
The Monte Carlo Method

Aim: to compute thermal averages of 
equilibrium systems.

Where  i labels all eigenstates of the system, 
and



Classical limit: replace the SUM over quantum states by an 
INTEGRAL of phase space

Where H is the Hamiltonian of the system and β=1/kT

In replacing the sum by an integral, we have attributed 
a “volume” h3N to every quantum state

Problem:

We cannot compute the sum over all quantum states 
(because there are so many)

And we cannot compute the classical integral either 
(except the integration over momenta).

Consider “normal” numerical integration

100 particles, 3 dimensions, 10 points in every 
direction.

Requires 10300 points for a very poor estimate of 
the integral…



Similar problem 
(but much less 
serious):

Measure the 
depth of the Nile 
by quadrature…

BETTER 
STRATEGY:

IMPORTANCE

SAMPLING



We wish to perform a RANDOM WALK in 
configuration space, such that

The number of times that each point is visited, is 
proportional to its Boltzmann weight.

Then

How do we achieve that?



Whatever our rule is for moving from 
one point to another, it should not 
destroy the equilibrium distribution.

That is: in equilibrium we must have

Stronger condition:

For every pair {n,o}. 

Detailed Balance



Now we construct the transition 
probabilities

Then, detailed balance implies that:

Often, we choose

Then it follows that



Metropolis, Rosenbluth,Rosenbluth, 

Teller and Teller choice:

Kirkwood’s objection:

“If a trial move has been rejected, one should not 
count the original state AGAIN…”

Counter-example:

Ideal gas on a lattice.



More Formal
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Probability to accept the old configuration:

Example: a VERY simple MC program

E = 0

E = ε





How “large” should a trial displacement be?

Problem for both MC and MD:

“non-ergodicity”

(i.e. the sampling is limited to a 
subset of all possible states of the 

system)



Slow dynamics implies slow equilibration. This is 
particularly serious for glassy systems. 

6 hours 8 hours

Mountain hikes

..

Sampling the valleys

..

Combine this… .. …with this



Parallel Tempering

COMBINE  Low-temperature and high-
temperature runs in a SINGLE Parallel 
simulation

In practice:

System 1 at 
temperature T1 

System 2 at 
temperature T2

Boltzmann factor Boltzmann factor

Total Boltzmann factor



SWAP move

System 1 at 
temperature T2 

System 2 at 
temperature T1

Boltzmann factor Boltzmann factor

Total Boltzmann factor

Ratio



Systems may swap temperature if their 
combined Boltzmann factor allows it.

number  of  MC cycles
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NOTES:

1. One can run MANY systems in parallel

2. The control parameter need not be 
temperature



Application: computation of a critical point INSIDE the 
glassy phase of “sticky spheres”:

GLASSY

Practical issues:

1. Boundary conditions

2. Time-saving devices



In small systems, boundary effects are always 
large.

1000 atoms in a simple cubic crystal – 488 
boundary atoms.

1000000  atoms in a simple cubic crystal – still 
6% boundary atoms…

“Solution” : Periodic boundary conditions



The most time-consuming part of any simulation is 
the evaulation of all the interactions between the 
molecules.

In general: N(N-1)/2  = O(N2)

But often, intermolecular forces have a short range:

Therefore, we do not have to consider interactions 
with far-away atoms…

Verlet list



Link list

The shaky foundations of…



Molecular Dynamics

The Basis:

Fi=miai

i=1,2,...,N

N-body problem. Can only be solved numerically 

(except in very special cases)

How?
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Naive approach: truncate Taylor expansion. 

ABSOLUTELY FORBIDDEN!

The naive “forward Euler” algorithm 

• is not time reversible

• does not conserve volume in phase space 

• suffers from energy drift

Better approach: “Verlet” algorithm
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Verlet algorithm

• is time reversible

• does  conserve volume in phase space 

• (is “symplectic”)

• does not suffer from energy drift



...but is it a good algorithm?

i.e. does it predict the time evolution of the system 
correctly???

Dynamics of “well-behaved” classical many-body system is 
chaotic. 

Consequence:

Trajectories that differ very slightly in their initial conditions 
DIVERGE EXPONENTIALLY (“Lyapunov instability”)

t=0

t = τ



The Lyapunov disaster in action...

Any small error in the numerical 
integration of the equations of motion, 
will blow up exponentially....

always...

...and for any algorithm!!



SO:

Why should anyone believe 
Molecular Dynamics 

simulations ???

Answers:

1. In fact, one should not...

exit Molecular Dynamics...



Answers:

1. In fact, one should not...

2. Good MD algorithms (e.g. Verlet) can also be considered as 
good Monte Carlo algorithms – they therefore yield reliable 
STATIC properties (“Hybrid Monte Carlo”)

What is the point of simulating dynamics, if we cannot 
trust the resulting time-evolution???

Answers:

1. In fact, one should not...

2. Good MD algorithms (e.g. Verlet) can also be considered as 
good Monte Carlo algorithms – they therefore yield reliable 
STATIC properties (“Hybrid Monte Carlo”)

3. All is well (probably), because of...

The Shadow Theorem....The Shadow Theorem....



For any realistic many-body system, the shadow theorem is 
merely a hypothesis.

It states that (my words):

Good algorithms generate numerical trajectories that are 
“close to” a REAL trajectory of the many-body system.

Question:

Does the Verlet algorithm indeed 
generate “shadow” trajectories?



Take a different look at the problem.

Do not discretize NEWTON’s equation of motion...

...but discretize the ACTION

Intermezzo: 

Classical mechanics – the Lagrangian approach.

Newton:

Lagrange:

Consider a system that is at a 
point r0 at time t=0 and at point 
rt at time t=t, then:

The system follows a 
trajectory r(t) such that:



is an extremum.

Where the Lagrangian is defined as:

For example, if we use cartesian coordinates:

“Action”

“Lagrangian”

What does this mean?

Consider the “true” path R(t), with R(0)=r0 andR(t)=rt.

Now, consider a path close to the true path:

Then the action S is an extremum if

(what does this equation mean??)
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Now do the standard thing:

Find the extremum for small variations in the path, i.e. for small 
variations in all Xi.
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This will generate a discretized trajectory that starts at time t0

at X0 ,  and ends at time t1 at X1.

Discretized trajectory

“true” trajectory
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The Verlet algorithm generates 
trajectory that satisfies the 

boundary conditions of a REAL 
trajectory – both at the 

beginning and at the endpoint.

Hence, if we are interested in statistical information 
about the dynamics (e.g. time-correlation functions, 
transport coefficients, power spectra...)

...then a “good” MD algorithm (e.g. Verlet) is fine.



ADVANCED MC SAMPLING

Conventional MC performs a RANDOM 
WALK in configuration space, such that

The number of times that each point is visited, is 
proportional to its Boltzmann weight.



Can we achieve 100% 
acceptance?

In particular, if:

Then

(100% acceptance)

Solution of conflict: play with the a-priori probabilities of trial moves: 



100% acceptance can be achieved in 
special cases: e.g. Swendsen-Wang, 
Wolff or Bortz-Kalos-Lebowitz…

But, often at a price…

Example: Swendsen-Wang

Illustration: 2D Ising model.

Snapshot: some neighbors are parallel, others anti-parallel



Number of parallel nearest-neighbor pairs: Np

Number of anti-parallel nearest neighbor pairs is:   Na

Total energy: U = (Na-Np) J

Make “bonds” between parallel neighbors. The probability to 
have a bond (red line) between parallel neighbors is p (as yet 
undetermined). With a probability 1-p, parallel neighbors are not 
connected (blue dashed line). 



Form clusters of all spins that are connected by bonds. Some 
clusters are all “spin up” others are all “spin down”.  

Denote the number of clusters by M.

Now randomly flip clusters. This yields a new cluster 
configuration with probability P(flip) =(1/2)M.

Then reconnect parallel spins



Next: forget about the “bonds”…

New spin configuration!





Moreover, we want 100% acceptance, i.e.:

Pacc(o→n) = Pacc(n→o) = 1 

Hence:

But remember:



Combining this with:

we obtain:

100% acceptance!!!



Include “rejected” moves in the sampling

Why is this heretical?:

Metropolis “importance” sampling is based on 
the earlier (Ulam/von Neumann) rejection
method applied to random MC sampling

HERETICAL MC SAMPLING

This is the key:



This, we can rewrite as:

Note that <A> is no longer an average 
over “visited” states – we also include 
“rejected” moves in the sampling. 



This relation also holds for any set of 
“connected” trial states: i.e. the possible 
final states of a single (decent) MC trial 
move.

For instance: in conventional MC, there 
would be only two states (the “old” state 
and the “new” state) 



But in other algorithms, there are many. e.g. 
in the Swendsen-Wang algorithm: n clusters 
that can be flipped  ⇒ 2n connected states.

The more parallel the algorithm, the better…

Note that the transition matrix that is used in 
the averaging need not be the same as the 
one used in sampling the ρm. 

(e.g. one could be “Barker” and the other “Metropolis”)



How to sample this?

For example: Barker (symmetric) rule

(gives exact result in one step, for two-level system)



Note: You can do many “test moves” starting from a single 
starting configuration m. 

Is there any advantage in doing so? 

YES, SOMETIMES:

Example: “virtual move parallel tempering”
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Consider all possible 
“swaps” starting from any 
initial state i (e.g. i=3)
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Then from some other 
initial state j  (e.g. j=5), etc.

IN THIS WAY, WE CAN 
SAMPLE VERY MANY 
POTENTIAL 
TEMPERING MOVES 
AT VIRTUALLY ZERO 
ADDED COST.

Chain Molecules

1. Repeat: Chemical Potentials

2. Rosenbluth Sampling

3. Configurational Bias Monte Carlo

4. Other schemes



Particle insertion method to compute 
chemical potentials

But N is not a continuous variable. 
Therefore

Does that help? 

Yes: rewrite

s is a scaled coordinate: 0≤s<1

r = L s (is box size)



Now write

then

And therefore

but



So, finally, we get:

Interpretation:

1. Evaluate ∆U for a random insertion of a 
molecule in a system containing N molecule.

2. Compute 

3. Repeat M times and compute the average 
“Boltzmann factor”

4. Then 

Particle insertion continued….

therefore

But also



As before:

With s a scaled coordinate: 0≤s<1

r = L s (is box size)

Now write



And therefore

Interpretation:

1. Evaluate ∆U for a random REMOVAL of a 
molecule in a system containing N+1 molecule.

2. Compute 

3. Repeat M times and compute the average 
“Boltzmann factor”

4. Then 



What is wrong?

is not bounded. The average that 
we compute can be dominated by 
INFINITE contributions from 
points that are NEVER sampled.

What to do?

Consider:

And also consider the distribution

p0 and p1 are related:



so

but hence

Rewrite:

define

Then:

For ALL ∆U



∆U

f1

f0

βµ

Diagnostic test: 

If the distributions do not overlap, don’t trust your results for µ

(similar expression for path sampling – next lecture)

Does it work for hard 
spheres?

consider ∆U=0



Problems with Widom method:

Low insertion probability yields poor statistics.

For instance:

Trial insertions that consist of a sequence of 
intermediate steps.

Examples: changing polymer conformations, 
moving groups of atoms, … 

What is the problem with polymer simulations?

Illlustration: 

Inserting particles in a dense liquid

Trial moves that lead to 
“hard-core” overlaps tend to 
be rejected.



ANALOGY:

Finding a seat in a crowded restaurant.

Can you seat one person, 
please…

Next: consider the random insertion of a chain 
molecule (polymer).

Waiter! Can you seat 100 
persons… together 

please!

Random insertions of polymers in dense 
liquids usually fail completely…



(Partial) Solution: Biased insertion.

I MUST do this on the black board,

Otherwise it goes too fast…

1. Chain insertion on a lattice

2. CBMC (on lattice)

3. CBMC (off lattice)

Consider a “tree” of possible 
polymer conformations.

k branches start at every vertex. 



But many branches terminate 
(due to hard-core overlaps)

Now we can compare what different algorithms do:

1. Conventional (unbiased) Monte Carlo

2. Configurational Bias Monte Carlo (CBMC)

3. Dynamic Pruning-Enrichment Rosenbluth Monte Carlo

4. Recoil-Growth Monte Carlo (RG)

None of these methods explores the complete tree of 
trial directions…

…but some, more than others.

J.I. Siepmann, J.J. de Pablo, B. Smit, M.W.Deem, G. 
Mooij, J.T.H.Vlugt, S.Consta, N. Wilding, N. Combe, P.R. 
ten Wolde, …



Conventional Monte Carlo 
generates 1 trial conformation

CHEAP…but the probability 
that a trial conformation of 
length n is free of hard-core 
overlaps, scales as

Hopeless, for all but the shortest chains.

Configurational-Bias MC: an off-lattice, dynamic version of the 
static, on-lattice Rosenbluth-Rosenbluth  scheme.

Approach: Look one step ahead.

Probability to select one of the k
branches:

This biases the selection 
of trial conformation: you 
never select a segment 
that “dies” immediately



We correct for the bias in the acceptance step

Define the “Rosenbluth weight” (w) of the old (new) 
conformations of a chain of length n:

The trial conformation is accepted with a probability:

Explanation (for a 1-segment chain). Detailed balance:

α(o→ n) is the product of the probability to generate  a set of 
k trial directions

…times the probability to select direction i



Detailed balance

equals

Many terms cancel, but not all…

But now we are stuck because the acceptance ratio depends on the
set of trial directions for both the forward and reverse moves: 

Solution: consider the generation of trial directions around 
the old conformation as part of the trial move…



During  a trial move, we generate a set of k trial 
directions for the new conformation and a set of k-1
trial directions around the old conformation. Then

must equal

SUPER-DETAILED BALANCE

Or:

Note:

1. Superdetailed balance is also implicit in other 
algorithms (e.g. Swendsen-Wang)

2. The algorithm is valid for all k, but the optimal 
values depend on density, temperature and position 
in the polymer.

3. Also works for ring, star and grafted polymers.



Problems:

1. Chain generation can easily terminate in a dead alley

2. Much computational effort may be wasted in the 
generation of conformations with a low Rosenbluth
weight

DPERM (Dynamic Pruning-Enrichment Rosenbluth Monte Carlo)

- based on  a static MC scheme due to Grassberger et al. -

1. Pruning

Grow trial conformations as in CBMC. For every length m, 
compute the partial Rosenbluth weight w(m):

If w(m) < wmin then, with 50% probability, kill
conformation, otherwise, double w(m). 



2. Enrichment:

If w(m)> wmax then: make r copies of the partial 
conformation and give each a (partial) Rosenbluth
weight w(m)/r.

At the end, several chain conformations may survive.

The move is accepted with a probability proportional to the 
total Rosenbluth weight of the surviving chains. 

This scheme tends to eliminate low Rosenbluth weights, 
and is less sensitive to dead-alleys.  

Recoil-growth:

A bit like CBMC, but the scheme 
looks n steps ahead (here n=2).

First trial chains end in 
dead alley

Recoil and regrow. 
Success!

Finally: Check n steps 
along the unexplored 
conformations 



For both schemes, valid acceptance rules can 
be constructed, based on the super-detailed 
balance condition. 

They outperform CBMC, but mainly in the 
regime where all schemes are costly…

Why use such complex schemes at all?

Not always competitive for “normal” polymer 
simulations 

• hybrid MC

• reptation

• wormhole moves

CBMC most useful in cases where entire 
chains have to be inserted (Gibbs-
ensemble, Grand-Canonical MC).


