
= i H,AH(t)[ ] (10)

Since U is unitary,  the equation for the average value (7) remains valid in all pictures.

The Interaction Picture

For our purposes it is most useful to use a Picture intermediate between the
Schrödinger and Heisenberg Pictures, called the Intermediate or Interaction Picture.
In this formulation the total Hamiltionian is split into an unperturbed part H0 and a
(possibly time dependent) perturbation ′ H (t) . We transform all operators and state
vectors with the evolution operator U0 corresponding to H0 in the spirit of equation
(9). As a consequence all the unperturbed dynamics is cast into the operators, while
the state vector only evolves in time under the influence of the perturbation:

A I (t) = U0
†(t,t0)AU0(t ,t0) ΨI(t) = U0

† (t,t0 ) Ψ(t)

i
ΨI

t
= ′ H I (t)ΨI (t)

A I(t)

t
= i H0,A I(t)[ ]

(11)

For the evolution operator in the Interaction Picture we now have from (11)

i
t
UI (t ,t0 ) = ′ H I (t)U I(t ,t0) ΨI(t) = U I(t ,t0) ΨI(t0) (12)

It is now easy to make an expansion in orders of the perturbation for the evolution in
the Interaction Picture by integrating equation (12) iteratively :

  

UI (t,t0 ) = 1 + (−i) d 1 ′ H I( 1)
t0

t

∫ + (−i)2 d 2 d 1 ′ H I ( 2) ′ H I ( 1)
t 0

2

∫
t0

t

∫ +K =

1 + (−i)n d n d n−1K d 1 ′ H I( n ) ′ H I( n−1)K ′ H I( 1)
t 0

2

∫
t0

n

∫
t 0

t

∫
n =1

∞

∑
(13)

This expansion is the basis for all developments in Time Dependent Perturbation
Theory and is of course most useful if the perturbation is small, so that we can limit
ourselves to the first few terms in (12).

Response Functions

Let us use equation (12) to calculate the response discussed in the introduction in the
case of a system that can be described by a state vector. In particular we perturb the
system with some time dependent perturbation ′ H (t)  and we ask ourselves what
average value we will measure for some property A at some later time t1. We will
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limit ourselves here to the linear response, i.e. we take the perturbation into account
to first order only. For the average value of A at t1 we have from (7)

A t1
= Ψ(t1) A Ψ(t1) = ΨI (t1) AI (t1) ΨI(t1) (14)

while from (13) we find for the state vector in the Interaction Picture

ΨI (t1) = U I(t1 ,t0 ) ΨI (t0) = U I(t1 ,t0 ) Ψ(t0) = Ψ(t0) −i d 1 ′ H I ( 1)
t 0

t 1

∫ Ψ(t0 ) (15)

Putting (14) and (15) together we find

A t1
= Ψ(t0 ) AI (t1) Ψ(t0 ) + i d Ψ(t0) ′ H I( ), AI(t1 )[ ] Ψ(t0)

t0

t1

∫ (16)

The first term is just the average value of A in the absence of a perturbation, while the
second term represents the contribution to the change in the average of A that is linear
in the perturbation, i.e. the linear response. Higher order response functions can easily
be derived by using (13) to higher order.
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3. Quantum Statistical Mechanics, The Density Operator

Definition and Properties of the Density Operator

The theory in the previous section for the response function depends critically on a
knowledge of the unperturbed state vector and cannot therefore be used for
macroscopic systems or systems that interact with a bath, since in these situations one
can never actually determine the state vector. However, often it is possible to specify
the probability that the system can be described by a certain state vector. For example
if a system is in contact with an external heat bath at a temperature T,
thermodynamics tells us that the probability of finding the system in a state with
energy En is proportional to the well know Boltzmann factor:

pn ≈ e− En kT (17)

If one wants to evaluate the average value of some observable A in such a case one
has to deal with two kinds of probabilities, first the inherent quantum mechanical
probabilities that are always present and second the probabilities due to our lack of
knowledge of the precise quantum state the system is in. If pn is the probability that
the system is in the state |Ψn> the average value for a property A is found as:

A = pn Ψn A Ψn
n

∑ (18)

The statistical state of the system is clearly defined by the combination of the
probabilities pn and the corresponding state vectors |Ψn>. This total state information

can conveniently and compactly be summarised by introducing a new object, the
density operator, defined as a weighted sum of projectors on the state vectors |Ψn>:

= pn Ψn Ψn
n

∑ (19)

The average value (18) can then be written in terms of this density operator as:

A = pn Ψn A Ψn
n

∑ = pn Ψn A m
n
∑

m
∑ m Ψn =

m Ψn pn Ψn A m
n
∑

m
∑ = m A m

m
∑ ≡ Tr A

(20)

In the last line we have defined the trace of an operator as the sum of all its diagonal
elements in any complete set of states (the value does not depend on which complete
set we choose).  The density operator in fact contains all information that can be
known about the system, e.g. also the probability of measuring a particular eigenvalue
an  for the property A can be expressed with the help of this operator (see eq. (3)):
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P(an) = pmPm (an )
m
∑ = n Ψm pm Ψm n

m
∑ = n n =

q Ψm pm Ψm n n q
mq
∑ = Tr n n

(21)

So this probability is equal to the trace of the density operator and the projector on the
eigenstate of A corresponding to the particular eigenvalue an. or alternatively by the
diagonal matrix elements of the density operator in the eigenstate basis of the operator
A.
The density operator can be defined by giving its matrix elements in any complete
basis, the so called density matrix. The diagonal elements of the density matrix are
known as populations (they correspond, according to (21), to the probability of
finding the system in the corresponding state), while the off-diagonal elements are
known as the coherences.
For the trace of the density operator itself we find

Tr = m Ψn pn Ψn m =
n
∑

m
∑ pn Ψn Ψn

n
∑ = pn

n
∑ = 1 (22)

since the probability to find any state should be unity.
If all the pn in (19) except one (say for |Ψ>) vanish, the density operator in fact

reduces to the projector on the state that has probability 1:

= Ψ Ψ (23)

The density operator formalism becomes then superfluous but remains correct. In
such a case one says the system is in a pure state, while the more general case (19) the
system is said to be in a mixed state. It is easy to recognise if a given density operator
corresponds to a pure state or not by taking the trace of its square. We have

Tr 2 = pn
2

n
∑ ≤ pn

n
∑ = 1 (24)

since all probabilities are smaller than unity. Only if all pn in (24) vanish except one,
can the equality be reached, in which case the state is pure and the density operator is
a projection operator (23) with the characteristic property

2 = (25)

In the case of a system in contact with a heat bath at temperature T, as in equation
(17) (the system is then said to be described by the canonical ensemble), we can write
a very compact expression for the density operator:

=
1

Z
Ψm e− E m kT Ψm

m
∑ =

1

Z
e− H kT Ψm Ψm

m
∑ =

1

Z
e− H kT

Z = Tre− H kT = Ψm e− H kT Ψm
m
∑ = e− E m kT

m
∑

(26)
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Here Z is a normalisation factor ensuring that the trace of the density operator equals
unity. In fact it plays an important role in statistical thermodynamics, where it is
known as the partition function and it can be shown that if it is known as a function of
temperature and volume, then all other thermodynamic quantities can be derived from
it.

Time Dependence of the Density Operator, The Liouville Equation

From the Schrödinger equation (4) we easily derive the corresponding equation
determining the time dependence of the density operator:

t
= Ψm t pm Ψm

m
∑ + Ψm pm Ψm t

m
∑ =

−iH Ψm pm Ψm
m
∑ + i Ψm pm Ψm

m
∑ H = −i H, (t)[ ]

(27)

This equation for the evolution in time of the density operator is known as the
(quantum) Liouville Equation. Note the change of sign compared to the Heisenberg
Equation (10) for an arbitrary operator in the Heisenberg Picture. Equation (27) is
actually in the Schrödinger Picture, where the state vectors and hence the density
operator change in time, while the operators describing observables are time
independent.
For a system in thermal equilibrium described by (26) the density operator is seen to
be a function of the Hamiltonian and hence it commutes with the Hamiltonian.
Equation (27) then tells us that the density operator and hence all average values are
in fact constant in time as is to be expected for a system in stationary thermal
equilibrium. If we apply an external perturbation, the density operator will no longer
commute with the total Hamiltonian (including the perturbation) and (27) then tells us
that the density operator will start to evolve. After the perturbation is switched off we
will see later that the system will return to equilibrium (26) provided it is coupled to a
heat bath at temperature T.
Again we can formally solve (27) using the evolution operator U of equation (8):

(t) = U(t ,t0 ) (t0)U †(t ,t0 ) (28)

The Liouville Superoperator

By a notational trick one can make the Liouville Equation for the density operator
(27) look exactly like the Schrödinger Equation for the state vector (4). To this
purpose one introduces the Liouville superoperator or Liouvillian L, i.e. a
mathematical object that turns an operator into another operator, just like an ordinary
operator turns a state vector into another state vector. It is defined by its action on an
arbitrary operator A:

  L A ≡ H,A[ ] (29)

The Liouville Equation can then be written in complete analogy with (4) as
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t
= −iL

(t) = U (t ,t0 ) (t0 ) U (t,t0) = e−iL (t − t0 )

(30)

where in analogy with (8) we have also introduced a superoperator evolution operator
that obeys the differential equation (compare 8)

  

U (t ,t0)

t
= −iL U (t ,t0 ) (31)

Although these notations do not introduce anything new, they have the advantage that
many of the equations valid for state vector dynamics can be taken over if one
replaces state vectors by density operators and Hamiltonians by Liouvillians.

A simple two state example, Density Operator versus State Vector

Let us as a simple example consider a system with only two energy levels a en b (a
concrete example would be the two energy levels of a spin 1/2 particle, Zeeman split
by a magnetic field). For simplicity we choose the zero of energy so, that the energies
are symmetrically distributed around zero. The matrix of the Hamiltonian in the basis
of its two eigenstates |a> and |b> is then simply:

H =
∆ 0

0 −∆
 
 
  

 
(32)

We now consider the system in two different statistical states, with two different
density matrices. First assume that at time t=0 the system is in a pure state described
by the state vector |Ψ> or the equivalent density operator |Ψ><Ψ|. If  |Ψ> is given by

Ψ =
1

2
a + b( ) (33)

the corresponding density matrix in the basis of the eigenstates |a> and |b> reads

1 =
1

2

1 1

1 1

 
 
  

 
(34)

On the other hand we consider a mixed state of the system at time t=0 in which there
is a probability 1/2 that the system is in state |a> and 1/2 that it is in |b>. In that case
the density matrix in the eigenstate basis is given by

2 =
1

2

1 0

0 1

 
 
  

 
(35)

Note that according to (21) in both cases the probability of measuring the energy ∆ or

-∆ is equal to 1/2. Nevertheless the two density matrices describe different physical

situations. If we are given the matrices in (34) and (35), then according (24) and (25)
we can immediately verify that (34) refers to a pure state, while (35) does not:
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Tr 1
2 =1 Tr 2

2 =
1

2 1
2 = 1 2

2 ≠ 2 (36)

Moreover (35) and (36) will evolve differently in time. In fact one can easily verify
by substitution into the equation of motion (27) and evaluating the commutator of
(33) and (34) that at times other , t=0 (34) is given by:

1(t) =
1

2

1 e−i∆t

ei∆t 1

 
 
  

 
 (37)

On the other hand (35) obviously commutes with (33), so (27) then tells us (35)
remains constant in time. In both cases the probabilities of measuring the energy ∆ or

-∆ are constant and equal to 1/2 at all times. However, the two distributions do differ

for their predictions of other properties. For example consider a property B that only
has off-diagonal matrix elements between our two energy eigenstates (in the spin
example this might e.g. be the x component of the spin, if the magnetic field is in the z
direction). For the average value of such a property we find using (20) and (35), (37):

B =
0 b

b 0

 
 
  

 

B
1

= Tr 1(t)B = b cos∆t B
2

= Tr 2(t)B = 0

(38)

So while in the pure state the average value of B oscillates in time, it vanishes for all
times in the mixed state, clearly demonstrating the physical difference of the two
situations.

Exercise

Calculate the possible values for the property B above. What is the probability (as a
function of time) of measuring each of these values in the statistical states studied
above. Verify that the average values are indeed given by (38).



13

4. Quantum Statistical Response Functions

Response Functions and the Density Operator

In this chapter we will consider how to calculate the response functions we treated
briefly in chapter 2 in the state vector formulation, when the system we study is
described by a density operator rather than by a state vector. The problem we have to
solve can be described as follows: At a time t0 in the distant past the system is
described by a density operator (usually the equilibrium operator (26)).

Subsequently we disturb the system with a time dependent external perturbation
′ H (t) , such as one or more pulses of electromagnetic radiation.  During the time the

perturbation is present the density operator will evolve under the influence of both the
unperturbed Hamiltonian H0 and the perturbation ′ H (t) . Finally we ask ourselves
what the average value of some observable A will be when we measure it at some
time t in the future. Just as in chapter 2 the problem can most profitably be formulated
in the Interaction Picture, where the density operator (and the state vectors from
which it is constructed) only evolve under the influence of the perturbation ′ H I(t) ,
while the operators describing observables are evolving with the unperturbed
Hamiltonian H0. We easily derive from (11) and (27) the equations of motion in the
Interaction Picture:

I (t)

t
= −i ′ H I (t), I (t)[ ]

A I(t)

t
= i H0(t), AI (t)[ ] A I (t) = eiH 0 (t− t0 )Ae−iH0 ( t −t 0 )

(39)

We can now use equation (39) to derive a perturbation expansion for the density
operator in the Interaction Picture in powers of the perturbation ′ H I(t) . To this
purpose we can, to first order, replace the density operator on the right hand side of
(39) by its unperturbed value at time t0.  It is then easy to integrate (39) and we find to
first order:

I (t) = I(t0) − i d 1 ′ H I ( 1 ), I (t0)[ ]
t0

t

∫ (40)

To find the density operator to arbitrary order, we substitute this first order solution
back into (39) and integrate again. Proceeding iteratively in this way we obtain the
time dependent perturbation theory expansion for the density operator:

  
I (t) = I(t0) + (−i)n d n d n −1 K d 1 ′ H I( n), ′ H I ( n−1)K, ′ H I ( 1), I(t0 )[ ][ ][ ]

t0

2

∫
t 0

n

∫
t0

t

∫
n =1

∞

∑
(42)

For the nth-order response, i.e. the average value of the observable A at time t we then
find with the help of (20) (which remains valid in the Interaction Picture, prove this)
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A t

( n) = (−i)n d n d n − 1K d 1 TrA I (t) ′ H I ( n), ′ H I ( n −1)K, ′ H I ( 1), I(t0)[ ][ ][ ]
t 0

2

∫
t 0

n

∫
t0

t

∫ (43)

As an important concrete example let the perturbation be due to an external time
varying electric field E(t) interacting with the dipole moment operator   of our

system, so the interaction is ′ H (t) = − ⋅ E(t) . One then usually measures the

resulting perturbed time varying dipole moment of the system, which (if macroscopic)
will generate a measurable signal. The time dependent proportionality factors between
the nth power of the applied electric field and the nth order contribution to the resulting
dipole moment are called the dynamic nth (hyper-)polarisabilities or the non-linear
susceptibilities and are the prototypical examples of optical response functions. From
(43) we find for these susceptibilities χ:

  

i

( n)
(t) = d n d n− 1K d 1 ii nin −1 Ki1

(t , n , n−1 ,K, 1) Ein
( n )Ein −1

( n −1)KEi1
( 1)

t0

2

∫
t 0

n

∫
t 0

t

∫
inin −1 Ki1

∑

iinin −1 Ki1
(t , n, n− 1,K, 1) = in Tr Ii(t) Ii n

( n ), Iin −1
( n −1 )K, Ii1

( 1), I(t0)[ ][ ][ ]
(44)

Note that the nth order susceptibility in (40) is an (n+1)th order tensor with respect to
the Cartesian directions. It also seems to depend on n+1 different times, but we shall
see that in actual fact it only depends on the n differences between these times. Note
also that there is no commutator involving the latest (left most) dipole operator.

Pictorial Representation

In the case of an isolated system (no relaxation) that we are considering here, we can
in fact give explicit expressions for these response functions in terms of energy
eigenvalues and eigenstates of the system. Due to the commutators in (44) we will
have to treat an increasing number (2n) of terms as we go to higher order. To keep
track of all these terms it turns out to be advantageous to represent them in a pictorial
way. In order to see how this pictorial representation comes about, let us work out one
term of the second order response function given by (44) with n=2. One contribution
would be e.g.

−Tr Ii (t) Ij( 1) I (t0 ) Ik ( 2 ) = − P(a) c Ii (t) b b Ij ( 1) a a Ik( 2) c
abc
∑

P(a) = 1
Z e− Ea kT

(45)

where we have explicitly written out the trace and inserted the completeness relation
(5) for the eigenstates of the unperturbed Hamiltonian. The density operator at the
start of the experiment is assumed to be in thermal equilibrium and is therefore given
by (26). We now use equations (8) and (11) to calculate the matrix elements of the
Interaction Picture dipole moment operators:
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a I ( ) b = a U0
†( − t0 ) U0( − t0 ) b = a e iH0 ( − t0 ) e−iH0 ( − t0 ) b =

e i( E a − E b )( − t0 ) a b
(46)

where in the last line we have expressed everything in the matrix elements of the
ordinary, time independent, Schrödinger Picture dipole moment operator. Substituting
(46) into (45) we find:

−Tr Ii (t) Ij( 1) I (t0 ) Ik ( 2 ) = − P(a) c i b b j a a k c e i(E a − Eb )( 2 − 1)e i(E c − Eb )( t − 2 )

abc
∑ =

− P(a) c i b b j a a k c e
i Ea −E b( ) t1e

i E c − Eb( )t2

abc
∑

(47)

Note that (47) indeed only depends on the two differences of the three times and in
the last line we have made this explicit by introducing relative time coordinates:

t1 ≡ 2 − 1 tn −1 ≡ n − n −1 tn ≡ t − n (48)

Also note that the time t0 (a time before any interaction, see above) has completely
dropped out of the equation. This is physically sensible, since the system was in
thermodynamic equilibrium before the external perturbation acts and can not
therefore evolve from t0  until 1 , the time of the first interaction.

With equation (47) we now associate a picture (Figure 1) that summarises the
physical process involved and from which we can derive the corresponding equation
in an unambiguous way. These pictures are known as Double Sided Feynman
Diagrams.

We read the diagram with time running from the bottom to the top. We start with the
system in the state |a><a| (the Boltzmann sum over a is implicit).  Subsequently the
first interaction takes the system from the population |a><a|  into the coherence
|b><a|. The left line in the diagram corresponds to the “ket” part of the operator, while
the line on the right corresponds to the “bra” part. The interaction contributes a matrix
element <b| |a> in (47) and is symbolised in the diagram by a wavy line (we ignore

the arrow). Subsequently the system evolves freely for a time t1 contributing a factor
exp(i(Ea-Eb))t1 . Then the system again undergoes an interaction, taking it to the state
|b><c| and contributing a matrix element <a| |c> and a factor –1 coming from the

Figure 1
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commutator in (44). There is such a factor for every interaction on the right. Next the
coherence evolves for a time t2 contributing a factor exp(i(Ec-Eb))t2. The final
interaction takes the system from the coherence |b><c| to the population |c><c| and
contributes a matrix element <c| |b>. The total contribution is then obtained by

summing the resulting expression over all the labels (a, b and c in this case).
Clearly every term in (44) can be represented by a similar diagram and conversely we
can generate all the terms that contribute to the response function by enumerating all
possible diagrams and associating an algebraic expression like (47) with each of them.
The response function is then calculated as the sum of the contributions from all
diagrams.

General Rules for Double Sided Feynman Diagrams

Let us summarise the general rules for associating and algebraic expression with a
(double sided) Feynman diagram:

• For the nth-order response function draw two lines representing the density
operator and add n wavy lines representing the interaction with the external
perturbation connecting in all possible ways with either the left or the right line
and in all possible time orderings. Add a final (n+1)th interaction representing the
operator we measure the response of (A in (43)) on the left only. (We will always
draw the arrow head pointing to the right except for the final one which points to
the left, but we do not attach any significance to this convention.)

• Label all the lines between interactions with their energy level.
• Label all n intervals between two successive interactions with a relative time

coordinate t1 t2 … tn starting at the bottom.
• For each interaction connecting a line labelled a to a line labelled b we have a

factor <a| |b>.

• For each interval ti we have a factor e i(E a − E b )t i  where a is the label of the right line
during this interval and b the label of the left line. Ea and Eb are the corresponding
energies.

• For each interaction on the right there is a factor –1.
• Add a Boltzmann factor P(a) = 1

Z e− Ea kT  for the starting level a at the very bottom.
• Finally sum over all labels and sum the contributions of all diagrams.
• The nth order response function has an overall phase in from (44).

In Figure 2 we draw all possible 2nd order diagrams, while in Figure 3 all 3rd order
diagrams are enumerated.

Exercise

Write down the algebraic expressions corresponding to the four 2nd order diagrams.
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Figure 2
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Figure 3A
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Figure 3B
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Experimental Determination of Response Functions

In the previous section we discussed how we can calculate the time development of
the average dipole moment of a system under the influence of an external time
dependent electric field. In real experiments of course, we have to consider a
macroscopic sample and at any instant in time the electric field and consequently the
induced dipole moment will depend on the position within the sample. However, in
many cases it is a reasonably good approximation to assume that the local response
only depends on the local field. We can then consider a volume element of our
macroscopic system that is small compared to the wavelength of light and calculate
the local dipole moment per unit volume (called the polarisation P(r)) just as in the
previous section. Since we saw that the susceptibility only depends on the relative
times defined in equation (48), we can write (44) at a particular point r in space in
terms of these relative coordinates as:

  
Pi

(n ) (t) = dtn dtn −1 K dt1 iin in− 1Ki1
(tn ,tn−1 ,K,t1) Ei n

(t − tn)Ein−1
(t − tn − tn−1)KEi1

(t − tn − tn −1K − t1)
0

∞

∫
0

∞

∫
0

∞

∫
ini n−1 Ki1

∑
(49)

The time varying polarisation P(t) is in fact directly measurable, since from classical
electrodynamics its generates a signal wave whose intensity is proportional to its
square.
The are two idealised ways to set up the experiment. In the first type of experiment,
called time domain spectroscopy, the perturbation consists of a series of short pulses of
radiation, that is short compared to the time scale of evolution of the system studied,
but nevertheless containing several periods of oscillation in the electric field in order
to still be able to assign definite frequencies to the beams. One then studies the
response (the signal generated by the polarisation) as a function of the delays between
the pulses.
In the second type of experiment, called frequency domain spectroscopy, one uses a
set of continuous beams of various frequencies, and one studies the intensity of the
continuous signal generated by the polarisation as a function of these frequencies.

Time Domain Spectroscopy

The perturbation in this case can be written as the sum of a series of pulses at times

  1, K n− 1, n  with frequencies   1, K n −1, n . We can write this as a sum of delta
function contributions:

E( ) = Ej ( − j )e
−i j j

j =1

n

∑ (50)

Substituting into (49) and using the transformation to relative coordinates (48) we find
after performing all the trivial time integrations

  

P(n ) (t) = (tn,tn− 1,K,t1) EnEn −1KE1e
i( 1 + 2 +K n )t n + K+i ( 1 + 2 n ) t2 + i 1 t1[ ] ×

e−i ( 1+ 2 +K n ) t
(51)
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where we have suppressed the obvious spatial tensor indices on the vector fields and
the response function. We see that in this case the signal intensity (which is propor-
tional to the squared polarisation) is directly proportional to the absolute value of the
response function.

  Is(t) ~ (tn ,tn−1 ,K,t1)
2

(52)

In fact one can show that with a different detection technique (so called heterodyne
detection, which we will not treat here), the phase can also be measured.

Frequency Domain Spectroscopy

In this case the perturbation consists of a number on continuous monochromatic
beams, so we can write for the time dependent electric field:

E( ) = Ej e
−i j

j =1

n

∑ (53)

Substituting into (49) we find

  

P(n ) (t) = ( 1 + 2 +K n , K, 1 + 2 , 1) EnEn−1KE1e
−i ( 1+ 2 +K n ) t

(Ωn ,Ωn −1,K,Ω1 ) ≡ dtn dtn− 1K dt1 (tn ,tn−1 ,K,t1) e iΩn tn +K + iΩ2 t 2 +i Ω1 t1

0

∞

∫
0

∞

∫
0

∞

∫
(54)

So the signal is now proportional to the (one sided) Fourier Transform of the response
function and therefore provides essentially the same information.

  Is(t) ~ ( 1 + 2 + K n , K, 1 + 2 , 1)
2

(55)

The Fourier Transform in (54) can easily be carried out on the expressions given by
the rules for Double Sided Feynman Diagrams above. The (one sided) Fourier
Transform of the time factors given there for each time interval are found to be

dti ei( Ω i + i )t1

0

∞

∫ ei ( Ea − Eb ) t1 =
−i

Ea − Eb + Ωi + i
(56)

where we have added a small imaginary part i  to make the Fourier Transform

converge. So to write down the frequency dependent response functions from the
diagrams we can use the same Feynman rules as above with two exceptions:
• For each interval n we have instead of the time dependent factor a frequency

dependent factor  
1

Ea − Eb + Ωi + i
• There are no factors of –i  (the original factors cancel with those in (56))
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The Fourier frequencies Ωi
 can be directly replaced by the frequencies ωi of the

radiation beams to calculate the response (54) and (55) with

Ω i = j
j =1

i

∑ (57)

In Figures 1 to 3 the frequencies of the participating beams are used as labels for each
interaction, thus facilitating the transcription to algebraic expressions.
For example the contribution to the frequency response of the diagram in Figure 1 is
given according to these rules by

− P(a)
c i b b j a a k c

(Ec − Eb + 1 + 2 + i )(Ea − Eb + 1 +i )abc
∑ (58)

Note that the response can be very large if the frequencies of the beams are close to
making one of the denominators in (58) vanish. In such a case the experiment is said
to be resonant or near resonant and we can then usually neglect all contributions
from other diagrams that are not resonant (this is known as the Rotating Wave
Approximation). In this way a particular experiment can sometimes be described by
one or only a few diagrams.

Exercise

Calculate the contributions in the frequency domain for all the diagrams in Figure 2.
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5.  Quantum Description of Relaxation Processes

System-Bath Interaction

As discussed in the introduction, experiments are rarely performed on single
molecules in total isolation. Rather the systems studied interact with their
environment during the course of the experiment and we have to take this interaction
into account in some way in order to get a meaningful description of the response
functions of the system. In order to do so we conceptually split the whole
macroscopic system under consideration into the system proper, which we try to
describe completely, and the rest which we will consider as a heat bath that can
exchange energy with the system, but which we describe only in an average statistical
way. The total Hamiltonian can then be written as the sum of the system Hamiltonian
HS, the bath Hamiltonian HB and their mutual interaction HSB. We can write these
Hamiltonians in terms of their eigenstates and eigenenergies according to (6) as:

H(qS ,qB) = HS(qS ) + H B(qB ) + HSB(qS ,qB)

HS = Ea a a
a
∑ HB = ∑

HSB = Fab(qB) a b
ab
∑ = F

a b
a b

a b
∑

(59)

Reduced Density Operator

Before the system and bath interact we can write the density operator for the total
system as the product of the density operators of the system and the bath respectively

= B B =
1

Z
e−H B kT (60)

where we assume the bath to be in thermodynamic equilibrium, but allow the system
to be in a general state. However, once the system and the bath interact the density
operator will evolve according to the Liouville equation under the influence of the
total Hamiltonian and will loose the simple product form (60). On the other hand we
are usually only interested in the properties of the system and not in those of the bath.
If we consider the average value of an operator that only acts on the system
coordinates we have according to (20)

A = Tr A = a A a
a
∑ = a ∑

 
 
  

 
A a

a
∑ = TrS A

≡ TrB

(61)

where we have defined the reduced density operator  as the trace of the total density

operator with respect to the bath coordinates. Note that this definition is consistent
with (but more general than)  equation (60) since the trace of the bath density operator
in (60) is unity. In order to describe the dynamics of the system with this reduced
density operator we need an equation of motion for it, which we can derive from the
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equation of motion (27) for the total density operator. Just like in (39) we will
describe the evolution in the Interaction Picture, but now the unperturbed Hamiltonian
is the sum of system and bath Hamiltonian, while the perturbation is the system-bath
interaction. We therefore have:

I (t)
t

= −i HSB(t), I (t)[ ]

I (t) = I(0) − i d HSB( 1), I ( )[ ]
0

t

∫

I (t)

t
= −i HSB(t), I (0)[ ] − d HSB(t), HSB( ), I ( )[ ][ ]

0

t

∫

(62)

where we have iterated the differential equation once in order to get it into a form
which turns out to be more convenient for the purpose of eliminating the bath
coordinates. Since we expect the (large) bath to be hardly affected by the presence of
the evolving system, we can to second order in the interaction write the density
operator on the right in its unperturbed product form (60) after which we can take the
trace on both sides with respect to the bath coordinates:

I(t)

t
=

TrB I (t)

t
= −iTrB HSB(t), B I (0)[ ] − d TrB HSB(t), HSB( ), B I( )[ ][ ]

0

t

∫
(63)

This equation is an integro-differential equation for time evolution of the system
density operator. The first term involves the system-bath interaction averaged over the
bath coordinates:

TrBHSB B = P( )Fa b a b
ab
∑ = Fab a b

ab
∑ ≡ ∆(qS ) (64)

This is simply an additional term in the system Hamiltonian and we can therefore add
it to the unperturbed Hamiltonian. Without loss of generality we can therefore assume
that the system-bath interaction is defined in such a way that the first term on the right
of (63) vanishes.
In order to reveal the content of (63) more clearly we take its matrix elements in the
basis of the system energy eigenstates

˜ 
ab(t) = a I(t) b I(t) = c ˜ 

cd(t) d
cd
∑

˜ 
ab (t)
t

= − d Γabcd (t, ) ˜ 
cd( )

0

t

∫
cd
∑

(65)

with Γ defined as

Γabcd(t , ) = TrB a HSB(t ), HSB( ), B c d[ ][ ] b (66)
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Substituting (59) we find for Γ  the slightly complicated expression

Γabcd(t , ) = Faj(t)Fjc ( ) bd
j

∑ + Fdj ( )Fjb (t) ac
j

∑
− Fdb (t)Fac ( ) − Fdb( )Fac (t)

(67)

where the brackets signify the average of a (bath) operator over the bath variables

A(t2 )B(t1 ) = TrA(t2 )B(t1) B = A(t2 − t1)B(0) (68)

Since the bath is supposed to be unaffected by the system and remains in (time
independent) equilibrium, the average in (68) can only depend on the difference of the
two times involved.  Expectation values such as in (68) are known as correlation
functions (of the bath in this case) and they describe to what extent the value of A at t2

depends on the value of B at t1. Because of the rapid random motion in the bath we
expect that after a sufficiently long time τc, called the correlation time , the bath will

have lost all memory of the situation at times longer ago than τc. The average values

of A and B will then be independent of each other and we simply have

A(t2 )B(t1 ) = A(t2) B(t1 ) t2 − t1 >> c (69)

In the case of Γ the average values of the F operators in (67) vanish (their average

value was absorbed into the unperturbed Hamiltonian (see (64)). Therefore the
Γ  functions will vanish if the difference of their time arguments is larger than the

correlation time of the bath and moreover (68) tells us that they only depend on the
difference of their arguments

Γ(t, ) = Γ(t − )

Γ(t − ) = 0 t − >> c

(70)

The equation of motion for the reduced density matrix (65) is difficult to solve in
general even if the Γ  functions are known, but one can make progress in special

circumstances. Let us assume that the random motions in the bath are so fast and
consequently the correlation time so short, that our system does not evolve
appreciably during a time interval equal to this correlation time. In this case, called
the homogeneous limit, we can take the density matrix outside the integral in (65) and
we can take the limits on the integration to infinity since Γ vanishes anyway in this

added integration range. We then find a differential equation with constant
coefficients equation for the reduced density matrix, which can be solved:

˜ 
ab (t)

t
= − Γabcd

˜ 
cd(t)

cd
∑

Γabcd = d Γabcd ( )
0

∞

∫
(71)
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Population Relaxation

Let us study these equations a little closer in the simple case of a system with only
two energy levels a and b. We first concentrate on the evolution of the populations
(the diagonal elements). From (67) we have for the relevant Γ matrix elements

Γaaaa = −Γbbaa = d Fab( )Fba(0) e i ab

0

∞

∫ + c.c ≡ − a

Γbbbb = −Γaabb = d Fba( )Fab(0) e i ab

0

∞

∫ + c.c ≡ − b (72)

For the populations we then have according to (71) a differential equation with simple
solutions (check them):

˙ 
aa

˙ 
bb

 
 
  

 
= − a − b

− a b

 
 
  

 
aa

bb

 
 
  

 aa + bb = 1

aa(t ) = aa(∞) + e− ( a + b )t
aa (0) − aa(∞)( ) aa(∞) = a

a + b

bb(t) = bb(∞) + e− ( a + b ) 1 t
bb(0) − bb(∞)( ) bb(∞) = b

a + b

(73)

We see that the populations decay exponentially due to the interaction with the bath
and eventually reach constant values (they have relaxed). The inverse of the exponent
in (73) is often denoted T1  and is called the longitudinal relaxation time.
One can in fact show from (72) that there is a relation between the γ’s, called the

detailed balance condition given by

b = ae− ab kT (74)

Equation (73) tells us then that the final values for the populations are exactly given
by the Boltzmann factor, i.e. our system has come into equilibrium at the temperature
T of the bath.
Note incidentally from (72) that the population relaxation is entirely due to the off-
diagonal parts in the system-bath interaction, which is physically reasonable since
these can cause transitions in the system which brings it to equilibrium. The diagonal
parts do influence the system in a different way which we study next.

Dephasing

In a similar way as described above one can study the decay of the off-diagonal
elements of the density matrix (the coherences). When left undisturbed the off-
diagonal elements remain constant in the Interaction Picture and oscillate in the
Schrödinger picture as

ab(t) = ˜ 
abe

i abt (75)
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When we take relaxation into account, the off-diagonal elements will decay to zero,
i.e. they will loose their (time dependent) phase, a process which is therefore called
dephasing. From equation (71) we have for the off-diagonal elements

˜ 
ab (t)

t
= −Γabab

˜ 
ab

˜ 
ab(t) = ˜ 

ab(0)e−Γ abab t (76)

showing the decay of the coherences. Note that eventually the density matrix becomes
diagonal with diagonal elements given by the Boltzmann factor (see above) as is
required for thermodynamic equilibrium. The inverse of the exponent in (76) is often
denoted T2 and is called the transverse relaxation rate (the names longitudinal and
transverse derive from applications in the theory of NMR spectroscopy and are not
particularly descriptive in the general case).
We can calculate the Γ coefficient in (76) again from (67) and it is then found to

contain two terms, one from the off-diagonal system-bath interactions that also caused
the population relaxation and a second one, called the pure dephasing, which arises
from the diagonal elements of this interaction.

Γabab = 1
2 a + b( ) + ˆ Γ ab

ˆ Γ ab = 1
2 Faa ( ) − Fbb(( ) Faa(0) − Fbb (0( )

0

∞

∫ + c.c.
(77)

Note that the pure dephasing rate depends only on the difference of two bath
operators that will modulate (through the random motion of the bath) the energy
difference between the two levels. One can therefore interpret the decay of the
coherences as the destructive interference of the frequencies in (75) that are randomly
modulated by the  interaction with the bath.

Incorporation of Relaxation into the Feynman Rules

We have seen above that relaxation processes cause the density matrix elements to
decay exponentially, but as (73) shows some populations, i.e. the ones at lower
energy, also increase so as to preserve the trace. If we neglect this latter contribution
we can make the approximation that all levels decay exponentially except the ground
state level which remains constant. We can then write

ab(t) = ab(0)ei ( ab +i ab )t
00 = 0 (78)

This can easily be incorporated into the Feynman rules of the previous chapter.
In the time domain we have the modification
• For each interval ti we have a factor e i(E a − E b +i ab )t i  where a is the label of the right

line during this interval and b the label of the left line. Ea and Eb are the
corresponding energies

while in the frequency domain we obtain
• For each interval n we have instead of the time dependent factor a frequency

dependent factor 
1

Ea − Eb + Ωi + i ab
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As an example let us calculate the contribution to the frequency domain response of
the diagram in Figure 1. Using the modified rules above we find instead of (58)

− P(a)
c i b b j a a k c

(Ec − Eb + 1 + 2 + i cb)(Ea − Eb + 1 + i ab)abc
∑ (79)

Note that (79), unlike (58), can no longer become singular when we are at resonance.
It might seem that (58) which was derived for an isolated system, without coupling to
a bath that causes relaxation, would predict a singular (infinite) response when we
would perform an experiment at resonance on an (almost) isolated system such as a
molecule in a dilute gas. However, in reality there is always a relaxation process,
even if we can neglect collisions in a dilute gas, namely the phenomenon of
spontaneous emission, which can take place even in the absence of a radiation field.
One can consider this process as a special case of the system-bath interaction
described above, if one considers spontaneous emission as being caused by the
interaction of the system with the zero point fluctuations of the quantized electro-
magnetic field, which then plays the role of the bath. In practice the contribution of
spontaneous emission is much smaller than the influence of molecular collisions and
therefore only becomes important as a relaxation process in dilute gasses.

Relaxation and Lineshape

As a simple example of the theory above let us study the linear process of absorption
of a beam of frequency ω in a polarisable medium. In the presence of a polarisation

P(r,t) the electromagnetic wave equation (which can be directly derived from the
macroscopic Maxwell equations for a classical electromagnetic field) can be written
as

∇2 E(r,t) +
1

c2

2

t2 E(r,t) = −
4

c2

2

t2 P(r,t) (80)

In the absence of the right hand side, (80) would simply be the well known wave
equation for the electromagnetic field in vacuo, which has the simple wave solution
(for a monochromatic wave travelling in the z-direction)

E(z,t) = E0 eikz −i t = E0e
i

c
z− i t kc

= 1 (81)

which shows that the wave travels with a speed c.
If we now include the influence of the medium on the right hand side and if we realise
that in general the polarisation is related non-linearly to the electric field (see (49))
equation (80) becomes a complicated non-linear differential equation that essentially
contains all the various effects on non-linear optics.
Here we will confine ourselves to the simple case of linear response and we then have
according to (54), using only the linear susceptibility

P(r,t) = ( )E(r,t) (82)
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In this case we can incorporate the right hand side of (80) on the left and find a
modified wave equation

∇2 E(r,t) +
( )

c2

2

t2 E(r,t) = 0 ( ) = 1+ 4 ( ) (83)

where we have defined the frequency dependent dielectric constant in terms of the
susceptibility. This is again of the form of the wave equation in vacuum with a
solution like (81), except that the relation between the wave vector k and the
frequency ω  has now become frequency dependent and consequently the velocity of

light in the medium has been changed and is different for different frequencies
(colours), a phenomenon known as dispersion. Moreover, one has to realise that the
susceptibility is in general a complex quantity and we can write

kc
= ( ) = 1 + 4 ( ) ≡ n( ) + i ( )

n( ) ≈ 1+ 4 Re ( ) ( ) ≈
2

n( )
Im ( )

(84)

where we have defined the index of refraction n( )  and the extinction coefficient

( ). So in a medium the solution (81) now becomes

E(z,t) = E0 eikz −i t = E0e
i

n ( )

c
z− ( )

c
z −i t

(85)

which clearly shows that the velocity of the beam has been changed by a factor equal
to the index of refraction. In addition the extinction coefficient contributes a term
which exponentially extinguishes the beam, i.e. the beam is being absorbed. From
(84) we see that the strength of the absorption is directly proportional to the
imaginary part of the linear susceptibility. The absorption of course depends on the
frequency and will in general exhibit a more or less sharp peak near a resonance of
the system. The behaviour of the absorption around the resonance, called the line
form, is therefore directly determined by the imaginary part of χ. Let us calculate this

line form with the tools developed in the previous sections. First we write down the
Double Sided Feynman Diagrams for the linear susceptibility of which there are only
two:

Figure 4
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We can immediately write down the linear susceptibility in the frequency domain
using our rules and we find

( ) = P(a)
a b b a

Ea − Eb + + i abab
∑ − P(a)

a b b a

Eb − Ea + + i baab
∑ (86)

If we assume that we are near the resonance ≈ Eb − Ea  only the first term becomes
large, while the second (said to be anti-resonant) can be neglected (Rotating Wave
Approximation). Also in the sum we can neglect all non-resonant terms and we can
then find the imaginary part of the susceptibility, which directly gives us the
absorption line form as

Im ( ) = Im P(a)
a b b a

Ea − Eb + + i ab

= P(a) a b
2 ab

Ea − Eb +( )2
+ ab

2
(87)

The line shape has the characteristic Lorentzian Form in this homogeneous (see
above) limit. If the relaxation was totally absent (which as discussed above is never
realistic) we would obtain an infinitely sharp delta function form

Im ( ) = lim
→0

ImP(a)
a b b a

Ea − Eb + + i
= P(a) a b

2
(Ea − Eb + ) (88)

and therefore the relaxation is said to be responsible for line broadening (in the limit
(87) homogeneous line broadening). If the only relaxation process is spontaneous
emission, we again find (87) with the γ’s (the inverse lifetimes) determined by the

interaction with the quantised electromagnetic field. The line shape is then called the
Natural Line Shape, which usually has a much smaller width than any broadening
caused by other relaxation mechanisms if present.
We can also consider the opposite limit to the homogeneous relaxation process. We
assume that the motions in the bath are so slow that our system (say a molecule in a
liquid or a glass) only sees a static environment during the course of the experiment.
We can then calculate the response function for each environment, all with slightly
different energy differences and we subsequently average the response over all
environments. If we assume that the energy differences ωba have a Gaussian

distribution around the average Eb-Ea with a width   we find using (88) weighted

with this distribution

Im ( ) = e
− ( ba −( Eb − E a ))

2

∆2

P(a) a b
2

( − ba)( )d
−∞

∞

∫ ba

= P(a) a b
2

e
−

( − (Eb −E a ))2

∆ 2

(89)

So in this case, called the inhomogeneous limit  (the system is inhomogeneous in the
sense that each molecule sees a different environment), we find a Gaussian Line
Form and we speak of inhomogeneous line broadening.
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Outlook

In general at least some bath motions are neither fast nor slow on the time scale of the
experiment and neither of the above limits is then reached.
In this general case it is impossible to calculate the response functions or find the line
forms without a detailed modelling of the bath itself, which we will not consider in
this short course. Two ways of tackling this problem have been widely used. In the
first approach the bath is modelled by a large collection of random (Brownian)
harmonic oscillators of various frequencies that interact in a simple way with the
system studied, which leads to models that can at least be approximately solved. The
second approach, used e.g. in the description of response in liquids, is to describe the
intermolecular motions of the molecules (which constitute the bath from the point of
view of a single molecule) by classical mechanics using molecular dynamics
simulations.
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