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To the reader

Scope of this thesis is the study of liquid phosphorus and carbon, by means of computer
experiments.

When we started working on this project, both these chemical elements were thought
to exhibit a liquid – liquid phase transition at very high temperatures (i.e. thousands
of kelvins) and pressures (i.e. several gigapascals). For phosphorus, it existed a strong
experimental evidence of the liquid – liquid phase transition [1] at a temperature of ∼ 1300
K and a pressure of ∼ 1 GPa. For carbon, a full liquid – liquid phase transition coexistence
line was identified in a computer experiment [2], using a semiempirical∗ potential [3, 4] that
was known to be very reliable. The transition was found at temperatures ranging from ∼
5000 to ∼ 9000 K and at pressures ranging from ∼ 3 to ∼ 11 GPa.

Due to the relative heterogeneity of the topics we faced and the methods we employed,
each chapter starts with its own introduction, comprising all the references that were felt
as relevant. The following lines should be intended as a quick reference map, about the
content of this thesis.

The thesis opens (chapter 2) with a general view of the liquid – liquid phase transi-
tions, as they are understood today. We point out that, contrary to transitions in solids
that have been experimentally thoroughly investigated and theoretically well understood,
liquid – liquid phase transitions are by far less studied and understood. This is due to
the difficulty of their experimental investigations, for they are located at extreme pres-
sures/temperatures, and/or are hindered by competing solidification. The model we adopt
to introduce the world of liquid – liquid phase transitions is a combinations of models that
have been proposed in the last forty years [5− 10]; with this we aim to justify the different
kinds of liquid – liquid phase transitions that are expected to occur in nature.

Chapters 4 (see also Ref. [11]) and 5 ([12]) are dedicated to liquid phosphorus and
its transition. We studied this system with the aid of density functional based molecular
dynamics, a method that has been of growing importance in these recent years. We will
show that, confirming experiments, a molecular fluid†, made exclusively of P4 tetrahedral
molecules, transforms upon increasing pressure or temperature into an atomic, network
forming, liquid. These two chapters are introduced by chapter 3, in which we present
the ab initio molecular dynamics scheme, worldwide known as Car-Parrinello molecular
dynamics, we used for studying phosphorus (and, in part, carbon). We pay particular
attention in explaining how constant temperature and constant pressure simulations are

∗A semiempirical potential (see chapter 6) combines a theoretical analysis leading to its functional form,
with an empirical fitting of its parameters.

†The system is indeed at temperatures higher than the gas/liquid critical temperature.
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performed within Car-Parrinello molecular dynamics. The reader is assumed to be familiar
with the (classical) molecular dynamics technique (see e.g. Ref. [13]).

The remaining chapters are devoted to carbon, in several aspects. The initial target
regarding carbon was more ambitious than for phosphorus. Besides the study of the pos-
sible liquid – liquid phase transition, we wanted to shine some light into the whole phase
diagram, at high temperatures and pressures, of this element. In fact, the study of the
phase diagram of carbon has a long history (see chapter 7), but many of its features are
far from being assessed (e.g. regarding the melting line of diamond, experiments can only
predict its positive slope). Furthermore, the knowledge of the phase diagram was intended
to serve as a basis knowledge for the study of nucleation of diamond from the melt. In
order to fulfill all these goals, it was needed an interaction potential for carbon that could
be computationally fast but still able to reproduce the flexibility of carbon bonding. Soon
after the beginning of our project, a density functional based molecular dynamics study of
liquid carbon [14] cast serious doubts on the possibility of the occurrence of a liquid – liquid
phase transition, as described in Ref. [2]. In Ref. [14] it was shown that the semiempirical
potential used in Ref. [2] was not able to properly describe the liquid phase of carbon; thus,
for our purposes, we had to devise a more reliable potential. The starting point for this
new potential was the one introduced by Los and Fasolino [15]. This potential, as well as
the one used in Ref. [2], belongs to the class of bond order potentials‡ and is called long
range carbon bond order potential (LCBOPI). A small modification (see chapter 6) of this
already extremely transferable§ and accurate potential led us to the potential we called
LCBOPI+. With the LCBOPI+ we a) studied the phase diagram of carbon, comprising
graphite, diamond, and the liquid (chapter 8 and Ref. [16]), b) re-examined the issue of the
liquid – liquid phase transition (chapter 9 and Refs. [17, 18]), and c) studied the mecha-
nism and rate of nucleation of diamond from the melt in different state points (chapter 10
and [19]). The reader is assumed to be familiar with standard Metropolis Monte-Carlo
techniques (see e.g. Ref. [13]).

The thesis ends with the description (chapter 11 and [20]) and validation in the liquid
phase (chapter 12 and [21]) of a further improvement of the LCBOPI+. The result is
called LCBOPII. Far from being a purely academical divertissement, the improvement was
suggested by some small, and in first instance neglected, inaccuracies of the potential in
the description of the liquid phase. Finding a proper way to cope with those inaccuracies,
required a re-thinking of many of the characteristics of a bond order potential and the
introduction of new, hopefully seminal, features.

‡The functional form of these potentials reproduces the strength, or order, of a bond, by analyzing the
environment in which the bond, i.e. the pair of atom defining the bond, is found (see chapter 6).

§The transferability of a potential refers to its capability of yielding a good description of the energy
landscape for any possible realistic atomic configuration.



Liquid – liquid transitions in simple
fluids

There are more things in Heaven and Earth, Horatio,
Than are dreamt of in your philosophy.

In solids, phase transitions are well-known and well-understood phenomena both at normal
conditions and at high pressures. The variety of transition types can be classified by ther-
modynamics (1st, 2nd order, λ-points) and kinetic characteristics (martensitic, diffusion).
The transitions can be structural, i.e. taking place with changes in the crystalline lattice
in a subsystem of atoms, spins, dipoles . . . or they can be of electronic nature (a change
in electronic state that does not influence the lattice symmetry). A transformation can be
caused by a variation of external parameters (pressure, temperature, magnetic or electric
fields) or by direct external influence (irradiation, ion implantation, plastic deformations).

In contrast to crystals, no strong, consistent theory for the liquid phase has been created,
yet. Phase transitions in disordered systems, such as liquids, are not well-understood. The
liquid – liquid phase transition (LLPT) is not even widely accepted as a phenomenon,
due to its counterintuitive nature and to experimental difficulties in the validation: the
candidate transitions either occur at extreme pressure and/or temperature or appear in
metastable regions (e.g. are hidden by competing solidification).

The main part of this chapter is dedicated to the illustration of a simple and general
statistical mechanics model, accounting for a first order transition between disordered
phases. Subsequently we will summarize the speculated LLPT in water. At the end of the
chapter we will review two simple model potentials, proposed in the last years, specifically
designed for producing a LLPT: the purpose is to show which mechanisms are thought to
be necessary conditions for the occurrence of a LLPT.

2.1 A simple model

A number of similar models to describe liquid – liquid phase transitions have been proposed
in the past years [5, 6, 7, 8, 9, 10]. We will here sketch a model, based on the notation
of the “two state model with cooperativity” of Ref. [10], that unifies all those cited. Fol-
lowing [10] the unifying characteristic of LLPTs is that the formation of local structures
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(i.e. of a middle range ordering) is a universal feature in liquid. The proper understanding
of a phenomenon starts with the identification of the relevant order parameters prone to
describe it. In the usual picture of a liquid, only one order parameter is widely used, the
density ρ that, for instance, perfectly describes the gas/liquid phase transition. From a
different point of view, the interactions even in a simple liquid can always be thought as
constituted by an isotropic part, that would always prefer close packing, and a directional,
covalent part that would favour locally ordered structures, depending on the bonding ca-
pabilities of the material. Such a picture is supported by the observation of local ordering
via diffraction experiments on covalent fluids [22]: the structure factor of covalent elements
in the liquid state can depart noticeably from the “simple liquid” behaviour, especially
near freezing, favouring low coordinated, non close packed, structures. While ρ easily ac-
counts for the properties of the isotropic interactions, the covalent interactions need to be
described by an order parameter that can identify local ordering. More than one of such
local ordering parameters would be needed when the material has more than one bonding
possibility. An example would be carbon, that can choose between a linear sp, a planar sp2

and a tetrahedral sp3 bonding configuration. Without loosing generality, the local ordering
parameters can be reduced to one, that will be labelled here on with s, without precise
characterization. The model assumes that:

• there exist locally ordered structures (a property that can be called “middle range
ordering”);

• such structures are cooperatively elicited in a sea of a disordered background (the
normal-liquid structure).

The state characterized by normal-liquid structures is labelled with the subscript ρ, the
state of locally ordered structures, is S; the ‘pure’ ρ and S states are described by the
following properties: gS and gρ are the degeneracies of their energies, ES and Eρ; vS and
vρ are their specific volumes. The ordering parameter acts as a coordinate s, labelling the
continuous variation of the system from the ρ state (s = 0) to the S state (s = 1): in other
words s is the concentration of locally ordered structure in the liquid.

It is assumed that there is one locally ordered structure, but many normal-liquid struc-
tures: this implies loss of entropy going from ρ to S, i.e. ∆σ = kB ln(gρ/gS) > 0. The
entropy as a function of s, the fraction of the system in the S state, is:

σ(s) = −kB

[
s ln

s

gS

+ (1− s) ln
1− s

gρ

]
(2.1)

Without cooperative effects (coupling) between the states, the total configurational energy
is just a linear combination of the pure states energies:

U = sES + (1− s)Eρ (2.2)

The cooperation is then introduced as a frustration, i.e. as a second order upward correction
to the total energy:

U = sES + (1− s)Eρ + Js(1− s) (2.3)

The coupling parameter J is intrinsically positive because of frustration: the neighbour-
ing of alike structures is more favoured than the vicinity of different structures∗. In the

∗It can be shown [23] that this expression for the total energy comes from the assumption (called zeroth
order approximation in binary mixtures theory) that the distribution of the two kinds of molecules is
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following we show that the value of J , i.e. the strength of the coupling between the two
states, plays the central role in determining determine the possibility of a first order phase
transition.

The chemical potential of the “mixture” is:

µ(s) = U − Tσ + [svS + (1− s)vρ]P

= sES + (1− s)Eρ + [svS + (1− s)vρ]P +

+ kBT

[
s ln

s

gS

+ (1− s) ln
1− s

gρ

]
+ Js(1− s) (2.4)

where T is the temperature and P the pressure. This is not a true binary mixture, since s
is not conserved. It is sometimes referred to as a pseudo-binary mixture†. The equilibrium
value for s is given by: ∂µ(s)/∂s = 0. From Eq. 2.4:

β[−∆E −∆vP + J(1− 2s)] + ln
gρs

gS(1− s)
= 0 (2.5)

where ∆E = Eρ − ES > 0 , ∆v = vρ − vS, and β = 1/kBT . A critical point is readily

devised imposing µ′s(sc) = 0, µ′′s(sc) = 0, µ
(3)
s (sc) = 0 and µ

(4)
s (sc) > 0:

sc =
1

2
(2.6)

Tc =
J

2kB

(2.7)

Pc =
Tc∆σ −∆E

∆v
(2.8)

A first order phase transition occurs at a temperature Tt < Tc. Defining ∆µ0 in the spirit
of the theory of mixtures, as the difference of the chemical potentials of the “pure species”,
the equilibrium condition (Eq. 2.5) reads:

β∆µ0 .
= β(µ(0)− µ(1)) = β(∆E + P∆v)− ∆σ

kB

= βJ(1− 2s) + ln
s

1− s
(2.9)

It is instructive to study the behaviour of β∆µ0 as a function of the only order parameter
s, with βJ acting as a parameter. Figure 2.1 shows the family of curves β∆µ0 at different
values of βJ . At a fixed temperature, the value of β∆µ0 is governed by the pressure,
since ∆E, ∆v, and ∆σ in this model are assumed to be intrinsic properties of the system,
i.e. not influenced by external parameters. The plot displays in a pictorial way what

completely random, in spite of the non-zero energy of mixing (as denounced by the non-zero coupling term
J).

†The pseudo-binary mixture model is equivalent to the two-level model of Kittel [6]. In that model,
the local ordered liquid is in the energetic ground state, while the normal liquid has an excitation energy
ε; the meanings of the degeneracies g1 and g2 are the same as the above gS and gρ. The energy in the
non-interacting limit is written as U = (1 − s)Nε; the energy of the system with two interacting levels,
following the molecular field approximation, is corrected to U = N((1− s)ε− (1− s)2γ), with γ > 0. The
two models are equivalent when ES = 0 in Eq. 2.3 and U = N((1−s)ε− (1−s)2γ) = (1−s)Eρ +Js(1−s).
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Figure 2.1: Parametric plot of β∆µ0(s; J). The curves are labelled by the value of βJ .
The value βJ = 2, in bold, is the critical value for the appearance of two maxima in
the curves. The dashed intervals of curves with βJ > 2 are mechanically unstable (see
footnote §).

is already written in Eq. 2.7: 2 is a critical value‡ for βJ . In fact, β∆µ0(s; J) has two
maxima at s̄1,2 = 1/2± 1/2

√
1− 2/(βJ); they are real for βJ ≥ 2. When βJ < 2 (i.e. for

temperatures T > Tc), there is an equilibrium value s for any T and P . When βJ > 2 (i.e.
for temperatures T < Tc), there is an interval in P inside which the equilibrium condition is
valid at two§ different values of s: the system chooses the lowest in chemical potential µ(s).
There will exist an infinitesimal interval in P in which the system will “jump” between

‡Eq. 2.4 for (pseudo)binary mixtures is valid for regular solutions and is referred to as Bragg-Williams
approximation [23]. In its original paper, Rapoport [5] gives also the derivation of the critical value of J
for a more realistic model, the Bethe-Guggenheim quasi-chemical approximation [23], finding the rather
close value of 2.188. This is the model on which the analysis on Cesium [24] and Tellurium [25] was carried
out (vide infra).

§ A third intersection is in the negative slope part of the curve, thus in a mechanically unstable region
for the liquid. This is easily proven by writing:

∂∆µ0(s; J)
∂s

∣∣∣∣
T

=
∂∆µ0(s; J)

∂P

∣∣∣∣
T

∂P

∂v

∣∣∣∣
T

∂v

∂s

∣∣∣∣
T

The first partial derivative in the chain is evaluated from Eq. 2.9, while the third can be calculated by
writing: v(s) = vρ + s(vS − vρ) = vρ − s∆v. Working out:

∂∆µ0(s; J)
∂s

∣∣∣∣
T

= (∆v)
∂P

∂v
(−∆v) =

(∆v)2

v
KT

where KT is the isothermal bulk modulus, that, for mechanical stability, ought to be positive. Being all
the quantities at the right hand side of the above equation positive, when ∂∆µ0(s; J)/∂s < 0, the system
is mechanically unstable.
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two different values of s. In the expression of s̄1,2, we note that, upon increasing βJ , the
values of s̄1,2 approach s̄1,2 = 0,1, respectively. Thus, for large values of βJ , the system is
stable only in the proximity of the pure states. In contrast, for moderate values of βJ (but
still larger than 2), states with a value of s significantly different from 0 and 1, are stable.
Thus, the occurrence of the LLPT does not imply that the system transforms from a pure
ρ state into a pure S state.

Note that, even when βJ < 2, there exists a rather narrow interval in pressures in
which s changes very quickly.

Depending on the values assumed by J , the critical temperature Tc of the LLPT can
be above or below the melting line(s) of the underlying crystal(s). Furthermore, the set
∆E, ∆v, and ∆σ can yield either a positive or a negative critical pressure Pc. Different
regimes are then identified.

• Pc < 0. The position of Tc determines the two different regimes:

– When Tc is higher than the melting temperature of the underlying crystal, a
first order LLPT exists in the stable liquid state (see Fig. 2.2). Note that such
a transition can be responsible for an abrupt change of slope in the melting
line of the underlying crystal. The slope of the coexistence line of a first order
phase transition (i.e. both the melting transition and the LLPT) is given by
the Clausius-Clapeyron equation¶. The presence of a first order LLPT implies a
coexistence line between the two liquids; in the LLPT model we have depicted,
the coexisting liquids have two different densities. When the LLPT coexistence
line meets the melting line of the crystal, two liquids with an infinitesimal dif-
ference in pressure (and temperature) and coexisting with the solid phase have
two different densities; thus, the Clausius-Clapeyron equation, applied to the
two segments of melting line coexisting with the two liquids, implies that the
slope of the two segments are different in an infinitesimal range of pressures.
Were one of the liquids denser than the solid phase, the melting line would
abruptly invert its slope. The two segments of the melting line and the LLPT
coexistence line meet in a triple point.

– When Tc is lower than the melting temperature of the underlying crystal, the
LLPT would be completely hidden in the solid stable state (see Fig. 2.3, left
hand panel). Water is a candidate to fit into this regime (see section 2.2). The
critical point and the LLPT coexistence line might be difficult or impossible
to probe experimentally, but still can be evidenced by anomalous behaviour of
thermodynamic quantities in the accessible region (this is exactly the case of
water). A slightly different, speculative, possibility is shown in Fig. 2.4, where
the LLPT coexisting line starts from a maximum in the prolongation of the
(metastable) melting line of the lower pressure solid, into the region of stability
of the higher density solid. This could be the case of every melting line that
encounters a solid/solid/liquid triple point, before reaching a maximum (see
chapter 8). The slope of the LLPT coexistence line needs not to be positive. In
case it is negative, the line could re-enter the stable liquid region, thus ending

¶It reads: dT/dP = ∆v/∆s, where ∆s is the difference in specific entropies between the coexisting
phases.
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Figure 2.2: Schematic phase diagrams for LLPTs, in the case in which the critical tem-
perature is above the melting line of the underlying solid. The symbols Si, with integer
i, label the solid states, Li indicate the liquids, CP the critical point. In the left panel
we show the case in which the triple point Li-Li+1-Si, induces a change of slope in the
melting line of Si. Dashed in this panel is a possible further LLPT, in correspondence
with a maximum in a higher pressure stable solid (also the further boundaries of the solid
phase are dashed). In principle there could be a LLPT for each possible maximum in each
stable solid phase of a given substance. In the right panel it is shown a situation in which
the inversion in slope is not needed for a first order LLPT: a discontinuity in slope is a
sufficient condition.

in a CP in this stable liquid region, and causing a discontinuity in the slope of
the melting line of S2

• Pc < 0. If Tc puts the critical point above the crystal melting line, a portion of
the LLPT coexistence line can still be in the positive pressure region and in the
stable liquid region: the LLPT coexistence line would be still experimentally acces-
sible. Anyway, even if Tc were in the stable crystal temperature range (see Fig. 2.3,
right hand panel), traces of the hidden transition could be seen at low pressures by
enhanced fluctuations of the order parameter s, similarly to the case illustrated in
the left panel of Fig. 2.3. This means that locally ordered structures could rapidly
form and disappear, a possibility that would reflect in density fluctuations with huge
correlation length. The phenomenon of an excess light scattering at wave number
q = 0 in glassy polymers, implied by anomalously long correlation lengths, has in-
deed been observed originally by Debye and Bueche [26] in 1949: today it is known
as ‘Fisher clusters’ [27] by the name of the researcher that systematically studied
it. The appearance of transient structures accompanied by anomalously high den-
sity fluctuations, thus possibly related to a unaccessible critical point, has also been
observed in protein solutions [28].
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Figure 2.3: Schematic phase diagram for a LLPT in which the critical point is in the
stable region of the underlying solid. The symbols Si, with integer i, label the solid states,
Li indicate the liquids, CP the critical point.

Figure 2.4: Schematic phase diagram for a
LLPT in which the critical point is in the
stable region of the underlying solid. The
symbols Si, with integer i, label the solid
states, Li indicate the liquids, CP the critical
point. The peculiarity here depicted is that
the LLPT coexistence line starts from a max-
imum in the prolongation of the (metastable)
melting line of S1 into the stable region of S2.

Application to Cesium and Tellurium

In his analysis of the liquid structure of Cesium, Rapoport [24] could estimate the value of
J introducing further assumptions. Cesium is a unique material because it has two melting
line maxima in its P − T phase diagram at pressures below 4 GPa. In this range there are
two solid phases, a bcc and an fcc crystal. A rather steep change in electrical resistivity in
the liquid was experimentally observed at the temperature of 493 K and near the maximum
of the melting line of the fcc crystal [29]: consistently Rapoport argues the existence of
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two liquids, L’ and L”. Under reasonable assumptions on the electrical resistivity and
the specific volume of the liquid mixture as a function of the electrical resistivities and
the specific volumes of the two pure liquids and the fcc crystal, Rapoport could estimate
βJ ∼= 1.5. This implies a critical temperature Tc

∼= 367 K, that is in the fcc crystal stable
region. In fact [24] the change in concentration of L”, as a function of P , is steep but not
discontinuous. Note that the concentration of L” was not measured, but calculated.

A similar analysis was carried out [25] for liquid Tellurium, finding indeed a near critical
value of βJ at 737 K and 0.43 GPa. In the Tellurium melting line was indeed seen a
discontinuity in the slope, but not an inversion, being also the denser liquid lighter than
the underlying crystal.

Other elements and compounds

The list of substances for which a LLPT has been at least argued is quite long. We will
focus in the next section on the interesting case of water: besides carbon and phosphorus,
object of this thesis, we will confine all the other cases in the following list. Amongst
pure substances, there have been experimental and/or computer simulation evidences of
pressure induced transitions in rather narrow pressure-temperature intervals for As [30],
Bi [31], Ge [32], Hg [33], S [34], Sb [35], Se [36], Si [37, 38], Sn [39], H2 [40], I2 [41]. Besides
water, two other network forming fluids ‖, SiO2 [43] and GeO2 [44], might show a LLPT.

2.2 Water

According to Stanley et al. [45], water exhibits a space-filling hydrogen bonded network, as
expected from continuum models. However, when focusing on the “well-bonded” molecules,
it is found that water can be regarded as having certain clustering features - the clusters
being not isolated icebergs in a sea of dissociated liquid, but rather patches of well-bonded
molecules∗∗ embedded in a higly connected network, or “gel”. Water exhibits some myste-
rious properties. For example, it has been recognized as long as 300 years ago that water
has a maximum density at 4◦ C and atmospheric pressure. Furthermore, at atmospheric
pressure and temperatures of 46, and 20◦ C [46] water has a minimum isothermal com-
pressibility and shear viscosity, respectively. Fig. 2.5 [47] shows a phase diagram of water,
focused on the region below the melting line where, rather than the stable ices, the (mostly
hypothesized) boundaries of the metastable glasses and undercooled liquids are shown.
Below TH , no matter how slowly it is cooled down, water crystallizes via homogeneous nu-
cleation. Upon quenching at low pressure, water transforms into a low density amorphous
(LDa) below TX [48]. In 1984 it was discovered [49] also a high density amorphous (HDa)
obtained by quenching at pressure above 200 MPa down below TX . Upon heating, both
amorphous phases crystallize into ice above TX . The region comprised between TH(P ) and

‖According to Roberts et al. [42] network-forming fluids are “fluids which form orientation-specific,
intermolecular bonds which are strong relative to London (dispersion) forces. For the canonical network-
forming fluids such as water and silica, the formation of bonds (e.g., hydrogen bonds in water) induces
low-density structures in the liquid which increase in lifetime and size as the liquid is cooled”.
∗∗Well-bonded water molecules in the water network have four bonds arranged in a tetrahedral config-

uration. Two bonds are the covalent O−H bonds, whereas the other two are O· · ·H hydrogen bonds with
neighbouring molecules.
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TX(P ) is known as “No man’s land”, since it is impossible to have there a phase other
than ice, in an experiment. Soon later, Mishima et al. [50] proved that one can transform
reversibly LDa into HDa; the transition, characterized by a 20% density change, is sup-
posed to be first order (the coexistence line is the thick dashed line of Fig. 2.5). If the
coefficient of thermal expansion, the isothermal compressibility, and the constant-pressure
specific heat are extrapolated below the minimum temperature at which these properties
can be measured (−38◦ C, see Fig. 2.5), they appear to diverge at the (unreachable) tem-
perature of −45◦ C. Putting this observations together, a possible physical explanation
would involve a LLPT with a coexistence line (tiny dashed line in Fig. 2.5) ending in a
critical point (C2), all hidden in the “No man’s land” region.

Molecular dynamics simulations with empirical potentials seem to support this hy-
pothesis [51, 52, 53, 54, 55, 56]. Given the small samples and the short probing times of
molecular dynamics, homogeneous nucleation is in fact rarely seen; in this way complete
P (ρ) isotherms in the experimentally forbidden region were calculated: they evidenced
‘kinks’ at temperatures below TC2 . This finding, together with the anlaysis of the struc-
ture of the liquid in proximity of a kink, strongly suggests that “computer water” shows
a LLPT. It is interesting to report the hypothesis that Mishima and Stanley [57] make
for the existence of a second critical point (being the first, C1, the usual point ending the
boiling line). Since the existence of a (pairwise) interaction potential with a minimum is
sufficient to yield a (liquid/vapour) critical point, then a (pairwise) interaction potential
with two minima might imply two critical points. In Fig. 2.7 is reported such an interaction
potential; the approximation of this potential with a square-well one will be discussed in
the next section. The argument is the following: when the temperature is below a critical
one, the liquid is forced to ‘condense’ into one of the two sub-wells, depending on the
pressure of the system (into the outer sub-well at low enough pressures and into the inner
sub-well for high enough pressures). On the other hand, at high enough temperatures
(i.e. above the critical one), the system should be able to sample both sub-wells. Mishima
and Stanley also propose the identification of two possible clusters in the hydrogen bond
network, whose (averaged) pair interactions would yield the potential with two minima. In
Fig. 2.6 (taken from Ref [57]) are shown the two relative orientations of the well-bonded
(tetrahedral) water clusters, that would yield a local minimum in the interaction energy.

In conclusion, the possibility of a LLPT in undercooled water appears as a well-posed
and consistent hypothesis that can explain most of the anomalous behaviours, if not all, of
this liquid; it is nonetheless not easy to prove, if not outright impossible, and it competes
with other well-posed hypotheses [57].

2.3 Two simple potentials

Recently, two simple, isotropical, model potentials [47, 59], able to show LLPTs in a
computer simulation, have been designed.

Soft-core, double-step potential

This interaction potential has been thought by Franzese et al. [47, 58] to model the anoma-
lous properties of water, mentioned in the previous section. Following the hypothesis of
Mishima and Stanley [57], Franzese et al. constructed a potential with an attractive part
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Figure 2.5: Phase diagram for water comprising the vapour, the stable liquid, the high
density and low density amorphous solids, and the probable position of the low density -
high density liquid (LDL and HDL) coexistence line, ending in a second critical point, C2.
In region below the (solid) melting line, Ice-I is the stable phase (up to the pressure of the
minimum in the line): thus all the phases referred in the plot are there metastable. Upon
quenching below TX glassy water is obtained, in its two forms, high density amorphous
(HDa) and low density amorphous (LDa). Even at the slowest heating rate one can achieve
experimentally, when heating the glass above TX , the system rapidly crystallizes into ice.
When undercooling water below TH , homogeneous nucleation of ice rapidly occurs. The
region between the two dotted lines is the so called “No man’s land”, since it cannot be
reached in experiments.

Figure 2.6: The two (local)
minimum energy relative ori-
entations of water clusters, ac-
cording to Mishima and Stan-
ley [57].
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Figure 2.7: Left panel: double-square-well potential from Ref. [47, 58]. The dashed line
has the shape of the (smooth) potential with two minima hypothesized by Mishima and
Stanley [57]. Right panel: Pressure-Temperature phase diagram [47, 58] for the double-
step potential shown in the left panel. The solid line ending in the critical point C2 is,
at low temperature, the HDL-gas coexistence; it thickens at intermediate temperatures to
a liquid – liquid coexistence and then thins back at higher temperatures to a HDL-fluid
coexistence. The dashed line is the (metastable) LDL-gas coexistence; it prolongs into the
(solid) LDL-gas coexistence line ending in the critical point C1. The dotted line is the
deduced melting line.

and two characteristic short-range repulsive distances, the shorter representing the hard
core and the longer the soft core of the simulated species. More precisely (see Fig. 2.7),
the potential consists of a hard core of radius a with a repulsive square shoulder of height
UR > 0 and radius b > a, plus an attractive component having the shape of a square well
of depth −UA < 0 extending from r = b to r = c. If the hard-core radius is chosen as
the length unit and the well depth as the unit of energy, there are three free parameters:
b/a, c/a and UR/UA. With a suitable choice of the parameters (b/a = 2.0, c/a = 2.2,
and UR/UA = 0.5, i.e. the situation shown in Fig. 2.7) the potential reproduces the above
mentioned anomalies. In fact, according to Franzese et al., at sufficiently low pressures
and temperatures, nearest-neighbour pairs are separated by a soft-core distance r ≈ b to
minimize the energy. As temperature increases, the system explores a larger portion of
the configurational space in order to gain more entropy. This includes the penetration of
particles into the softened core, which can cause an anomalous contraction upon heating.
The resulting P − T phase diagram is shown in Fig. 2.7. The solid line ending in the
critical point (C2) is, at low temperature, the HDL-gas coexistence. The dashed line is the
(metastable) LDL-gas coexistence. When these two lines meet in a HDL-LDL-gas triple
point, the dashed line becomes, at temperatures above the triple point, the LDL boiling
line, ending in the critical point C1. The HDL boiling line becomes the liquid – liquid
coexistence line (thick solid line), then, at temperatures above the critical point C1, it
transforms into the HDL-fluid coexistence line. The fluid above C1 can be thought as a
dense gas containing some local structures of the LDL liquid (i. e. the structures dictated
by the absolute minimum of the potential). The dotted line is the melting line of the
underlying solid: it is not shown in the P-T diagram published in [47, 58], but deduced by
us from the pressure-density diagrams reported there. The melting line reveals that both
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Figure 2.8: Phase di-
agram of the Lennard-
Jones liquid with spin (for
σu = 0.5σl, see text
for these symbols), as re-
ported in Ref [59]. The
reduced temperature (T ∗)
and pressure (P ∗) are the
usual reduced units for
the Lennard-Jones liquid
(i.e. T ∗ = kBT/ε and
P ∗ = Pσ3/ε).
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critical points (C1 and C2) are in the stable region of the solid.
According to Franzese et al., when the attractive well width ((c − b)/a) exceeds 0.7,

C1 goes into the stable fluid phase. By decreasing the relative width of the attractive
shoulder, b/a, or by increasing its height UR/UA, the temperature of C2, TC2 , decreases
until it becomes lower than TC1 . When both these features occur, the resulting phase
diagram would be topologically equivalent to the one hypothesized for water (Fig. 2.5). If
there were a set of parameters such that TC2 > TC1 and both were in the stable phase of
the fluid, the resulting phase diagram would be topologically equivalent to the one found
for phosphorus.

Lennard-Jones liquid with spin

Another ad-hoc interaction potential, proposed by Lee and Swedensen [59], defined two
liquid species A and B, or “spin-up” and “spin-down”. The interactions A−A and B−B
are described by identical 12-6 Lennard-Jones potentials, with parameters ε and σl. The
interaction A−B are described by the repulsive (proportional to r−12) part of a Lennard-
Jones potential, with parameters ε and σu. Furthermore, in connection with the “two
species model”, an atom of species A can randomly flip into an atom of species B, and
viceversa, according to Boltzmann statistics.

When σu < σl, Lee and Swedensen, performing 2D simulations, show the existence of
two solid phases and two liquid phases, as reported in Fig. 2.8. The low density liquid
has coordination six with preferred neighbouring of atoms of the same species (parallel
spin ordering). The high density liquid has coordination three and preferred antiparallel
spin ordering, so that the average first neighbour distances are smaller in this second case.
Similarly, the high density solid has a perfect antiparallel ordering (with coordination
three), while the low density liquid is only of one species, in an hexagonal lattice. The
LLPT is strongly first order.



Ab initio molecular dynamics

We are all in the gutter, but some of us
are looking at the stars.

In this chapter we will describe Density Functional based Car-Parrinello Molecular Dy-
namics technique. We used this technique to investigate the LLPT in phosphorus (see
chapters 4 and 5). For the investigation of the LLPT in carbon the CPMD method was
used in two respects: a) to validate the findings of the semi-empirical potential used for the
phase diagram calculation (LCBOPI+, see chapter 8), b) to generate data to be fitted for
the improved version of the semi-empirical potential (LCBOPII, see chapters 11 and 12).

In section 3.1 we will focus on the justification of the CPMD method from quantum
mechanics considerations. In section 3.2 the density functional theory for electronic sys-
tem will be introduced, in a way already targeted to its implementation into the CPMD
framework.

In section 3.3 we will illustrate the two related techniques adopted in the particular
implementation of the CPMD method we used [60]: the plane wave expansion of the
electronic wavefunction, and the pseudo-potential method to restrict the electronic degrees
of freedom to the valence (i.e. chemically “active”) states.

In section 3.4 we will discuss the implementation of thermostats into the CPMD method.
These were required since all the simulations in the liquids (both carbon and phosphorus)
were carried out at constant temperature. Furthermore, the high density liquid phase of
phosphorus and liquid carbon were found to be metallic: this requires a special thermostat.

For the LLPT investigation in liquid phosphorus, that is accompanied by a density
change at a given pressure, the use of constant pressure MD was necessary. Section 3.5 is
devoted to the discussion of this method, with particular attention to its implementation
in CPMD.

3.1 Car-Parrinello molecular dynamics

Classical molecular dynamics can be derived from quantum mechanics. The standard
Hamiltonian can be written as a sum of the kinetic energy of the nuclei and a term com-
prising all the electronic contributions:

H = Tnuclei +He (3.1)
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The total wavefunction Φ ({ri},{rI}; t), solution of the time-dependent (non-relativistic)
Schrödinger equation

i~
∂

∂t
Φ ({ri},{rI}; t) = HΦ ({ri},{rI}; t) (3.2)

where i labels the electronic and I the nuclear degrees of freedom, needs to be factorized
into its electronic and nuclear part.

Treating the nuclei as classical point particles, there are two approaches that justify
classical molecular dynamics. The first is the so called Ehrenfest dynamics, whose equations
of motion, with the electronic wavefunction in its ground state (Ψ0), read:

MI r̈I(t) = −∇I〈Ψ0 | He | Ψ0〉
i~

∂

∂t
Ψ0 = HeΨ0 (3.3)

In this “on-the-fly” approach, nuclei move under forces obtained by the expectation values
of an electronic hamiltonian. The electronic wavefunction, that enters the expectation value
evaluations, is propagated via the time dependent Schrödinger equation of the electronic
subsystem. In this way, the electronic wavefunction has to be minimized once for all at the
initial step, and the propagation is intrinsically unitary (i.e. the wavefunction preserves its
norm and the set of orbitals used to build the wavefunction up remain orthonormal).

The second approach is the Born-Oppenheimer (BO) dynamics; in this case, in the
electronic ground state, the equations of motion are:

MI r̈I(t) = −∇I min
Ψ0

{〈Ψ0 | He | Ψ0〉}
HeΨ0 = E0Ψ0 (3.4)

This means that a static electronic structure problem, at a given position of the nuclei,
gives the (expectation value of the) potential energy whose gradient yields the forces that
propagate the nuclei, via classical (newtonian) dynamics. In this formulation the electronic
wavefunction is always in its ground state and the time dependence of the electronic struc-
ture is a consequence of the motion of the nuclei. BO dynamics relies, for the electronic
ground state calculation, on any method that is expressed through a variational formu-
lation, as is the case for the Hartree-Fock approximation [61] and the density functional
theory (see next section).

In Ehrenfest dynamics the time-scale (and thus the integration time step) is dictated by
the intrinsic (fast) dynamics of the electrons. On the other hand, the time scale of the BO
dynamics is dictated by the nuclear motion, since there is no electron dynamics. However,
at each time step, a computationally quite expensive determination of the wavefunction
minimizing 〈He〉 has to be carried out. An improvement of both methods should allow
the integration of the equation of motion on a time scale set by the nuclear motion, but
nevertheless the electronic subsystem should be dynamically propagated, taking advantage
of the smoothness of its time evolution. The Car-Parrinello method is indeed such an
improvement [62].

Now, within a variational formulation, consider the energy of the electronic subsystem
to be dependent on the nuclear positions and the electronic wavefunction Ψ0. If Ψ0 is
expressed by means of a set of one-electron orbitals {ψi}, as in Hartree-Fock or density
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functional theory, then the energy of the electronic subsystem is a functional of {ψi}. In
classical mechanics the forces governing the dynamics of the nuclei are obtained from the
derivative of the Lagrangian of the system with respect to the nuclear positions. In the same
way, a functional derivative of a suitable Lagrangian, with respect to the atomic orbitals
interpreted as classical fields, could give the forces on the orbitals. Adding constraints
(that are readily treated in the Lagrangian formalism) for the set of orbitals, Car and
Parrinello [62] postulates the following Lagrangian:

LCP =
∑

I

1

2
MI ṙ2

I +
∑

i

1

2
µi

〈
ψ̇i | ψ̇i

〉

︸ ︷︷ ︸
kinetic energy

−〈Ψ0 | He | Ψ0〉︸ ︷︷ ︸
potential energy

+ constraints︸ ︷︷ ︸
orthonormality

(3.5)

Euler-Lagrange equations yields:

MI r̈I(t) = − ∂

∂rI

〈Ψ0 | He | Ψ0〉+
∂

∂rI

{constraints} (3.6)

µiψ̈i(t) = − ∂

∂ψ?
i

〈Ψ0 | He | Ψ0〉+
∂

∂ψ?
i

{constraints} (3.7)

The µi are the (fictitious) masses of the electronic (inertia parameters) coupled to the
orbital degrees of freedom, and ψ?

i
.
= < ψi|. With these equations of motion, the nuclei

evolve at a certain (instantaneous) temperature ∝ ∑
I MI ṙ

2
I , while the orbitals evolve at

the fictitious temperature ∝ ∑
i µi〈ψ̇i | ψ̇i〉. The method describe a realistic dynamics as

soon as the orbitals stay “cold”, i.e. the electronic subsystem remains close to the exact in-
stantaneous minimum energy min{ψi} {〈Ψ0 | He | Ψ0〉}. Thus, as for the BO dynamics, the
Car-Parrinello dynamics builds up from an electronic structure method expressed through
a variational principle. The dynamics of the two subsystems can remain decoupled, in a
maintained metastable condition, when the power spectra (i.e. the Fourier spectra of the
statistically averaged velocity autocorrelation functions) stemming from both dynamics do
not have substantial overlap, preventing energy transfer from “hot” nuclei to “cold” elec-
trons. The crucial parameter is the fictitious electron mass µ (normally only one mass, the
same for all the orbitals, is defined), that can be adjusted to avoid overlap in the power
spectra. In fact, a simple harmonic analysis of the frequency spectrum of the classical fields
describing the orbitals gives a dependency on the square root of the excitation gap of the
lowest frequency [63]:

ωmin
e ∝

(
Egap

µ

)1/2

(3.8)

where Egap is the energy difference between the lowest unoccupied and the highest occupied
orbital and is a property of the system. Since also the highest phonon frequency is dictated
by the system, µ should be chosen as small as possible. On the other hand also the highest
electronic frequency depends on the inverse square root of µ. The highest frequency limits
the largest time step for the integration of the equations of motion. It can be shown that
the maximum time step is [63]:

∆tmax ∝
(

µ

Ecut

)1/2

(3.9)
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The energy Ecut is a parameter governing the accuracy of the calculation. In the most pop-
ular Car-Parrinello Molecular Dynamics implementation [64, 60], the one used throughout
this thesis work, the orbitals are expanded in a plane wave basis set: Ecut is the kinetic
energy at which the expansion is truncated (vide infra in section 3.3 for details). The
higher its value the more accurate the calculation, but this implies more computational
costs. Typically, in a simulation one has to find the lowest Ecut and the optimal µ to have:
1) decoupling of the nuclear and electronic subsystem (adiabaticity), 2) low computational
cost retaining the desired accuracy, 3) the largest possible integration time step. It was
proved [65] that, fixing Ecut, µ can be automatically and iteratively optimized during short
MD runs.

3.2 Density functional theory

Up to here nothing was said on the electronic structure method used to evaluate the
expectation value of the electronic Hamiltonian He. Even if this is not the only possibility,
traditionally the CPMD scheme has been implemented in conjunction with Hohenberg-
Kohn-Sham density functional (DF) theory [66, 67].

The total ground state energy is:

min
Ψ0

{〈Ψ0 | He | Ψ0〉} = min
{φi}

EKS[{φi}] (3.10)

Thus, the expectation value of He when the system is in its ground state, can be found
by minimizing a functional, called Kohn-Sham energy (EKS), with respect to a proper
set of auxiliary functions {φi(r)}. These are the Kohn-Sahm orbitals, that satisfy the
orthonormality condition < φi | φj >= δij, and are related to the electron density n(r) by:

n(r) =
occ∑
i

fi|φi(r)|2 (3.11)

where the sum runs over all the occupied states. The minimization with respect of all the
possible all-body wavefunctions Ψ is dramatically simplified into the minimization with
respect to the Kohn-Sham orbitals {φi}, that are one-particle functions.

The Kohn-Sham energy is:

EKS[{φi}] = Ts[{φi}] +

∫
drVext(r)n(r) +

1

2

∫
drVH(r)n(r) + Exc[n] (3.12)

The equality in Eq. 3.10 holds in virtue of the theorem proved by Hohenberg and Kohn [66].
It states that if interacting electrons move in an external potential Vext, the ground-state
electron density n(r) minimizes the functional

E[n] = F [n] +

∫
drVext(r)n(r) (3.13)

where F [n] is a universal functional of n and the minimum value of the functional E[n] is
the exact ground-state electronic energy.

The term Ts[{φi}] in Eq. 3.12 is the kinetic energy of the reference non interacting sys-
tem consisting of the same number of electrons exposed to the same potential as in the fully
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interacting system. The term Vext is the sum of the nuclei-electrons interactions, seen as an
external potential acting on the single electron, and the nuclei-nuclei interactions. These
are here added in view of the propagation of the nuclear positions. In the implementation
of CPMD we used, core electrons are replaced by pseudopotentials (see section 3.3) and
so this term has to be particularized to this case. The third term is the Hartree energy,
i.e. the electrostatic energy of two charge clouds stemming from the electronic density,
obtained from the Hartree potential VH. The last contribution, the exchange-correlation
functional Exc[n] is basically the remainder between the exact energy and the Kohn-Sham
decomposition into the three above mentioned terms.

Kohn and Sham [67] proved that the minimum of the Kohn-Sham energy is obtained
by varying the energy functional for a fixed number of electrons with respect to orbitals
subjected to the orthonormality constraint. The Lagrangian formalism provides one way
to solve the minimization problem. In fact, the expression

min
{φi}

{〈Ψ0 | HKS
e | Ψ0〉

}∣∣∣∣
<φi|φj>=δij

(3.14)

can be worked out through the Lagrangian:

L = −〈Ψ0 | HKS
e | Ψ0〉+

∑
i,j

Λij (< φi | φj > −δij) (3.15)

where the Λij are associated Lagrangian multipliers. The unconstrained minimum condi-
tion for the Lagrangian with respect to the orbitals,

δL
δφ?

i

= 0 (3.16)

leads to:
HKS

e φi(r) =
∑

j

Λijφj(r) (3.17)

The matrix Λ can be diagonalized to give:

HKS
e φi(r) = εiφi(r) (3.18)

The one-particle Hamiltonian HKS
e is expressed as:

HKS
e =

1

2
∇2 + Vext(r) + VH(r) +

δExc[n]

δn(r)
(3.19)

The corresponding total energy now results:

EKS =
∑

i

εi − 1

2

∫
drVH(r)n(r) + Exc[n]−

∫
dr

δExc[n]

δn(r)
n(r) (3.20)

Crucial to the application of DF theory is the approximation of the unknowable exchange
and correlation functional. In the simplest, but astonishingly powerful, approximation, the
“Local Density Approximation” (LDA):

ELDA
xc [n(r)] =

∫
drn(r)εLDA

xc (n(r)) (3.21)
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where εLDA is the exchange and correlation energy density of an interacting but homoge-
neous electron gas at the density given by the density n(r) at a point r in the inhomogeneous
system. This energy density has been parameterized via Monte Carlo method [68]. Al-
though the LDA is very successful for a large variety of problems, it has become clear
that the description of many interesting systems in atomic physics (see e.g. [69]), quantum
chemistry [70, 71] and condensed matter physics [72, 73, 74] requires nonlocal corrections
to the LDA. We underline here that the success of the LDA has been shown, by quantum
Monte-Carlo calculations [75, 76], to result from a real-space cancellation of errors in the
LDA exchange and correlation energies.

A step forward is the so called “Generalized Gradient Approximation” (GGA [77, 78,
79, 80]):

EGGA
xc [n(r)] =

∫
drn(r)εGGA

xc (n(r);∇n(r)) (3.22)

in which the energy density depends also on the gradient of the density at a given point
in the space. It has been demonstrated that GGAs give excellent atomic ground state
energies [70, 71, 81] and significantly improve dissociation energies and bond lengths of
small molecules [70, 71, 81, 82, 83]. Similarly, the cohesive properties of many solids are
reproduced more accurately by GGAs [81, 84, 85, 86]. Energy differences like ionization
potentials and electron affinities, on the other hand, are not always improved by GGAs [81].
GGAs neither provide a description of atomic negative ions nor are they able to deal with
dispersion forces (nor does LDA). Furthermore, the differences between the results obtained
with the various proposed GGAs are often almost as large as those between individual
GGAs and the LDA, so that the optimum form of a GGA is not obvious. Practically one
has to choose, amongst the nowadays large variety of propsed functionals, the functional
yielding the best possible description of the particular system under analysis. This is
the route we followed in this work: we selected two different (correlation) functionals for
the two elements we studied (phosphorus and carbon), on the basis of comparisons with
reference data of the properties calculated with a number of available functionals.

3.3 Pseudopotentials

As already mentioned, in the implementation of CPMD, the orbitals are expanded in a
plane wave basis set. Plane waves are defined:

fPW
D = N exp(−iDr) (3.23)

The normalization N = 1/
√

Ω, where Ω is the volume of the periodically replicated cell in
which the system is simulated; each plane wave is labelled by D, that is any vector of the
reciprocal space that satisfies the applied periodic boundary conditions. In the expansion
are retained all the terms for which it holds:

1

2
|D|2 ≤ Ecut (3.24)

Thus, the precision of the calculation is governed by the only parameter Ecut. An ap-
proximate relation between the number of independent plane waves and the cut-off energy
is:

NPW
∼= 1

2π2
Ω E

3/2
cut (3.25)
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with Ecut expressed in hartree units. The number of plane waves NPW is also the number
of the electronic degrees of freedom. Plane waves constitute an unbiased basis-set, in
the sense that they do not “favour” certain atoms or regions over others. On the other
hand, an increasingly large number of components would be needed to resolve structures
in real space on decreasingly small distance scales. Unfortunately, already orbitals of the
first row atoms display strong and rapid oscillations close to the nuclei (due to the Pauli
principle, that imposes orthogonality of the orbitals). However, most of chemistry is ruled
by the valence electrons, whereas the core electrons are essentially inert. This means
that core-electron wave functions remain essentially unchanged when placed into different
chemical environment; their main contribution to the chemical bonding is to enforce the
valence wave functions orthogonality to the core state. The idea of substituting the true
atomic potential with a pseudopotential that effectively reproduces the features of the core
electrons dates back to Fermi [87], while its seminal development is due to Phillips and
Kleinman [88]. A pseudopotential practically takes out from the explicit calculation of
the electronic structure the innermost electrons, by representing them with smooth and
nodeless effective potentials. Such potentials, that are seen as external potentials∗ from the
valence electrons, give rise to smooth wavefunctions, suitably described by plane waves,
without recurring to unpracticably large number of components (or Ecut). For constructing
pseudopotentials used in ab initio calculations, one has to fulfill the following requirements:

• the resulting valence electron pseudo-wavefunction (pseudo since obtained from a
total energy that includes a pseudopotential) should not contain nodes;

• all-electron and pseudo eigenvalues must agree;

• the (normalized) pseudo-wavefunction must be equal to the normalized all-electron
wavefunction beyond a chosen cut-off radius rPP from the nucleus;

• the integral from 0 to r of the pseudo and all-electron densities (the squared modulus
of the pseudo and all-electron wavefunctions) must agree for r > rPP (the so called
requirement of ‘norm-conservation’†).

Pseudopotentials are normally generated exactly by optimizing the electronic structure
in one or more selected ‘prototype’ atomic configurations: the last two requirements are
crucial for the so called transferability of the pseudopotential to ideally all the possible
chemical environments. The constraints posed do not yield a univocal formulation of
a pseudopotential. Details on pseudopotentials and their construction can be found in
ref. [91]. Needless to say, properties of the system that depend on the structure of the
wavefunction close to the core‡ cannot be straightforwardly obtained in a calculation where
pseudopotentials are used.

∗The total energy becomes (compare to Eq. 3.12): Etotal = Ekin + EPP + Exc + EES, i.e. the kinetic
energy, the (external) pseudopotential, the exchange-correlation energy, and electrostatic energy.

†This constraint is released in the alternative approach known as “ultra-soft” pseudopotential [89, 90].
‡“Close” refers to distances smaller than rPP. In a MD simulation particles should never approach to

a distance smaller than twice rPP.
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3.4 Constant ionic and electronic temperature in Car-

Parrinello Molecular Dynamics

In the limit of ergodic sampling, standard molecular dynamics creates the microcanonical
(NVE) ensemble. In order to generate a canonical (NVT) ensemble, which is preferred
for obvious physical reasons, the naive attempt to barely fix the total kinetic energy of
the system is inexact. A deterministic algorithm achieving the purpose, in the spirit of
the extended system dynamics [92] is a sort of dynamical friction, firstly introduced by
Nosé [93] and later refined by Hoover [94, 95], is widely known as Nosé-Hoover thermostat.
In its original formulation, the thermostat was shown [94] to not yield ergodic sampling
in certain peculiar classes of Hamiltonians (such as the harmonic oscillator). The related
technique of the Nosé-Hoover-chain [96] thermostat was introduced to insure ergodicity.
This is obtained by attaching to the first thermostat another thermostat, which is in turn
thermostatted via a chain of K similar devices. The constant temperature CPMD equations
of motion for the ionic system are [97]:

MI r̈I = −∇IE
KS −MI ξ̇1ṙI (3.26)

Qn
1 ξ̈1 =

[∑
I

MI ṙ
2
I − gkBT

]
−Qn

1 ξ̇1ξ̇2 (3.27)

Qn
k ξ̈k =

[
Qn

k−1ξ̇
2
k−1 − kBT

]
−Qn

k ξ̇1kξ̇k+1(1− δkK) (3.28)

where k = 2, . . . ,K, EKS was introduced in Eq. 3.20, T is the target kinetic energy, and g
is the number of (nuclear) degrees of freedom to which the chain is coupled. The “mass”
parameters Qn

k are chosen such that the power spectra of the thermostat coordinates (the
ξ’s) and of the thermostatted system have a maximum overlap. Masses are related to
frequencies in this way:

Qn
1 =

gkBT

ω2
n

, Qn
k =

kBT

ω2
n

(3.29)

In practice, one has to calculate the power spectrum of the not thermostatted system by
Fourier transforming the velocity autocorrelation function of the nuclei. A typical frequency
of the spectrum can be taken for ωn. From Eqs. 3.26-3.28 it is clear how the thermostat
works: ξ̇1 is a sort of dynamical friction coefficient that casts the equations of motion into
the realm of dissipative dynamics. The accelerations of the nuclei (thus the label n in apex)
are damped resulting in cooling or heating of the system when the instantaneous kinetic
energy of the nuclei is higher or lower than the chosen kBT .

An apparently unrelated problem is solved in the same fashion in the CPMD framework.
As discussed at the end of section section 3.1, the CPMD method relies on the separation
of the physical and fictitious temperatures of the nuclear and electronic subsystems. The
metastability of this separation of temperatures breaks down when the electronic excitation
gap is comparable to the thermal energy (of the nuclei) or smaller (see Eq. 3.8): this is e.g.
the case for metallic systems. For these systems, a thermostat to the electronic degrees of
freedom, in the spirit of the above described equations of motion, can be introduced. This
was originally proposed by Blöchl and Parrinello [98] as an ad hoc remedy, whose rigorous
foundation was proven only recently [99]. The equations of motion of the (thermostatted)
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degrees of freedom are in the same form as for the ionic system:

µφ̈i = HKS
e φi +

∑
ij

Λijφj − µη̇1φ̇i (3.30)

Qe
1η̈1 = 2

[
occ∑
I

µ〈φ̇i | φ̇i〉 − T 0
e

]
−Qe

1η̇1η̇2 (3.31)

Qe
l η̈l =

[
Qe

l−1η̇
2
l−1 −

1

βe

]
−Qe

l η̇lη̇l+1(1− δlL) (3.32)

where l = 2, . . . ,L, HKS
e and Λij were introduced in Eqs. 3.19 and 3.15, respectively. T 0

e

is the target kinetic energy; this can be calculated, following Ref. [98], as:

T 0
e = 2kBT

µ

M

∑
i

〈φi | −1

2
∇2 | φi〉 (3.33)

The target kinetic energy in Eq. 3.32 is: 1/βe = 2T 0
e /NPW. The fictitious masses of the

thermostat coordinates are related to their vibrational frequency through:

Qe
1 =

2T 0
e

ω2
e

, Qe
l =

1

βeω2
e

(3.34)

ωe needs to be within the power spectrum of the thermostatted electronic subsystem. A
practical way to find the electronic power spectrum consists in Fourier transforming the
velocity autocorrelation function of the electronic degrees of freedom, as obtained from a
simulation with suddenly frozen nuclei.

3.5 Constant pressure in Car-Parrinello Molecular

Dynamics

The constant pressure molecular dynamics was introduced, in the framework of the ex-
tended system dynamics, by Andersen [92], only for isotropic fluctuations of the volume
cell. The method was extended allowing fluctuations of the box shape by Parrinello and
Rahman [100]. Particularized to the CPMD method, the problem is solved treating the
primitive Bravais lattice vectors a1, a2, and a3 of the simulation cell as added dynamical
variables. Defining the matrix h = [a1,a2,a3], the real-space position (rI) of a particle is
expressed as:

rI = hsI (3.35)

The equation defines sI , with I labelling the particles, that has the role of a scaled coor-
dinate (for each component of sI : sI,u ∈ [0,1], where u runs over the coordinates of sI) of
a particle in the unitary volume cube. The metric tensor is readily defined: G = hth. It
converts distances measured in scaled coordinates into real distances according to:

(rI − rJ)2 = (sI − sJ)tG(sI − sJ) (3.36)

The periodic boundary condition are enforced through:

rpbc = r− h[h−1 r]NINT (3.37)
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where [. . .]NINT indicates ‘nearest integer’. In the CPMD scheme also the orbitals have to
be suitably expressed in the scaled coordinates s. The normalized orbitals in real-space
coordinates r are transformed via:

φi(r) =
1√
Ω

φi(s) (3.38)

where i label the state. Ω is the volume of the cell: Ω = deth. In this way each of the
corresponding members of the two sets of orbitals have the same normalization, if their
modulus is integrated over the respective volume. In other words, for the charge density,
it holds, in the unit cube:

n(r) =
1

Ω
n(s) (3.39)

This achieves the desired task to have the scaled fields φ(s)(and their charge density)
independent of the dynamical variables associated to the cell degrees of freedom. On the
other hand, the real-space fields φ(s) do depend on h through the normalization by the cell
volume Ω.

All is set to write the variable-cell extended Lagrangian for CPMD:

L =
∑

i

µ
〈
φ̇i(s) | φ̇i(s)

〉
− EKS[{φi},{hsI} ]

+
∑
ij

Λij (〈φi(s) | φi(s)〉 − δij)

+
∑

I

1

2
MI

(
ṡt
IGṡI

)
+

1

2
WTr ḣ

t
ḣ− PΩ (3.40)

This constant pressure (P ) Lagrangian reduces to the usual CPMD Lagrangian (that was
given only in a schematic form in Eq. 3.5) when ḣ → 0 (apart from the constant PΩ). W
is the fictitious mass (or inertia parameter) that controls the time-scale of the motion of
the cell. The resulting equations of motion are:

MI s̈I,u = −
3∑

v=1

∂EKS

∂rI, v

(
ht

)−1

vu
−MI

3∑
v=1

3∑
s=1

G−1
uv

˙GvsṡI, s (3.41)

µφ̈i(s) = − δEKS

δφ?
i (s)

+
∑

j

Λijφj(s) (3.42)

W ḧuv = Ω
3∑

s=1

(Πtot
us − pδus)(h

t)−1
sv (3.43)

The total internal stress tensor is§:

Πtot
us =

1

Ω

(∑
I

MI

(
ṡt
IGṡI

)−
∑

v

∂Etotal

∂huv

ht
vs

)
(3.44)

The barostat acts as a frictional feedback mechanism. It leads the average internal pressure
(P int = 〈(1/3)TrΠtot〉) to be equal to the external applied pressure P with a frictional co-
efficient ∝ Ġ. Following Andersen [92], W should be chosen in order to obtain a relaxation

§The expression is in the familiar form: P = ρkBT − dEtotal/dΩ.
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time of the cell of the order of τ = L/c, being L the linear dimension of the simulation box
and c the sound velocity inside the system. It is also possible [101] to estimate the char-
acteristic frequency of the system 1/τ by linearizing Eq. 3.43, so that W = 3

∑
i Mi/(4π).

Ergodic trajectories are obtained integrating Eqs. 3.41–3.43.
The actual implementation of the constant pressure dynamics involves a subtlety. There

is a problem arising from a straightforward implementation of the above equations of
motion, due to the use of a finite basis set: this is known as Pulay stress [102]¶ . When a
finite basis set is used, in presence of volume fluctuations, one can either fix the number of
plane waves (NPW) or the energy cut-off Ecut. A constant NPW does not lead to any Pulay
stress, but it implies a systematic decreasing of the precision in case of volume increase
(from Eq. 3.25, E

3/2
cut would effectively decrease). One can imagine the (real space) grid of

the plane wave expansion being stretched with the volume, so that details are systematically
lost. On the other hand, constant Ecut would have better convergence properties towards
the infinite-basis-set limit [102]. Unfortunately NPW is an integer while the box would
change continuously: when an extra term is added to the plane-wave expansion, the total
energy (and thus the equation of state) changes discontinuously. Furthermore, due to
the fact that dealing with a variable number of degrees of freedom is highly undesirable
in Molecular Dynamics, the CPMD implementation [60] requires a fixed NPW. One can
recover reasonable dynamics, without going to computationally prohibitively high Ecut with
a practical remedy consisting in modifying the electronic kinetic energy term (Ekin), that
normally reads‖:

Ekin =
∑

i

fi

∑
q

1

2
|D|2 |ci(q)|2 (3.45)

The employed modification [103, 101] is:

Ẽkin =
∑

i

fi

∑
q

1

2

∣∣∣D̃
(
A,σ,Eeff

cut

)∣∣∣
2

|ci(q)|2 (3.46)

∣∣∣D̃
(
A,σ,Eeff

cut

)∣∣∣
2

= |D|2 + A

{
1 + erf

[ 1
2
|D|2 − Eeff

cut

σ

]}
(3.47)

where A, σ, and Eeff
cut are positive parameters to be adjusted. The constant NPW result is

recovered in the limit of vanishing smoothing (A → 0, σ →∞). In the opposite situation
of sharp step function, (A →∞, σ → 0), all the plane wave for which 1/2|D|2 À Eeff

cut have
negligible weight in Ẽkin and so drop out from the ground state wave function: this would
mimic a constant cut-off (at Eeff

cut) dynamics. Therefore, for this trick to work, it must be:
Ecut À Eeff

cut. When A > 0, the stress tensor has an extra term, that can be identified
with the Pulay stress. This parameter should be high enough to be close to the constant
cut-off (while a reasonable value of σ prevents discontinuities). On the other hand, it has
to be kept as small as possible, due to an increase of the highest frequency of the electronic
power spectrum (∝ A/Ecut), that would limit the maximum allowed molecular dynamics
integration time step (see Eq. 3.9).

¶The Pulay stress is the difference between the stress tensor (∂E/∂h), calculated with the finite basis-set
adopted, and the fully-converged-basis value.

‖In this expression we implicitly considered only the k = 0 (Γ) point.



Phosphorus: first principle simulation
of a liquid – liquid phase transition

On a long enough timeline, the survival
rate for everyone drops to zero.

In this chapter we will report on a Car-Parrinello molecular dynamics study of the liquid
– liquid phase transition in phosphorus. The report will be opened with a short review
of the up to date ideas in the field of phosphorus LLPT. Subsequently we present the re-
sults of DF-MD simulations to demonstrate and analyze the presence of a LLPT in liquid
phosphorus, followed by a careful analysis of the structure of both phases. In contrast
to earlier DF-MD studies we employ a gradient-corrected functional that provides a sig-
nificant improvement over LDA in the description of the interatomic interactions, as we
will show. Moreover we take care to simulate the transition by a gradual increase of the
pressure. Section 4.2 describes the computational methods, section 4.3 discusses the choice
of the density functional, and in section 4.4 we present results for the equation of state at
1500 K for both liquids, together with a phenomenological analysis of the observed phase
transitions. Section 4.5 is devoted to the analysis of structural and dynamical properties
of both liquids. We conclude with a discussion.

4.1 Overview of the liquid – liquid phase transition in

phosphorus

Recently, the first direct experimental observation of a LLPT has been reported. Using
X-ray diffraction techniques Katayama and co-workers [1] obtained strong evidence for a
pressure-induced transformation between two distinct forms of liquid phosphorus. Further
analysis [107] of the data suggested that the low-pressure phase is a molecular liquid con-
stisting of tetrahedral P4 molecules, whereas the high-pressure phase is an atomic liquid
with a polymeric network structure. The LLPT was found at a pressure (P ) of the order
of 1 GPa and a temperature (T ) of around 1300 K (open circles in Fig. 4.1) and shows
a significant density change. Recently, Monaco et al. [108] extended the X-ray study of
LLPT study of Katayama and co-workers up to a temperature of 2500 K. They found
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Figure 4.1: Pressure-Temperature phase diagram of phosphorus in the relevant region for
the LLPT. The open circles are experimental points (Katayama et al. [1]). The solid/liquid
and solid/solid (solid lines) boundaries are taken from [104] and references therein. The
full diamond at the bottom left of the plot is the critical point ending the (low density)
gas/liquid line [105]. We started our simulation from the point α and increased the pressure
with small steps, along the dotted arrow, up to the point T, where we obtained the LLPT.
In the simulation reported in [106] the sample was brought from the state point α′ to the
point T’ in one step. At this last point the system instantaneously exhibited the LLPT.

the (dP/dT ) slope of the coexistence line to be negative, and suggested the LLPT criti-
cal temperature to be not lower than 2500 K: these data are shown in the next chapter,
in Fig. 5.2. In Fig. 4.1 we show the stable phases in the relevant region for the LLPT:
liquid phosphorus freezes into an insulating, orthorhombic solid phase (black phosphorus)
for pressures up to 2.6 GPa, and into a metal with rhombohedral structure for pressures
beyond 2.6 GPa. On basis of the experimental data, the LLPT coexistence line is proposed
to start from the melting line at P ∼ 1 GPa and T ∼ 1250 K, where it shows a maximum
in the P − T plane of the phase diagram. The tetrahedral P4 molecule appearing in the
low-density liquid phase is the principal component of the gas phase of phosphorus [109].
P4 is also the basic unit of white phosphorus [110], i.e. the metastable solid phase obtained
by vapour condensation at ambient conditions. White phosphorus melts into the molecular
liquid at 317.4 K at atmospheric pressure. It has also to be noted that the critical point
at the end of the P4 liquid/vapor transition line (solid diamond in Fig. 4.1) is calculated
to be 8.2 MPa and 968 K [105]. Thus the P4 liquid is supercritical all along the predicted
LLPT line [108] and should be rather referred to as molecular fluid.

The experimental studies revealing a possible existence of a LLPT in phosphorus had
been preceded by a pioneering paper by Hohl and Jones [111], reporting the study of liquid
phosphorus by density-functional theory based molecular dynamics (DF-MD) simulation
employing the local density functional (LDA). By heating up a molecular P4 liquid, they
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observed a transition into a polymeric-like phase. In a recent DF-MD study using LDA,
Morishita [106] observed the LLPT from the molecular into the network phase, by imposing
an instant pressure change of 1.8 GPa on the system (i.e. from the shaded square to the
shaded circle, connected with an arrow in Fig. 4.1). Employing the same computational
approach (LDA DF-MD) Senda et al. [112] addressed both the structural and the electronic
properties of the two liquid phases, finding that the molecular liquid is an insulator while
the network liquid is metallic.

4.2 Computational methods

We performed DF-MD simulations using the Car-Parrinello [62] method as implemented
in the CPMD package [60]. The electronic structure was calculated using the Kohn-
Sham formulation of density functional theory employing a gradient-corrected functional.
The calculations were performed using a periodic fcc cell. The Kohn-Sham state are
expanded in a plane-wave basis set sampled at the Γ point in the Brillouin zone, and
truncated at a kinetic energy (Ecut) of 25 Ry. This value ensures convergence of the
binding energy of small P clusters (vide infra for details) within 5 kJ/mol per bond. Semi-
local norm-conserving Martins-Troullier pseudopotentials [113] are used to restrict the
number of electronic states to those of the valence electrons. The pseudopotential was
constructed with an excited positively charged valence-electron configuration s1.75p2.25d0.50

, using core-radii of 1.5, 1.7, and 1.9 a.u. for the l = s, p, and d terms, respectively.
The pseudopotential was transformed into the Kleinman-Bylander form [114] with l = d
as the local term. The incorporation of a d-potential is required to achieve an accurate
description of the contribution of d-orbitals to the bonding. The mass associated with
the fictitious degree-of-freedom was taken 1000 a.u. This allowed for a time step of 5
a.u. (0.12 fs) in the velocity Verlet integration of the equations of motion. The ionic
temperature was controlled via a Nosé-Hoover thermostat chain of length 4 (coupled to
the frequency of 300 cm−1). The network liquid is expected to be metallic [109, 111, 112].
For metallic systems the Car-Parrinello method requires the electronic degrees of freedom
to be coupled to a thermostat. Here we coupled a Nosé-Hoover chain thermostat to the
electronic degrees of freedom with a target energy of 0.035 eV and a coupling frequency of
15000 cm−1. The target energy was estimated using the procedure proposed by Blöchl and
Parrinello [98]. The coupling frequency of 15000 cm−1 was chosen to be in the range of
dominant frequencies of the wavefunctions, determined from a CPMD simulation with fixed
ion positions. Imposing thermostats breaks the conservation of the linear momentum, may
lead to a significant drift of the center of mass of the system. This collective motion can
absorb part of the kinetic energy of the ions, yielding a decrease of the ionic temperature.
We monitored the magnitude of this drift, and found it to be negligible, thus making a
periodic reset of the velocity of the center of mass unnecessary.

The implementation of the constant pressure (NPT) simulations was done following the
methodology explained in section 3.5. Referring to the symbols introduced there, we chose
Eeff

cut = 25 Ry: this required use of a real plane-wave basis set truncated at Ecut = 35 Ry.
The height and the width of the smoothing function, A and σ in Eq. 3.47 were set to 40
and 6 Ry, respectively.
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Exp. [110] LDA B-LYP BP
P2 atomization energy 490.1 551 499 502
P2 bond length 1.89 1.93 1.90 1.90

D∞ P3 atomization energy 617.4 788 633 654
D∞ P3 bond lengths 1.95 1.94 1.97 1.96

C2v P3 atomization energy 748.6 910 734 768
C2v P3 short bonds 2.07 2.06 2.09 2.08
C2v P3 long (basis) bond 2.25 2.23 2.27 2.26
C2v P3 basis angles 57.2 57.3 57.1 57.2
C2v P3 vertex angle 65.6 65.4 65.8 65.6

Td P4 atomization energy 1200.1 1492 1170 1248
Td P4 bond lengths 2.22 2.18 2.22 2.21

Table 4.1: Comparison of energies and geometries of the smallest P cluster among different
functionals and experiments. Energies are in kJ/mol, distances in Å, and angles in degree.

4.3 Choice of density functional

To validate the choice of the density functional we determined the binding energy and
equilibrium geometry of small P clusters, ranging from the dimer to the P4 tetrahedron
for three functionals: the LDA functional [115] and two gradient corrected functionals,
B-LYP [79, 80] and BP [79, 78]. Table 4.1 lists the calculated geometries and energies
together with experimental data. It shows that the LDA significantly overestimates the
binding energies, a well-known feature of this functional. In contrast the B-LYP and BP
functionals show much better agreement with the experimental data. The geometries are of
comparable accuracy for all functionals, with B-LYP slightly better than BP. We therefore
chose to use B-LYP in the DF-MD simulations of liquid phosphorus.
The structure of the molecular liquid is determined by the interactions among P4 molecules.
The attractive part of this interaction is dominated by dispersion. However, dispersion
forces are not accounted for by local (LDA) or semilocal (BP and B-LYP) functionals as
it is a non-local long-range correlation effect [116, 117, 118]. To assess the performance of
LDA and B-LYP for the intermolecular P4 interaction we determined the potential energy
function of the P4 dimer. As there is no data available we compared the results to the non-
bonded Lennard-Jones part of an empirical force field, the Unified Force Field [119] (UFF).
We realize that this is an approximate description of the dispersion. However, as the UFF
Lennard-Jones parameters has been especially fitted for P4 molecules, we believe it provides
a reasonable description. Fig. 4.2 shows the effective potentials between two tetrahedra
as function of center of mass (CoM) distance. The LDA and B-LYP results were obtained
by averaging, for each CoM distance, 50 configurations with random orientations of the
two tetrahedra. For the UFF calculations, 5000 configurations were used. The error due
to the limited number of orientations is smaller than the symbol size. B-LYP shows only
repulsive forces between molecules, while the effective radius of the molecules, considering
an average thermal energy of 12.1 kJ/mol at 1500 K, is in agreement with UFF. On the
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Figure 4.2: Calculated interactions between P4 molecules for the B-LYP functional, the
LDA functional, and the intermolecular Lennard-Jones term of the UFF empirical force
field. The energy scale is on the left vertical axis. Superimposed is the radial distribution
function g(r) for the P4 centers of mass. The scale is on the vertical axis at the right side.

other hand, LDA predicts a much smaller effective radius and a spurious strong attraction
at the distance corresponding to the effective radius of UFF. The observed behavior of
LDA and B-LYP for dispersive intermolecular interactions is also seen for noble gases [116]
and benzene [118]. It has its origin in the approximate nature of the functionals for reasons
that are not yet fully understood. On the basis of this analysis, it is questionable whether
the LDA functional can accurately describe the molecular liquid. This might also implicate
an inaccurate description of the liquid – liquid phase transition.

4.4 Liquid – liquid phase transition and equation of

state

We studied the liquid – liquid phase transition by examining the T=1500 K isotherm for
a range of pressures. The thermodynamic phase transition is at a pressure at which the
molecular and network phases have equal Gibbs free energy. Techniques for locating phase
transitions by free-energy calculations are by now well developed (see e.g. the thermo-
dynamic integration in Frenkel and Smit [13]). For the present system an obvious route
would be thermodynamic integration along transition-free paths to a state point above the
critical temperature. However, we did not employ such methods in the present study due
to prohibitive computational costs. The reason for this is that an accurate implementation
would require convergence of the absolute electronic energy. This requires the simulations
to be performed at a much larger plane-wave cutoff energy, implying an order of magni-
tude increase in computational cost. We therefore limited our present study of the phase
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transition in phosphorus to the direct observation of the transition, leaving more accurate
free-energy based studies for the future.

The initial molecular liquid configuration was obtained by melting a configuration of
16 randomly oriented tetrahedra with the CoM’s in a diamond structure in a 5 ps constant
volume (NVT) simulation at density of 1.56 g/cm3. This is near the experimental coex-
istence density at T ∼ 1300 K [120]. This state point was expected to be located in the
molecular phase region, not too far from the transition line. Its temperature is significantly
below the experimental estimate for the lower bound of the critical temperature of around
2500 K [108]. Isotropic cell fluctuations were then allowed, starting from an imposed pres-
sure of 2.2 GPa, equal to the one calculated in the constant density run at 1.56 g/cm3 (this
state point is labelled as α in Fig. 4.1). Subsequent molecular liquid simulations of various
state points along the isotherm were performed by successive small step-wise changes of the
pressure. Simulations of the network liquid state points were performed in two ways. For
higher pressures this was done by starting from the molecular liquid that spontaneously
evolved into a network liquid. For lower pressures we started from one of the high-pressure
network liquid simulations and performed subsequent simulations by successively decreas-
ing the pressure by small steps. For all state point simulations consisted of an equilibration
of a few ps, and a production run of at least 4 ps. The equilibration period was chosen
large enough to ensure that the amplitude of the oscillatory variation of the simulation
box volume induced by the instantaneously imposed pressure change had been damped
out. Note that we limited the imposed pressure changes to be relatively small (≤ 0.5 GPa)
in order to prevent too large initial volume oscillations and to ensure damping of these
oscillations within 1 ps.

Fig. 4.3 reports the calculated equation of state. Upon compression of the molecular
phase from 2.2 GPa up to 6.2 GPa we found that no lasting structural changes appeared,
with the P4 molecules remaining intact for most of the time. However, with increasing
pressure the temporary break up of the molecules was observed with increasing frequency.
In this process one of the six bonds breaks and the molecule opens up and flattens in a
‘butterfly’ shape [111]. This usually happens for two neighbouring P4 molecules simul-
taneously, where two undercoordinated atoms from different molecules temporarily link.
Chains of this ‘butterfly’ molecules were first suggested by Pauling and Simonetta [121] as
a possible mechanism for the breakup of tetrahedral molecules.

Whereas during the 8 ps simulation at 6.2 GPa no lasting global structural change ap-
peared, a phase transition occurred after 2.4 ps in the subsequent simulation at a marginally
higher pressure of 6.25 GPa (point T in Fig. 4.1). Note that, at that moment, the volume
oscillations due to the imposed pressure change of 0.05 GPa were already damped out.
The phase transition appears as an abrupt decrease of the simulation cell size, accompa-
nied by a breaking up of all the tetrahedral molecules. In a second simulation at 6.25 GPa
, starting from a different initial molecular liquid configuration, we observed the transition
to occur in a similar fashion. Closer inspection of the trajectories just before the transition
revealed a possible picture of the microscopic mechanism of the phase transition: the tran-
sition occurred whenever a chain of ‘butterfly’ molecules spanning the whole simulation
box was formed: only after this event the breaking of tetrahedra propagated through the
whole system. In Fig. 4.12, central panel, the chain of ‘butterfly’ molecules is highlighted.
Obviously, this process is expected to be dependent on the system size, as the chain of
‘butterfly’ molecules spanned the simulation box, effectively making an infinite chain in
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Figure 4.3: Equations of state of liquid phosphorus at 1500 K. Open triangles (4) and
open circles (◦) indicate calculated points of the molecular and network phase, respectively.
Crosses (×) and associated arrows indicate simulations manifesting transitions from the
molecular to the network phase. The error bars of the two points at 3.5 GPa indicate the
estimated inaccuracy in the imposed pressure and holds for all the simulated points. The
solid symbols indicate two experimental points near the transition at T ∼ 1300 K. The
dotted lines indicate the difference between experimental and calculated pressures.

the periodic system. For a larger system the formation of a system-spanning chain of ‘but-
terfly‘ molecules could be less probable, and possibly only appearing at a larger pressure
or not at all. Still, our observation constitutes an interesting possible mechanism that
is consistent with the infinite chain mechanism [121]. In the simulations starting with a
network configuration no phase transition to the molecular liquid was observed. For pres-
sures below 5.0 GPa occasionally one or two tetrahedra were observed to form. However,
they break apart after a short time. An exception to this was observed during the lowest
pressure simulation: in the 1.0 GPa network liquid simulation three tetrahedra formed and
remained, but the molecular phase was never completely reformed.

On the basis of these observations, we cannot rule out the possibility that the phase
transition is second order, with the density pressure curves crossing at a pressure below
the lowest pressure considered in our calculation. Still, given the fact that the structures
of both phase are so different and the fact that over the range of pressures considered both
phases have different densities our results strongly suggest that the transition is first order.

Obviously, given the small system size and the limited timespan of the simulations,
the observed transition from the molecular liquid to the network liquid is expected to be
above the thermodynamic coexistence pressure. Indeed, both the density (2.30 g/cm3) and
pressure (6.25 GPa) of the molecular liquid are significantly above the experimental values
(P ∼ 0.8 GPa [108]). These limitations can bias the results, and the observed structural
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changes should be interpreted as qualitative.

Experimental data for the equation of state of liquid phosphorus in this region of the
phase diagram is limited to two state points along the T ∼ 1300 K isotherm [120]: ρ =
1.57± 0.16 g/cm3 at P =0.84± 0.2 GPa for the molecular liquid, and ρ = 2.67± 0.14 g/cm3

at P =1.19 ± 0.2 GPa for the network liquid, and indicated in Fig. 4.3. The figure shows
that the calculated pressures at the experimental densities are significantly higher than
the experimental values. The overestimate is approximately 1 and 5 GPa for the molec-
ular and network liquid, respectively. For the molecular liquid this discrepancy could be
related to the absence of attractive dispersion forces among the P4 molecules when using
the B-LYP functional as shown in Fig. 4.2. An estimate of the dispersion contribution to
the pressure can be obtained by taking the dispersion term of the UFF force field [119].
This yields a downward pressure shift of around 0.5 GPa at the density of the experimental
state point, bringing the calculated state point towards the experimental result. For the
network liquid the discrepancy between the experimental and calculated pressure could be
attributed to two factors. Firstly, as for the molecular phase, the absence of the dispersion
forces in B-LYP will give rise to an overestimate of the pressure. Note, that this shift is
larger than for the molecular liquid as it depends quadratically on the density. A second
erroneous enhancement of the pressure could originate from an overestimate of the range
of the repulsion in the interatomic interactions in the network phase. An indication for this
is the slightly too long bond lengths in B-LYP calculations of small P clusters (Tab. 4.1).
We did not attempt to quantify these effects as an estimate would be rather inaccurate.
However, the arguments indicate that the effect is larger for the network liquid than for
the molecular liquid, consistent with the observed discrepancies between the experimental
and calculate pressures.

Overall, our B-LYP DF-MD results for the phase transition and the equation of state
are significantly off the experimental results. This is in sharp contrast to the results of
the LDA DF-MD simulation of Ref. [106] where the phase transition from the molecular
phase to the network phase appeared at the experimental conditions. However, we think
the seemingly accurate LDA result should be considered fortuitous. First of all, given the
first-order nature of the transition and the small simulation system a significant hysteresis
effects is to be expected giving yielding a transition pressure beyond the thermodynamic
coexistence point. Secondly, both the description of the intermolecular and the interatomic
interactions is rather poor in LDA. In the molecular phase LDA provides an erroneous
attraction among P4 molecules (Fig. 4.2) partly compensating for the absence of dispersion
in local functionals. For small P clusters LDA gives a slightly too short bond length and
a far too large binding energy (Tab. 4.1). These factors contribute to an underestimate of
the pressure and an overestimate of the stability in the network phase.

4.5 Properties of the two liquids

4.5.1 Static properties

To quantify the local structure of the liquid we calculated the radial distribution function
g(r), the atomic coordination, and the molecular orientational correlation in the molecular
phase. Fig. 4.4 shows the calculated g(r) of the molecular liquid at the experimental
coexistence density (P =2.2 GPa, ρ =1.56 g/cm3) and at a density just below the calculated
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Figure 4.4: Comparison of the radial distribution functions at 2.2 GPa and 1.56 g/cm3,
i.e. the experimental density near the coexistence (dotted line), at 6.20 GPa (dashed line),
and at 6.25 GPa (solid line), just below and above the molecular to network transition.
The network liquid density (2.70 g/cm3) equals the experimental density near coexistence.

phase transition (P =6.20 GPa, ρ =2.20 g/cm3). It also shows the calculated g(r) of the
network phase at a density just above the calculated phase transition (P =6.25 GPa,
ρ =2.70 g/cm3). First we will discuss the local structure of the molecular phase. The
result should be considered qualitative, as a system of 16 P4 molecules is too small to
provide an accurate description of the local structure, providing just enough molecules for
a complete shell of nearest neighbours. The shape of the g(r) is typical for a molecular
liquid. The first peak near 2.2 Å coming from the intermolecular P-P bond is followed
directly by a rather pronounced minimum after which a broad second peak centered at
around 5 Å appears. The second peak originates from neighbouring P4 molecules. Note
that the minimum becomes less pronounced with increasing density. This indicates more
frequent near approaches and larger deformations of the P4 molecules. This is confirmed
by the atomic coordination. Near the phase transition, nearly 50 % of the atoms in the
molecular liquid are four-fold coordinated, meaning that many apexes of the tetrahedral
molecules have an apex of another molecule in the first shell, i.e. at a distance close to the
intramolecular P-P bond length. The life time of this proximity is very short. In order to
improve upon the description of the structure of the molecular liquid, we performed a NVT
simulation of a larger system consisting of 54 P4 molecules at the experimental coexistence
density of 1.56 g/cm3. This system was prepared by cutting out a suitable fcc cell of 8
replicas of an equilibrated 16 P4 molecule configuration. After a short equilibration of 0.25
ps, the large system was sampled for 0.75 ps. The calculated pressure of this sample was,
within the error margin, the same as for the 16 tetrahedra sample at the same density.
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Figure 4.5: Coordination fractions for the network liquid at all the simulated state points.

The g(r) of the molecular CoM’s is also plotted in Fig. 4.2. Integrating the radial
distribution for the large system up to the minimum at 7.5 Å yields a value of 12 for the
average number of nearest neighbours.

For the large system we also analyzed the orientational correlation between neighbour-
ing P4 molecules using a careful analysis outlined in the appendix 4.7. Low temperature
(T=323 K) neutron diffraction studies of molecular liquid phosphorus [122], showed strong
angular correlations between the tetrahedra that extended over a range larger than in
any other known molecular liquid. The DF-MD calculations of Hohl and Jones [111] at
500 K provided some indication of a long range orientational ordering. In our simulation at
1500 K we did not find any indication of orientational correlation. From this we conclude
that, around this temperature, the P4 molecules in the molecular liquid can be effectively
considered spherical objects.

We now turn to the structure of the network liquid. The g(r) plotted in Fig. 4.4 is
typical for the simulated network liquid state points above 6 GPa. It shows a pronounced
first peak, a clear second peak and a weak third peak at close distance from the first
peak. The minima are clearly present, but only of moderate depth. Fig. 4.5 shows the
coordination fractions for the network liquid state point. The distribution of coordination
numbers was determined by counting for all atoms the number of atoms within the radius
of the first minimum of the g(r). As typical for a covalently bonded liquid, the dominant
coordination increases with the density. For lower densities the coordination is mainly
three-fold, whereas for the higher densities the four-fold coordinations dominate. Note
that in the density region where the molecular liquid is experimentally found to be stable
(ρ < 2.5 g/cm3), the dominant coordination is three-fold. This might be a manifestation of
the liquid arranging itself into a proper local structure for the conversion into a molecular
liquid. Obviously, this is prohibited in our simulations by hysteresis.
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Figure 4.6: Comparison of the structure factors at the same state point as in Fig. 4.4.
The circles (◦) are the first two peaks of the structure factor for the molecular phase, as
found in experiments [1, 107]. The diamonds (¦) are the first two experimental peaks for
the network phase. The error margins for the experimental points are around 0.2.

To be able to directly compare to the experiments [1], we also calculated the structure
factor S(k). Fig. 4.6 shows the structure factors corresponding to the radial distribution
functions of Fig. 4.4. The structure factor for the molecular liquid state shows a peak at
∼ 1.5 Å−1, related to the correlation between the CoM’s of tetrahedral molecules, and is
typical for liquids of tetrahedral molecules [123]. With increasing density, the position of
this peak shifts slightly to the right indicating that the CoM’s approach. The position
of the first peak, together with the location of the second one (3.6 Å−1), related to the
intramolecular correlations and the occurrence of a shoulder (around 2.9 Å−1), is in perfect
agreement with the experimental data, whereas also the relative intensities of the peaks
are well reproduced. Upon transformation from the molecular to the network liquid at
6.25 GPa, the peak below 2.0 Å−1 disappears and the shoulder at 3.0 Å−1 becomes a peak
at 2.6 Å−1. At larger wavevectors the shape of the structure factor for both liquids is
rather similar, indicating that the nearby interatomic correlations are comparable. With
decreasing pressure the structure factor of the network phase (not shown) develops features
typical for the molecular liquid. The peak at around 1.5 Å−1 reappears, albeit with a lower
height, and the second peak around 3.0 Å−1 changes to become a shoulder of the peak
at around 3.7 Å−1. The peak at around 1.5 Å−1 cannot be related to correlations among
tetrahedra, since at most a few P4 molecules are present. Instead, it could indicate to the
presence of local structures in the network liquid that are a precursor of the transition to
the molecular liquid.
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Figure 4.7: Vibrational spectrum of the low density liquid, at P = 2.2 GPa. The vertical
lines represent the three harmonic frequencies in the gas phase.

4.5.2 Dynamical properties

From the mean-square displacement of the atoms we estimated the autodiffusion coefficient
using

D =
1

6
lim
t→∞

d〈r2(t)〉
dt

.

Here r2(t) denotes the normalized mean square displacement of all atoms and the brackets
〈. . .〉 indicate the time average. The derivative is evaluated from the slope of a linear fit
of the calculated mean square displacement. The calculated autodiffusion coefficient is
around 10−4 cm2/s for the molecular phase, while it is a order of magnitude smaller for the
network phase, with a value of around 10−5 cm2/s. The network phase shows liquid-like
behavior as the mean square displacement is a continuous increasing function with time.

We also determined the velocity autocorrelation function. From the lowest to the
highest density, the decay time ranged from 0.2 to 0.5 ps for the molecular liquid, and
from 0.5 to 0.1 ps for the network phase. The vibrational spectrum (Fig. 4.7) was obtained
by Fourier transforming the velocity autocorrelation function. In the molecular phase the
spectrum shows three broad peaks near the three (harmonic) vibrational frequencies of the
gas phase P4. The peak centers are slightly red shifted with respect to the (harmonic)
vibrational frequencies of the gas phase P4 molecule. In the gas-phase the six vibrational
modes consist of the two degenerate bending modes, three asymmetrical stretching modes,
and one symmetric stretching mode. The harmonic frequencies for B-LYP are 346, 432
and 572 cm−1, that are ∼ 10 % lower than the experimental ones [124].

The vibrational spectrum of the network phase shows two broad bands around 150 and
350 cm−1, and is rather different from that of the molecular liquid. For the molecular phase
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Figure 4.8: Orientational time autocorrelation functions of the P4 molecules from the 54
tetrahedra simulation of the molecular phase at P = 2.2 GPa. The three curves correspond
to different definitions of the orientation (see text).

we determined the relaxation of the rotational motion by calculating the orientational time
autocorrelation of the P4 tetrahedra. The symmetry of the tetrahedra requires some care
in the assignment of the molecular orientation. We used a few (intuitive) criteria to define
the orientation of the molecules: a) the projection of only one unit vector from the CoM of
each molecule to one of the four molecules randomly chosen at each t0; b) the sum of two
projections of two unit vectors chosen as in a), and c) the sum of the projections of two
unit vectors, as in b), but this time to the closest of the 12 equivalent orientations of the
molecule at t0, to look for symmetry related correlations. The last criterion is expected
to be relevant only in presence of a directional force between the molecules or an external
field. Fig. 4.8 shows the results of the application of these three methods. The decay
time obtained by method a) and b) is similar, implying isotropicity in the orientation of
the instantaneous axis of rotation (if a tetrahedron would spin around the initial axis the
criterion a) could give correlation 1). The decay time obtained from method c) is shorter
since the ‘farthest’ configuration∗ is much ‘closer’ than in a) and b) to be reached.

4.5.3 Electronic properties

The molecular and network phases have distinct electronic properties. They have been
characterized within the LDA approximation by Senda et al. [112]. Our results, obtained
using the more accurate B-LYP functional, provide a similar picture. Figs. 4.9 and 4.10
shows the electronic density of states (DoS) averaged over 10 configurations for each liquid,
both at 5 GPa. The DoS was obtained calculating the Kohn-Sham energies for 160 occupied

∗The dual one, with new vertexes on the normal to the center of the faces of the initial configuration.



4.5 – Properties of the two liquids 37

-15 -10 -5 0 5
Energy [eV]

Molecular liquid (54 tetrahedra)
Gas phase tetrahedron

D
en

si
ty

 o
f 

St
at

es

Figure 4.9: Electronic DoS for the molecular liquid at P = 2.2 GPa. Gas phase P4

molecule energy levels are plotted for reference; the height is proportional to the multiplicity
of the level.

and 160 non-occupied levels. For comparison we have also plotted the Kohn-Sham levels
of the isolated tetrahedron and the isolated phosphorus atom. For both liquid phases
no appreciable difference were found for samples at different pressures. For the network
phase, which is expected to be metallic, the restriction of the k-point sampling to the Γ
point could be insufficient. To assess this we also determined the DoS for a larger system
of 256 atoms.

The DoS of the molecular liquid shown in Fig. 4.9 shows three broad bands below the
Fermi energy that are spread around energy levels of the gas-phase P4 molecule. There is a
significant gap around the Fermi level indicating the non-metallic nature of the molecular
liquid. The DoS of the network liquid deviates substantially from that of the molecular
phase. Both the results for the 256-atom system, shown in Fig. 4.10, and the 64-atoms
system (not shown) show a stepped profile with the first step spread around the -11 eV
P-atom s-orbital level, and the second step spread around the -2.5 eV P-atom p-orbital
level. Around the Fermi level there is some discrepancy between the large and small
system. The 256-atom system shows a flat DoS profile, whereas for the 64-atom system
there appears a small dip. This indicates that, for the small system, a Γ-point sampling
of the Brillouin zone is not entirely sufficient. The absence of a gap around the Fermi
level indicates that the network liquid is metallic. Fig. 4.11 shows the time evolution of
the HOMO-LUMO gap of a simulation at 8.4 GPa during which a molecular to network
phase transition occurs. It demonstrates that the structural transition is accompanied by
an insulator-metal transition, with the density change and simultaneous breaking up of the
P4 tetrahedra is accompanied by a closing of the HOMO-LUMO gap.
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Figure 4.10: Electronic DoS for the network liquid at P = 6.25 GPa. Gas phase P atom
energy levels are plotted for reference; the height is proportional to the multiplicity of the
levels.
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Figure 4.11: Superposition of the time evolution of the specific volume (solid line; left
axis) and the HOMO-LUMO gap (circles; right axis) for a 64-atom simulation at 8.5 GPa
in which a molecular to network phase transition occurs. The dotted line gives the level of
the average kinetic energy of the ions at 1500 K, and is plotted for reference.
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4.6 Summary and discussion

In summary, we reported a density-functional theory based atomistic simulation of the liq-
uid – liquid phase transition of elemental phosphorus from a molecular to a network phase.
We studied the transition along the T=1500 K isotherm by the constant-pressure Car-
Parrinello molecular dynamics using a gradient-corrected functional (B-LYP) to describe
the electronic structure.

The simulations of the molecular phase showed a liquid of P4 molecules, whereas the
network phase appeared clearly as an atomic liquid with coordinations ranging from mainly
two and three-fold at lower densities to mainly four- and five-fold at higher densities. The
structure was consistent with experimental diffraction data and results from LDA-based
Car-Parrinello simulations. Orientational order of the P4 molecules was absent. For both
phase we observed a finite diffusion indicating the liquid nature of the systems.

At the experimental coexistence density the calculated pressure for the molecular phase
is in reasonable agreement with the experimental value. However for the network phase
we obtained a significantly higher pressure. This discrepancy should be attributed to the
approximate nature of the B-LYP functional. Here it should be noted that the pressure is
very sensitive to small changes in the interatomic forces. We observed a transition from
the molecular to the network phase at a pressure of around 6 GPa, which is significantly
above the experimentally value of around 0.8 GPa (T=1500 K). This discrepancy should
be mainly attributed to hysteresis effects, that are expected to be significant for the small
periodic system of the present simulations. The presence of hysteresis prevented the oc-
currence of the reverse network to molecular phase transition. Analysis of the electronic
states showed that the density and structural change during the molecular to network
phase transition is accompanied by an insulator to metal transition.

Analysis of the structural changes during the phase transition revealed that a chain of
linked opened up (‘butterfly’) P4 molecules is crucial for triggering the transition of the
molecular phase to the network phase. The appearance of ‘butterfly’ P4 molecules is also
reflected in the electronic structure: the spike in the time-evolution of the HOMO-LUMO
gap around 2 ps in Fig. 4.11 can be related to the formation of two couples of ‘butterfly’
molecules (as visually observed in the trajectory). The identification of such structures
is important for the understanding of the kinetics of the phase transition, that requires
identification of local structures, that act as a seed for the phase transition. The ‘butterfly’
chain could serve as such a structure. Obviously, these observations could be biased by
the relatively small system size. A more conclusive study would require simulations with
larger system sizes. In our future work we aim to achieve this by employing empirical force
fields that are obtained from accurate ab initio simulations.
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Figure 4.12: Three snapshots across the LLPT at 6.25 GPa. The top panel is representa-
tive of the molecular phase, the bottom panel shows a typical configuration of the network
phase. In the center panel we have highlighted the chain of three ‘butterfly’ molecules that
initiates the transition.
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Figure 4.13: Ratio between the distribution of orientations of the tetrahedra in the
molecular liquid and the distribution of randomly oriented tetrahedra. The reciprocal
orientation is sampled between molecules whose centers of mass are closer than 6.5 Å,
value taken observing the g(r) in Fig. 4.2. The sample is at 1.56 g/cm3.

4.7 Appendix. Definition of the orientation parame-

ter

A complete analysis of the spatial correlations should be carried out expanding the total
pair distribution g(R1,R2) in a series of spherical harmonics, as a function of the 6 needed
variables while taking in account the peculiar symmetry of the P4 molecule. This series is
known to be slowly convergent [125] even for linear molecules, and the tetrahedral symme-
try imposes null contribution for many of the lower order harmonics. Furthermore, in order
to give meaning at the g(R1,R2), one needs to observe the behaviour of the function for
only one variable, while keeping all the other fixed and eventually parametrically changing
them. Practically, for such a liquid, one needs to know whether some peculiar reciprocal
orientations between two molecules are preferred, such as ‘face to face’ rather than a ‘apex
to apex’ or a ‘face to apex’.
This result can be achieved exploiting the geometrical features of the tetrahedral shape.

One can define for each of two selected tetrahedra a set of four unit vectors from the CoM’s
pointing to the four vertexes (α̂i for a tetrahedron A and β̂i for a tetrahedron B), In the
same way one can define four unit vectors from the CoM’s to the outward perpendicular
directions to the four faces (âi for A and b̂i for B). For a perfect tetrahedron it is not needed
to define the two sets of vectors, being possible to pass from one to the other with an inver-
sion of coordinates; even though the P4 molecules are found to be always ‘close’ to an ideal
tetrahedron, we preferred to release this constraint and use the two independent set of four
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unit vectors. To look for particular reciprocal orientation is now crucial to project these
unit vectors on the (oriented) unit vector joining the CoM’s of two molecules A and B (r̂AB).
Looking for the ‘face to face’ configuration, for instance, one has to consider the maximum
projection of a unit vector normal to the faces of tetrahedron A (maxi(âi · r̂12)) and the
minimum projection of a unit vector normal to the faces of tetrahedron B (minj(b̂j · r̂12)).
If the ‘face to face’ configuration is preferred, the joint distribution of these two quantities,
sampled on the liquid, would show more points close to the values (1;-1) than in a random
distribution of orientations. Alternatively, to have a more clear function of one variable,
one can safely consider the quantity [maxi(âi · r̂12)−minj(b̂j · r̂12)]/2, bounded between 1/3
and 1. Fig. 4.13 shows the probability for two neighbour molecules (defined as molecules
closer than 6.5 Å, consistently with the molecular g(r), Fig. 4.2) to be found ‘face to face’,
normalized on the random distribution of two unrelated tetrahedra: no particular depar-
ture from the random distribution in the area near the value 1 can be appreciated. The
same result, once defined the suitable quantities, is found for ‘apex to apex’ or ‘apex to
face’ reciprocal orientation. Even arbitrarily looking at molecules whose CoM are closer
than 5 Å we can not see any correlation between the orientation, the same is valid at the
higher densities observed †.

†The correlation at other densities were sampled on the small 16 tetrahedra system.



Simulating the phosphorus liquid –
liquid phase transition up to the
critical point

Ich sage euch: man muss noch Chaos in sich
haben, um einen tanzenden Stern gebren zu
können.
Ich sage euch: ihr habt noch Chaos in euch.

I tell you all: one must have chaos left in oneself, to be
able to give birth to a dancing star. I tell you all: you
do have chaos left in yourselves.

5.1 Introduction

In this chapter we report on a DF-MD study of the phosphorus LLPT at various temper-
atures. In the previous chapter the we focused on the LLPT along the 1500 K isotherm.
Here, we aim to determine the pressure-temperature dependence of the LLPT and, more
interestingly, to find and characterize the critical point that ends the LLPT coexistence
line.

Monaco et al. [108] reported on a experimental study of the LLPT of phosphorus for
temperatures up to ∼ 2500 K. They found that the transition pressure decreases with
increasing temperature and that, as already observed in [1, 106], the transition can be
obtained both by increasing the pressure at constant temperature and increasing tem-
perature at constant pressure, yielding the same values for the coexistence state points.
Furthermore, the authors note that the magnitude of the slope of the coexistence line, that
is negative, is decreasing with increasing temperature towards zero slope. They suggest
that this indicates the approach of the critical point. However, at the highest temperature
probed in [108] (∼ 2500 K), no signs of criticality were found. We studied the LLPT also
at temperatures beyond 2500 K.

5.2 Method

For the DF-MD part, we used the same set up as for the previous chapter. We employed the
B-LYP gradient-corrected functional with a plane-wave basis set, sampled at the Γ point,
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truncated at a kinetic energy (Ecut) of 25 Ry. We used semi-local norm-conserving Martins-
Troullier pseudopotential [113] constructed with an excited positively charged valence-
electron configuration s1.75p2.25d0.50 , using core-radii of 1.5, 1.7, and 1.9 a.u. for the l =
s, p, and d terms, respectively. The pseudopotential was transformed into the Kleinman-
Bylander form [114] with l = d as the local term. The fictitious mass of the electronic
degrees of freedom was set to 1000 a.u and the time step for the integration of the equations
of motion to 5 a.u. (0.12 fs). The ionic temperature was controlled via a Nosé-Hoover chain
thermostat of length 4 (coupled to the frequency of 300 cm−1). The Nosé-Hoover chain
thermostat of length 4 for the electronic degrees of freedom was targeted to an energy of
0.035 eV, with a coupling frequency of 15000 cm−1. For the barostat, we chose Eeff

cut = 25 Ry,
Ecut = 35 Ry, A = 40 Ry and σ = 6 Ry (see Eq. 3.47 for the meaning of the symbols).
The simulations were performed using a periodic fcc cell.

5.3 Description of the transitions

Fig. 5.1 shows the calculated temperature-density phase diagram for the phosphorus LLPT.
We show the transitions we determined (solid arrows or ellipses labelled with numbers),
together with a selection of the state points visited in our simulations. The dotted arrows
indicate the paths through the points, i.e. the history of the samples. We started from a 16
tetrahedra (64 atoms) sample equilibrated at 1 GPa and 1500 K (a); this state point was
visited during the equation of state calculation at 1500 K, reported in the previous chapter.
The figure also shows the state point at 2.2 GPa and 1500 K (α) that was the initial sample
of the calculation we performed at 1500 K. Therefore we have also connected point α to
transition ‘0’, i.e. the same reported in the previous chapter, and the arrow connecting
α to point a. The paths are either at constant temperature or at constant pressure. In
the plot we show the measured rather than the imposed temperature∗, so that points at
the same imposed temperature are not on the same vertical line. However, the variation
in temperature for the different state points is within the error margin of ∼ 50 K, so that
the points can be considered at the same temperature. Typically, the target temperature
was increased by steps of 100 K, by velocity scaling at each MD step over typically several
hundreds steps. The pressure was typically increased by steps of 0.2 GPa. Most of the
state points were simulated for at least 4 ps†. Note that typical decay times of the velocity
autocorrelation functions were around 0.5 ps.

A straight dashed line in Fig. 5.1 connects the LDF state points of the simulations at
T=1500 K and T=3500 K that showed a LDF to HDL transition. A similar line connects
the HDL state points of these two simulations. We note that the other state points, before
and after the transitions, lay fairly close to these dashed lines. Since the LDF state points
along the (bottom) line are at the mechanical stability limit for the LDF, they can be
interpreted as one of the spinodal lines for the LLPT.

In the following list we give the detail of each transition shown in the Figs. 5.1. In
contrast to the plot, here we indicate the imposed rather than the measured temperatures.
The measured values of temperatures, pressures and densities are given in Table 5.1.

∗In detail, the temperature was estimated by calculating the average of the kinetic energy of the nuclei.
†All the state points reported in Table 5.1 were simulated for at least 4 ps. All the other, not reported

state points, were at least simulated for 1 ps.
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Figure 5.1: Temperature-Density phase diagram for the phosphorus LLPT. The transi-
tions are shown either with numbered solid arrows connecting the point in LDF to the point
in the HDL, or with (numbered) ellipses surrounding such points. The symbols represent
a selection of the state points visited to reach the transition points; the dotted arrows
describe paths followed. The two dashed lines connect the two LDLs and the two HDLs of
the two extreme transitions (i.e. at T=1500 and T=3500 K).

1. At constant pressure (1.0 GPa), from 1500 K (a) to 2500 K (c). Then, at constant
temperature (2500 K) from 1.0 to 2.0 GPa (e). The transition initiated after 2.4 ps
and lasted‡ for 3 ps.

2. At constant pressure (1.0 GPa), from 1500 K (a) to 2000 K (b). Then at constant
temperature (2000 K) from 1.0 to 2.0 GPa (d). Then at constant pressure (2.0 GPa)
from 2000 K up to 2500 K ((e′). The transition initiated after 3 ps and lasted for 1.1
ps.

3. At constant pressure (1.0 GPa), from 1500 K (a) to 2700 K (f). Then at constant
temperature (2700 K) from 1.0 up to 1.5 GPa (g). The transition was obtained twice:
from the run at 1.4 GPa and 2700 K we extracted two initial configurations for the
subsequent runs at 1.5 GPa and 2700 K. The two transitions had rather different
histories : one initiated after 3 ps and then lasted 0.7 ps, the other initiated after

‡We say that the transition “initiates” when the first tetrahedron break irreversibly, and “lasts” until
the last of the initial tetrahedra breaks. Tetrahedra, that form and break during and after the transition,
comprising a different set of four atoms compared to any of the initial tetrahedra, are not considered.
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Figure 5.2: Pressure-Temperature phase diagram for the phosphorus LLPT. Our data
(full circles) are state points of the occurred transitions. The arrows indicate whether the
transition occurred along a constant temperature (vertical arrow) or a constant pressure
(horizontal arrow) path. The numbers agrees with the labelling in Fig. 5.1. The shaded
circles are experimental transition points (Katayama et al. [1]). The open circles (Monaco
et al. [108]) are experimental coexistence points. The solid/liquid and solid/solid (solid
lines) boundaries are taken from [104] and references therein. The full diamond at the
bottom left of the plot is the critical point ending the (low density) liquid boiling line
[105].

only 0.4 ps and lasted 1.5 ps; on the other hand, the two transitions started and ended
in almost overlapping state points. This given, only one of these two transitions is
shown in the plot.

4. At constant pressure (1.0 GPa), from 1500 K (a) to 3100 K (h). The transition
initiated after 1.2 ps and lasted for 3 ps.

5. At constant pressure (1.0 GPa), from 1500 K (a) to 2500 K (c). Then at constant
temperature (2500 K) from 1.0 to 0.5 GPa (i). Then at constant pressure (0.5 GPa)
from 2500 up to 3500 K (j). Above 3000 K the step in temperature was changed to
250 K. The transition initiated after 1 ps and lasted for 5.5 ps. After the LLPT, the
liquid was cooled in steps of 250 K down to 2500 K.

Obtaining a transition at a certain state point was not sufficient to report it on the
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Low density fluid

P [GPa] Target T [K] T [K] ρ [103 kg/m3]

0.50 (2500) 2457 ± 77 0.86 ± 0.03 (i)
0.50 (2700) 2684 ± 104 0.83 ± 0.02
0.50 (3000) 2995 ± 56 0.83 ± 0.02
0.50 (3250) 3236 ± 47 0.81 ± 0.01
0.50 (3500) 3508 ± 59 0.75 ± 0.01 (j)
1.00 (1500) 1505 ± 14 1.26 ± 0.01 (a)
1.00 (2000) 1960 ± 58 1.17 ± 0.02 (b)
1.00 (2500) 2383 ± 107 1.11 ± 0.01 (c)
1.00 (2700) 2754 ± 61 1.08 ± 0.02 (f)
1.00 (3000) 2983 ± 94 1.05 ± 0.02
1.00 (3000) 2991 ± 46 1.03 ± 0.02 (h)
1.00 (3100) 3137 ± 50 1.04 ± 0.01
1.50 (2500) 2450 ± 50 1.28 ± 0.02
1.50 (2700) 2694 ± 90 1.25 ± 0.01 (g)
2.00 (2000) 2028 ± 27 1.45 ± 0.01 (d)
2.00 (2500) 2466 ± 33 1.43 ± 0.01 (e)
2.00 (2500) 2544 ± 50 1.41 ± 0.02 (e’)
2.00 (2700) 2687 ± 24 1.42 ± 0.01
2.20 (1500) 1512 ± 20 1.56 ± 0.01 α

High density liquid (and fluid)

P [GPa] Target T [K] T [K] ρ [103 kg/m3]

0.5 (2500) 2480 ± 15 0.81 ± 0.03 (i’)
0.5 (2750) 2723 ± 14 0.85 ± 0.04
0.5 (3000) 2975 ± 19 0.85 ± 0.04
0.5 (3500) 3526 ± 60 0.75 ± 0.01
1.0 (2500) 2456 ± 14 1.28 ± 0.03
1.0 (3100) 3093 ± 48 1.07 ± 0.01
1.5 (2500) 2549 ± 49 1.66 ± 0.01
1.5 (2700) 2682 ± 50 1.58 ± 0.02
2.0 (2500) 2556 ± 23 1.88 ± 0.02
2.0 (2500) 2569 ± 91 1.84 ± 0.02
2.0 (2700) 2789 ± 28 1.81 ± 0.02

Table 5.1: Values of pressure, target and measured temperature, and measured density,
for selected state points. The last column reports the label used to indicate the same state
point in Fig. 5.1.

plot. The state point sampled just before the state point in which a transition occurred
was simulated longer; to do that, we ran from the final sample, the same that served as
initial sample of the run in which we obtained the transition, continuing with the final set
of coordinates and velocity (both of the nuclei and the electronic degree of freedom) for
3-4 ps more. If a transition was obtained, the procedure was repeated until no transition
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was obtained in the time span set. For example, the (pressure induced) transition at 2500
K (‘1’) firstly occurred at 3 GPa; subsequent runs, revealed it occurred also at 2.4 and 2.0
GPa, while it did not at 1.8 GPa for 4 ps. Thus, the state point at 2500 K and 2.0 was
considered as the lower limit for the (spontaneous) transition at 2500 K to occur. Also at
2700 K (transition ‘3’) we incurred in a similar situation: the transition was firstly found at
2.0 GPa and then assessed at 1.5 GPa. For transition ‘2’, we did not obtain any transition
at 2.0 GPa and 2400 K. Regarding transition ‘4’, we did not find a transition at 3000 K and
1.0 GPa. Concerning transition ‘5’, no signs of transition were seen at 3250 K and 0.5 GPa.
Needless to say, the relatively small size of the sample, together with the relatively short
time of the runs, could hinder a transition that could have occurred at lower temperatures
and/or pressures.

In Table 5.1 we show the pressure, the target and measured temperature, and the
measured density of a larger set of points than plotted in Fig. 5.1. Still, these are not all
the points sampled, but only those that were simulated for at least 4 ps. The measured
pressure always corresponded to the target one, within 0.01 GPa. The averages were
determined after a brief relaxation time (typically 0.5 ps) from data collected for at least
3.5 ps. The rather short relaxation time is a-priori justified a) by the small perturbation
(0.2 GPa or 100 K) imposed to the system on moving from a state points to the next, and,
a posteriori, b) by the fact that the velocity autocorrelation functions decay in times not
longer than 0.5 ps.

In Fig. 5.2 we show the calculated pressure-temperature phase diagram of phosphorus
compared with experimental data, in the region relevant for the LLPT. The experimental
knowledge of the (stable) solid phases is reported through their boundaries (solid lines,
from Ref. [104] and references therein). The full diamond at the bottom left of the plot is
the critical point ending the (low density) liquid/gas transition line. The position of that
critical point implies that the LDF is indeed a supercritical fluid. The shaded circles are
experimental transition points (Katayama et al. [1]). With ‘transition point ’ we mean state
points in which the system was prepared in the LDF phase and that rapidly transformed
into the HDL phase. From these shaded points, upon a 0.02 GPa decrease of the pressure,
the system transformed back into the LDF phase. The open circles (Monaco et al. [108])
are experimental coexistence points: the X-ray diffraction pattern measured at these points
suggested indeed a coexistence of the LDF and HDL phase. Our data (full circles) refer
to transitions occurred in our 64-atoms sample at the state points shown. The arrows
indicate whether the transition occurred along a constant temperature (vertical arrow) or
a constant pressure (horizontal arrow) path. The numbers are consistent with the labelling
in Fig. 5.1. In paragraph 5.6 we will further discuss the comparison between the calculated
and experimental LLPT line.

In Figs. 5.5, 5.3, and 5.6 we show the evolution of the density of simulations that
showed a LLPT (we chose transitions labelled with ‘1’, ‘4’, and ‘5’ in Figs. 5.1 and 5.2).
In all these figures we indicate the moment the transition sets in and the moment the
transition ends. Note that, the actual simulation lasted longer than what is shown, both
before and after: average densities were obtained from collecting data also from outside
the interval we display.

In Fig 5.5 (T=2500 K) we note that the rise of the density, that characterizes the
transition, starts markedly after the first breaking. The transition, i.e. the overall breaking
of the tetrahedra, took 3 ps. The two circles enclose short time spans in which two
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Figure 5.3: Evolution of the density during the simulation regarding the transition at 3100
K and 1.0 GPa (transition ‘4’). We indicate the initial and final point of the transition.
Here the living time interval of two newly formed tetrahedra are marked by the double
arrows. This state point was actually simulated longer than the window here shown and
the average densities, before and after the transition, are sampled outside from this time
interval.

tetrahedra ‘newly formed’ and quickly broke up, when the sample was in the HDL phase.
The newly formed tetrahedron consisted of atoms that did not previously form a single
tetrahedron. Looking at the snapshots of the trajectories, a ‘newly formed’ tetrahedron is
recognized when four atoms topologically arrange in a tetrahedron§ and none of them has
any other bonds with the surrounding atoms.

The density evolution for the transition at T=3100 K, reported in Fig. 5.3, shows a
change of only ∼ 3%, so that the change is hardly visible in the plot, given the large fluc-
tuations. In the time intervals marked by the double arrows, two newly formed tetrahedra
survive for a time of the order of 1 ps.

In Fig. 5.4 we show three representative snapshots taken from the simulation at 1.0
GPa and 3100 K, across transition ‘4’. From top to bottom, these snapshots are taken
at a time t ' 1, 3, 4.4 ps, respectively, where the time scale agrees with that of Fig. 5.3.
We have highlighted four atoms that at t ' 3 ps belong to a ‘newly formed’ tetrahedron,
whereas a t ' 1 ps they belong to different tetrahedra. At t ' 4.4 ps three of them still
belong to a triangular cluster and the fourth was taken away into a dimer after a collision
of the tetrahedron with a triangular cluster. The apparently single, non bonded atoms that
can be seen especially in the bottom snapshot are an artefact: these atoms are actually
connected to other atoms, via periodic boundary conditions.

In Fig. 5.6 we show the density evolution for the transition at T=3500 K; we found

§This means that each of them is bonded, i.e. is closer than 2.8 Å, to the other three atoms, without
any other requirement on bond lengths and angles.
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Figure 5.4: Representative snapshots of the transition at 1.0 GPa and 3100 K, with the
fcc box explicitly shown. In all the snapshots we highlight the same four atoms that in
the center snapshot belong to a ‘newly formed’ tetrahedron, while in the top and bottom
belong to different structures.
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Figure 5.5: Evolution of the density during the simulation regarding the transition at 2500
K and 2.0 GPa (transition ‘1’). We indicate the initial and final point of the transition. The
two circles enclose short time spans in which two tetrahedra ‘newly formed’ and quickly
decayed. Within interval labelled as ‘Intermediate state’ were selected points to calculate
the structure factor shown with a dashed line in Fig. 5.8. This state point was actually
simulated longer than the window here shown and the average densities, before and after
the transition, are sampled outside from this time interval.

that the average densities before (the LDF) and after (the HDL) the transition were the
same, within the error margin of 0.01 103 kg/m3. This common density is marked with a
dotted line.

Visual inspection of the trajectories for all the transitions revealed some characteriza-
tion of the transition mechanism. At the two lower temperatures (2500 and 2700 K), all the
four transitions we could observe were initiated by the formation of a chain of three ‘but-
terfly’ molecules¶: this led to the disruption into smaller clusters of the three P4 molecules
involved. In both cases we also observed several collisions between two tetrahedra, lead-
ing only to a temporary breaking of one of two bonds of the two molecules involved, The
broken bonds soon reformed, without any exchange of atoms. A similar mechanism is also
observed for the transition at 1500 K. The only difference we noticed at this higher tem-
peratures was in that single tetrahedra could fluctuate into the a ‘butterfly’ shape without
any correlation with the neighbours. In contrast, at 1500 K the opening of one bond only
occurred when a neighbouring tetrahedron simultaneously did the same, so that the two
molecules temporarily linked. After on or two of those chain of three ‘butterfly’ molecules
formed, rather complicated clusters of many atoms formed. After this description we can
specify that the “first initial tetrahedron breaking” referred to in Fig. 5.5, is actually a

¶A ‘butterfly’ molecule, introduced by Pauling and Simonetta [121], and already referred to in the
previous chapter, is a tetrahedral P4 where one of the six bonds is opened, so that the molecule assumes
a flattened shape.
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Figure 5.6: Evolution of the density during the simulation regarding the transition at 3500
K and 0.5 GPa (transition ‘5’). We indicate the initial and final point of the transition.
This state point was actually simulated longer than the window here shown and the average
densities are sampled outside from this time interval. Here the average densities, before
and after the transition, coincide: this common average density is marked by the dotted
line.

simultaneous breaking of three tetrahedra.

At the two higher temperatures (3100 and 3500 K) a collision between two tetrahedra
could already irreversibly yield smaller molecules, whose subsequent collisions with remain-
ing tetrahedra propagated the transition. For the transition to set in it was needed that
from both colliding tetrahedra an atom detached: in fact both observed transitions were
initiated by the collision of two tetrahedra, yielding two triangular clusters and a dimer.
We observed some typical paths for the breaking of the tetrahedra: 1) a collision of a
tetrahedron with a triangular cluster, yielding 2 dimers and a triangular cluster, that was
never the original one; 2) a collision of a tetrahedron with a dimer yielding two triangular
clusters. We did not observe the direct dissociation of a tetrahedron into two dimers. In
these cases the “first initial tetrahedron breaking” comprises two simultaneous breakings.

5.4 Structural properties

Fig. 5.7 shows the radial distribution functions (rdf’s) obtained from the simulations that
showed a transition. The LDF-side state points for the two transitions at 2500 K (i.e.
‘1’, at increasing pressure and ‘2’, at increasing temperature) were almost identical. This
also holds for the HDL-side points. Therefore, the rdf’s at 2500 K were reported only for
transition ‘1’. The same holds for the two transitions at 2700 K.

The figures show that the rdf’s of the LDF’s at different temperatures are rather similar.
The local structure of the P4 molecules dominates, with the first peak indicating the atoms
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Figure 5.7: Radial distribution functions (rdf’s) before and after all the considered tran-
sitions. Top left panel: LDF and (solid line) and HDL (dotted line) at 2500 K and 2.0
GPa (transition ‘1’ and ‘2’). Top right panel: LDF and (solid line) and HDL (dotted line)
at 2700 K and 1.5 GPa (transition ‘3’). Bottom left panel: LDF and (solid line) and HDL
(dotted line) at 3100 K and 1.0 GPa (transition ‘4’). Bottom right panel: LDF and (solid
line) and HDL (dotted line) at 3500 K and 0.5 GPa (transition ‘5’).

within one molecule that are at a typical mutual distance of around 2.2 Å. Beyond the first
peak the rdf’s are structure-less, signature of the super-critical nature of the low density
fluid. In contrast, the rdf’s of the HDL’s change markedly with state point. This holds in
particular for the behavior of the second peak that indicates the presence of two regimes.
At the lower temperatures (2500 and 2700 K) a second peak around 3.5 Å is clearly present.
It is rather broad but comparable to the one found for the HDL at 1500 K (see Fig. 4.4).
At higher temperatures (3100 and 3500 K), the second peak has disappeared, with the
rdf’s indicating a rather structure-less liquid beyond the first, pronounced, peak. The
intensity of the first peak of the HDL’s increases with temperature (note that the pressure
is decreasing in the meanwhile). At these higher temperatures, the presence of covalent
interactions still determines a strongly structured first coordination shell, while, beyond it,
any trace of order seems to be lost. When comparing the rdf’s of the LDF and HDL we
note that, with increasing temperature the rdf of the LDF and the HDL before and after
the transition become more similar.

Upon visual inspection, at 2500 and 2700 K the HDL appears as an all-connected
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network of atoms with few isolated dimers and triangular clusters. Rare spontaneously
formed tetrahedra occur after a collision of a triangular cluster and a singly bonded atom
at the end of a branch of the network, and are short lived. At 3100 and 3500 K, the HDL
is a mixture of dimers, triangular clusters, and clusters formed by triangular rings (rarely
four or five membered rings) connected by one bond. The rings were never connected via
one or more bridging atoms. Furthermore, at 0.5 GPa (T=3500 K) the HDL always counts
2− 4 ‘newly formed’ tetrahedra, whose lifetimes range from 1.5 to 4 ps.

In Table 5.2 we list the average coordination numbers for the HDL. For the temperatures
range from 2500 K to 3100 K a marked trend can be seen. Considering the one-fold
coordinated atoms we see that they are almost absent at lower temperatures, but are
significantly present at 3100 K. A one-fold coordinated atom is obviously either a part of
a dimer or the end of a larger cluster. The sudden appearance of the one-fold marks the
change in structure we visually observed and that we reported in the previous paragraph.
The sudden increase of the one-fold atoms is accompanied by a slow increase of the two-
fold, by a mild decrease of the four-fold, and balanced by a fast decrease of the fraction
of four-fold and the five-fold coordinated atoms. In the high-temperature range from 3100
to 3500 K the coordination fractions are almost identical (considering also an error bar of
size 0.01).

We calculated the structure factor for the state points corresponding to transition ‘1’
and ‘5’. In Fig. 5.8 we show the structure factors at 2500 K and 2.0 GPa (transition ‘1’).
The solid line is for the LDF, the dotted line for the HDL. These structure factors were were
obtained from 10 configurations taken from a 4 ps interval of the trajectory. The dashed line
is an average over 10 configurations in the central ps of the transition (see Fig. 5.5). Even
if the system is there not in equilibrium, we consider this time interval as an ‘intermediate
state’ between the LDL and the HDL. The LDF structure factor is characterized by the
usual two peaks at ∼ 1.5 and ∼ 3.6 Å−1, that are related [123] to the intermolecular
and intramolecular correlations, respectively. This shape of the structure factor was also
observed in our study at 1500 K (Fig. 4.6 and [11]), as well as in the simulations at 1400
K by Senda et al. [112] and in the experiments at ∼ 1350 K of Katayama et al. [1]. In
Ref. [108] it is pointed out that the structure factor of the HDL changes shape, when
going from ∼ 1400 to ∼ 1900 K. At lower temperature it shows two peaks, at ∼ 2.9 and
∼ 4 Å−1, plus a shoulder at ∼ 1.5 Å−1. This is also reported in Ref. [1, 112, 11] (see
also Fig. 4.6). According to Monaco et al. [108], when increasing the temperature to ∼
1900 K (P ∼ 0.7 GPa), the two peaks at ∼ 2.9 and ∼ 4 Å−1 merge into a broad peak,
and the shoulder at ∼ 1.5 Å−1 disappears. The HDL structure factor we find at 2500 K
(P = 2.0 GPa) has indeed only one well-defined peak at ∼ 4 Å−1, in contrast to the two
peaks present at 1500 K. On the other hand, at 2500 K we find a shoulder at 2.5 Å−1,
and at 1.5 Å−1 a rather pronounced peak is still present. The presence of more structure

P [GPa] T [K] 1-fold 2-fold 3-fold 4-fold 5-fold
2.0 2500 0.02 0.22 0.47 0.25 0.04
1.5 2700 0.03 0.28 0.41 0.22 0.06
1.0 3100 0.18 0.33 0.37 0.11 0.01
0.5 3500 0.20 0.34 0.39 0.06 0.01

Table 5.2: Coordination fractions for the HDL along the LLPT line.
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Figure 5.8: Structure factor at 2500 K and 2.0 GPa (transition ‘1’). The solid line is for
the LDF, the dotted line for the HDL.

in our HDL can be justified by considering that our pressure (and possibly our density)
is somewhat higher than in the experiment (the experimental densities are not known at
these high temperatures). In fact, a careful analysis of the HDL experimental structure
factors at several state points, published by Monaco et al. [108], suggests that the two
peaks at around 2.5 and 4 Å−1, as well a shoulder at 1.5 Å−1 reappear when increasing
pressure. For example, they are present at slightly higher pressure (i.e. at P = 0.9 GPa),
at ∼ 1850 K. We therefore argue that the one-peak-shape is a feature of the low pressure
HDL. With increasing pressure (and density), we predict that the shoulder (at ∼ 2.5 Å−1)
and the peak (at ∼ 1.5 Å−1) reappear, as a signature of longer range correlations between
atoms. At 2500 K, the ‘intermediate state’ structure factor (Fig. 5.8) seems to interpolate
between the two stable states at small wave vectors, whereas almost overlapping the HDL
structure factor large wave vectors. This would suggest that the shorter range correlation
are already settled while the longer range correlations are more slowly changing when the
system is transforming from one phase into the other.

In Fig. 5.9 we show the structure factors at 3500 K and 0.5 GPa (transition ‘5’).
The LDF structure factor (solid line), still shows the ‘intramolecular’ peak at ∼ 3.6 Å−1.
Compared to the lower temperature structure factors, the positions of the first peak shifts
to the left, from 1.5 to 1.0 Å−1. If the attribution to intermolecular correlations of this
peak still holds, this shift implies that the correlation lengths between the P4 molecules
moves to larger values. The similarity of the structure factors of the LDF and HDL is even
more pronounced than the similarity of the associated rdf’s.
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Figure 5.9: Structure factor at 3500 K and 0.5 GPa (transition ‘5’). The solid line is for
the LDF, the dotted line for the HDL.

5.5 Electronic properties

We have calculated the electronic density of states (DoS) for configurations across three
selected LLPT’s. The DoS were obtained calculating the Kohn-Sham energies for 160
occupied and 100 non-occupied levels. In Figs. 5.10, 5.11, and 5.12 we show the results
for transition ‘1’ (T = 2500 K and P = 2.0 GPa), ‘4’ (T = 3100 K and P = 1.0 GPa),
and ‘5’ (T = 3500 K and P = 0.5 GPa), respectively. The DoS in each panel is an average
over three configurations, that were selected close to each other in the trajectory around
the time declared in the panel.

In Fig. 5.10 we see initially (at 0.5 ps, top left panel) three pronounced and well sepa-
rated bands in the valence region (below the Fermi level) and a fourth band in the conduct-
ing region; the gap around the Fermi level is small in energy, but still indicating the non
metallic nature of the molecular fluid. The evolution of the DoS then proceeds with a) the
closing of the gap at the Fermi level followed by the disappearance of the dip between the
valence and conducting bands and b) the merging of the two valence bands at lower ener-
gies, with the disappearance of the band gap at ∼ −13 eV. Until the end of the trajectory
there remains a dip around −7 eV, that separates the density of states into two bands. The
closure of the gap at the Fermi level indicates the transition of the non-metallic, molecular
fluid into a metallic liquid.

In Fig. 5.11, the evolution of the density of states is similar to the previous case, i.e.
from four sharp to two broad bands, with the noticeable difference that the gap at the Fermi
level is already closed at the initial step, even if a deep dip keeps valence and conducting
bands rather separate. This means that at this state points already the molecular fluid
shows some metallic features.

In Fig. 5.12, the evolution follows the usual non-metal-to-metal path, with two peculiar
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Figure 5.10: Evolution of the density of states (distribution of the Kohn-Sham levels)
across transition ‘1’ at 2500 K and 2.0 GPa. The time scale agree with that of Fig. 5.5.

features. Initially (at 0.75 ps, top left panel), the DoS falls to zero at the Fermi level,
but the gap is vanishingly small. More strikingly, the DoS maintains until the end of the
trajectory a defined splitting into four bands, even if the gaps between them close and
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Figure 5.11: Evolution of the density of states (distribution of the Kohn-Sham levels)
across transition ‘4’ at 3100 K and 1.0 GPa. The time scale agree with that of Fig. 5.3.

the bands become rather broad. From approximatively t = 6 ps on, the density of states
appears as a superposition of a density of states peculiar to the molecular fluid (see the
first row in Fig. 5.10, but also Fig. 4.9, taken at 1500 K) and one typical of the metallic
liquid (see the last row in Fig. 5.10, but also Fig. 4.10, taken at 1500 K).
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Figure 5.12: Evolution of the density of states (distribution of the Kohn-Sham levels)
across transition ‘5’ at 3500 K and 0.5 GPa. The time scale agree with that of Fig. 5.6.

We have performed the calculation of the DoS also for the LDF and the HDL, both at
0.5 GPa and 2500 K. These state points are labelled as i and i’ in Fig. 5.1. We remind
that the HDL at state point i’ was obtained by cooling the liquid equilibrated after the
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Figure 5.13: Density of states (distribution of the Kohn-Sham levels) for the 0.5 GPa
and 2500 K for both the LDF and HDL, i.e. points i and i’ of Fig. 5.1.

transition at 0.5 GPa and 3500 K. Both distributions were obtained averaging over six
uncorrelated configurations. At these temperature the DoS of the molecular fluid has a
large gap at the Fermi level; the DoS network liquid, on the other hand, is now clearly
split into the same four bands as the molecular fluid, with the difference that the gaps
among bands are closed and the bands are broader. We note that visual inspection of the
trajectory of the simulation at 2500 K and 0.5 GPa for the network liquid, reveals that 2-4
tetrahedra are always present in the sample.

5.6 Discussion

Consistently with recent experimental observations [108], we have found that, upon in-
creasing temperature, the pressure at which the low density fluid transforms into the high
density liquid decreases. The transition state point proved to be independent of the his-
tory of the sample. Namely, transition ‘3’, at 2700 K and 1.5 GPa was obtained twice,
starting from two different initial configurations at the state point the transition occurred;
the transitions ‘1’ and ‘2’ occurred at the same state point, 2500 K and 2.0 GPa, the first
upon increasing pressure at constant temperature, the second upon increasing temperature
at constant pressure.

However, it is difficult to relate the transition pressures we obtain from our system to
the experimental pressures. As already pointed out in the previous chapter, there are three
sources of inaccuracies in the pressure calculations we cannot cope with. One is the known
size-dependent hysteresis; this is always present when in a simulated system of a relatively
small number of atoms, a transition is expected to overcome a free energy barrier, in order
to occur. In the case of phosphorus LLPT, the free energy barrier might be given by the
difficulty in breaking the tetrahedral clusters, whereas a ‘transition state’ can be found in
alternative bonding configurations of the phosphorus atoms, with a free energy not too
far from the tetrahedral arrangement. We suggest that the mechanism that initiates the
transition becomes more probable to occur at higher temperature. Namely, at lower tem-
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peratures a rather rare correlation between three tetrahedral molecules seems to be needed
for the LLPT to initiate; at higher temperatures a much more probable to occur disruptive
pair collision appears to be sufficient. The other two effects lead overestimation of the
pressure at a given density, if compared to experimental values. This is due a) to the lack
of dispersion attractions, that cannot be described by the density functionals, even at the
gradient corrected level, and b) to small inaccuracies in the predicted interatomic interac-
tions, that are magnified in the pressure calculation. We cannot quantify this last effect; in
contrast, the pressure overestimation due to dispersion forces is know to be quadratically
dependent on density, thus expected to decrease at low densities. In our simulations the
state points in which we found LLPTs approach the experimental coexistence points: this
might be due to a) a smaller hysteresis at higher temperatures, since the phase space is
more efficiently sampled and the transition state seems to be more probable to occur, and
b) the decreasing density that lower the contribution of the dispersion forces we neglect.

Even if the absolute pressure cannot directly be compared to experiment, for the reasons
above mentioned, we note that the slope of the line connecting P − T state points (see
Fig. 5.2) in which our LLPTs occurred is negative as well as in experiments. In other
words, consistently with Monaco et al. [108], with increasing temperature the transition
pressure decreases. However, the curvature of the line connecting LLPT state points has
opposite curvature if compared to experiments. Again, this could be due to the hysteresis
effects.

Given this serious limitation, we claim that we have obtained a near critical transition
at 3100 K (transition ‘4’ in Fig. 5.1 and Fig. 5.2) and a supercritical transition at 3500 K
(transition ‘5’). In the following we summarize our arguments.
By comparing Figs. 4.11, 5.5, 5.3, and 5.6, we note that the fluctuations in density increase
noticeably with the temperature, passing from ∼ 7 % at 1500 K, through ∼ 20 % at 2500
K and ∼ 40 % at 3100 K, to ∼ 50 % at 3500 K‖.
In Fig. 5.1, the slope of the two dashed line highlights the decreasing of the change in
density across the LLPTs upon increasing pressure. At 3100 K the change in density is
almost vanished, and it is vanished, within the error bars, at 3500 K.
The radial distribution functions of the network and molecular liquids at this two higher
temperatures (Fig. 5.7, bottom panels) and the structure factors (Fig. 5.9 for transition
‘5’, while transition ‘4’ is not shown) are rather similar.
Upon cooling the network liquid obtained after transition ‘5’ (it is not any more a ‘high
density liquid’ !) along the isobar at 0.5 GPa, we find that its equation of state overlap the
equation of state of the molecular fluid.
The network liquid at 1.0 GPa (at 3100 K) and 0.5 GPa (i.e. at all temperatures from
3500 K to 2500 K along the 0.5 GPa isobar) exhibits a great number of ‘newly formed’
tetrahedra, suggesting that the network structure and the molecular arrangement are ther-
modynamically of comparable stability.
The electronic density of states after the LLPT at 0.5 GPa and 3500 K (see Fig. 5.12,
bottom row) appears as a superposition of a DoS peculiar to the molecular fluid and a
DoS typical of the network liquid, when both phases are sampled at lower temperatures
(see e.g. Figs. 4.9 and 4.10, with DoS taken at 1500 K). This feature is more pronounced
when both phases are equilibrated at the same low pressure (P = 0.5 GPa), but at a lower

‖The distribution of the densities were fitted with gaussian functions with parameters (x0,σ) and the
figures reported are 2σ/x0.
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temperature (T = 2500 K), as shown in Fig. 5.13.

5.7 Conclusions

In conclusion, we have investigated the phosphorus liquid – liquid phase transition in the
range of temperatures from 2500 to 3500 K, by means of density functional based molecular
dynamics (DF-MD). We have identified five different transitions at different temperatures
that occurred at constant temperature and pressure in our 64-atoms (16 initial tetrahedra)
system.
Visual inspection of the transition runs suggested that, upon increasing temperature,
the transition mechanism changed from a three-molecule-correlation building a transient
chain of ‘butterfly’ molecules to a two-molecule-collision with immediate disruption of the
molecules into smaller clusters.
Our calculations suggest that the transitions at higher temperature are near-critical (at
T = 3100 K) or super-critical (at T = 3500 K).

Further advance in the understanding of the liquid – liquid phase transition in phos-
phorus by atomistic simulation requires the parametrization of an accurate (semi)empirical
potential. This would allow to extend the present DF-MD simulation timescale by at least
one order of magnitude, and could provide a more detailed picture of the liquid – liquid
phase transition, including its free energy characterization.



Bond order potentials for covalent
elements.

Entia non sunt multiplicanda praeter necessitatem.

This chapter will be dedicated to a short history of the so called “bond order” poten-
tials [126, 127, 128, 129, 3, 130, 15] (BOPs), that represent an interesting class of the
rather scattered family of analytic potentials.

Analytic interatomic potentials (sometimes referred to as empirical, semi-empirical or
classical potentials) are used for a variety of purposes, ranging from the estimation of
minimum energy structures for surface reconstruction, grain boundaries or related defects,
to the description of the liquid structure. All analytic potentials are defined through a
functional form of the interatomic interactions, whose parameters are fitted to a selected
database. According to Brenner [131], an analytic potential needs to be:

• Flexible: the function should be flexible enough to accommodate the inclusion of a
relatively wide range of structures in a fitting database.

• Accurate: the potential function must be able to accurately reproduce quantities
such energies, bond lengths, elastic constant, and related properties entering a fitting
database.

• Transferable: the functional form of the potential should be able to reproduce related
properties that are not included in the fitting database. In practise the potential
should be able to give a good description of the energy landscape for any possible
realistic configuration characterized by the set of atomic positions {ri}.

• Computationally efficient: the function should be of such a form that it is tractable
for a desired calculation, given the available computing resources.

We note that one of the paradigms that has led science through its development, i.e.
the Occam razor (“Entities should not be multiplied beyond necessity”), is not mentioned
here. This is intentional: as it will become clearer through the chapter, even if bond order
potentials are based on the beauty and simplicity of ab initio theories, they achieve compu-
tational efficiency and transferability paying the fee of a proliferation of somewhat ad-hoc
adjustments, any of them implying propter-hoc parameters. In other words, on one hand



64 Bond order potentials for covalent elements.

bond order potentials increase transferability, with respect to simple two-body potentials,
increasing the number of parameters. On the other hand, they increase computational
efficiency, with respect to ab initio calculations, at the same price of adding parameters. It
has to be noted that the focus of bond order potentials is put on their performance, i.e. on
the fact that they work. Thus, thinking at the Occam razor, bond order potentials give to
“necessity” a meaning that is different from the traditional one. It is indeed necessary to
introduce new entities (viz. parameters), for fulfilling the four requirements stated above.

BOPs are all expressed by giving the binding energy of a system as a sum over all pairs:

Eb =
1

2

∑
i

∑

j 6=i

[
V R(rij)− bijV

A(rij)
]

(6.1)

where V R(rij) and V A(rij) are pair-additive interactions representing all interatomic re-
pulsions and all those attractions coming from valence electrons, respectively; rij is the
distance between atoms i and j and the (scalar) quantity bij is a function of the local
environment of atoms i and j, called “bond order”.

With a meaning indeed close to that used for up-to-date bond-order potentials, the
term “bond order” was introduced in 1939 by Coulson [132] in treating the strength of
π-bonds in polyenes and aromatic molecules. Following this author, if a given molecular
orbital of a molecule (Ψ(n)) is expressed as a linear combination of atomic orbitals (φ

(n)
i )

of the individual π-electrons: Ψ(n) =
∑

i a
(n)
i φ

(n)
i , with ai a complex number, then the

partial mobile bond order (b
(n)
ij ) of a π-bond between atoms i and j is defined as b

(n)
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]
. The total mobile bond order (bij) of the π-bond, between atom

i and j, is the sum of the partial bond orders over all the molecular orbitals involved:
bij =

∑
(n) b

(n)
ij . The bond order is the total mobile bond order plus one, to account for

the σ bond. With this definition, a bond order of value 1 or 2, would correspond to the
intuitive concepts of single and double bonds, respectively. In a a benzene molecule the
total mobile bond order of each bond is 2/3, and the bond order is 5/3, closer to a double
than to a single bond.

The form of Eq. 6.1 can be justified on the basis of the Local Orbital approach (LO) that
Abell [133] developed in the framework of Chemical Pseudopotential (CPP) theory [134,
135, 136]. This theory in turn relies on the Hückel Molecular-Orbital (HMO) theory [137].
The derivation of Abell is rather instructive: a series of non trivial assumptions lead to two
important results. The first is a motivation of the unexpected alikeness [138] of the shape
of the binding energy curves in rather different environments, ranging from pure covalent
to metallic bonds; the relevant parameter that identifies the type of bonding of a reference
atom is the number of its first neighbours Z. The second is a justification of the initial
guess on the functional form of the term bij as used in successful BOPs: b = Z−1/2. In the
following section we will give a brief exposition of the derivation of Eq. 6.1 from LO.

The subsequent section (6.2) will suggest an alternative and much more intuitive argu-
ment to derive 6.1, based on the moments theorem [139].

In the remainder of the chapter (sections 6.4 and 6.5), a brief overview of BOPs will
be given. Focus will be put on those features of the BOPs that are recurrent in all the
formulations, underlining analogies and differences. Thus, we will often skip the details
and we will never give the values of the fitted parameters. We will provide a full description
of a BOP for the Long range Carbon Bond Order Potential (LCBOP) [15] in section 6.6.
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The full description is necessary, since an improvement of this potential has been one the
early targets of the present thesis work: this modification is illustrated in section 6.7.

6.1 Localized orbitals model

Abell [133], following Anderson [134, 135, 136], writes the Hamiltonian for a system of
atoms as:

H = K +
∑

a

Va (6.2)

where K is the total kinetic-energy operator and Va is the effective potential due to the
presence of atom a in the system and the sum extends over all the atoms. The crucial
hypothesis of this approach is that the Va’s are short ranged and strongly localized about
the corresponding atoms. It is also assumed that only one atomic species is involved.
Molecular orbitals (ψi) end their energies (εi) are the eigenfunctions and eigenvalues of the
SCF Hamiltonian:

H | ψi >= εi | ψi > (6.3)

Abell shows that it is possible to find a suitable basis set, that spans the molecular-orbital
subspace of {ψi}, and whose elements are atomic-like orbitals, that allows to write the
Hamiltonian as a sum of (environment dependent) pairwise interaction terms. Calling ϕm

the elements of this searched basis, the Hamiltonian can be rewritten:

H =
∑
m

[ε0 +
∑

k 6=m

VR(rkm)] | ϕm >< ϕm | +

+
∑
m

∑

k 6=m

VA(rkm) | ϕm >< ϕk | (6.4)

and
ψi =

∑
m

Cmiϕm (6.5)

where the index m runs all over the atoms.
The explicit expressions for VR and VA, coming from the CPP theory [136], need the

introduction of Ṽm – as the SCF one-electron atomic potential of atom m (including ex-
change and correlation) appropriated to the isolated atom – and of Ṽk – as the difference
from the atomic potential Ṽm due to the presence of atom k. Introducing the unperturbed
atomic orbitals φ0

m, the energy ε0 of the isolated atom is easily written:

ε0 =< φ0
m | (T + Ṽm) | φ0

m > (6.6)

and

VA(rkm) = < φ0
k | Ṽk|φ0

m >

VR(rkm) = < φ0
m | Ṽk | φ0

m > −S0
km < φ0

k | Ṽk | φ0
m > (6.7)

with S0
km =< φ0

k | φ0
m >. In the above expressions for VA and VR, the crucial approximation

of using the unperturbed atomic orbitals φ0
m has been adopted . The Hamiltonian in Eq. 6.4

is therefore approximated by the introduction of these VA and VR.
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The binding energy Eb of the system is defined as the total energy, expressed as the
sum of the energies εi of the occupied orbitals, minus the sum of the energies ε0 of the
isolated atoms ∗:

Eb =
∑

i

ni(εi − ε0) (6.8)

where ni = 0,1 is the occupancy of the molecular orbital ψi. Defining

qm
.
=

∑
i

ni|Cmi|2 (6.9)

bkm
.
=

∑
i

niC
∗
kiCmi (6.10)

and using Eqs. 6.4 and 6.5, yields

Eb =
∑
m

[qm

∑

k 6=m

VR(rkm) +
∑

k 6=m

bkmVA(rkm)] (6.11)

Note that the definition of bkm explicitly resembles the definition of bond order as given
by Coulson [132]. The term qm represents the net electron density on site m.

Eq. 6.11 can be particularized for regular structures (in which each atom ‘sees’ the same
environment):

Eb =
Eb

N
=

∑

k

Zk(qVRk + bkVAk) (6.12)

where Eb is the bond energy per atom, Zk is the number of atoms in the k-th shell, bk is
the bond order between the reference atom and the atoms in the k-th shell, and q is the
number of (valence) electrons per atom.

Under the assumption that the VA(r) is so short ranged, that one may reasonably ignore
all but VA1 in the HMO secular equation, only the first neighbour bond order b1 is present
in Eq. 6.12:

Eb
∼= Z1(qVR1 + b1VA1) (6.13)

Here, VR has also been limited to VR1, since the core-core repulsion (due to the Pauli
exclusion principle) and the screened electrostatic repulsion between nuclei always fall off
much faster than VA(r). There are indeed systems (for instance simple metals) for which
the interatomic matrix elements extend well beyond the first shell: for these cases Abell
provides a numerical proof that the sum

∑
k ZkbkVAk/VA1 can be fairly approximated by

the product Z1b1 when the occupancy q ∼= 1. Note that for regular lattices, the terms bk

can be exactly calculated with a recursion method [140]. From here on it will be: Z
.
= Z1

and b
.
= b1. It is thus possible to write:

Eb(G ,q; r) ∼= Z(G )[qVR(r) + b(G ,q)VA(r)] (6.14)

The shell subscript is suppressed under the understanding that all the quantities (apart
from q) refer to the first shell; the symbol G symbolizes the primary interaction topology.

∗A term called Ues, present in the original formulation, has been here omitted. This term would account
for ion-ion repulsion and interatomic repulsion due to the superposition of free electron densities. In the
original paper this term, in any case constituted by pairwise and localized terms, is later absorbed into
VR.
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It is only after all these approximations, that one can describe the map of first neighbours
interactions with the intuitive name of “bonds”.

Abell makes the choice of parameterizing VR and VA with exponential functions:

VR = Ae−θr

VA = −Be−λr (6.15)

Where A,B,θ, and λ are parameters specific of the atom species. The choice is motivated
partly by convenience and tradition and partly by the physical grounds that atomic or-
bitals indeed decay exponentially. In principle the coefficients A and B can be smoothly
depending on r on the range of interest without changing the following analysis.

The remains of Abell analysis demonstrate the alikeness of the shape of the binding
energy curves for structures of rather different coordination, ranging from the dimer (Z =
1), with a covalent bond, to an fcc structure (Z = 12), with metallic bonds. Thereafter,
Abell argues that the value of the bond order b can be fairly approximated by Z−1/2 over
different values of the coordination Z and the occupancy q.

After substituting Eqs. 6.15 into Eq. 6.12

Eb = Z
[
Aqe−θr −Bbe−λr

]
(6.16)

the equilibrium interatomic separation re is readily found from dEb/dr = 0:

θAqe−θre = λBbe−λre (6.17)

Defining

S =
θ

λ
(6.18)

it follows:

re =
1

θ − λ
ln

ASq

Bb
(6.19)

and the cohesive energy at equilibrium De = −Eb(re):

De = ZAq(S − 1)e−θre = ZBb
S − 1

S
e−λre (6.20)

The two formulations of De are clearly equivalent, being obtained substituting Eq. 6.19
into either the left or right hand side of Eq. 6.17. Note the logarithmic dependence of the
equilibrium radius on the bond order b: this is identical to an early empirical expression
of Pauling [141].

The binding energy can be scaled on the cohesive energy and the equilibrium distance:
E ∗

b (x) = Eb(r)/De , with x
.
= (r − re)/l, and where l

.
= De/(d

2Eb/dr2)r=re = 1/
√

λθ:

E ∗
b (x; S) =

e−
√

S x − Se−x/
√

S

S − 1
(6.21)

Note that the curves are invariant under the transformation S → 1/S, i.e. under the swap
of the effective interaction length (λ and θ) of VA and VB.

A plot of E ∗
b (x; S) (Fig 6.1) displays the soft dependence of the binding energy on S.

In particular, for |x| . 1, E ∗
b (x; S) is nearly independent of S. This observation justifies
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Figure 6.1: Plot of the scaled binding energy (Eq. 6.21) for some representative values of
S = θ/λ.

the empirical finding of a generalizable shape of the binding energy curves, pointed out in
Ref. [138, 142].

A different rescaling on the dimer cohesive energy, spots the Z dependence of the
cohesive energy in all the coordination situations. Putting Z = q = b = 1 into Eq. 6.20
the dimer cohesive energy (De2) is readily obtained. In this way the differently scaled
binding energy is defined: E z

b (x) = Eb(r)/De2. Algebraical manipulations would give, for
the reduced cohesive energy (Dz

e ):

Dz
e = Z

(
b

q

) S
S−1

(6.22)

Note that for S = 2 (the case of the so called Morse potential), this reduced cohesive
energy is independent of Z if b ∝ Z−1/2.

As justified above by Eq. 6.14, the bond order parameter depends on the local topology
G . In particular, the local topology is characterized by a) the number of nearest neighbours,
b) the size of primitive loops †. To get rid of the influence of loops, b can be estimated for an

†A loop is a closed path, covered hopping from neighbour to neighbour, comprising the reference atom;
a primitive loop is a loop that cannot be decomposed into shorter loops.
There is also a third dependence: on N, the number of particles in the system, for finite systems. It can
be disregarded thinking to infinite or periodically replicated systems, as far as the length of the period is
much longer than the typical distance of first neighbours.
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(ideal) structure without loops: this is called Bethe lattice, whose topology is completely
defined by Z ‡. For this lattice, and for large Z, it is indeed

bZ→∞ → α(q)Z−1/2. (6.23)

For small Z, b, can still be written as b = bZ→∞+∆b : Abell shows numerical evidence that
∆b is always positive and indeed small (less than 10% of bZ→∞). Going back to Eq. 6.22,
for S À 2 , Dz

e ∝ √
Z. This case is verified when the effective range of the repulsive part

is much shorter than that of the attractive part. In this hard core limit the higher the
coordination, the higher the cohesive energy, so the close packing is preferred. For S < 2,
Dz

e ∝ Z−δ, with δ > 0. In this case the effective lengths of attractive and repulsive part
of the potential are comparable. In this covalent regime, the diatomic species is preferred.

In summary, the analysis of Abell reported in this section, justifies the general ex-
pression of the interatomic potential of a system of particles in a regular lattice as a sum
over all the particles of a binding energy per particle, that is a (relatively short ranged)
pair interaction with a single neighbour, multiplied by the number of neighbours. Abell’s
suggestion is that the pair potential is split into two parts, an attractive and a repulsive
part; the attractive part is to be weighted by a factor, called “bond order”, which, in first
approximation, is equal to the inverse square root of the number of first neighbours of a
given atom.

For non regular structures, such as a liquid, one can rely on a description of a liquid as
a system with a certain short range structure. It can be argued that the LO model holds as
a first approximation: to the purpose it would be better defined a binding energy per bond:
Eb = 1/2 Eb(r)/Z. This newly defined quantity needs not to be the same for every bond
of a given particle and the coordination Z can be different for every particle (it will be Zi,
then). The factor 1/2 in the definition of Eb permits to write the total binding energy as
a sum over all the bonds of the binding energy per bond§, thus fully recovering Eq. 6.1.

To conclude, it is interesting to see the dependence on Z of re and the cohesive energy.
Substituting Z−1/2 for b into Eq. 6.19, one finds that

re ∝ lnZ (6.24)

Defining the cohesive energy per bond as Dbond
e = De/(2Z), and substituting into Eq. 6.20

the value Z−1/2 for b, it holds:

Dbond
e ∝ Z− 1

2(S−1) (6.25)

Eliminating Z from the above two equations, the locus of the minima is readily found:

Dbond
e ∝ e−

re
2(S−1) (6.26)

6.2 Second moment approximation

Following Brenner et al. [131], an intuitive way of explaining the chemical bond is thinking
it as arising from the broadening of electronic energies as atoms are brought together. Let

‡It can be visualized as an infinite tree in which each branch splits into additional branches, whose
number is the coordination number Z. It does not contains loops counting more than two atoms.

§It is implied that the same binding energy is ascribed to a bond by both particles involved, thus the
contribution can be split equally between the two.
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us consider a system of N carbon atoms arranged in a greatly expanded lattice such as the
atoms can be thought as non interacting. All the atomic orbitals will have the same energy.
As the atoms are brought closer, the initial perfect degeneracy of the p orbitals is lost, and
molecular orbitals of energies above and below the atomic orbitals are formed. Following
Hund’s rule, electrons fill in pair orbitals beginning from the lowest energy. The total
energy is the sum of the energies of occupied orbitals. Since the p atomic orbitals are not
completely filled, more orbitals below than orbitals above the level of the atomic orbitals
will be occupied. Here only the overlapping of valence orbitals is taken into account and
the repulsive interactions between core orbital is disregarded for sake of clarity. Thus, all
this intuitive argument accounts only for the attractive part of the binding energy. Under
this specification, the packing thus causes an overall lowering of the total energy and
the formation of a chemical bond. The orbital energies e assumes a specific distribution:
D(e) =

∑
k δ(e−εk), where δ is the delta function and the sum extends all over the occupied

and unoccupied states εk. As any distribution, it can be described by its momenta; in this
case it can be written as the sum of the momenta about the unperturbed atomic orbital
energy (εatomic): Mn .

=
∑

k(e − εatomic)nD(e). Invoking (local) charge neutrality, the first
momentum is identically zero. In Ref. [131] it is shown that, for the considered carbon
system, the binding energy (taken as the difference of the total energy of the system and
N times the energy of the atomic orbital) is fairly depicted as linearly dependent (only) on
the square root of the second moment of the energy distribution¶. A powerful theorem of
Quantum Mechanics states that the n-th moment of the local density of states on an atom
i is determined by the sum of all paths of order n started from atom i. Here a path, also
called “hopping integral” [143], of order n is a function depending on the positions and the
topology of atoms belonging to a closed loop of length n comprising atom i. If the second
moment alone is necessary to describe the energy distribution, then only identical loops
of length two, thus comprising only atom i and each of its first neighbours j in turn, are
involved: in this respect this argument is called second moment approximation. Second
order hopping integrals are typically parameterized [143] as exponential functions of the
interatomic distance rij. Hence, the (attractive) bond energy relative to atom i will be
proportional to the square root of the sum over all neighbours of hopping integrals.

Eattractive
i ∝

√∑
j

e−βrij (6.27)

Adding a repulsive term due to core-core interactions, the binding energy for the system
is:

Eb =
1

2

∑
i


∑

j 6=i

Ae−αrij −B

√∑

j 6=i

e−βrij


 (6.28)

The sum over j runs over all the first neighbours of atom i. This last form is known
as the Finnis-Sinclair empirical N -body potential, successfully employed for transition
metals [144].

¶The binding energy is calculated by means of the tight binding model. The simple dependence of the
energy on the square root of the second moment of the energy distribution is inherent to the tight binding
model. In Ref. [131] it is shown that a genealogy can be traced from density functional theory through
Harris functional to tight binding. In this sense a bond order potential, based on the second moment
approximation, can be thought as being justified by density functional theory, as stated in Ref. [131].
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A bit of algebraical manipulations of Eq. 6.27, can lead closer to the expression of
Eq. 6.1:

Eattractive
i = −B

√∑

j 6=i

e−βrij =

= −
∑

j 6=i


Be−βrij/2

(
1 +

∑

k 6=i,j

e−β(rij−rik)

)−1/2

 .

=

.
= −

∑

j 6=i

Be−βrij/2bij (6.29)

The last equality defines bij and the sums extend over first neighbours. Thus, the total
binding energy can again be expressed as a sum of pairwise additive terms, depending only
on the distance rij, where the attractive part is weighted by a term depending on the local
coordination of atom i:

Eb =
1

2

∑
i

∑

j 6=i

Ae−αrij − bijBe−βrij/2 (6.30)

In a regular structure, with all the neighbours of a given atom i at the same distance, the
term bij would be proportional to the inverse square root of the number of first neighbours
Z: bij ∝ Z−1/2. This makes explicit the connection between the LO and second moment
approximation results. Note that the higher the coordination, the smaller the bond order
bij, the weaker the binding energy per bond.

6.3 Bond order potentials (BOPs)

The LO model suggests a shape of the binding energy curves that is a good first ap-
proximation for every element. BOPs have been developed originally for IV group ele-
ments [126, 127, 128, 129], first candidates for the success of the model given the single
occupancy of their unperturbed atomic orbitals.

If the theoretical approach justifies the form of Eq. 6.1, the actual form of the terms
bij employed in BOPs needed adjustments whose parametrization was a (self consistent)
combination of chemical intuition and empirical verification. For this reason, the BOPs are
also referred to as semi-empirical potentials, a class that is actually wider than BOPs: it
notably comprises, among the others, the Stillinger-Weber potential for silicon [145], and
the environment dependent interaction potential (EDIP) for silicon [146] and carbon [147],
whose functional form is built up from the so called many body expansion.

The overview will start with the first successful BOP, the Tersoff potential [126], that
was originally parameterized for silicon. Then the focus will move exclusively to carbon:
the construction of an analytical potential for this element involves a number of subtleties.
First it necessary to consider the so called “conjugation of the π-bond”: this is a cou-
pling between the free orbitals of unsaturated‖ neighbouring atoms, leading to complicated
hybridization situations. The effect is strongly present only for carbon amongst the IV

‖Unsaturated carbon atoms are those with less than four first neighbours, or bonds. See also ap-
pendix 6.9 for a definition of conjugated systems.
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group elements, since it is the smallest atom of the group (the first neighbour distance
in their diamond lattice are ∼ 0.15, ∼ 0.24, ∼ 0.25 nm for carbon, silicon, germanium,
respectively). In order to tackle the conjugation effects, even the simplest approximation
requires an approach that goes beyond the first neighbour shell.
In second place, LO accounts only for covalent (and metallic) bonds; since graphite sheets
interact via weak coupling of the π-orbitals, a “long” range, non bonded part of the poten-
tial (the interplanar distance in graphite is ∼ 0.34 nm, whereas first and second neighbours
are at ∼ 0.14 and ∼ 0.25 nm) would be needed to stabilize this solid phase. In the following
we will propose, step by step, the solutions to these problems.

In the actual formulation of BOPs, attention is always posed to have functions that are
continuous and smooth with respect to any of their arguments: this is both for mathemat-
ical elegance and for the practical purpose of dealing with continuous forces in a molecular
dynamics simulation.

6.4 The Tersoff potential

Tersoff [126] was the first who provided a BOP, based on the theoretical ideas we discussed
above, that successfully applied to a covalent element, i.e. silicon. Plotting the energy
calculated by means of density functional theory [148, 149, 150] (at the LDA level) of
crystalline silicon as a function of the coordination Z, Tersoff pointed out the slow variation
of the binding energy per atom as Z increases (with values around -4 eV/atom). On the
other hand, the cohesive energy per atom for the dimer Z = 1 was found to be much
smaller (∼ 1.6 eV/atom) than for solid state coordinations (Z ≥ 3).

A formulation of bij that could capture the essential features of silicon bonding needed
to be proportional to 1/

√
Z only for large values of Z. Tersoff proposed:

bij = (1 + anζn
ij)
−n/2 (6.31)

ζij =
∑

k 6=i,j

fc(rik) (6.32)

(6.33)

where a and n are fitting parameters. The smooth cut-off function fc(rik) is 1 for rik smaller
than a certain given radius R1, 0 for rik larger than a given radius R2 (obviously R2 > R1)
and interpolates between 1 and 0 for rik intermediate between R1 and R2. Since R1 and R2

fall in the region between the first and the second coordination shell, Zij gives the number
of neighbours of atom i, other than j: this means that also “fractional neighbours”, and
fractional coordinations, are allowed.

This formulation ensures the correct dependence of the binding energy per atom on the
coordination, but carries some pathologies. For instance, any regular lattice of four-fold
coordinated atoms would have the same energy: a diamond lattice and a planar square
lattice would be equivalent; the shear modulus of a diamond lattice would be zero, a clearly
nonphysical prediction. These observations suggest that there should be some angular
dependence in the term ζij that penalizes structures that are far from the ideal angular
correlations in a perfect lattice. Plotting the LDA calculated binding energy per bond,
rather than per atom, one can observe its monotonic increase with increasing coordination.
If two atoms, j and k, are neighbours of an atom i, they are competing to form a bond
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with this atom. Both bonds will be weakened with respect to the dimer (Z = 1) case. It
is reasonable to assume that, if one of the two neighbours, say k, is further than the other
(j) from i, the weakening of the binding energy due to its presence would be lower than in
the case where the distances are the same. Thus a dependence of ζij on the difference in
distances between the neighbours is required. A reasonable (second) guess for ζij, is then:

ζ ′ij =
∑

k 6=i,j

fc(rik)g(θj ik)e
β(rij−rik)3 (6.34)

where g(θj ik) is a not yet specified function of the angles between j and k, as seen from
i. Note that a dependence of the bond order bij on an exponential term, as in the above
equation, is already explicit in the second moment approximation argument (Eq. 6.29), but
not in the LO derivation. The angular function g(θj ik) is chosen to be minimized by an
optimal bond angle (the lower g, the smaller ζ ′ij, the larger bij, the stronger the binding
energy). Rather than assuming an a-priori optimal angle, its value was left as a parameter
to fit for the overall optimization of the potential. This is a seminal break-through. Several
empirical potentials assumed, in their parametrization, an optimal angle for bonds around
a reference atom (for example the tetrahedral angle of ∼ 109.5 for the diamond structure),
while here a certain penalty is associated to a particular bond angle: its preferability is
connected to the other bond angles relative to the same reference atom. This feature will
become more clear in presenting the REBO potential [130] in the next section. When ζ ′ij
is introduced into the bond order (Eq. 6.31), it is evident the it can be: bij 6= bj i. This is
a result of the somewhat arbitrary division of the binding energy into a sum on the sites.
Tersoff suggests that, if aesthetic reasons require a symmetric form of the bond order, the
sum over pairs can be replaced by a sum over bonds (i.e. the sum over j in Eq. 6.1 runs
over only those j > i) and the bond order is replaced by: b̄ij = 1/2(bij + bj i).

The formulation of ζ ′ij is rather ad-hoc: anyway, it was seminal in generalizing the
concept of bond order as depending not only on the number of first neighbours Z of the
reference atom, but also in how these neighbours arrange. This is achieved using a weighting
function in counting neighbours: if a neighbour assumes an unfavourable position with
respect to the others, it is counted as more than one neighbour, thus explicitly weakening
the binding energy.

This potential showed an overall good transferability in dealing with different envi-
ronments, it gave reasonable values for elastic constants and phonon frequencies, but it
presented several shortcomings especially in the accuracy of some of the predicted prop-
erties. Tersoff itself indicated that the shortcomings could be ascribed to 1) the rather
arbitrary choice of the cut-off radii of the function fc and 2) the somewhat excessive soft-
ness of the strain energies given by the bond-angle forces, as they are included in ζ ′ij. In
total, the BOP for silicon, requires the specification of 13 parameters.

Later on, the potential was parameterized by Tersoff [129] also for carbon, but with a
rather limited success: it became evident [3] that considering correlations beyond the first
neighbour shell was necessary. This was the main contribution of Brenner [3, 4, 130]

6.5 The REBO potential

In 1990 Brenner [3] presented a successful BOP for hydrocarbon systems, thus comprising
carbon and hydrogen. Subsequently, he proposed several refinement of his BOP [4, 130].
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The part concerning hydrogen will be here completely disregarded and the analysis will
be carried on the latest version of this BOP: the so called Reactive Empirical Bond Order
(REBO) potential [130].
Brenner introduced new features in the bond order bij:

• a revised angular function, that constitutes an interesting development of the original
idea of Tersoff;

• two terms that account for inaccuracies present when dealing with π-bonded carbon
systems; these two new terms are the “conjugation term” (Cπ

ij, see appendix 6.9 for
the definition of “conjugation”) and the “torsional term”(T π

ij); they include contri-
butions to the binding energy from atoms beyond the first neighbour shell of the
reference atom.

The description of the REBO potential will be quite discursive because many of its charac-
teristics will be also part of the LCBOPI potential that will be fully described in the next
section. In the REBO potential an exponential modulated by a factor ∝ 1/rij is added to
the familiar definition of VR: this is required in order to properly model core-core interac-
tions in case of energetic atomic collisions. The attractive potential VA is now a sum of
three exponentials: this provides more flexibility in fitting binding energies and distances
in different lattice and molecular environments.

Following Brenner [130], the (symmetrized) bond order b̄ij is:

b̄ij =
1

2
[bσ−π

ij + bσ−π
j i ] + Cπ

ij + T π
ij (6.35)

The term valid for both σ and π bonds is similar to the term proposed by Tersoff:

bσ−π
ij = [1 +

∑

k 6=i,j

fc(rik)G(cos θkij)]
−1/2 (6.36)

In this formulation, a function of the difference between the bond distances rij and rik is
not present. ∗∗

The function G is constructed with the information coming from the crystalline phases.
Its value at 5 properly selected points is calculated exactly via the following procedure.
Graphite and diamond lattices display only one angle for first neighbours: 120 and ∼ 109.5
degrees, respectively: the function G at these two angles (G(−1/2) and G(−1/3)) is set in
such a way that the binding energy is the known one, at the equilibrium distances. The
strain energy to bend the linear C3 molecule (i.e. the ‘monomer’ of the infinite linear chain)
to the 120 degrees bent configuration (a value known from density functional calculations)
is used to fix the value of G(−1). The simple cubic lattice contains only angles at 180 and
90 degrees: the value of G(0) is then fixed, being the only new unknown. The fcc lattice
contains angles of 180, 120, 90, and 60 degrees, yielding the value of G(1/2). The function
in the intermediate values of the argument is estimated through an interpolating cubic
spline. Encouragingly, the value of G at this 5 points is monotonically increasing with the
argument cos θkij (the shape of this G is similar to the angular function for the LCBOPI,

∗∗Comparing Eq. 6.36 with the expression proposed by Brenner, we have omitted in the square brackets
a factor modulating the angular function G and an additive (corrective) term, both intervening only in
presence of hydrogen atoms.
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that can be seen in Fig. 6.3): consistently with the standard concept using to rationalize
the shapes of small molecules, this behaviour can be ascribed to the repulsions of electron
pairs in the valence shell. In other words, the atoms minimize the strain energy of their
bonds at a given coordination by arranging them as open as possible: this yields angles of
180, 120, 109.5, 90, and 60 for 2, 3, 4, 6, 12 neighbours, respectively.

This definition of the angular function was not sufficient: the function G penalizes small
angles at any coordination, but small carbon ring clusters are stable with quite small bond
angles. For this reason, a second angular function γ(θj ik) was introduced. It was fitted to
stabilize those clusters, that operates for two-fold and three-fold coordinated carbon atoms
and giving a much smaller penalty for angles lower than the tetrahedral one. For four-fold
and higher-fold coordinated atoms , the angular function is G.

The need for the “conjugation term” comes from the following argument. Consider
a carbon atom i with three first neighbours bonded to a carbon atom j with four first
neighbours (in the neighbour counting of i is included j and viceversa). The bond order
according to Tersoff would give a binding energy intermediate between a single bond (i.e.
both atoms with four neigbours) and a double bond (i.e. both atoms with three neigbours).
The formation of the π-bond of the double bond results from the overlap of two singly
occupied p atomic orbitals. Since the atom with four neighbours does not have a free p
orbital, no overlap can occur. Thus the bonding situation is better described with a single
bond plus a radical orbital, with a binding energy lower than a single bond configuration.
Note that the situation depicted above occurs in the vacancy formation in the diamond
lattice: the bonds of the first neighbours to the vacancy with their neighbours, need to
be weakened by the vacancy formation. To achieve this, the term Cπ

ij in this case needs
to lower b̄ij: Cπ

ij has to consider the coordination of first neighbours of i and j, thus it
depends on second shell correlations. It is implemented as a function of a) the number of
neighbours of atom i besides j (i.e. the term ζij in Eq. 6.32), b) the number of neighbours
of atom j besides i (ζji), and c) a term, Zconj

ij , that is defined as follows: it is 1 plus the
square of the number of unsaturated first neighbours of i (not counting j), plus the square
of the number of unsaturated first neighbours of j (i not included). For integers values of
its argument, Cπ

ij is a three dimensional matrix with entries fitted from model situations:
for example each atom in a graphite lattice would give entries 2,2,9 to Cπ

ij. Fractional
entries are treated via a cubic spline.

The introduction of the “torsional” term is natural for double bonded hydrocarbons.
Thinking to ethene (CH2 =CH2) and imagining the two planes described by the two CH2

groups, the bond order needs a term that could prefer the co-planar to the orthogonal
arrangement of these two planes. This term is necessary even in carbon networks in which
double bonds are present: it is different from zero only for bonds between three-fold coordi-
nated atoms i and j. On a chain of four atoms, labelled k,i,j, and l, the dihedral angle ωkijl

is here defined, as traditionally done, with the dot product of unit vectors in the direction
of the cross products Rij ×Rik and Rj i ×Rjl, where Rαβ is the vector connecting atom α
to atom β. The “torsional” term T π

ij is proportional to the sum of sin2 ωkijl (thus 0 and 1
for the co-planar and orthogonal configurations described above, respectively) over all the
dihedral angles that can be defined with the bond i− j. The proportionality factor has the
same entries of Cπ

ij. For pure double bonds (i.e. for a situation where all the neighbours
of i and j are saturated atoms) the factor has its highest value. As a template for pure
conjugated systems, it was used an hypothetical lattice structure, theoretically studied in
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Ref. [151], with all three-fold atoms like for graphite, but with all dihedral at 90 degrees.
With this choice, the torsional term carries always the same proportionality to sin2 ωkijl

and the fit of the its pre-factor yields a value ∼ 10 times smaller in the full conjugated case
than in the pure double bond case.

In total, the REBO potential requires the specification of more than 100 parameters,
but it describes quite well bond lengths, energies, force constants (related to the curva-
tures of the binding energy curves in their minima), strain energies, and interstitial energies
for all the solid structures and molecules reported in Ref. [130]. This BOP had two pre-
cursors developed by the same author [3]. Compared to the REBO potential, these two
potentials, that will be referred to as BrennerI and BrennerII, used: 1) attractive and
repulsive pair potentials directly taken from the LO model, 2) the definiton of a simpler
coordination independent angular function, 3) a factor multiplying the angular function
depending on the difference between distances of first neighbours from the reference atom
(similar to the exponential term of Eq. 6.34), and 4) a conjugation term with a slightly
different definition and less parameters. The difference between BrennerI and BrennerII
lied in the two paremeter sets: BrennerI yielded better bond lengths and BrennerII better
force constants. Furthermore, the original formulation [3] did not contain any torsional
interactions, that were added for both BrennerI and BrennerII in a later publication [4] in
essentially the same form as for the REBO potential, with the important difference that
the barrier of the conjugated bond in these cases was around one half of the pure double
bond configuration [14]. The BrennerI and BrennerII potentials differ only in the values
of the parameters; BrennerI yields good bond lengths and energies, but very poor force
constants; BrennerII gives good force constants, but only fair bond lengths and energies.
These two potentials were the first BOPs to describe reasonably well diamond, graphite,
and liquid carbon (together with many hydrocarbons).

6.6 The LCBOPI

The REBO (as well as BrennerI and Brenner II) potentials already considered correlations
that went further than the first coordination shell. Anyway, these potentials describe
(strong) covalent interactions: to accurately describe carbon for an extended part of the
phase diagram, they required further improvement. For example a term describing the
interplanar stacking in solid graphite was missing. This structure is stabilized by much
weaker interactions, at least a hundred times smaller, than the covalent bonds. At the same
time, upon approaching due to compression, the repulsion of graphite sheets can become an
order of magnitude stronger than the attraction at equilibrium. There have been attempts
to add non-bonded interactions to the short range REBO potential without perturbing its
nicely fitted properties. The idea is to add interactions, e.g. of a Lennard-Jones type, that
are (smoothly) switched-off for “too close” atoms. This was achieved using distance as
the relevant parameter [152, 153] or neighbour connectivity [154] or both [155]. However,
the distance cut-off introduces loss of accuracy if connected to an unperturbed short range
potential, while the connectivity criterion (excluding from the long range interactions atoms
that are first, second, or third neighbours of the reference atom) has no good physical basis.

In Ref. [15], Los and Fasolino introduced the long range potential, LCBOPI, in which
the (isotropical) non-bonded interactions are regulated by a distance criterion, but the short
range was completely refit to match the reference data in the distance interval in which
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both contributions, bonded and non-bonded, are present. Furthermore, in the LCBOPI
were introduced: 1) a scheme that accounts for conjugation effects, alternative and more
transparent than for the REBO potential, and 2) a correction factor to the angular function,
depending on the difference in the distances between neighbours and the reference atom, to
fine tune the description of certain solid state properties. This implies that also the bonded
part of the potential constitutes a novelty: in Ref. [15] it is thus proposed a different set
of fitted parameters for a short range version of the LCBOPI, called CBOP, dropping the
initial ‘L’ for ‘Long range’.

The binding energy is expressed as:

Eb =
1

2

N∑
i,j

(
fc,ijV

SR
ij + (1− fc,ij)V

LR
ij

)
(6.37)

The cut-off functions fc,ij have the familiar meaning, V SR
ij is the short range, bonded, part

and V LR
ij is the long range, non-bonded, term.

The short range is written as usual:

V SR
ij = VR(rij)− b̄ijVA(rij) (6.38)

where

VR(r) = Ae−αr

VA(r) = B1 e−β1r + B2 e−β2r (6.39)

It can be noted that this expression of the attractive part of the potential is not strictly
the one proposed by Abell (see Eqs. 6.7): this implies that the analysis on the dependence
of the equilibrium distance and cohesive energy does not apply any more; actually, it is
not possible to calculate in a closed forms the equilibrium parameters. For this reason,
in appendix 6.8.3 we will give a pictorial representation of the dependence of the binding
energy on the bond order bij for the regular lattice situations.

The cut-off functions are expressed:

fc,ij(x) = Θ(−x) + Θ(x)Θ(1− x)e
γx3

x3−1 (6.40)

where Θ(x) is the heavyside step function; x = (r − r1)/(r2 − r1), so that r1 is the cut-off
lower bound, i.e. the distance below which atoms are counted as integer neighbours, while
r2 is the cut-off higher bound, i.e. the distance above which atoms have only non-bonded
interactions.
The bond order is split into:

b̄ij =
1

2

[
bij + bj i + F conj

ij (Zij,Zj i,Z
conj
ij )

]
(6.41)

where

bij =

(
1 +

∑

k 6=i,j

fc,ik(rik)GI(cos θj ik)H(δrj ik)

)−1/2

(6.42)
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and the conjugation term F conj
ij (Zij,Zj i,Z

conj
ij ) is defined with its arguments in section 6.6.1.

The function GI is defined, as in the REBO potential, as a spline connecting points calcu-
lated from reference data (not only the value of GI , but also the first and second derivative
at the same selected angles, can be retrieved from reference data and imposed to the spline).
The function H(δrj ik), where δrj ik = rij − rik is††:

H(x) =





H1(x) = L

(
1 + κ(x + d)

(
1

1 + [κ(x + d)]10

)1/10
)

x < −d

H2(x) = 1 + C1x +
1

2
C2

1x
2 + C4x

4 + C6x
6 −d ≤ x ≤ d

H3(x) = R0 + R1(x− d) x > d

(6.43)

The function H(δrj ik) is introduced to optimize elastic and surface properties. Besides, it is
essential to properly describe the diamond to graphite energy barrier at 0 K, as calculated
via LDA in Ref. [156].

6.6.1 The conjugation term

The coordination of an atom i is:
Zi =

∑

k

fc,ik (6.44)

where the sum extends over all atoms (except for i). For the conjugation scheme, it is
needed to define coordinations as if j is always an integer neighbour of i, so it is introduced
the quantity:

Zij = min

(
3,

∑

k 6=j

fc,ik

)
= min (3, Zi − fc,ij) (6.45)

The binary operator min(x,y) gives the minimum of x and y. The third argument of F conj,
Zconj

ij is a number in the interval [0,1], defined by:

Zconj
ij =

(Zij + 1)(Zj i + 1)(Zel
ij + Zel

j i)− 4(Zij + Zj i + 2)

Zij(3− Zij)(Zj i + 1) + Zj i(3− Zj i)(Zij + 1) + ε
(6.46)

where ε is a very small, positive number, added to prevent vanishing of the denominator.
Zel

ij is the (fractional) number of electrons given from i to the bond ij:

Zel
ij =

4−Mij

(Zij + 1)−Mij

(6.47)

††It is justified assuming exponential dependence at small x = δrj ik: this accounts for the first three
terms in H2; a certain (symmetric) “non-parabolicity” is required by the analysis of certain surface recon-
structions, hence the x4 term. Outside [−d,d] a basically linear behaviour is assumed in order to reproduce
the diamond to graphite energy barrier, as calculate by means of the LDA. Note that only three parame-
ters, i.e. d, C1, and C4 are fit, the other five, i.e. L, κ, C6, R0, and R1, coming from the continuity of H
at x = ±d, up to the second derivative. By construction d2H1/dx2|x=−d = d2H3/dx2|x=d = 0, so that C6

follows directly from d2H2/dx2|x=d = d2H2/dx2|x=−d = 0. Furthermore, L and R0 follow from continuity
of H in x = −d and x = d respectively, leaving R1 and κ to be found from continuity of the first derivative
of H at x = ±d.



6.6 – The LCBOPI 79

where

Mij = min(3,M̃ij) (6.48)

and

M̃ij =
∑

k 6=i,j

fc,ikX(xik) (6.49)

Here xik = Zk − fc,ik, abd X(xik) is given by:

X(xik) = Θ(xik − 3) +
1

2
(1− cos[π(xik − 2)]) Θ(xik − 2)Θ(3− xik) (6.50)

Thus, M̃ij counts the number of unsaturated neighbours of atom i, different from atom j.
The form of Zconj

ij comes from the following argument. In a carbon system in which all
the atoms are not over-coordinated (no atom has more than four neighbours - or bonds),
Mij represents the number of electrons of atom i involved in single bonds (not counting
the bond i − j), and Zel

ij is the (fractional) number of electrons left to atom i to form
π-bonds with all its unsaturated neighbours. Thereafter, it is defined as the ratio between
the left electrons (4 −Mij) and the number of unsaturated neighbours ((Zij + 1) −Mij):
the neighbour j is here part of the set, being counted always as integer. In a configuration
in which both i and j are three-fold (Zij,Zj i) = (3,3), if the two neighbours of i and the
two neighbours of j are three-fold (as in graphite), then Zel

ij = Zel
j i = 4/3, i.e. the fourth

electron of atom i (and j) is proposed to be equally distributed among the three neighbours
(bonds)‡‡. If the two neighbours of i and the two neighbours of j were, in contrast, four-
fold, Zel

ij = Zel
j i = 2, i.e. atom i would give two electron to bond j, and the same would

do j to i, thus forming a double bond. For asymmetric situations (Zel
ij 6= Zel

j i), the average
of the two quantities (Z̄el

ij = (Zel
ij + Zel

j i)/2) is thought as the number of electrons put in
the bond i − j by both i and j. For a given pair (Zij,Zj i), the value Z̄el

ij ranges from a
minimum to a maximum value, min(Z̄el

ij ) and max(Z̄el
ij ). For (Zij,Zj i) = (3,3), Z̄el

ij clearly

ranges from 4/3 to 2. This interval is linearly mapped into the interval [0,1] to give Zconj
ij :

Zconj
ij =

Z̄el
ij −min(Z̄el

ij )

max(Z̄el
ij )−min(Z̄el

ij )
(6.51)

Some algebraic manipulations show the equivalence of Eqs. 6.51 and 6.46. Values of the
binding energies for the two limiting cases can be inferred from reference data, so that one
can reasonably define F conj

ij (Zij,Zj i,0) and F conj
ij (Zij,Zj i,1). In the intermediate situations,

at integer (Zij,Zj i), linear interpolation holds:

F conj(Zij,Zj i,Z
conj
ij ) = (1− Zconj

ij )F conj(Zij,Zj i,0)

+ Zconj
ij F conj(Zij,Zj i,1) (6.52)

At fractional values of (Zij,Zj i), the interpolation scheme 6.8 is given in the appendix 6.8.

‡‡It is only “proposed”: if all the atoms “propose” the same, as in a regular lattice, the proposal is
accepted, but for non symmetrical configurations, this model argues the average of the two proposals as
the accepted choice.
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6.6.2 The non bonded interactions

The non bonded interactions, V LR
ij ar constructed by making a best fit to LDA data for

the interplanar energies in graphite [15] as a function of the interplanar spacing beyond
0.2 nm. The non bonded interactions are smoothed off to zero beyond 0.6 nm:

fLR
c,ij (r) = Θ(rLR

2 − r) +
1

2
(1 + cos[2π(r − rLR

1 )]) Θ(r − rLR
1 )Θ(rLR

2 − r)

The functional form for V LR
ij interactions is:

V LR(r) = Θ(r0 − r)V M
1 (r) + Θ(r − r0)V

M
2 (r)

V M
i (r) = εi

(
e−2λi(r−r0) − 2e−λi(r−r0)

)
+ vi

The two Morse potentials (V M
i ), matched at their minimum value r0, give the flexibility

of tuning independently the steepness of the left and right side of the curve. The expo-
nential dependence of the Morse potential was preferred to the popular Lennard-Jones
parametrization of non-bonded interactions, since this latter, when tested, gave unreason-
ably high values of the interplanar repulsion at short (∼ 0.2 nm) distances. With the
optimal set of parameters for the LCBOPI, the value of the non bonded interactions, from
the minimum (at r0) at -0.025 eV, rises up to 0.284 eV at 0.22 nm, i.e. r2, when the
bonded attractions are switched on. Typically, the binding energy Eb (Eq. 6.37) continues
to rise up to ∼ 0.3 eV at ∼ 0.2 nm before the attractive part becomes predominant. This
means that any atom approaching the first neighbour shell from outside, has to overcome
such an energy barrier to enter the shell. The parameter of the LCBOPI are given in the
appendix 6.8.

With the help of ∼ 70 independent parameters, the LCBOPI gives an impressive re-
covering of the fitted database for solid state structures. Besides reasonable description of
some subtle surface effects, it gives a perfect transformation of a thin diamond 111-slab into
layered graphite. This transformation is not very well reproduced by the REBO potential
with connectivity based non-bonded interactions [15]

6.7 The LCBOPI+

The LCBOPI+ is an improvement of the LCBOPI, made necessary for a correct description
of the liquid phase, whose investigation is one of the main topic of the present thesis. To the
purpose we introduced two features into the bonded part of the LCBOPI: 1) a softening
of angular correlations for unsaturated atoms at low angles (in the spirit of the REBO
potential) and 2) the addition of torsional interactions. Furthermore, a more flexible family
of switching functions in place of fc,ij was introduced. These modifications are described
in this section.

6.7.1 New switching functions

A family of switch functions Sdown(x) is introduced. They are defined as:

Sdown(x) = Θ(−x) + Θ(x)Θ(1− x)(1 + 2x + px2)(1− x)2 (6.53)
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Figure 6.2: Switch function Sdown(x) for p = −3,0,3 (solid lines) compared to the Bren-
ner’s cut-off function fij = 1/2(1 + cos(πx)) Refs. [3, 130] (dashed line).

As shown in Fig. 6.2, the parameter p ∈ [−3,3], offers a certain freedom in the choice of
the shape of the switch function, while staying monotonic within x ∈ [0,1]. To realize a
switch as a function of a given quantity q (e.g. distance or coordination) within a desired
interval [qmin,qmax], the dimensionless argument x is defined as:

x = x(q) =
q − qmin

qmax − qmin

(6.54)

For the LCBOPI+:

1. the switch function fc,ij of the LCBOPI was replaced by Sdown
p=3 , in Eqs. 6.37 and

6.42. Also fLR
c,ij (r) of Eq. 6.53 was replaced by Sdown

p=3 (here: qmin = r1 = 0.17 nm,
and qmax = r2 = 0.22 nm).

2. the switch function in the definition of the coordination related quantities (Eqs. 6.44,
6.45, and 6.49) was replaced by Sdown

p=−3 (also here: qmin = r1 = 0.17 nm, and qmax =
r2 = 0.22 nm);

3. the switch function in the definition of unsaturated atoms (Eq. 6.50) has been replaced
by Sdown

p=0 (obviously, in this case, qmin = 2, and qmax = 3), this latter modification
being negligible with respect to the LCBOPI (see Fig. 6.2).

6.7.2 Angular function

The angular function of the LCBOPI+ is written (similarly to the REBO potential [130]):

GI+(y,z) = Θ(y0 − y)GI(y) + Θ(y − y0)G̃I+(y,z) (6.55)
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Figure 6.3: GI(cos θj ik), dashed line, and Γ(cos θj ik), dotted line. The inset magnifies
lower y-axes values to show the shape of Γ.

where GI is the angular function of the LCBOPI (see Eq. 6.42), y = cosθijk, y0 = −1/3 is
a constant boundary value, and z = zij = Zi − Sdown

p=−3. The function G̃I+ reads:

G̃I+(y,z) = GI(y) + Sdown
p=0 (z − 2)[Γ(y)−GI(y)], (6.56)

with Γ(y):

Γ(y) = γ0(y − 1)3 + γ1 (6.57)

The parameters γ0 and γ1, given in table 6.3 in appendix 6.8, are fit to the geometries
and energies (Table 6.1) of a planar rhombic cluster (C4, symmetry D2h, Ref. [157]), with 2
angles around 60◦, and a cubic cluster (C8, Ref. [158]), with all 24 angles at 90◦. Figure 6.3
shows GI and Γ.

Molecule LCBOPI+ Reference

C4 Eb [kJ/mol] 1736 1669 [157]
C4 d [nm] 0.150 0.143 [157]
C8 Eb [kJ/mol] 4052 3888 [158]
C8 d [nm] 0.155 0.148 [158]

Table 6.1: Comparison of total energy Eb and bond length d for the model clusters used
to fit Γ(y).
.
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Figure 6.4: Schematic view of the molecules representing a conjugated (left) and a double
(right) bond. The shaded circles represent the atoms bonded by either the conjugated or
the double bond. White circles are three-fold atoms (i.e. they have other two bonds not
shown in figure). Black circles are four-fold atoms. Only the number and not the nature
of the bonds that the k’s (or l’s) atoms make with atoms other than i (or j) is relevant for
the definition of Zconj

ij .

6.7.3 Torsional term

The torsional term acts only for a bond between two sp2 hybridized atoms: in Fig. 6.4 a
schematic view of the relevant configurations is shown. For the LCBOPI+, the torsion is
fitted to the data of Ref. [14]. The torsion term Tij is:

Tij = Dij(Zij,Zj i)
∑

k 6=i,j

∑

l 6=i,j

tij(ỹ,Zconj
ij )Sdown

p=3 (rik)S
down
p=3 (rjl) (6.58)
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Figure 6.5: Torsional energies for the two limiting cases at the equilibrium DF bond
length between atom i and j. Top: Zconj

ij = 1, double bond. Bottom: Zconj
ij = 0, conjugated

bond. Dashed lines are the values Tij · VA(rij). The solid lines are the same with added
the difference in long range interactions coming from all the atoms of the molecule, with
respect to the flat molecule: note that this gives a natural asymmetry in the conjugated
configuration. DF data (circles) are from [14].
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where ỹ is defined as:

ỹ ≡ cos ωijkl = eijk · ejil =
rij × rik

| rij × rik | ·
rji × rjl

| rji × rjl |
Dij(Zij,Zji) is a two dimensional switch, defined for Zij, Zji ∈ [1, 3], given by:

Dij(x,y) = (1− x)4(1− y)4(1 + 4x)(1 + 4y)Θ(x + 1)Θ(1− x)Θ(y + 1)Θ(1− y) (6.59)

with x =| Zij−2 | and y =| Zji−2 |. This definition yields a) Dij(Zij,Zji) = Dij(2,2) = 1.0,
b) Dij(n,m) = 0 when at least one of the arguments n and m is 1 or 3, and c) vanishing
partial derivatives for all nine integer pairs (n,m).

In contrast to Refs. [4] and [130], where the dependence on the Zconj
ij is limited to

the pre-factor Dij, for the LCBOPI+ the Zconj
ij -dependence is included in the function tij,

which reads†:
tij(ỹ,Zconj

ij ) = τ0(ỹ) + S̃(Zconj
ij )(τ1(ỹ)− τ0(ỹ)) (6.60)

where:

τ0(ỹ) = T0

(
ỹ2(1− ỹ2)

)2
(6.61)

τ1(ỹ) = T1(1− ỹ2)(2− ỹ2)2 (6.62)

describe the torsional barriers for Zconj
ij = 0 (Fig. 6.4, left panel) and Zconj

ij = 1 (Fig. 6.4,

right panel) respectively, and where the switch function S̃(Zconj
ij ) is given by:

Λ(Zconj
ij ) = (3(Zconj

ij )2 − 2(Zconj
ij )3)6 (6.63)

It quickly decays from Zconj
ij = 1.0, in order to associate the full barrier only to configura-

tions very close to the double bonded ones. The functions τ0 and τ1 are shown in Fig. 6.5.
Values for T0 and T1 are in table 6.3 in appendix 6.8.

† In Refs. [4] and [130], the barrier as a function of the dihedral angle ωijkl is always described by
sin2(ωijkl) and differs only by a scale factor between these two bonding situations. The data of Ref. [14]
shows the this assumption is not justified: for a completely conjugated bond the torsional energy is almost
zero at π/2, but around 0.3 eV at π/4: this behaviour cannot be described by a curve ∝ sin2(ωijkl).
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6.8 Appendix. Further details for the LCBOPI and

the LCBOPI+

6.8.1 Interpolation scheme of F conj

The interpolation scheme is based on the values and derivatives on the grid of integer
(Zij,Zj i). The values are given as fitting parameter. Due to symmetry arguments the
derivatives has to fulfill, defining F conj

Zconj
ij

(Zij,Zj i)
.
= F conj(Zij,Zj i,Z

conj
ij ) when Zconj

ij is inte-

ger (i.e. = 0,1):
∂F conj

Zconj
ij

∂Zij

∣∣∣∣∣∣
0,m

=
∂F conj

Zconj
ij

∂Zj i

∣∣∣∣∣∣
n,m

= 0 (6.64)

At the boundaries:

∂F conj

Zconj
ij

∂Zij

∣∣∣∣∣∣
n,m

=
F conj

Zconj
ij

(n + 1,m)− F conj

Zconj
ij

(n− 1,m)

2
(6.65)

In order to avoid spurious oscillation, it has to be:

∂F conj

Zconj
ij

∂Zij

∣∣∣∣∣∣
2, 0

= −0.088188 (6.66)

The value of F conj

Zconj
ij

for non-integer (Zij,Zj i) is given by the interpolation within the grid

square (Zij,Zj i) belongs to. The interpolation within the square is denoted f conj(x,y)
(the subscript Zconj

ij = 0,1 is dropped for convenience), with x
.
= Zij − Int(Zij) and y

.
=

Zj i − Int(Zj i), so that (x,y) ∈ [0,1]× [0,1].

f conj(x,y) = (1− y)(1− x)[f conj
00 + x2f̃x,10 + y2f̃y,01] +

+ (1− y)x[f conj
10 + (1− x)2f̃x,00 + y2f̃y,11] +

+ y(1− x)[f conj
01 + x2f̃x,11 + (1− y)2f̃y,00] +

+ yx[f conj
11 + (1− x)2f̃x,01 + (1− y)2f̃y,10] (6.67)

with

f̃x,kl = (−1)k

(
∂f conj

∂x

∣∣∣∣
kl

− f conj
1l + f conj

0l

)
(6.68)

f̃y,kl = (−1)l

(
∂f conj

∂x

∣∣∣∣
kl

− f conj
k1 + f conj

k0

)
(6.69)

(6.70)

where k,l = 0,1, f conj
kl

.
= f conj(k,l), and ∂f conj/∂α|kl (α = x,y) are the derivatives of F conj

ij

in the corners (k,l).
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6.8.2 Parameters for the LCBOPI and the LCBOPI+

Short range potential V sr

r1 = 1.7 r2 = 2.2 γ = 1.5
VR A = 35652.94452 α = 6.26781252
VA B1 = 18614.83652 β1 = 5.83045680

B2 = 32.01993977 β2 = 1.16864228
H d = 0.14 C1 = 3.335

C4 = 220.0 For C6, L, κ, R0, and R1 see text.

cosθ G G’ G”

−1 0.00548948 0.00 −
−1/2 0.08188859 0.30 1.13
−1/3 0.15709129 0.68633951 3.55887225

0 0.772 5.91323569 −
1/2 6.780 23.6184500 −
1 24.40 0.00 −

F conj
ij,0

Zji = 0 Zji = 1 Zji = 2 Zji = 3
Zij = 0 0.000000 0.034993 -0.009085 -0.229403
Zij = 1 0.034993 0.000000 -0.058546 -0.147667
Zij = 2 -0.009085 -0.058546 0.000000 -0.083991
Zij = 3 -0.229403 -0.147667 -0.083991 0.000000

F conj
ij,1

Zji = 0 Zji = 1 Zji = 2 Zji = 3
Zij = 0 0.000000 0.100921 0.072525 -0.229403
Zij = 1 0.100921 0.239564 0.010324 -0.147667
Zij = 2 0.071525 0.010324 0.161180 -0.083991
Zij = 3 -0.229403 -0.147667 -0.083991 0.000000

Long range potential V lr

r0 = 3.716163 rLR
1 = 5.5 rLR

2 = 6.0
ε2 = 2.617755 λ1 = 1.359381 λ2 = 2.073944
ε1 = ε2λ

2
2/λ2

1 v1 = ε1 − ε2 v2 = 0.0

Table 6.2: Parameters of the LCBOPI. A, B1, and B2 are in eV; v1, ε1, and ε2 are in
meV; r1, r2, d, r0, rLR

1 , and rLR
2 are in Å; α, β1, β2, C1, λ1, and λ2 are in Å−1; C4 is in

Å−4; all the other parameters are dimensionless.
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GI+ y0 = −1/3
γ0 = 0.128688658 γ1 = 0.462131068

Tij T0 = −0.182177564 T1 = −0.0147711739

Table 6.3: Parameters for the LCBOPI+ (all dimensionless).

6.8.3 Binding energy curves

In this appendix we show selected binding energies (V SR
ij of Eq. 6.38) as a function of

the interatomic distance rij alone, and parametrically depending on the bond order b̄ij as
defined in Eq. 6.41. Only few situations can be meaningfully described in this way: in fact,
the idea is to have structures in which b̄ij does not change while changing the interatomic
distances. To fulfill the requirement we need:

• a regular lattice, i.e. a structure in which all the first neighbours distances are always
the same, otherwise the term H(δrj ik) of Eq. 6.42, equal to 1 in a regular lattice,
would change upon stretching the structure.

• to limit the analysis up to 0.17 nm, i.e. r1, the cut-off lower bound: beyond this
distance, not only VR and VA are cut-off via fc,ij (see Eq. 6.40), but also b̄ij starts
depending on rij via the cut-off fc,ij itself (see Eq. 6.42).

• to use the short range version of the potential (CBOP), since in the long range version
the bond energy of each atom depends on all the positions of the atoms within the
long range cutoff distances.

We thus limit ourselves to the chain structure, graphite, and diamond, representing co-
ordination Z = 2,3,4‡. Fig. 6.6 shows the repulsive potential VR(rij) (top curve) and
the attractive potential VA(rij) weighted by the proper b̄ij. Fig. 6.7 shows the sum of
the (weighted) attractive and repulsive terms yielding the binding energy per bond of the
considered structures. The binding energy per atom for the chain would be the same
curve; for graphite one has to multiply the curve by 3/2, while for diamond a factor 4/2
is needed. The line passing through the minima is still expressed in the form of Eq. 6.26:
Eb = −Dbond

e = κ ∗ exp (−re/(2(S − 1)), with κ calculated to yield the exact value for the
case Z = 1 (not shown), and the effective S = 1.22, i.e. in the covalent regime according to
Abell’s analysis. These dependence of the cohesive energy on the equilibrium distance sug-
gests that all the extra features added to the bond order bij in the actual implementation
of the BOPs, do not lead excessively far from the original Abell’s model.

‡In these three cases b̄ij
∼= 0.99, 0.93, 0.83, respectively. The case Z = 1 (yielding b̄ij = 1), the dimer,

would be almost undistinguishable from the case Z = 2.
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Figure 6.6: Repulsive potential (top, all positive, curve) and b̄ij weighted attractive
potentials for the chain, graphite, and diamond.
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6.9 Appendix. Conjugated molecules

In this appendix we give a rapid overview of the distinctive features of the conjugated
systems.

Conjugated molecules are [159] planar molecules, constituted of sp2 hybridized carbon
atoms, which are conventionally described as consisting of alternate double and single
bonds.

These molecules have particular chemical properties, such as high reactivity, red shifted
and enhanced ultraviolet absorption if compared to non conjugated systems, large magnetic
susceptibilities, and easy propagation from one part to the other of the molecule of electrical
influences. Especially the last feature suggests a sort of coupling between all the atoms of
the conjugated molecule. The origin of this coupling can be understood thinking to the
way the valence electrons of carbon hybridize in the formation of conjugated molecules.
In these molecules it is given for granted that, in order to obtain maximum bonding, the
valence atomic orbitals are three trigonal sp2 hybrids pointing in the direction of the three
neighbouring atoms in the plane, and a lone 2pz orbital with its axis perpendicular to
the molecular plane. Three of the four valence electrons of carbon enter the sp2 orbitals
and pair off, each with an electron from the corresponding neighbouring atom§. These
electrons are called σ electrons. The remaining electron, dwelling in the 2pz atomic orbital,
is called a π electron, as it posses one unit of angular momentum about the carbon-carbon
bond, and its molecular orbital is a π orbital. The essential distinction between the spz

orbital and the sp2 hybridized orbitals is that, whereas the latter overlap with only one
neighbouring orbital, the 2pz overlaps with a similar orbital on either side. Hence, whereas
the σ electrons can be assigned by pairs to individual bonds, the π cannot be said belonging
to any particular bond between a pair of atoms. They are in fact delocalized over all the sp2

hybridized carbon atoms: this electron delocalization is the characteristic of conjugated
molecules.

§In a all carbon system as the ones studied in this work, it will be another sp2 hybridized carbon, in
the more general case of hydrocarbons, the sp2 orbital can pair with a 1s atomic orbital of a hydrogen
atom.



The phase diagram of carbon at very
high pressures and temperatures

Muchos años después, frente al pelotón de
fusilamiento, el coronel Aureliano Buend́ıa
hab́ıa de recordar aquella tarde remota en
que su padre lo llevó a conocer el hielo
[. . . ].
El mundo era tan reciente, que muchas
cosas carećıan de nombre, y para men-
cionarlas hab́ıa que señalarlas con el dedo.

Many years later, in front of the firing squad,
colonel Aureliano Buend́ıa would have remembered
of that distant day when his father brought him to
know the ice [. . . ].
The world was so young, that many things lacked
for a name, so that they were mentioned just point-
ing the finger at them.

The purpose of this chapter is to give an extensive review of experimental and theoretical
works aimed at determining the phase behaviour of carbon at high temperatures and
pressure. It provides terms of comparisons for the results presented in this thesis. We will
follow a “historical” approach, starting from the beginning of the twentieth century, up to
the most recent results coming from experiments and computer simulations. A historical
approach may give a better understanding on why certain issues have been, and in some
case still are, controversial. After setting the stage, we will focus on reviewing the long
debated issue of the liquid – liquid phase transition (LLPT) in carbon, whose existence we
have been able to definitely rule out. The binding energy between atoms of carbon is very
large: for example, the cohesive energy of diamond is 717 kJ/mol (i.e. 7.4 eV/atom) and
it melts at temperatures above 5000 K. Besides, phase transitions between carbon phases
require a high activation energy. The solid state of carbon comprises the two well known
crystalline phases, diamond and graphite, amorphous phases, such as glassy carbon and
carbon black, and possibly metastable solid phases that are referred to as carbynes (the
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existence of these phases is anyway still controversial). In addition to the bulk phases,
there are the recently discovered fullerenes, C60 and C70 [160], and nanotubes [161].

From a chemical point of view, carbon exhibits three different possibilities for covalent
bond formation: sp3, appearing in diamond, sp2, present, among the others, in graphite,
fullerens and nanotubes, and sp for the hypothetic carbynes.

Because of their high cohesive and activation energies, carbon polymorphs often exist
in metastable form well inside pressure-temperature regions where another solid form is
thermodynamically stable. For example, it is well known that diamonds survive at normal
P-T conditions, where graphite would be the thermodynamically stable phase. Conversely,
graphite tends to persist at very high pressures, deep into the diamond stability region of
the phase diagram.

According to what is nowadays established, the boundary between the stable regions
of graphite and diamond runs from 1.7 GPa at 0 K to the graphite/diamond/liquid triple
point, which is located around 12 GPa and 5000 K. The graphite/liquid/vapor triple point
is around 11 MPa and 5000 K. All available experimental data agree in finding a maximum
at around 5-6 GPa in the graphite melting line. Anyway, the development of most sophis-
ticated instrumentation has lowered the temperature of the maximum from 1200 K above
the triple point, measured in early experiments, to 200 K above the triple point, according
to the most recent data.

Starting from the mid-1980s evidences have been collected both from theory and ex-
periments, supporting the hypothesis of a diamond melting line with positive slope. This
distinguishes carbon from the heavier Group IV elements, Si and Ge. These elements dis-
play solids with a diamond structure, which melt into metallic liquids with higher densities
than the solid: this property requires dT/dP to be negative along the melting line.

The nature of the liquid phase of carbon is still controversial and will be treated sepa-
rately at the end of the chapter.

7.1 The history of carbon phase diagram

One of the earliest phase diagrams of carbon appeared at the beginning of the twentieth
century, and is due to B. Roozeboom [162], who estimated the phase behavior of carbon
on thermodynamic basis. His proposed phase diagram is sketched in Fig. 7.1. Of the
two solid phases, diamond was recognized to have a slightly greater vapor pressure at a
given temperature. The temperature of the graphite/liquid/vapor triple was believed to be
around 3000 K. In 1909 Tamman [163] postulated the existence of a region where graphite
and diamond are in pseudo-equilibrium. The existence of this pseudo-equilibrium region
was at the basis of the method of synthesizing diamond starting from carbon saturated
solutions of molten iron, silver, or silicates. In 1938, Rossini and Jessup [164] of the
U.S. Bureau of Standards calculated, by using accurate thermodynamic data, that at
0 K the lowest pressure at which diamond would be stable against graphite is around
1.3 GPa, and around 2 GPa at 500 K. These are the first points that set the behavior
of the graphite/diamond coexistence line. In 1939 Leipunskii [165] published in Russia a
thorough review of the problem of diamond synthesis. On the basis of thermodynamic data,
he suggested that the melting line of graphite might be at about 4000 K, with possibly some
increase with pressure. This value for the melting line of graphite was rather well verified
the same year by Basset [166], who established the graphite/liquid/vapor triple point to
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Figure 7.1: The carbon phase diagram as proposed by Roozeboom at the beginning of
the twentieth century.

be at about 11 MPa and 4000 K. In that same publication, Basset reported on a rather
pressure independent melting temperature of graphite at ∼ 4000 K, from atmospheric
pressure up to 0.1 GPa. In 1947 Bridgman [167] addressed the problem of extrapolating
the graphite/diamond coexistence line beyond the region where it can be estimated from
known physical properties (4 GPa/1200 K). He concluded that there was a possibility that
at higher temperatures the rate of increase of P with T along the line would decrease. This
hypothesis was later supported by Liljeblad [168] in 1955, while Berman and Simon [169]
in the same year came to the conclusion that the best extrapolation would be a straight
line. Experiments that could single out the best hypothesis were started by Bundy and
coworkers in 1954, when they accomplished diamond synthesis by activating the graphite-
to-diamond reaction with the use of different solvent-catalyst metals. The detailed data
where published much later [170, 171], and are compatible with the Berman-Simon straight
line extrapolation.

Bundy and his group made also extensive experiments on graphite melting at pressures
much higher than the graphite/liquid/vapor triple point. The determination of the graphite
melting line is a hard experimental challenge for many reasons. First of all, the achievement
of pressures as high as 10 GPa requires the specimen to be in direct contact with a solid
containing material and, because the melting temperature are so high, this material must
be as refractory and inert as possible (Bundy choose boron nitride, pyrophillite, MgO and
diamond powder). Besides, the heating and observations must be carried out very rapidly,
before the wall material could melt and react with the carbon sample. The experiment was
performed by discharging an electric capacitor through the sample (this procedure is known
as flash heating), and by monitoring the current through, and the voltage across it by means
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of a two-beam oscilloscope. The discharge circuit was designed to have energy insertion
in the sample within a few milliseconds. From the oscillograms, graphs of the electrical
power and resistance versus time could be derived. The power curve could be integrated to
obtain a curve of inserted energy versus time. From this, the instantaneous temperature
can be calculated, once the heat capacity of the sample is known. The resistance of the
sample is monitored in order to detect signals of phase transitions. The onset of melting
was indicated by an abrupt drop in electrical resistance. This sounded quite strange, since
previous experiments by Jones [172] at much lower pressures observed a sharp increase of
the electrical resistance simultaneous to melting. Anyway, cross sections of the sample were
inspected by a microscope, and evidences of the presence of a molten graphite core were
detected. Critical points for the conversion of the data into a melting temperature-versus-
pressure curve are the specimen heat capacity and the evaluation of the effective pressure
inside it. The dependence of graphite (constant pressure) specific heat CP on pressure
was not taken into account, since supposed weak, and was – in any case – unknown. The
dependence of CP on temperature was measured by Hove [173]. He found that CP increases
linearly with T between 1800 K and 3200 K, while a sharp increase was detected at higher
temperature. This increase was recognized as a spurious effect, and Bundy finally used a
linear extrapolation of Hove’s results for the calculation of the specimens’ temperatures.
The question of the pressure rise in the sample due to quick rise of temperature has been
also carefully considered. Bundy observed that the heating is not carried on at constant
volume, since the graphite specimen is surrounded by materials with about equal modulus
and density. Besides, the built up of any significant shock or dynamic pressure can be ruled
out, since the heat-up time is orders of magnitude greater than the time of transit of a
shock wave inside the sample. Thus the pressure behavior of the specimen must have been
close to that of a statically heated one in the same kind of apparatus. In this case, pressure
variations due to heating are within 10 %. With these assumptions, Bundy’ s experiments
gave a graphite melting line as shown in Fig. 7.2. A maximum melting temperature of
about 4600 K is detected in the region of 6 GPa to 7 GPa. The presence of region with
a negative dT/dP along the melting line indicates that, at those pressures, the density of
the liquid at the melting temperature is greater than that of the solid.

During the experiments on graphite melting, Bundy and his group also investigated the
graphitization of diamond by flash-heating under pressure. Small diamond crystals where
embedded in the graphite sample, pressurized and then flash-heated. Experiments indi-
cated that there is a sharp temperature threshold at which the diamond crystals completely
graphitized. This threshold is a few hundreds degrees lower than the graphite melting line.

Attempts to obtain direct (i.e. without resorting to a catalyst material) conversion of
graphite into diamond by the application of high pressure date back to the beginning of the
twentieth century. The first success came only in 1961, when De Carli and Jamieson [174]
reported the formation and retrieval of very small black diamonds when samples of low-
density polycrystalline graphite were shock compressed to pressures of about 30 GPa. Later
in 1961 Alder and Christian [175] reported results of the shock compression of graphite
which are in substantial agreement with those of De Carli and Jamieson.

Bundy [176] achieved direct conversion of graphite into diamond by flash-heating graphite
sample in a static pressure apparatus, at pressures above the graphite/diamond/liquid
triple point. The threshold temperature of the transformation was found several hundred
degrees below the melting temperature of the graphite, and decreases at higher pressures.
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Figure 7.2: The phase diagram of carbon at high pressures proposed by Bundy in 1963
[176].

The phase transition was revealed by a sharp drop in the electrical conductivity of the sam-
ples, which were finally retrieved as pieces of finely polycrystalline black diamond. Bundy
[176] pointed out that the shock compression data should stay on the graphite melting line
prolongued into the diamond region. That is because, in order to convert into diamond so
quickly, graphite has to virtually melt before. When the reaction time is orders of magni-
tude longer, as it was in his own experiments, the temperatures of conversion are shifted
to values lower than the graphite melting line. The temperature boundary for the conver-
sion of graphite to diamond under static pressure should then be, more or less, parallel
to the graphite melting line approaching the graphite/diamond/liquid triple point. The
same observation holds for the graphitization of metastable diamond. Then the position
of the boundary for the conversion of diamond into graphite would give information about
the behavior of the diamond melting line beyond the graphite/diamond/liquid triple point.
The behavior of the diamond melting line was at that time essentially unexplored.

By linking his results with older ones coming both from experiments and theory, which
we have quickly summarized so far, Bundy [176] proposed in February 1963 a phase diagram
of carbon at high pressures as illustrated in Fig. 7.2. The diamond melting line was
believed to have negative slope by analogy with the other Group IV elements, and from
some evidences collected during the experiments of Alder and Christian [175].

In 1968 El Goresy and Donnay [177] identified in the products of shock-heated graphite
a brand new allotropic form of carbon, with crystallographic properties rather different
from graphite. After a number of independent experiments supporting the existence of
this form, called “carbyne”, in 1978 Whittaker [178] proposed its structure and mechanism
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of formation. Carbyne was argued to be a solid constituted of chains of carbon atoms in
alternated single and triple bonds (i.e. a polymer of the monomer: −C≡C−). In a high
temperature graphite sheet, alternate single bonds break and shift an electron into each of
the adjacent double bonds, so that triple bonds are formed. The zigzag chains of so formed
alternate triple-single bonds stretch in linear chains. The resulting solid is an hexagonal
array of these linear chains, kept together by dispersive interactions, similar to graphite
interplanar interactions. Carbyne was indeed identified by the appearance of a typical
resonance due to the triple bond stretching vibrational frequency in the infrared spectrum.
Interestingly, on the basis of his own experimental results and on those by Kasatochin
[179], Whittaker proposed that graphite becomes unstable towards carbyne at 2600 K: this
temperature is more or less pressure independent, so that the graphite-carbyne coexistence
line would meet the diamond coexistence line in a triple point (graphite/carbyne/diamond)
at ∼ 6 GPa and ∼ 2600 K. Upon increasing temperature, carbyne would show a number
(maybe 6) of polytypes, with a similar crystallographic arrangement but with very different
mechanical properties (ranging from “very soft” to “very hard”). Carbyne is expected to
melt at ∼ 3800 K at atmospheric pressure, with Tm mildly increasing with pressure∗.
The existence of a carbyne form was questioned by Smith and Buseck [180], claiming that all
the experimental evidences could also be explained by the presence of sheet silicates. The
dispute continued between these authors: today the existence of carbyne is still debated.

In 1973 Van Vechten [181] predicted the phase diagram of carbon by rescaling the
behavior of other Group IV elements that are experimentally more accessible, using the
electronegativity as a scale parameter. In 1979 Grover [182] calculated a phase diagram by
using a phenomenological equation of state for the description of various solid and liquid
phases of carbon. He used reasonable models for the free energies of the various phases,
with parameters adjusted to match the available data on the equations of state. He found
that, at all pressures, diamond transforms, before melting, into a solid metallic phase.

In more recent years, efforts have been addressed towards the collection of reliable data
at even higher pressures, and towards the investigation of the properties of the different
phases of carbon at high temperature and pressure. This challenging task has been faced
both with experiments and theory. On the experimental side, the development of the dia-
mond anvil cell [29] for high pressure physics has raised the necessity of investigating the
stability of diamond structure under extreme conditions. The availability of high energy
pulsed laser sources lead to new tools for heating up samples at very high temperatures
(above the graphite melting line) [183], which were immediately addressed to the determi-
nation of the properties of liquid carbon (i.e. whether it is a conducting metallic liquid or
an insulator). Unfortunately, due to the difficulties in interpreting the results of the exper-
iments, the nature of the liquid state of carbon is nowadays not yet fully experimentally
established.

On the theoretical side, the appearance of computers and the increasing of compu-
tational power, considerably helped to infer the properties of matter by using density
functional theory (see section 3.2) for the description of the electronic degrees of freedom
[66, 67]. This approach has been shown to yield accurate estimates of the structural prop-
erties of solids, and was later implemented in a quanto-mechanical (or ab initio) molecular
dynamics algorithm for the calculation of thermodynamic quantities [62] (see section 3.1).

∗It has to be noted that these data and relative speculations are referred to relatively low pressures,
i.e. pressures not higher than 0.1 GPa.
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Figure 7.3: Diamond/liquid/metal triple point for carbon extrapolated from the triple
points of the other ‘Group IV’ elements, according to the “Jamieson criterion” [185]. The
extrapolation is proposed by Bundy in his 1969 review [186].

The first and most impressive application of these methods was establishing the nature of
the melting line of the diamond phase [184] (vide infra). Prior to about 1980 the diamond
melting line was believed to have negative slope, on the basis of early experimental [175, 176]
and theoretical [181] work, and on a simple analogy with the known phase diagrams of Si
and Ge (see Fig. 7.3). In more recent years evidences have been collected through com-
puter simulations that the diamond melting line has positive slope. In 1983 Yin and Cohen
[187] studied the total energy versus volume and the free energies versus pressure for the
six possible lattices of carbon (fcc, bcc, hcp, simple cubic, β-tin, diamond). The study
was carried out by using ab initio pseudopotential theory (this permits the investigation
of the properties of the atomic system at 0 K). They found out that the calculated zero
pressure volume for diamond is either close to or even smaller than those of the other five
phases. This is different from what is observed for the other group IV elements, Si and
Ge, and defies the common notion that diamond is an open structure and should have
higher specific volume than the close packed solid structures. This at first surprising fact
that diamond is effectively close packed, inhibits phase transformations at high hydrostatic
pressures which are observed for heavier group IV elements. Besides, it may also suggest
a revision of the other common notion that the diamond melting line should have negative
slope, due to a liquid denser than the coexisting solid. Yin and Cohen also found that, at
a pressure around 2300 GPa, diamond converts to a simple cubic (sc) phase. This work
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was later extended [188, 189, 190] to consider also complex tetrahedral structures. It
was found that a distorted diamond structure called BC-8 was stable versus diamonds at
pressures above 1000 GPa (see Fig. 7.4).

In 1984 Shaner and coworkers [191] shock compressed graphite and measured the sound
velocity in the material at shock pressures ranging from 80 to 140 GPa, and corresponding
shock temperatures ranging from 1500 to 5500 K. They measured velocities close to those of
an elastic longitudinal wave in solid diamond, which are much higher than the velocities of a
bulk wave in a carbon melt. Since no melt was detected at pressures and temperatures much
higher than the graphite/diamond/liquid triple point, the diamond melting line should
have, according to these results, positive slope. In 1990 Togaya [192] reported experiments
in which specimens of boron-doped semiconducting diamond were melted by flash-heating
at pressures between 6 and 18 GPa: there were clear indications that the Tm of diamond
increases with pressures.

In the same year ab initio molecular dynamics studies [184] conclusively showed that,
upon melting, the pressure of the system increases. This means that the slope of the
diamond melting line is positive. The shape of the diamond melting line has important
consequences for the theory of planets interiors. The above explained conclusions, together
with available data about temperatures and pressures in the interior of the outer planets
Neptune and Uranus, as well as in the Earth mantle, would imply that inside these planets
most of the free carbon should be found in the solid diamond phase [193]. In 1996
Grumbach and Martin [194] made a systematic investigation of the solid and liquid phases
of carbon in a wide range of pressures and temperatures by using ab initio molecular
dynamics. They studied the melting of the simple cubic and BC-8 solid phases, and
investigated structural changes in the liquid in the range 400-1000 GPa. They found that
the coordination of the liquid changes continuously from about four-fold to about six-fold
in this range.

In 2004 Bradley et al. [195] reported on laser induced shock compression of diamond
up to 3000 GPa. Through optical reflectivity measurements, they found for the first time
direct evidences of diamond melting, at an estimated pressure of P = 1000±200 GPa, and
temperature T = 12000± 4000 K.

At this point, the proposed phase diagram for carbon, including regions at very high
pressures and temperatures for which thermodynamics data are not available, can be
roughly sketched as in Fig. 7.4. Questions such as the already treated existence of carbyne
phases, the exact location of the graphite melting line, together with the triple point va-
por/liquid/graphite, and the nature of the liquid are still open. The last two points will
be discussed in more detail in the two following sections.

7.2 On graphite melting line: a possible heating time

dependence of Tm

Asinovskii et al. [196] pointed out the non negligible dependence of the melting temperature
(Tm) of graphite on the heating rate of the sample. Namely, heating times of the order
of 10−5 s gave [197, 198] Tm ∼ 4800 − 5000 K; heating times of the order of 10−3 s
gave [199, 200] Tm ∼ 4500 − 4600 K; finally heating times of the order of the second
gave [166, 201] Tm ∼ 3800 − 4000 K. After a thorough discussion on the experimental
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Figure 7.4: The phase diagram of carbon at high pressures as it has been developed in
more recent years (excluded the results that will be illustrated in this thesis). Full lines
correspond to phase boundaries for which thermodynamic data are available.

methods, the authors recommended that only data coming from experiments with heating
time of the order of the second, at least, should be accepted. If so, most of the available
data on graphite melting should be carefully reconsidered: the position and the shape of
the melting line would be far from being established.

The following list of experiments should evidence how both the position of the melting
line and the nature of the liquid upon melting are still uncertain. In 1925 [202], Tm for
graphite at atmospheric pressure was detected at 3760±65 K, on the basis of a slow (about
half an hour) ohmic heating of the sample. On the basis of ohmic heating experiments
of unspecified heating rate, in Ref. [203] of 1968, the vapor/liquid/graphite triple point
was found at 10.3 MPa and T ∼ 4200 K. The melting temperature was found to increase
linearly from ∼ 4200 to ∼ 4300 K from 10.3 MPa to 0.1 GPa. In 1988, in Ref. [204], a
Tm = 4450± 110 K at atmospheric pressure was found, on the basis of µs electrical pulse
heating. The author found a metallic liquid upon melting. In 1997 Togaya [200] presented
an evaluation of the whole graphite melting line, measured by means of millisecond shock
heating via capacitor discharge of graphite rods, at 6 pressures from 1.4 to 9.4 GPa. The
melting line shows a maximum temperature at 5.6 GPa; the melting temperature increases
from ∼ 4651 to ∼ 4786 K and then decreases to ∼ 4640 K, so that the temperature span of
the melting line is ∼ 150 K (which is much lower than that measured by Bundy in earlier
experiments [171]). As noted above, in 1997 Asinovskii and coworkers pointed out how,
in order to correctly determine the melting line, a sufficiently slow heating of graphite
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was needed. On the basis of a series of laser induced slow heating experiments [196]
(i.e. heating times of the order of the second), these authors proposed the triple point
vapor/liquid/graphite at ∼ 4000 K and 0.1 MPa (i.e. atmospheric pressure), in open
contrast with the commonly accepted values [205] of ∼ 5000 K and 10 MPa. The next year
the same authors [206] published results concerning the position of the graphite melting
line. With an ohmic heating of graphite samples at heating rates of about 100 K/minute,
they found Tm = 3700 K at 0.25 MPa (typically, samples melted after one hour of steady
heating). Finally in 1998, on the basis of millisecond laser pulse heating [207] it was
found a rather constant Tm = 4800 ± 150 K from 0.03 to 0.25 GPa. The authors found a
non-conducting liquid upon melting at those pressures.

7.3 History of the liquid – liquid phase transition for

carbon

7.3.1 An analysis of experimental data

The possibility of a liquid – liquid phase transition (LLPT) in liquid carbon has been
firstly investigated by Korsunskaya et al. [8], analyzing data on the graphite melting line
proposed by Bundy [171], (those data showed a maximum melting temperature at 6.5
GPa). By fitting the data from Bundy into the original two levels model of Kittel [6] † and
postulating the existence of two liquids, Korsunskaya et al. found the critical temperature
Tc of the LLPT. The model is fitted with three points on the graphite melting line, with
the respective derivatives, and with the heat of melting at a selected pressure. The authors
assume that:

1. liquid and solid have different compressibilities;

2. the nature of liquid carbon is described univocally by the relative fraction of the two
liquids, i.e. the parameter s, as defined in section 2.1;

3. each of the two liquids presents a volume change on melting, heat of melting and
entropy of melting, that are independent of T , P , and the fraction s: the volume
change upon melting for the liquid is a linear combination of the volume changes
of the pure species (i.e. for s = 0,1), while heat and entropy of melting combine
according to the regular solution rules;

4. the overall entropy jump on melting is independent of T (that is equivalent to as-
suming the same heat capacity in the liquid and the solid).

The fitting procedure gives an estimate for the critical pressure‡ of ∼ 6.5 GPa and
for the critical temperature of the searched transition at 3770 K, i.e. below the melting
temperature. The fitted value for the entropy of melting is the same for the two liquids,
thus implying a vertical slope (dT/dP ) of the coexistence line (in the metastable liquid
region just below the critical temperature)

†This model is one of the many flavours of the model we presented in section 2.1.
‡This value is not explicitly mentioned in the article [8], but can derived from the given ∆E, ∆σ, and

∆v, using Eq. 2.8.
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On the basis of these results, the authors were able to calculate also the diamond
melting line: they predicted it to have a negative slope, in accordance with the commonly
accepted interpretation of the experiment of Alder and Christian [175]. Note that the
slope of the graphite melting line, and the slope of the diamond/graphite coexistence, as
extracted from Bundy’s data [176, 171], together with the densities of the phases obtained
by fitting to the two levels model implied (via Clausius-Clapeyron equation) a negative
slope of the diamond melting line. Different values of the slopes of the graphite boundary
lines, and of the densities of the phases can yield rather different slope of the diamond
melting line, as we will show in chapter 8.

Consistently with the slope of the fitted graphite melting line, the low density liquid
(LDL, s = 0) is less heavy, and the high density liquid (HDL, s = 1) is heavier than the
coexisting graphite. The nature of the two liquids is predicted as follows: at low pressure
graphite melts into a liquid of neutral particles, which interact predominantly through
dispersion (London) forces. Upon increasing pressure§ the liquid metallizes into a close
packed liquid. No assumption is made on the local structure.

7.3.2 A model for a insulator-into-metal transition

While commonly cited to support the idea of a LLPT in correspondence of the maximum
in the graphite melting line, the work of Ferraz and March [208] is concerned with an
insulator-into-metal transition at low pressure in the melt. Using a Landau expansion in
the free energy of the liquid phase in proximity of the melting line, with an order parameter
derived from the gap between the valence and conduction bands of the system, the authors
predict a coexistence line between two liquids, branching off from the melting line at ∼ 0.4
GPa and with a negative slope. The insulator liquid is argued to have two-fold preferred
coordination, while the metallic would have a preferred open, three-fold, coordination.
Ferraz and March speculate, without elaborating the model, the further transformation
into a preferred four-fold liquid in correspondence with the maximum in the melting line
of graphite.

7.3.3 A semi-empirical equation of state

The modern discussion on the LLPT for carbon, starts with the elaboration of a semi-
empirical equation of state for carbon, valid also at high P and T , by van Thiel and
Ree [209, 210]. The equation of state is constructed on the basis of experimental data and
electronic structure calculations. It is postulated the existence, in the graphite melt, of a
mixture of an sp3 and an sp4 liquid. The model of pseudo-binary mixture is assumed to
describe the mixing of the two liquids (see Eq. 2.4); recasting the original equation reported
in Ref. [210] into the formalism of section 2.1, the mixing energy J of the two liquids is
written as:

βJ =
A0

1 + (P/P0)3/2
s(1− s) (7.1)

where A0 and P0 are fitting parameter. As it is clear from section 2.1, the value of these
fitting parameters is essential to determine the possibility of the occurrence of a first order

§The transition in the stable liquid region is supercritical, thus continuous, but taking place in a short
range of pressures around 6.5 GPa.
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transition. Van Thiel and Ree show that fitting A0 in order to obtain the graphite melting
points of Bundy [171], the slope of the graphite melting line predicted by their model inverts
its sign discontinuously in correspondence of the maximum, so that a first order LLPT
arises. On the other hand, if they fit to the data from Ref. [211], the value of A0 decreases
so that the Tc of the LLPT drops below the melting line and the transition between the two
liquids becomes continuous in the stable liquid region. As pointed out by Ponyatovsky [212]
the expression for βJ proposed by van Thiel and Ree involves two ambiguities. Firstly,
extrapolating the coexistence line between the two liquids at atmospheric pressure, the
coexistence temperature would be T ∼ 3700 K: this would imply that the sp3 liquid (and
the glass) would be more stable than the sp2 at room pressure up to very high temperatures,
which is in contrast to the experimental data. Furthermore, J is proposed to have a linear
dependence on T , so that, when T → 0, also the mixing energy would tend to zero, i.e. at
zero temperature the regular solution would become an ideal solution. This is extremely
unusual.

7.3.4 Experimental suggestions from the graphite melting line

As already mentioned in section 7.2, Togaya [200] found a maximum in the melting line
at Pmax = 5.6 GPa. The author fitted the six experimental points with two straight lines:
with positive slope at pressures lower than Pmax, with negative slope at pressures higher
than Pmax. The discontinuous derivative of the melting curve at the maximum would imply
there a triple point graphite/LDL/HDL, as a starting point of a LLPT coexistence line.

7.3.5 Prediction of a short range bond order potential

In Ref. [2] Glosli and Ree reported a complete study of a LLPT simulated with the Brenner
bond order potential [3] in its version with torsional interactions [4] (i.e. the potential
defined as ‘BrennerI’ at the end of section 6.5). The authors simulated in the canonical
(NVT) ensemble several samples at increasing densities at eight different temperatures. By
measuring the pressure, they show the familiar van der Waals loop denouncing mechanical
instabilities at certain imposed densities. Using the Maxwell equal-area construction, the
authors calculated the LLPT coexistence line, ending in a critical point at T = 8802 K
and P = 10.56 GPa. The lowest temperature coexistence point was calculated at T =
5500 K and P = 2.696 GPa. The LDL/HDL coexistence line should meet the graphite
melting line at its maximum, but unfortunately the BrennerI potential does not contain
non bonded interactions, thus it cannot describe neither bulk graphite nor its melting
line. To overcome this deficiency, the authors devised an ingenious perturbation method.
Assuming constant slope of the negative sloped branch of the graphite melting line¶ and
fixing the graphite/diamond/HDL triple point at a value taken from the experimental
literature, they give an estimate of the graphite/LDL/HDL triple point, at T = 5133 K
and P = 1.88 GPa. The LDL was found to be mainly two-fold (sp) coordinated with
a polymeric-like structure, while the HDL was found to be a network forming, mainly
four-fold, (sp3) liquid. Following the predictions of this bond order potential, the sp2

¶The authors adopted the graphite melting line measured by Togaya [200], see sections 7.3.4 and 7.2.
This melting line is reported in Fig. 8.4, together with our results. According to Glosli and Ree, from the
maximum of that melting line would branch off the LLPT coexistence line.
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coordinated atoms would be completely avoided in the liquid. The authors identified the
reason in the presence of torsional interactions. In fact, the increase in density demands an
increase in structures with higher coordination than the sp, which is entropically favoured
at low densities. The single bonds of the sp3 structures can freely evolve around the bond
axis, while bonds between sp2 sites are constrained in a (almost) planar geometry by the
torsional interactions: this implies a low entropy for a liquid dominated by sp2 sites. This
low entropy would eventually destabilize the sp2 sites towards the sp3. To prove this
conjecture, the authors calculated two relevant isotherms in the original version of the
potential, without torsional interactions, finding no sign of a LLPT. Since some torsional
interactions are definitely needed to mimic the double bond reluctancy to twist, the authors
concluded that the LLPT predicted by the Brenner bond order potential with torsion is
more realistic than its absence when torsional interactions are switched off.

Tight binding calculations [213] showed no evidence of van der Waals loops at some of
the temperatures analyzed in Ref. [2]. As Glosli and Ree note, the tight binding model
used in [213] is strictly two-center, thus the torsional interactions cannot be described.

7.3.6 An ab initio confutation of the LLPT

In Ref. [14], Wu et al. reported on a series of NVT-CPMD simulations at 6000 K from
density 1.27 to 3.02 103 kg/m3, in a range where the BrennerI potential showed the first
order LLPT at the same T . No sign of a van der Waals loop was found: in contrast to the
BrennerI results of the previous paragraph, two approaching series starting from the lowest
and the highest density, were found to meet smoothly at intermediate densities. Looking
for the reasons of the failure of the BrennerI potential, the authors calculated, with the
same density functional (DF) used in the CPMD simulations, the torsional energy of two
model molecules. One, (CH3)2CC(CH3)2 (see Fig. 6.4, right panel, for a schematic repre-
sentation), was chosen so that the bond between the two central atoms represents a double
bond in a carbon network: two sp2 sites are bonded each to two sp3 sites; the peripheral
hydrogens are needed to saturated the sp3 atoms and are intended to have no effect on
the central bond. The second molecule, (CH2)2CC(CH2)2 (see Fig. 6.4, left panel, for a
schematic representation) is a portion of a completely sp2 coordinated network: in the
bond order language, the central bond is conjugated. The two molecules were geometri-
cally optimized in their planar configurations and then twisted around the central bond
axis in steps of π/12. In each configuration the electronic wave function was optimized,
without further relaxations, to give the total energy, that was compared to the planar con-
figuration total energy. The difference is the torsional energy. The DF calculations found a
surprising picture (see Fig. 6.5): while the double bond torsional energy was only slightly
overestimated by the BrennerI potential at intermediate angles, the DF torsional energy
for the conjugated bond showed a completely different scenario compared to the classical
prediction. It shows a maximum at π/4, while the planar and orthogonal configuration
have basically the same energy. For the BrennerI potential, the torsional energy in this
conjugated configuration is monotonically increasing with the torsion angle, just as for the
double bond configuration‖. On average, considering that the conjugated configuration
would be characteristic of a mainly sp2 coordinated liquid, the torsional interactions are

‖See section 6.5 and footnote (†) in section 6.7.3. We also compared the BrennerI potential to other
bond order potentials in section 9.1.2.
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enormously overestimated by the classical potential. As a further proof, the authors tried
to lower torsional energy of the conjugated bond in the classical potential, by tuning the
proper parameter, and found a much less pronounced LLPT. Note that, as pointed out in
section 6.7.3, the functional form of the torsional interactions for the BrennerI potential
cannot reproduce the DF data here mentioned. Wu et al. concluded: “Brenner poten-
tial significantly overestimates the torsional barrier of a chemical bond between two- and
three-center-coordinated carbon atoms due to the inability of the potential to describe
lone pair electrons”; and: “Brenner potential parameters derived from isolated hydrocar-
bon molecules and used in the literature to simulate various carbon systems may not be
adequate to use for condensed phases, especially so in the presence of lone pair electrons”.
In section 6.7.3 we introduced a bond-order (Brenner like) potential (LCBOPI+), that in-
corporates a much more flexible and transferable definition of the torsional interactions. In
chapter 9 we will show that the conclusion of Wu et al. is not necessarily true for all BOPs;
we will show how our definition of the torsional interaction is able to reproduce relevant
features of liquid carbon, as described by density functional based molecular dynamics.



The carbon phase diagram according
to the LCBOPI+

That thou hast
the serenity for accepting things that cannot change,

the courage for changing things that thou canst change,
the wisdom for understanding the difference.

after a Cherokee blessing

In this chapter we describe the numerical evaluation of the phase diagram of carbon,
comprising graphite, diamond and the liquid, with the LCBOPI+. The chapter opens with
a detailed description of the method used to calculate the phase boundaries. Section 8.2
reports the calculated phase diagram.

8.1 Methods

The properties of the liquid, graphite, and diamond phases were determined by Monte
Carlo simulation. Coexistence lines were determined by locating points in the P − T dia-
gram with equal chemical potential for the two phase involved. To this purpose, we first
determined the chemical potential for the liquid, graphite, and diamond at an initial state
point (P = 10 GPa, T = 4000 K). Subsequently, the liquid/graphite, liquid/diamond,
and graphite/diamond coexistence pressures at T = 4000 K were located. In turn, these
coexistence points served as the starting point for the determination of the graphite melt-
ing, diamond melting, and graphite/diamond coexistence lines, obtained integrating the
Clausius-Clapeyron equation (this procedure is also known as Gibbs-Duhem integration):

dT

dP
=

T∆v

∆h
(8.1)

where ∆v is the difference in specific volume, and ∆h the difference in molar enthalpy
between the two phases (calculated as h = u + Pv, being u the potential energy per
particle).
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The first point is in turn accomplished in two sub-steps. Firstly an Helmholtz free
energy (F ) at a given volume (V ) and temperature (T ) can be calculated via thermody-
namic integration. In a canonical system, coexistence between phases can be found via
the Helmholtz double tangent construction, once extended F to other V and T integrating
its gradient, a quantity that can be measured in a Monte-Carlo (MC) simulation (see e.g.
[214]). As an alternative [215], the one we chose, one can transform F into the chemical
potential µ (coinciding with the specific Gibbs free energy in a one-component system),
the latter as a function of P and T , knowing accurately enough the equation of state of
each phase. Coexistence at a given T is found at the P where the different µ cross.

For all phases, the free energies at the initial state point Fz was determined by
transforming the systems into a reference system F ref of known free energy, using Uλ =
(1−λ)Uz+λU ref. Here, Uz and U ref denote the potential energy function of the LCBOPI+

and the reference system, respectively. The transformation is controlled by varying the pa-
rameter λ continuously from 0 to 1. The free-energy change upon the transformation was
determined by thermodynamic integration:

Fz = F ref + ∆F ref→z =

= F ref +

∫ λ=1

λ=0

dλ

〈
∂Uλ

∂λ

〉

λ

=

= F ref +

∫ 1

0

dλ
〈
U ref − Uz〉

λ
(8.2)

The symbol 〈...〉λ denotes the ensemble average with the potential Uλ.

8.1.1 The Lennard-Jones liquid

For the liquid phase the reference system was taken to be a Lennard-Jones 12-6 (LJ)
system, described by the well known interaction energy:

ULJ = 4ε

((σ

r

)12

−
(σ

r

)6
)

The reference free energy (F ref) of the liquid is:

F ref = F LJ = F id + F ex
LJ (8.3)

The ideal-gas contribution is:

βF id

N
= 3lnΛ + lnρ− 1

where N is the number of particles in the box, Λ = h/
√

2πm kBT is the de Broglie wave-
length, m is the mass of one atom, and ρ is the number density.
The LJ liquid excess free energy (F ex

LJ) has been accurately parameterized [216] by means
of (NVT) MC and MD simulations.
The LJ σ parameter was determined by matching the first peak of the radial distribution
functions (g(r)) of the LCBOP and LJ liquid at the same position, ensuring optimal simi-
larity between the structure of the two liquids. The LJ ε parameter was chosen such that,
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at the selected T = 4000 K, the LJ liquid was above the critical temperature: this is done in
order to avoid possible unwanted transitions, since the thermodynamic integration method
works under the hypothesis the no boundary between phases is ever crossed on varying λ.
On the other hand, the liquid should not be too far from the critical temperature: in fact,
the g(r) given by the LCBOPI+ (see chapter 9) has pronounced secondary peaks beyond
the first coordination shell. Thus, a rather structured LJ liquid had to be preferred for the
coupling. The requirements are matched by putting the liquid in proximity of the critical
temperature.

8.1.2 The Einstein crystal

For the solid phases the Einstein crystal, whose free energy is analytically known, was
taken as reference system [217]. For the Einstein solid, UE is:

UE =
α

2

N∑
i=1

(ri − ri, 0)
2

where the ri,0 are the equilibrium lattice positions of the particles. In the Einstein solid, the
fixed equilibrium lattice positions are referred to an absolute frame, so that if a particle
is moved, then the crystal as a whole cannot. When λ = 0 (i.e. the system is on the
LCBOPI+ side) the center of mass of the system (CoM) to drift: if L is the box size, the
CoM mean square displacement 〈r2〉CoM becomes of the order of L2. Should this happen,
the integral of Eq. 8.2 becomes sharply peaked for small values of λ. In fact, the particles
are allowed to drift far away from their absolute equilibrium lattice positions, since the
coupling with the Einstein solid is mild, but in Eq. 8.2 appears the energy Uz = UE, that
can become uncontrollably large. In order to avoid to perform extremely long simulations
to evaluate the integral for small λ, one can perform a simulation under the constraint that
the CoM of the solid is fixed [217, 13, 218], so that 〈r2〉CoM is of the order of 〈r2〉0, the mean
square displacement of a particle from its lattice site in a real (i.e. interacting) crystal.
This constraint calls for a slight modification of the Eq. 8.2. We label with E(CM) the
Einstein solid with fixed center of mass, z(CM) the LCBOPI+ system with fixed center
of mass, so that [217, 13, 218]:

Fz = FE(CM) + ∆FE(CM)→z(CM) + ∆Fz(CM)→z =

= FE(CM) +

∫ 1

0

dλ
〈
U ref − Uz〉

λ
+ ∆Fz(CM)→z (8.4)

Specifically:

βFE(CM)

N
= 3lnΛ− 3

2
ln

(
2π

βα

)
− 3

2N

(
ln

(
αβ

2π

)
+ lnN

)
(8.5)

The last term on the right hand side represents the (finite size) correction for the fixing of
the CoM: note its dependency on 1/N .

β∆Fz(CM)→z

N
= − 1

N
ln

V

Nws

(8.6)
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where Nws is the number of Wigner-Seitz cells in the simulation box. If nws is the number
of atoms per Wigner-Seitz cell, Nws = N/nws. Note that also this term, a purely finite size
effect, vanishes in the thermodynamic limit.

In reporting the results (in the next section) we will group differently the terms of the
previous three equations: it is indeed natural to group the terms proportional to 1

N
, so

that:
βFE

N
= 3lnΛ− 3

2
ln

(
2π

βα

)
(8.7)

β∆F
1
N

N
= − 1

N

(
3

2
ln

(
N

αβ

2π

)
+ ln

V

Nws

)
(8.8)

The coupling of (hot) graphite to an Einstein crystal, whose average atomic positions are
constrained to a fixed reference system, displayed a peculiar feature. Due to the softness of
the interplanar interactions (0.07 kBT at 4000 K), graphite neighbouring sheets are allowed
to slide. Also this is a finite size effect: to correct for this we found necessary to attach
any sheet to its CoM, independently from the others∗.

The Einstein crystal spring constant, α, was determined by requiring that the mean-
squared displacement from the equilibrium lattice positions is equal for the Einstein crystal
and the carbon crystal:

3

βα
=

〈
1

N

N∑
i=1

(ri − ri, 0)
2

〉

Therefore α was fixed calculating the right hand side in a simulation with the LCBOPI+.

8.1.3 From the Helmholtz free energy to the chemical potential

The chemical potential µ along the 4000 K isotherm was obtained by integrating from the
initial state point a fit, P (ρ) = a + bρ + cρ2, through simulated (P,T ) state points along
the 4000 K isotherm. Here, ρ is the number density, and a, b, and c are fit parameters.
This yields for the chemical potential [215]:

βµ(ρ) =
βFz

N
+ β

(
a

ρz + b ln
ρ

ρz + b + c
(
2ρ− ρz))

(8.12)

∗Eq. 8.5 then becomes:

βFE(CM)

N
= 3lnΛ− 3

2
ln

(
2π

βα

)
− 3Ns

2N

(
ln

(
αβ

2π

)
+ lnNNs

)
(8.9)

where Ns is the number of sheets. Eq. 8.6 becomes:

β∆Fz(CM)→z

N
= −Ns

N
ln

V

Nws
(8.10)

where, in Nws = N/nws, one has to define the Wigner-Seitz cell within a graphite sheet; this leads to
nws = 2. Eq. 8.8 becomes:

β∆F
1
N

N
= −Ns

N

(
3
2
ln

(
NNs

αβ

2π

)
+ ln

V

Nws

)
(8.11)
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Figure 8.1: Plots of the quantity β/N 〈U ref − ULCBOPI+〉λ (see Eqs. 8.2 and 8.4) as a
function of the coupling parameter λ for the liquid, graphite, and diamond. On the left
side of the horizontal axis (λ = 0) is the pure LCBOPI+, on the right side (λ = 1) is
the reference system, i.e. the Lennard-Jones liquid for the liquid phase and two Einstein
crystals (with different coupling constant) for graphite and diamond. The simulated ten
points per phase are marked by their error bars, that are almost reduced to a single dash
at this scale.

Here, ρz denotes the number density at the initial state point, N the number of particles,
and β = 1/kBT , with kB the Boltzmann constant. Details on this equation are given in
appendix 8.3

8.2 Results

For calculating the three Fz we performed independent Monte Carlo (MC) simulations for
three phases. Three samples of 216 particle of the three systems were prepared, the solids in
their lattice positions, and the liquid in a simple cubic arrangement. The three phases were
equilibrated with NPT MC simulations at the chosen T = 4000 K and at P = 10 GPa†.
The integer N = 216 permits the atoms to be arranged both in a defect-free diamond and
cubic lattice, aligned with the sides of a cubic cell, while bonding perfectly across its faces
to periodic-image atoms. The same requirements are fulfilled for 216 atoms in a defect-free
graphite lattice, arranged in three sheets, but in a rectangular periodically replicated cell,
with resulting edge-size ratios 1:1.5:1.7. The first, in-plane, ratio (1:1.5) is defined by the
lattice structure, while the interplanar ratio (1:1.7) is pressure dependent. In fact, the
rescaling of the box was allowed to be independent on the three axes for the equilibration
of the solid phases, while kept intrinsically isotropic for the melting of the cubic crystal and

†For the correct application of the method it is not needed to have the three states at the same P . It
is only required that the phases share a broad stable region in pressure at the chosen T .
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the subsequent equilibration of the liquid phase. The equilibrium densities ρz, expressed
in 103 kg/m3, were 3.425 for diamond, 2.597 for graphite, and 2.421 for the liquid. Three
configurations at the equilibrium volume were then chosen as starting points for the three
thermodynamic integration. The value of α was set to 453000 and 39700 kJ/(mol nm2) for
diamond and graphite, respectively. The parameters σ and ε for the LJ fluid were 0.127
nm and 31.84 kJ/mol.

Graphite Diamond

βFE/N -5.588 -1.933
(β/N)

∫
dλ

〈
U ref − Uz〉

λ
-19.369± 0.006 -22.671± 0.002

βF
1
N /N 0.133 0.021

βFz/N -24.824± 0.006 -24.5831± 0.002

Liquid

βF id/N -10.697
βF ex

LJ/N -0.165

(β/N)
∫

dλ
〈
U ref − Uz〉

λ
-14.275± 0.002

βFz/N -25.137± 0.002

Table 8.1: Calculated values for the quantities in equations 8.4, 8.7, 8.8.

a [GPa] b [GPa nm3] c [GPa nm6]

Liquid 89.972 −1.9654 0.011 092
Diamond 74.809 −3.6307 0.019 102
Graphite 108.29 −2.2707 0.011 925

Table 8.2: Parameters for the polynomial fitting of the 4000 K isotherms of the three
phases, according to: P (ρ) = a + bρ + cρ2.

The calculated values for the free energy for three phases, split in their contributions,
are given in table 8.1. The values of λ for the sampling were defined by a 10-point Gauss-
Legendre integration scheme. The scheme avoids the sampling of the systems at the two
boundary values of λ. A 10 point scheme assures exact result whenever the integrand

function of Eq. 8.2
(
〈U ref − ULCBOPI+〉λ

)
can be reasonably described with a polynomial

up to order 2 ∗ 10 + 1 = 21. When λ = 0,1 the system performs its random walk on the
basis of only one of the two potentials, thus in principle allowed to assume configurations
completely avoided by the other potentials, in such a way that the integrand of Eq. 8.2
could diverge. Should this be the case, the integration scheme would yield a poor estimate
of the integral. We thus ascertained that the integrand never indeed diverged at λ = 0,1.
For the three phases, we run at each λ point an NVT MC simulation of 500000 cycles.

In Fig. 8.1 〈U ref−ULCBOPI+〉λ versus λ is shown. The absence of spurious phase bound-
ary crossings throughout the integration over λ was checked by looking at the distribution
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thermodynamic integration, being the uncertainty on the equations of state of at least an
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Figure 8.4: Phase diagram of carbon up to 60 GPa. The solid right triangle, square,
and diamond are the three coexistence points found by equating the chemical potentials at
4000 K (see text). The open right triangles, squares, and diamonds are the calculated coex-
istence points, propagated via Gibbs-Duhem integration. The solid circle with error bars in-
dicates the experimental estimate for the liquid/graphite/diamond triple point [205, 2, 210].
The dashed line is the experimental graphite melting line from Ref. [205]. The up trian-
gles are graphite melting state points from Ref. [200]. The crosses represent experimen-
tal graphite/diamond coexistence from Ref. [176]. The asterisk represent the theoretical
graphite/diamond coexistence at zero kelvin, as reported in Ref. [205].

of (U ref − ULCBOPI+)‡. Since the points were run in parallel in order to accumulate more
statistics, only shorter independent simulations were performed by increasing and then
decreasing λ, each new λ point starting from the final configuration of the previous. The
absence of hysteresis in this process completely rules out phase boundary crossings. The
isotherms for the three phases, calculated via NPT MC simulations together with their fit,
are shown in Fig. 8.2.

The three µ curves, as given in 8.12, but expressed as functions of P , are shown in
Fig. 8.3. The three curves, µL, µG, µD, as given in Eq. (8.12), intersect in pairs in three
points (these points are shown as a solid triangle, square and diamond in Fig. 8.4). The
intersections locate the graphite/liquid coexistence at 6.72 ± 0.60 GPa (µGL = −24.21 ±
0.10 kBT ), and the graphite/diamond coexistence at 15.05 ± 0.30 GPa (µGD = −23.01 ±
0.03 kBT ). The third intersection locates a diamond/liquid coexistence at = 12.75 ±
0.20 GPa (µDL = −23.24 ± 0.03 kBT ). Even though both diamond and the liquid are
there metastable, this point can be taken as the starting one for the Clausius-Clapeyron
integration of the diamond melting line. Starting from the three coexistence points at
4000 K, the coexistence lines were traced by integrating the Clausius-Clapeyron equation

‡The distribution usually exhibits a bimodal shape in case of phase boundary crossing.
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Figure 8.5: Phase diagram of carbon at all calculated pressures. The thick solid lines
are our calculated phase boundaries. The dashed line is the metastable prolongation of
the graphite melting line, from Gibbs-Duhem integration; the line stops just before the
simulated graphite became instable, displaying large density fluctuations. The dashed-
dotted line departing from the experimental guess for the triple point (solid circle with error
bar [205, 2, 210]) is the diamond melting line calculated in Ref. [214] with the BrennerI
potential. The solid circle is the final point of the shock wave experiment of Ref. [191] at
which diamond is not yet melted. The following features are discussed in the next chapter
(see section 9.2): crosses mark the liquid with equal amount of three and four-fold atoms;
circles represent state points in which the sample freezes; in the region in between the two
series is the “diamond-like liquid”: the star is the point reported in Ref. [17].

using the trapezoidal-rule predictor-corrector scheme [219]. The new value of the coexisting
P at a given T was taken when two iterations differed less than 0.01 GPa, this being the
size of the single uncertainty in the calculation of dP/dT . This normally took 2-3 iterations
to be obtained.

The calculated phase diagram in the P − T plane is shown in Fig. 8.4 for the low pres-
sure region, and in Fig. 8.5 for the full range of pressures and temperatures considered.
Tab. 8.3 lists the densities of selected points on the coexistence lines. The three coexistence
lines meet in a triple point at 16.4 ± 0.7 GPa and 4250 ± 10 K. The graphite/diamond
coexistence line agrees very well with the experimental data. In the region near the liq-
uid/graphite/diamond triple point, that has not been directly probed in experiments, the
graphite/diamond coexistence line bends to the right, departing from the usually assumed
straight line. Analysis of our data shows this is mainly due to the fast reduction with in-
creasing pressure of the interplanar distance in graphite at those premelting temperature.
This causes an enhanced increase of the density in graphite, yielding a decrease of dT/dP .

Table 8.4 shows the melting enthalpy ∆hm for graphite and diamond. These are calcu-
lated as the difference in enthalpy between the solid and the melt at coexistence. Our calcu-
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Graphite melting line
P [GPa] T [K] ρG [103 kg/m3] ρL [103 kg/m3]

2.00 3800 2.134 1.759
6.70 4000 2.354 2.098
16.4 4250 2.623 2.414

Diamond melting line
P [GPa] T [K] ρD [103 kg/m3] ρL [103 kg/m3]

16.4 4250 3.427 2.414
25.5 4750 3.470 2.607
43.9 5500 3.558 2.870
59.4 6000 3.629 3.043
99.4 7000 3.783 3.264

148.1 8000 3.960 3.485
263.2 10000 4.286 3.868
408.1 12000 4.593 4.236

Table 8.3: Pressure (P ), temperature (T ), solid and liquid densities (ρ) along the melting
lines.

Graphite melting line
P [GPa] T [K] ∆hm [kJ/mol]

2.00 3800 68.8
5.24 3950 65.6
9.94 4100 67.8
16.4 4250 64.7

Diamond melting line
P [GPa] T [K] ∆hm [kJ/mol]

16.4 4250 95.9
25.5 4750 111.5
43.9 5500 130.8
59.4 6000 143.9
99.4 7000 160.5

148.1 8000 174.7
263.2 10000 195.3
330.5 11000 208.1
408.1 12000 221.7

Table 8.4: Pressure (P ), temperature (T ), and melting enthalpy (∆hm, calculated as the
enthalpy of the liquid subtracted of the enthalpy of the underlying solid phase) along the
melting lines.
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lated melting enthalpies of graphite are sensibly lower than the values around 110 kJ/mol
reported in shock heating melting experiments in the past years [205, 200], nonetheless
our values retain the feature of being rather constant along the graphite melting line. No
experimental data are known about the melting enthalpies of diamond: we note them
increasing monotonically with temperature (and pressure).

The calculated graphite melting line is monotonically increasing in a small temperature
range around 4000 K. In contrast to data inferred from experiments it shows no maxi-
mum and is at a somewhat lower temperature. In agreement with the experiments the
coexistence temperature is only slowly varying with pressure. Inspection reveals that this
behavior is due to 1) the limited variability of the melting enthalpy, and 2) a similar bulk
modulus for liquid and graphite such that ∆v is almost constant.

We have extended the calculation of the graphite melting line to the region in which both
graphite and the liquid are metastable towards diamond, with the aim to look for a possible
maximum in the line. The results are shown as a dashed line in Fig. 8.5. We stopped the
Gibbs-Duhem integration at ∼ 50 GPa, where the 216-particles graphite sample started
showing huge volume fluctuations during the NPT sampling. The integration algorithm
became instable, forbidding any further analysis. Looking at this metastable melting line,
it is clear that its slope does not continue to decrease with increasing pressure as in the
stable region; thus, the hypothesis of an hidden maximum appears to be rejected.

The slope of the diamond melting line is consistent with the only experimental point
available [191] (see Fig. 8.5). When compared to the diamond melting line of the Brenner
model [214], the LCBOPI+ diamond melting line has a steeper slope yielding significantly
higher temperatures for the diamond melting line.

In summary, this is the first time that carbon phase diagram comprising graphite, dia-
mond, and the liquid has been calculated. The knowledge of the phase diagram predicted
by the LCBOPI+ gives per se a deep insight into many of the open issues we summarized
in the previous chapter. In the next two chapters we examine the nature of liquid carbon
and study the interesting problem of diamond (homogeneous) nucleation, using the phase
boundaries here reported as a reliable starting point.



8.3 – Appendix. Chemical potential as a function of density 115

8.3 Appendix. Chemical potential as a function of

density

One can always write:

βµ(ρ) = βµ(ρz) + β∆µ

= βµ(ρz) +
β

N

[
F (ρ)− F (ρz) + P (ρ)V − P (ρz)V z]

= βµ(ρz) +
β

N

[∫ ρz

ρ

∂F

∂ρ
dρ +

P (ρ)

ρ
− P (ρz)

ρz

]
. (8.13)

Working out the integral:

∫ ρz

ρ

∂F

∂ρ
dρ =

∫ ρz

ρ

PV

ρ
dρ = N

∫ ρz

ρ

P

ρ2
dρ (8.14)

From the ansatz P (ρ) = a + bρ + cρ2, one finds:

∫ ρz

ρ

a

ρ2
+

b

ρ
+ c dρ =

[
−a

ρ
+

a

ρz + blnρ− blnρz + c(ρ− ρz)

]
(8.15)

Putting this result in Eq. 8.13 and reordering the terms:

βµ(ρ) = βµ(ρz)− P (ρz)

ρz + β

[
−a

ρ
+

a

ρz + blnρ− blnρz + c(ρ− ρz) +
a

ρ
+ b + cρ

]

=
βFz

N
+ β

[
2cρ + b(lnρ + 1)− cρz − b lnρz +

a

ρz

]
(8.16)



The nature of liquid carbon: absence
of a first-order liquid – liquid phase
transition

Gh’è mië de fidàss trupàsc.

after Andrea S. Ghiringhelli

In this chapter we examine the issue of the liquid – liquid phase transition (LLPT) for
carbon. A short review of the relevant findings is given in section 7.3. In the first section
we describe the liquid at 6000 K as predicted by several bond order potentials (see Fig. 9.1
for the complete list) and compare the results with density functional (DF) based molecular
dynamics (MD) calculation. The temperature was chosen to agree with the DF-MD based
analysis of the liquid Wu et al. [14] (see paragraph 7.3.6). There the isotherm at 6000 K
was originally chosen for two reasons. Firstly it is expected to be far from coexistence in
the density interval studied; this assumption is based on the phase diagram calculated by
Glosli and Ree [214] using one of the Brenner bond order potential [3] (the authors do not
specify which parametrization they use). Secondly, the 6000 K isotherm is predicted by
Glosli and Ree [2], with the BrennerI [3] bond order potential, to cross the liquid – liquid
coexistence line. In the third section the analysis will be extended at all the relevant region
of the phase diagram, supported by the calculation elucidated in the previous chapter. The
chapter ends with the analysis of the structure of the so called “diamond-like” liquid.

9.1 Properties of liquid carbon, according to selected

BOPs

9.1.1 Methods

We performed the Monte Carlo (MC) simulations of 128 particles in a cubic box with
periodic boundary conditions with all the bond order potentials we chose for the compar-
ison. We sampled at 6000 K the constant volume (NVT) ensemble for densities smaller
than 2.5 103 kg/m3 and the constant pressure (NPT) ensemble for larger densities where
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Figure 9.1: Equations of state for all the potential tested. The abbreviation ‘PBE’ and
‘BP’ refer to two parametrization of the gradient corrected density functional (see text),
and are thought as reference data on these plots. The Brenner potentials are labelled ‘I’ and
‘II’ for their original version [3], i.e. without torsional interaction, and ‘I-T’ and ‘II-T’ for
the version [4] with added torsional interactions. The REBO potential is shortly described
in section 6.5 and presented in Ref. [130]: the data points come from our simulations.
The CBOP is presented in Ref. [15]; with CBOP+ is labelled the CBOP with modified
angular interactions and added torsional interactions, in the same way as for the LCBOPI+,
but with appropriate parameters. The LCBOPI [15] and the LCBOPI+ are presented in
sections 6.6 and 6.7. The LCBOPII is presented in chapter 11. The AIREBO potential is
presented in Ref. [155] and its slight modification (called AIREBOII), together with the
points reported here, are presented in Ref. [220].
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the increase of pressure is steeper, with an overlap between the two regions to check for
consistency. The pressure in the NVT simulation for the BOPs was calculated without
virial evaluation, by means of virtual volume rescaling (see appendix 9.4).

We performed constant volume DF-MD simulations using the Car-Parrinello method [62]
as implemented in the CPMD package [60]. The system consisted of 128 atoms in a cubic
box with periodic boundary conditions at 9 densities and a temperature T = 6000 K, im-
posed by means of a Nosé-Hoover [94] thermostat. We used the Becke [79] exchange and
Perdew [78] correlation gradient corrected functional (BP) with a plane wave basis set cut
off at 35 Ry and sampled the Brillouin zone only in the gamma point. BP gives a correct
description of bulk diamond. Each state point was studied for 5 ps, starting from a sample
equilibrated via the LCBOPI+; only minor structural changes occurred in the first tenths
of ps. Since liquid carbon is metallic, we imposed a thermostat for the electronic degrees
of freedom in order to ensure a proper implementation of the Car-Parrinello scheme [98]
(see section 3.4).

9.1.2 Results

Fig. 9.1 shows the equations of state of all the mentioned potentials. All the points were
calculated by us, except for the AIREBOII potential [155] points in the bottom panel, that
come from Ref. [220], and the DF-MD data of Wu et al., marked with PBE (vide infra).
The data from Ref. [14] are calculated with a different functional (i.e. PBE, as labelled
in Fig. 9.1) and a different cut-off energy (50 Ry). In view of the relatively low cut-off
energy (35 Ry), we had to correct the pressures for the spurious contribution due to Pulay
forces [102] (see appendix 9.5 for details about the method). In the density range where
we can compare with the results of Wu et al. [14], the pressures that we compute are some
15% lower than those reported by Wu et al. The difference in calculated pressures between
the two DF-MD simulations should be attributed to the use of a different functional.
Differences in plane-wave cutoff and pseudopotential should not contribute significantly to
this discrepancy, as both setups yielded good binding energies. We have checked that our
samples were indeed liquid: over the whole isotherm we have observed diffusive behavior in
both the MC-LCBOPI+ and the DF-MD simulations, the latter indicating a self-diffusion
coefficient at least of order 10−5cm2/s.

The two series of DF-MD data are taken as reference, and thus presented in every panel.
The original Brenner potentials [3], BrennerI and BrennerII, with and without torsional
interactions [4], are in the top panel. The center panel is for the subsequent generation of
short range potentials: REBO [130] and CBOP [15]. With CBOP+ is labelled the CBOP
with modified angular interactions and added torsional interactions, in the same way as
for the LCBOPI+. The bottom panel groups the potentials with non-bonded interactions:
AIREBOII, LCBOPI and LCBOPI+. The bottom panel also shows the equation of state
as given by the LCBOPII, the potential that is presented in chapter 11∗. The coordination
fractions are shown in Figs. 9.2, 9.3, 9.4 with the same labelling criterion: for the AIRE-
BOII potential no coordination data are available; ‘LCBOPI∗’ indicates an intermediate
version of the LBOPI+, i.e. with the softened angular interactions at low coordination

∗The properties of the liquid as predicted by the LCBOPII are given in chapter 12; the purpose of this
anticipation is to make it possible to have in a single glance the comparison of all the BOPs entering in
the discussion throughout this thesis.
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Figure 9.2: Coordination fractions for the Brenner potentials of Refs. [3, 4].

(section 6.7.2), but without torsional interactions. The DF-MD data, that are in the right
bottom panel of Fig. 9.4, serve as reference data for the coordination fractions.

Looking at equations of state and coordination fractions, BrennerI and BrennerII with
torsional interactions show the LLPT from a mainly two-fold to a mainly four-fold liquid, as
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Figure 9.3: Coordination fractions for short range potentials [130, 15].
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Figure 9.4: Coordination fractions for long range potentials and for the density functional
(BP) calculations.

discussed in section 7.3.5. We show that also for the version without torsional interactions,
the potentials present an abrupt transition from a mainly three-fold to a mainly four-fold
liquid from density 3.4 to 3.8 103 kg/m3. The REBO potential displays a quite good
reproduction of the DF-MD equation of state at lower densities (up to 3.2 103 kg/m3), but,
also at low density, the structure of the liquid is far from the reference data (see Fig. 9.4,
bottom right panel): two-fold atoms are predominant where DF-MD predicts three-fold to
be. Furthermore, the liquid undergoes a LLPT at 3.2 103 kg/m3. The high density liquid is
revealed to be, upon visual inspection of the snapshots, a completely three-fold graphite-
like liquid consisting of almost defect-less sliding sheets that eventually get stuck upon
further increasing of the pressure. We note that the transition occurred regularly upon
compression for different, independent, samples. Note that the four-fold fraction remains
always negligible. Also the CBOP and the CBOP+ present this spurious transition, but the
predominance of three-fold sites in the lower density regime is correctly given by both these
potentials. Note that the equation of state of CBOP is the one in better agreement with
our DF-MD data. Nonetheless, as it is dramatically shown by the coordination fractions,
a good equation of state is not sufficient to assess the accuracy of a potential.

With the introduction of non-bonded interactions, the fraction of four-fold becomes
eventually non negligible at higher densities. For these potentials, the coordination frac-
tions depict a similar scenario at high density, whereas the main differences are found at
intermediate densities. The original potential, LCBOPI, predicted a too stiff variation of
the three-fold fraction, both when increasing, substituting the two-fold predominance, and
when decreasing, substituted by the four-fold sites. The introduction of softened angu-
lar correlation for low coordinated atoms, the case of LCBOP∗, increased the stability of
the three-fold sites versus two- and four-fold sites. The introduction of torsional interac-
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tions, i.e. LCBOP+, yielded a picture closer to the reference data. Anyway the agreement
remains qualitative since only the trends and the fold-type of dominant coordination is
reproduced, while the absolute values are always shifted towards overestimation of the
dominant fraction.

DF-MD predicts a marked switching of dominant coordination from three to four around
3.4 103 kg/m3. Judging from the isotherm of Fig. 9.1, the transition seems to be continuous
with no sign of a van der Waals loop. These results are consistent with the tight binding
MD simulations of Ref. [213]. In contrast, between 3.3 and 3.6 103 kg/m3, where the switch
of dominant coordination takes place, the MC results based on the LCBOPI+ display large
fluctuations in density at the imposed pressure of 100 GPa, resulting in a slight bending
of the isotherm of Fig.4.3.

Our results provide no evidence of a first-order transition but rather indicate a pro-
nounced but continuous change of dominant coordination.

It is rather surprising that the LCBOPI+ potential reproduces the transformation to
a predominantly four-fold coordinated liquid, while the REBO potential does not. The
latter is in fact a potential known to give rather accurate predictions in several environ-
ments [130]. The high temperature liquid is, anyway, the most demanding benchmark for
a semiempirical potential, due to the presence of a large variety of local structures. It thus
becomes crucial to have a reasonable estimate of the interaction energy for configurations
that are very far from cluster and lattice structures in their minimum energy. Apparently,
the isotropic long-ranged interactions play a crucial role in stabilizing the high density liq-
uid. This behavior is rather puzzling as long-ranged interactions were predicted (see, e.g.,
Ref. [214]) to play a negligible role at these high densities. It has to be recognized that the
Brenner original potentials, even without torsional interactions, present at a certain density
the switch to the dominant four-fold coordination, but with a strongly first order LLPT,
that is as spurious as the one predicted by the torsional interaction corrected versions.

Finally, we note that long-ranged interactions were introduced in Ref. [15] to describe
three-fold coordinated graphitic phases, and no attempt was made to make the long range
interactions dependent on the local environment. Torsional interactions appear to be im-
portant, since, without them, the calculated pressures would be too high for high densities
and too low at low densities. We conjecture that the combination of torsional interactions,
and long range forces is required to give the best description of the liquid.

9.2 Ruling out the liquid – liquid phase transition in

the stable liquid region

In the previous chapter we reported our calculation of the phase diagram according to the
LCBOPI+. With the knowledge of the full melting lines, we can state that there is no
LLPT in the stable liquid phase. One indication is the smoothness of the slopes of the
melting lines. A further argument lies in the structure of the liquid near freezing. We
determined several structural properties of the liquid at coexistence with the solid phases
(the properties were calculated during the same simulations of the state points needed for
the Gibbs-Duhem integration of the previous chapter). Fig. 9.5 shows the coordination
fraction in the liquid along the coexistence lines with graphite and diamond. Since the
coexistence lines are unimodal, the graph can be shown indifferently with density, pressure,
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Figure 9.5: Coordination fraction of the liquid along the melting line(s). The melting
lines are unimodal, thus fixing ρ, fixes also P and T . Anyway we chose the ρ scale to be
linear. The dashed line is the liquid/graphite/diamond triple point.

or temperature on the horizontal axis. We chose to plot the graph with a linear scale in
density. The dashed line is the graphite/diamond/liquid triple point. On the left hand side
of the triple point, the liquid coexists with graphite, while on the right hand side it coexists
with diamond. The three-fold and two-fold coordination fractions remain rather constant
when the liquid coexists with graphite, with the four-fold slightly increasing, to account for
the increase in density. Along the diamond melting line, on the right side of the dashed line,
the three-fold coordinated atoms are gradually replaced by four-fold coordinated atoms.
However, only at (3.9 103 kg/m3, 300 GPa, and 10500 K) the liquid has an equal fraction of
three-fold and four-fold coordinated atoms. The change of dominant coordination is rather
smooth; moreover, it is fully reversible, without signs of hysteresis, in the region around
the swapping of dominant coordination. These results contradict the generally assumed
picture (see e.g. Ref. [210]) that diamond melts into a four-fold coordinated liquid.

The interrelation between three and four-fold sites, was further investigated calculating
the partial radial distribution functions (2gij(r)) of the liquid at 300 GPa, and 10500 K.
Partial radial distribution functions are defined as the probability of finding a j-fold site
at a distance r from a i-fold site†; the total radial distribution function g is recovered by:
g =

∑
i gii +2

∑
i6=j gij. We show the results in Fig. 9.6; we focus on the three predominant

curves, describing the pair correlations between three-fold atoms (g33), between four-fold
atoms (g44), and the cross pair correlation between three- and four-fold sites (g34). Disre-

†The factor two multiplying the off-diagonal partial distribution functions (gij(r), with i 6= j) is needed
when those distributions are calculated according to the literature (e.g. Refs [221, 222]). The algorithm
calculating the gij(r) browses the pairs of particles only once, as is commonly done for the total g(r). If
the algorithm browsed over all the neighbours of each particle, the factor two would clearly not be needed.
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Figure 9.6: Partial distribution functions Gij of the liquid at the calculated coexistence
with diamond, at 10500 K and ∼ 300 GPa, when three- and four-fold atoms are equally
present. The left panel is for the diagonal contributions (i.e. for i = j), while the right
panel is for the cross correlations (i.e. for i 6= j).

garding the rather pronounced minimum in correspondence of the dip around 2 Å of the g33

and the g34 (see introduction to chapter 11 for a discussion of this problem), the similarity
of three curves at all distances r is striking. The two sites are almost undistinguishable: in
case of a tendency towards phase transition, one would expect some segregation of the two
structures. In contrast, looking at distances within the first neighbours shell, a three-fold
site seems to bond indifferently to a three- or a four-fold site, and viceversa. Furthermore,
the partial structures up to the third, quite pronounced, peak at ∼ 4.5 Å, are almost the
same for these three partial radial distribution functions.

We determined the properties of the metastable liquid in the stable diamond region.
Fig. 8.5 shows the liquid P −T state points (crosses) that exhibit an equal number of three
and four-fold coordinated atoms. It ranges from high-pressure high-temperature region
where the liquid is thermodynamically stable down into the diamond region, where the
liquid is metastable for the LCBOP. The circles indicate state points in which the LCBOP
liquid freezes in the simulation. Enclosed by the two set of points lies the diamond-like
liquid‡ addressed in the next section. This suggests that a (meta)stable liquid with a
dominantly four-fold coordination may only exist for pressures beyond ≈ 100 GPa and
could imply that the freezing of liquid into a diamond structure might be severely hindered
for a large range of pressures beyond the graphite/diamond/liquid triple point. In Ref. [17]
it is also pointed out that at 6000 K the equation of state shows a change of slope around
the transition to the four-fold liquid. At even lower temperature this feature becomes
more and more evident, but for temperatures lower than ∼4500 K the liquid freezes into

‡A four-fold coordinated liquid with a rather pronounced diamond-like structure in the first coordination
shell [17]).
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Figure 9.7: Pair correlation functions at 5000 K. Diamond (dotted curve) is at 150 GPa;
the LCBOPI+ liquid (solid curve) is at 150 GPa and 3.89 103 kg/m3; DF-MD liquid (dashed
curve) is at 3.89 103 kg/m3.

a mainly four-fold coordinated amorphous structure. This observation is consistent with
quenching MD simulations [223, 224] to obtain the tetrahedral amorphous carbon. In
those simulations a mainly three-fold liquid freezes into an almost completely four-fold
amorphous.

9.3 High pressure diamond-like liquid carbon

The state point in which the “diamond-like” liquid was analyzed in Ref. [17], at 5000 K and
150 GPa, was expected to be near the diamond/liquid coexistence on the basis of the shock
wave experimental point [191] and of the only diamond melting line found in literature,
calculated with the Brenner [3] bond order potential. The calculation of the phase diagram
with the LCBOPI+ revealed that the liquid was metastable in our simulation box, deep
in the diamond stable region of the phase diagram. Both the DF-MD and LCBOPI+

simulations of the mainly four-fold liquid carbon show a strong diamond like order, both
in the typical distances and orientations of the bonds, as shown in Figs. 9.7, 9.8, and 9.9.
Two two simulation methods agree in showing for the “diamond-like” liquid a mean square
displacement much lower than for the mainly three-fold liquid.

In Fig. 9.7, we compare the pair correlations g(r) of this metastable high density liquid
with that of a stable bulk diamond at 5000 K and 150 GPa (also the LCBOPI+ and DF-
MD liquid samples were equilibrated at that temperature). One can see that up to the
second neighbour shell the liquid has a structure almost as pronounced as diamond. The
g(r)’s obtained by the LCBOPI+ globally agree fairly well with the ones obtained by our
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Figure 9.8: Angular correlation functions (A(cos(θ)) of first neighbours with state pa-
rameters as in Fig. 9.7.

DF-MD calculations, except around 2 Å, where the LCBOPI+ minimum is too deep. In
Fig. 9.8 we present the calculated angular correlation g(3)(θ) for first neighbours, i.e. those
atoms that fall within the short range cut-off of the LCBOPI+. Again, the first shell of
neighbours in the liquid has a strong tetrahedral ordering, comparable to bulk diamond.
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Figure 9.9: Angular correlation functions for second neighbours (see text) with state
parameters as in Fig. 9.7 The peaks for the diamond are spread around the theoretical
values for an fcc lattice of −1, −0.5, 0, 0.5, with weights 6/66, 24/66, 12/66, 24/66.
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To test how far the local diamond structure persists in the liquid, we define the angular
correlation function for second neighbours (i.e. all those particles that are first neighbours
of the first neighbours, excluding the central atom and the first-neighbor shell). Fig. 9.9
shows that, in the second-neighbor shell, the diamond structure is completely lost. Yet,
the angular distribution is not structure-less: we find an average second shell coordination
of 12 atoms, as in diamond, a peak around 60◦ and a shoulder at ∼ 35◦; in a diamond
lattice, the latter feature can be attributed to cross-correlations between the first and the
second neighbour shells.
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9.4 Appendix. Pressure estimation without evaluat-

ing the virial

At the present stage, we do not have carried out the force evaluation for the LCBOPs used
throughout this work. In the calculation of the equation of state of the liquid we com-
bined NPT and NVT simulations. The choice was made for statistical accuracy, preferring
constant pressure estimation of the density when |dP/dρ| is high, and constant volume
estimation of the pressure when |dρ/dP | is high. Since for the equation of state of the
liquid is needed the estimate of the pressure in NVT simulations, we used a method that
did not require the evaluation of the virial, and, to the purpose, forces. In practise we
calculate pressure performing a “test” or “virtual” volume displacement, similar in spirit
to the “ghost” particle insertion and removal when evaluating the chemical potential via
the Widom [225] method. For a given configuration at a volume V , one can evaluate the
total energy UV . The same can be done for the configuration obtained rescaling the box
and all the coordinates to a volume V ′: the total energy is then UV ′ . If ∆U = UV ′ − UV ,
then the pressure can be evaluated as:

P = ρkBT − 〈∆U 〉
∆V

(9.1)

This can be derived as follows [226, 227]. The partition function Q for the canonical
ensemble is:

Q =

∫

r

V N

Λ3NN !
e−βUdr (9.2)

where Λ is the de Broglie wavelength and β = 1/kBT . The integration runs over all the
configurations visited by the system. Pressure is the derivative with respect to the volume
of the Helmotz free energy:

P = −dA

dV

∣∣∣∣∣
Ni,T

' −∆A

∆V
= kBT

1

∆V
ln

QV ′

QV

(9.3)

The difference in free energy ∆A is calculated for a volume change ∆V = V ′ − V .
From 9.2:

QV ′

QV

=

∫
r

V ′N
Λ3NN !

exp(−βUV ′)dr∫
r

V N

Λ3NN !
exp(−βUV )dr

=

〈(
V ′

V

N
)

e−β∆U

〉
(9.4)

Where 〈...〉 denotes ensemble average over the canonical ensemble. Thus, from 9.3:

P =
kBT

∆V
ln

〈(
V ′

V

N
)

e−β∆U

〉
(9.5)

This expression is valid as soon as ∆V is small, so the derivative in 9.3 can be approximated
by the finite difference ratio.If one fixes the ratio V ′/V , then the above expression becomes:

P = ρkBT +
1

∆V
ln

〈
e−β∆U

〉
(9.6)

This expression is valid for any kind of potential, especially suited for discontinuous po-
tentials. In fact, in the case of hard spheres ∆U would be either 0 or ∞, so that the
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exponential is the only way to treat ∆U . Anyway, for continuous potentials, one could
avoid the evaluation of the exponential and the logarithm. We remind that the volume
rescaling is virtual, so that the exponential does not have to be calculated anyway for the
MC move. For small enough ∆V , ∆U can be so small that it is possible to approximate
exp(x) ' 1 + x and subsequently ln(1 + x) ' x, recovering indeed the 9.1. We imple-
mented the pressure estimation with the 9.1, but we checked the use of the 9.6 is neither
more accurate nor efficient (the error converges with comparable velocity, while the single
evaluation is slightly more time expensive).

9.5 Appendix. Pressure evaluation in a constant vol-

ume CPMD simulation

For the DF-MD simulations, the pressure is evaluated as:

P = ρkBT +
1

3
〈Tr Π〉+ Pcorr (9.7)

where 〈Tr Π〉 is the ensemble average of the sum of the diagonal elements of the stress
tensor Π. Pcorr is a correction term accounting for the fact that only the binding energy and
not the (total) Kohn-Sham energy is converged for a plane-wave basis set usually employed
in DF-MD simulation: this gives rise to a spurious contribution to the virial, known as
the Pulay stress [102]. This contribution acts as a downward shift. The correction was
estimated for all the NVT simulation involving carbon (in this chapter and in chapter 12).
To the purpose, we performed short simulations at each density, at Ecut = 120 Ry, for
which the total energy is almost converged, so that on can assume Pcorr ∼ 0. Pcorr at the
Ecut used in the simulations, i.e. 35 Ry, is then the difference in 〈1/3 Tr Π〉 between the
simulations at the two cut-off energies.



Diamond nucleation

>> Alles, was geschieht <<, sagte sie, >> schreibst du auf. <<

>> Alles, was ich aufschreibe, geschieht <<, war die Antwort.

“Everything that happens, you write it.”, she argued.
“Everything that I write happens” was the answer.

10.1 Introduction

As a prime and most challenging application of the newly determined phase diagram of
carbon via the LCBOPI+ (see chapter 8), we aim to study the nucleation of liquid carbon
into diamond. More specifically, we want to calculate the rate at which the liquid trans-
forms into diamond and possibly find a relation between the rate and the mechanism of
nucleation.

In recent years, methods for studying the homogeneous nucleation from a bulk and
methods for recognizing ‘solid’ particles in the liquid have been developed (see e.g. Refs. [228,
229, 230] and references therein). Our study of diamond nucleation is based on this work,
but also required various adaptations of the existing methods as carbon is rather different
from systems studied earlier. Firstly, as shown in chapter 9, liquid carbon is rather struc-
tured, being a covalent liquid below its freezing line [22]. Thus, a definition of ‘solidicity’
of a particle has to be rather restricted, in order to avoid the overestimation of the number
of ‘solid’ particles and growing spurious structures. Secondly, simulations with bond order
potentials, such as the LCBOPI+ are computationally expensive, if compared e.g. to a
Lennard-Jones interacting system [228, 229, 230]. Therefore, we employed in our study a
computationally cheap method that yields a reasonable estimate of the nucleation rate.

It is well known that liquids can be cooled significantly below their freezing temperature.
Pure water remains liquid if cooled down well below 0◦C [231]. Even if the solid, crystal
state is thermodynamically more stable, the system does not immediately crystallize due
to the presence of a free energy barrier. In nature, as well as in most experiments, the
freezing is triggered by some disturbances, such as the presence of impurities, walls, or
shocks. This latter is the realm of inhomogeneous nucleation. We restrict to the case of
homogeneous nucleation, in which only spontaneous fluctuations can lead the system to the
thermodynamically stable state, the solid. According to classical nucleation theory (CNT,
see appendix 10.7), nucleation is an activated process, i.e. a process that is difficult to
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initiate spontaneously, but, when started, it proceeds very quickly. In CNT, this feature is
modelled by postulating that the nucleation process proceeds via formation and growth of
small solid nuclei in the melt. As it will become clear in the following, we do not rely on
CNT in our simulation study of diamond nucleation. Yet, CNT helps us to introduce the
vocabulary that is used when dealing with nucleation. Consider a pure liquid containing
a spherical droplet of radius R of the same substance in its solid phase. In appendix 10.7
we show that the difference in Gibbs free energy between the pure liquid and the nucleus
in the liquid is:

∆G = ∆Gsol −∆Gliq = 4πR2γ +
4

3
πR3ρsol∆µ (10.1)

where γ is the surface free energy density, ρsol is the number density of the (bulk) solid
phase, and ∆µ = µsol − µliq is the difference in Gibbs free energy per particle between the
liquid and the solid. The first term is a surface term: it scales with the surface of the
droplet and is always positive due to the work needed to create an interface. The second
term is a bulk term: it scales with the volume of the droplet and is always negative in
our region of interest, i.e. where the solid is more stable than the liquid. The competition
between the two terms gives rise to a maximum in the Gibbs free energy (see Fig. 10.1),
at a certain critical radius R∗. The height of the barrier at R∗ is ∆G∗ = ∆G(R∗):

∆G∗ =
16πγ3

3ρ2
s(∆µ)2

(10.2)

Here we want to note that ∆G∗ is inversely proportional to (∆µ)2. This implies that
the barrier is infinitely high at coexistence. Furthermore, near coexistence ∆µ can be
approximated by [232]:

∆µ ' ∆hm∆∗ T
.
= ∆hm

Tm − T

Tm

(10.3)

where the last equality defines the degree of undercooling ∆∗ T . The term ∆hm is the
difference in enthalpy between the coexisting solid and liquid phases (i.e. the latent heat
released upon freezing). The higher the difference between the temperature of the system
and the melting temperature, the higher ∆µ, the lower the free energy barrier ∆G∗. From
statistical mechanics we know that a lower free energy barrier implies a higher probability
that a spontaneous fluctuation leads the system to the top of the barrier. In a computer
simulation, given the limitation on the system size and time length one can sample, only at
very large undercooling a spontaneous nucleation can be seen. For instance, in Ref. [233]
the sample of silicon, described by the Stillinger-Weber potential, was undercooled up
to 40 % for a spontaneous nucleation to occur. For our system, spontaneous nucleation
was not accessible, since the strength of the covalent bonds involved typically makes the
system freeze into an amorphous at a 25 to 35 % undercooling, depending on the size of
the simulated system.

The chapter is organized as follows. In section 10.2 we introduce the method we used
for the nucleation procedure. In section 10.3 we describe the choice of the state points for
the nucleation procedure and the method we used to identify ‘solid’ particles and recognize
the biggest cluster; it also provides further details on the specific implementation of the
nucleation method we used. Section 10.4 presents the results for the calculation of the rate
constant at one selected state point, whereas in section 10.5 we present our calculation of
the nucleation barrier for the same state point. Appendix 10.7 gives the details on the
aspects of the Classical Nucleation Theory we refer to throughout the chapter.
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Figure 10.1: Plots of the CNT free energy barrier. The left panel shows the free energy
as a function of the radius of the cluster, as in Eq. 10.1. On the right panel is shown the
same free energy, but expressed as the number of particles in the nucleus n = 4πR3ρsol/3
(see Eq. 10.27).

10.2 Method: direct estimate of a rate constant

In the choice of a simulation method to calculate the nucleation rate of diamond from the
liquid, we were limited by the computational effort needed to simulate a system size of the
order of one thousand particles with the LCBOPI+. The number of particles is dictated by
the size of the critical nucleus, that should not interact with its periodic images. To give a
rough idea, an energy evaluation in a Monte-Carlo (MC) move with the LCBOPI+, is 100
to 1000 times slower than with a Lennard-Jones potential, when the two systems have the
same number of particles and number density. We thus looked for a method to determine
the rate constant, that required the minimum amount of computational effort. Recently,
a method that served as a good starting point for our purposes has been proposed. This
is known as Forward Flux Sampling [234] and has been designed to efficiently evaluate the
rate constant of rare events.

10.2.1 The forward flux sampling algorithm

According to the Forward Flux Sampling method, a system is considered in which tran-
sitions can take place between an initial state A and a final state B, separated by a free
energy barrier. Two regions of the phase space are identified as surrounded by the divid-
ing hyper-surfaces IA and IB, and assigned to the two states. The phase space is then
partitioned by means of non intersecting interfaces. Here we assume that the transition
can be described by only one coordinate∗ λ, so that the set of dividing interfaces, labelled
{IA,I1, . . . In IB}, is defined by the values assumed by λ: {λA,λ1, . . . ,λn,λB}. The coordi-
nate λ is also referred to as ‘order parameter’, in the sense that it orders the state points
along an oriented line. If an ensemble of trajectories starting from state A is generated,

∗The coordinate λ is a (scalar) function of the coordinates of all the particles in the system. In a system
of N particles, λ is a function of 6N coordinates, 3N if one restricts to the configurational space (e.g. when
dealing with a MC sampling, as in our case). The interfaces are indeed hyper-surfaces in the 6N (or 3N)
dimensional phase-space, and are constituted by all the points sharing a certain value of λ.



132 Diamond nucleation

the rate constant RA→B of the (forward) transition, from state A to state B reads:

RA→B
.
=
〈φA(IB)〉
〈hA〉 =

〈φA(IA)〉
〈hA〉 P(IB|IA) (10.4)

Here 〈. . .〉 denotes time average, φA(IB) is the net flux of the trajectories crossing interface
IB and coming from A (i.e. identified by the characteristic function hA = 1), and P(IB|IA)
is the probability for a trajectory to cross IA and then IB, without returning to A†. Now we
make use of the partitioning of the phase space and split the very low probability P(IB|IA)
into partial probabilities:

P(IB|IA) = P(I1|IA)

[
n−1∏
i=1

P(Ii+1|Ii)

]
P(IB|In) (10.5)

The above expression is exact only when the partial probabilities are uncorrelated. The rare
trajectories going from A to B are efficiently generated in a ratchet-like way. This means
that a simulation is run, starting from state A; all the configurations crossing interface IA
are collected and the flux is estimated as [230]:

〈φA(IA)〉
〈hA〉 =

N+

V NMD τMD

(10.6)

where N+ is the number of positive crossings of IA, V is the volume of the sample, NMD

is the number of time-steps in a molecular dynamics (MD) simulation with time-step τMD

for the integration of the equations of motion. Subsequently, Mi trial runs are generated
for each interface Ii. In each trial run, a configuration from the collection at Ii is chosen
at random and used to start a run, which is continued until the system crosses either Ii+1

or IA. A counter Ni+1 is updated for every crossing of Ii+1 and the crossing configuration
is stored. After the Mi trials, an estimate for the probability P(Ii+1|Ii) is Ni+1/Mi. The
procedure is iterated until the state B is reached (or all the trial trajectories has returned
to A!)‡.

10.2.2 The parallel optimized FFS

Working on the nucleation in a ionic system, Valeriani et al. [236, 237] developed an im-
provement of the FFS method, in order to make it suitable for large scale computations on
parallel machines. We further elaborated the method to efficiently apply it to our LCBOPI+

†In this review of the method, there is a slight difference if compared to the original formulation [234]:
there the rate is expressed as the product of the flux crossing I1 and the probability to go from I1 to IB.
IA is used only to define the initial state: whenever this interface is crossed downwards, the system is
defined to be returned to state A. We have made this slight change to approach our method, that will be
introduced from section 10.2.2 on, where the state A is defined statistically, in a rather elegant manner.

‡FFS was not the first method that postulated a set of interfaces. This was previously done by the
method known as Transition Interface Sampling (TIS [235, 230]). FFS and TIS are two methods sharing
a similar spirit: Eqs. 10.4, 10.5, and 10.6 are the basis also for TIS. In the TIS method, the algorithm,
robust but more computationally expensive if compared to FFS, follows trajectories started at interface Ii

until they cross either Ii−1 or Ii+1. This procedure permits to state that the distribution of phase space
points at the interfaces is equal to the stationary distribution of states. In contrast to FFS, this powerful
feature allows a sharp analysis of the mechanism of the transition.
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interacting system. We used MC rather than MD. Also in our case, the nucleation rate
is written as in Eq. 10.4, where time averages are substituted by ensemble averages. At
the initial stage a simulation is run starting from A and configurations crossing IA are
collected. When a MD code for the interacting potential is available, the preliminary run
can be a MD simulation and the flux is computed via Eq. 10.6. In case only a MC code is
available, a different expression for the flux has to be used, as explained in section 10.3.6.

Exploiting the pseudo-randomness of the MC trajectories, we run, for each collected
configuration, a certain number MA of trials, where trials differ in the seed for the series
of pseudo-random numbers used. Configurations crossing I1 are then collected and the
process is iterated until IB is reached. At each step, trajectories starting from Ii are
followed until they either cross Ii+1 or go back to the state A. The procedure to decide
whether the trajectory has returned to state A will be explained in the next paragraph. If
Ni is the number of configurations arrived at Ii, an estimate for the probability P(Ii+1|Ii)
is Ni+1/(MA Ni). In fact the denominator is the total number of attempted trajectories
starting from Ii, while the numerator is the number of ‘winning’ events.

10.2.3 Definition of state A
Valeriani et al. [237] proposed a very elegant test to establish whether the trajectory is
returned to state A. During the initial, unbiased simulation started from state A, the
histogram of the distribution of the order parameter λ is collected. From the distribution,
the cumulative function X (x) = P(λ ≤ x) is constructed. The interface IA is set at a value
λA at which X is equal to a preset value XTh, typically close to 1. Whenever in a trial
run the system is found at a state point associated to a λ ≤ λA, a random number xrnd is
extracted. If xrnd > X (λ), the system is defined to be returned to state A and the trial
run is stopped.

10.2.4 Parallelization and derived constraints

In our implementation, we employ a parallel algorithm. Once a given interface Ii is reached,
each configuration is loaded onto a different CPU and run, in principle, MA times. In this
straightforward implementation the number of needed CPUs is equal to Ni, the number
of ‘winning’ trajectories (i.e. trajectories collected at Ii). Since typically the number of
available processors nCPU is limited and Ni is not predictable, we proceed in the following
way: out of the Ni configurations crossing Ii, we randomly select a fixed number of con-
figurations, equal to nCPU. In case Ni < nCPU the new nCPU can be reduced to Ni, or a
lower λi for Ii can be set (this last adjustment can be done without wasting computational
time, as explained in paragrah 10.2.5). Furthermore, the length of each trial is impossible
to predict, so that the total (real) time needed to perform MA trials can vary by orders
of magnitude. Yet, the total time a CPU can be used is typically set at the beginning of
the simulation. This is not a problem, since all the trials are independent; we count in the
denominator of the partial probability P(Ii+1|Ii) only the number of ended (i.e. crossing
the next interface or going back to state A) trials. In summary, at every interface, the par-
tial probability is calculated as: P(Ii+1|Ii) = Ni+1/N

T
i , where NT

i is the number of ended
trials starting from Ii, and both the numerator and the denominator of the probability are
known afterwards, in a time constrained simulation.
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10.2.5 Setting the interfaces

Interface IA is set as explained in paragraph 10.2.3. Any other interface Ii can be set
dynamically after the trial runs from Ii−1. The trials are run fixing an attempted Ĩi, but
all the configurations with λ > λi are collected with their λ value. At the end of all the
trial runs, if the number of stored configuration Ni is not satisfactory (e.g. Ni ¿ nCPU),
the interface λi can be set back to that λ∗i at which N∗

i is satisfactory.

10.2.6 A comment on correlations among trajectories

Configurations collected at IA are all independent. After crossing IA, the system has
to return to state A, in the statistical sense defined in paragraph 10.2.3, before a new
crossing updates N+ in Eq. 10.6 and the new configuration corresponding to that crossing
is stored. From the collection of configurations at IA, independent sets can be grouped.
When configurations are randomly selected among the set collected at an interface Ii (see
paragraph 10.2.4), the configurations in the set after the selection are correlated by the
selection procedure itself. This means that any set of configurations initially selected at IA
gives an overall estimate for the nucleation rate, according to Eq. 10.4, once IB is reached.
Statistics is improved by selecting another set at IA and repeating the procedure to reach
IB. The new estimate is independent from the previous; thus, quantities can be averaged
and error bars are correctly calculated considering the quantities as independent. It would
be wrong to compute the nucleation rate for any single configuration starting at IA and
averaging over all these initial configurations; this is because the overall probability of
reaching IB, for a given initial configuration at IA, depends also on whether configurations,
generated by this initial one and crossing any subsequent interface, are randomly selected,
or not, to proceed to the next interface.

10.3 The setup for the diamond nucleation

10.3.1 The phase diagram

In Fig. 10.2 we show the same phase diagram we obtained from our free energy calculations
(chapter 8), where the solid diamonds mark three state points at 20% undercooling that
we selected for the nucleation procedure. The point ‘A’ at P = 85 GPa and at T = 5000
K is located in the region of the (metastable) “diamond-like” liquid (see section 9.3). The
liquid has strong local diamond-like structure and is slowly diffusing (at least one order
of magnitude slower than a mainly three-fold liquid at the same temperature). The point
‘(B)’, at P = 30 GPa and T = 4000 K, was chosen in the mainly three-fold region of the
(metastable) liquid, but still far from the stable graphite domain. Point ‘(B)’ was chosen
to investigate the possibility that in small clusters diamond- and graphite-like structures
are competing. These two lattices are more similar than one would expect: as shown in
Ref. [156], there is a simple path to transform graphite into diamond. Looking at Fig. 10.3:

1. starting from graphite, the interplanar distance, used as constraint, is decreased and
the structure made relax;

2. graphite planes buckle so that the three bonds per particle at π/3 close out of plane
and atoms move alternatively above and below the plane;
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Figure 10.2: Phase diagram for carbon calculated with the LCBOPI+ with the selected
state points (‘A’,‘(B)’, and ‘(C)’) for the nucleation process. The three points are at 20%
undercooling. Point ‘A’ is at 85 GPa and 5000 K, point ‘(B)’ is at 30 GPa and 4000 K, and
point ‘(C)’ is at 6 GPa and 3200 K. The letters ‘L’, ‘G’, and ‘D’ indicate liquid, graphite
and diamond region of stability. Phase boundaries are the thick lines. The crosses are state
point with equal fraction of three- and four-fold coordinated atoms; the squares indicate
freezing upon quenching into an amorphous for 216 particles samples (see section 8.2 for
discussion).

3. a fourth bond per atom is formed between approached layers, in order to give a
perfect diamond lattice.

This is exactly the path followed to calculate the graphite to diamond energy barrier in
section 11.3.3. In the bulk phases at 0 K the energy barrier between the two lattices is
quite high (∼ 0.4 eV per atom)§, but, in a liquid at a temperature of several thousand
kelvins, small clusters could be allowed to oscillate between the two structures.

The point ‘(C)’, at P = 6 GPa and T = 3200 K is in the region of stable graphite.
Point ‘(C)’ was chosen aiming to see whether it is still possible to nucleate diamond in the
region where graphite is more stable.

Results concerning the diamond nucleation in point ‘A’ are presented in this chapter,
while the investigation of points ‘(B)’ and ‘(C)’ is left for future work. Nonetheless, in the
next paragraph, we discuss the definition of ‘solidicity’ also in these latter points; we found

§And luckily the energy barrier is so high , otherwise diamond would easily convert into the more stable
graphite, at room conditions!
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Figure 10.3: A possible path from graphite to diamond. The structure is relaxed via the
LCBOPI+, with the constraint of the interplanar distance.

indeed that the definition of ‘solidicity’ has to be differently tuned, depending on whether
the liquid is mainly three-fold, as is the case of points ‘(B)’ and ‘(C)’, or ‘diamond-like’,
as in point ‘A’. To test the ‘solidicity’ algorithm, also points ‘(B)’ and ‘(C)’ were sampled
until clusters of few tens of atom were identified.

10.3.2 Identification of the ‘solid’ cluster

To automatically select atoms that are part of a solid cluster, we started from the method
developed by ten Wolde [228]. We introduced two modifications: we adopted overall a
smooth definition of ‘first neighbour’ in the spirit of BOPs¶. More importantly, we had to
deal with a liquid that is ‘not too different’, as concerning the local order, from the solid(s)
into which it nucleates. This characteristic of liquid carbon asked for a strict definition of
‘solidicity’ of a particle.

We denote with ri and rj the positions of particle i and j, respectively; we denote with
rij the difference vector ri − rj, with rij its modulus |ri − rj|, with r̂ij the unit vector in
the direction of rij (r̂ij

.
= rij/rij).

For each atom i is defined a local (angular) order detector‖, as the average of the spherical

¶A similar concept was introduced in its MD simulations also by ten Wolde in order to avoid impulsive
forces; here the smoothing is naturally following from the BOP framework.

‖Here we wish to make a clear distinction between an ‘order parameter’ and a ‘local order detector’,
this latter usually referred to as ‘bond order parameter’ in literature. An ‘order parameter’, such as the
biggest cluster size in this chapter, orders (or, better, projects) the phase space along a one dimensional
axis. A ‘local order detector’ maps into a mathematical object the environment of an atom, in order to
give a numerical information on the rather fuzzy concept of ‘order’ surrounding an atom. Furthermore, in
this work (see e.g. chapter 6) we used ‘bond order’ with the completely different meaning of strength of
a given bond, depending on the environment. We thus think that the old term of ‘bond order parameter’
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harmonics Ylm(r̂ij) on all its neighbours j.

qlm(i)
.
=

1

Zi

∑

j 6=i

Sdown
p=3 (rij) Ylm(r̂ij) (10.7)

where the sum extends over all the atoms (other than i); the smooth cut off function
Sdown

p=3 (rij) is defined in Eq. 6.53, and the fractional number of neighbours Zi is: Zi =∑
j 6=i S

down
p=3 (rij). The components of the local order detector qlm(i) depend on the orienta-

tion of the reference frame. A rotational invariant form is:

ql(i)
.
=

(
4π

2l + 1

l∑

m=−l

q∗lm(i)qlm(i)

)1/2

(10.8)

where the ∗ denotes complex conjugate.
The quantity ql(i) has a definite value, at a given channel l and for a given crystalline

structure [238]. For example q6(i) was used [238, 228, 230] to identify fcc and bcc structures
in the liquid, while q4(i) was used [236] to help recognizing sc structures. In the original
formulation [238], an even value of l was suggested since the definition of qlm should be
invariant upon inversion of the coordinates: this assumption is motivated by the fact that
a bond does not change upon such an inversion. Spherical harmonics with even values of
l are indeed symmetrical upon inversion, while they are anti-symmetrical when l is odd.
We note that fcc, bcc, and sc structures are indeed inversion invariant structures. If one
constructs an odd-valued ql(i), this would be identically null for this structures. Diamond
and graphite lattices are different. In Fig. 10.4, we represent a portion of a graphite sheet.
The three neighbours of the center atom see a local environment (represented by the bonds)
that is obtained from the coordinate inversion of the local environment of the reference
site (dashed bonds of the center atom). In other words, in shifting from one lattice site
to any neighbouring one, the coordinates have to be inverted with respect to the starting
lattice site, in order to reproduce the same environment. Note that the three neighbours
of the reference site are all identical, i.e. one can translate from one to the other without
changing the environment that is seen. The same holds in the diamond lattice with the
four neighbours of a reference site, albeit it is much more difficult to display it on paper.

Figure 10.4: Schematic view of the
graphite lattice. The three bonds of
the lattice sites (circles) are repre-
sented by solid lines. The dashed
lines from the center site are an in-
version with respect to the site of its
three bonds.

We looked for a local order detector that could recognize antisymmetrical structures.
We found that the smallest odd l that gave non-zero value for the tetrahedral arrangement

should be avoided, since rather confusing.
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of diamond, l = 3, was the perfect local order detector for both graphite and diamond
lattices. We show in Fig. 10.5 the distributions of q3(i) at 30 (left panel) and 85 GPa
(right panel). The point at 30 GPa refers to the state point ‘(B)’ in Fig. 10.2, but the
phases are shown at the melting temperature (5000 K). This is because the liquid at 20%
undercooling is expected to have some ‘solid’ particles, while at coexistence ‘solid’ particles
appear very rarely. Thus, the calibration of the local order detector has to be done where
‘solid’ particles in the liquid are not expected. In contrast, all the phases shown at 85
GPa are exactly in state point ‘A’. This is needed since, at the melting temperature at
85 GPa, the liquid has completely different features as compared to the 20% undercooled
liquid at the same pressure. In fact (see Fig. 10.2), the diamond-like liquid is found
only below a certain undercooling, at 85 GPa. In this case, we tuned the local order
detector keeping in mind that some ‘solid’ particles are present at that undercooling. In
the left panel both graphite and diamond are shown, together with the liquid, while in
the right panel only the diamond is shown with the liquid, since, at the pressure of 85
GPa, graphite is mechanically unstable in a simulation. One can see that q3(i) is not
sufficient to unambiguously distinguish between particles in the liquid and belonging to a
lattice (equilibrated in a certain state point). Furthermore, we put as a comparison the
distribution of q3(i) as given by a random orientation of four and three hard spheres around
a reference hard sphere∗∗; it is evident that liquid carbon has a strong angular ordering,
due to covalent interactions.
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Figure 10.5: Distribution of q3(i), i.e. the scalar invariant of the local order detector,
at 30 GPa (left panel) and 85 GPa (right panel). Solid lines are for diamond, dashed
lines are for graphite, dotted line for the liquid. The ‘− · ·’ lines and the ‘− ·’ lines are
for, respectively, three and four hard spheres, randomly distributed on the surface of a
(bigger) sphere (see text). The vertical lines are the ideal value for the diamond (solid line,
q3(i) = 0.745) and graphite (dashed line, q3(i) = 0.791). All the phases at 30 GPa are at
the melting temperature (5000 K), while all the phases at 85 GPa are at 5000 K, i.e. the
liquid is 20% undercooled.

To distinguish solid particles in the liquid we have to resort to the full information
contained in q3m(i). The above described property of antisymmetricity in diamond and

∗∗The ratio between the distance between the centers of the hard spheres and their diameters was chosen
1.4, i.e. the ratio between the typical distance and the closest approach distance between carbon atoms in
the liquid, as given by the radial distribution function in the typical liquid.
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graphite lattices reflects in q3m(i) in this way: two neigbours in both lattices have the
same absolute value of the 2l + 1 components of q3m(i), but inverted signs. We define a
normalized local order parameter as q̂lm(i):

q̂lm(i)
.
=

qlm(i)(∑l
m=−l q

∗
lm(i)qlm(i)

)1/2
(10.9)

For atoms that give a small (i.e. smaller than a chosen threshold) denominator in the
above equation, all the components of q̂lm(i) are put to zero, in order to avoid numerical
instabilities. We then define a quantity which has the form of a inner product between the
q̂3m(i) referred to any two neighbours:

dl(i,j)
.
=

l∑

m =−l

Sdown
p=3 (rij)q̂lm(i)q̂∗lm(j) (10.10)

It is easily proved that dl(i,j) is a well defined real scalar, invariant upon exchange of the
indexes. For ideal graphite and diamond lattice the d3(i,j) is identically −1.
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Figure 10.6: Distribution of d3(i,j), i.e. the inner product of the local order detectors
for any pair of neighbours at 30 GPa (left panel) and 85 GPa (right panel). Solid lines are
for diamond, dashed lines are for graphite, dotted lines for the liquid. All the phases at
30 GPa are at the melting temperature (5000 K), while all the phases at 85 GPa are at
5000 K, i.e. the liquid is 20% undercooled. The ideal value of d3(i,j) for both diamond
and graphite is −1.

In Fig. 10.6 we show the distribution of d3(i,j) for the same state points as in Fig. 10.5.
The separation between liquid and solid is now pronounced. Particles that have a value
of d3(i,j) close to −1 share a similar local structure. They are defined to be connected.
More precisely, we defined as connected particles for which d3(i,j) ≤ −0.87; the choice is
motivated by the observation (see Fig. 10.6) that most of the pairs of particles in the solids
give a d3(i,j) smaller than −0.87. To enhance the separation between solid and liquid
particles, one can count the number of such connections [228]: it is intended that solid
particles do have a number of connections close, if not equal, to the coordination in their
ideal lattices.
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Figure 10.7: Distribution of the number of connections at 30 GPa (left panel) and 85 GPa
(right panel). Diamonds connected with solid lines are for diamond, triangles connected
with dashed lines are for graphite, circles connected with dotted lines for the liquid. All
the phases at 30 GPa are at the melting temperature (5000 K), while all the phases at 85
GPa are at 5000 K, i.e. the liquid is 20% undercooled.

Fig. 10.7 shows an histogram of the number of connections between particles at 30 GPa
(left panel) and 85 GPa (right panel). In both panels, diamond has mostly four connections
with a small percentage of particles with only three connections. The distribution for
graphite (only left panel) is split between three and two connections. The liquid at 30
GPa has mainly zero and one connections, with only a ∼ 3% of particles counting two
connections. We chose a threshold of two connections for defining ‘solidicity’; we note that
only a ∼ 3% of graphite particles would be erroneously counted as liquid (but they can
still be counted as ‘surface’, vide infra section 10.3.3). The choice of the threshold for the
diamond-like liquid revealed to be much more difficult.In this region we did not expect to
have graphite structures, nor did we ever find them. On the other hand, the liquid, mainly
four-fold coordinated, was also highly connected (see Fig. 10.7). An attempted threshold
for ‘diamondicity’ at three connections led to the growth of branched structures, while the
very strict choice of four connections led to no growth at all. Note that the histogram of
connections at 85 GPa shows that ‘only’ a ∼ 4 % of particles have three connections. We
could grow clusters that showed a convincing diamond structure with the following choice.
We defined an average connectivity, as:

Dl(i) =
1

Zi

∑

j 6=i

Sdown
p=3 (rij) dl(i,j) (10.11)

Fig. 10.8 shows D3(i) in state point ‘A’. A threshold of this parameter at −0.87 led to
a satisfactory growth. The reason for the success of this last criterion can be found in its
average nature. In fact, the satisfactory threshold was found to be the same value that
defined one connection via d3(i,j): this means that ‘diamond’ particles need to have on
the average four connections. A threshold of three connections would count as ‘diamond’ a
particle that has three well correlated neighbours and a fourth possibly completely uncor-
related. Using D3(i), all four neighbours need to have some high correlation, even if not all
four are asked to be strictly connected: this apparently leads to more compact, bulk-like,
structures.
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Figure 10.8: Averaged
connectivity D3(i) at 85
GPa. The solid line is
for diamond, whereas the
dotted line is for the liq-
uid. Both phases are at
5000 K, where the liquid
is 20 % undercooled. The
ideal value of D3(i) for the
diamond lattice is −1

Once ‘solid’ (or ‘diamond’) particles are defined as satisfying the above criteria, all
connected solid particles are counted as belonging to the same cluster.

10.3.3 ‘Surface’ particles

In our definition we had to be rather conservative in the identification of solid particles,
due to the small range of connectivity, up to 4. In contrast, in a Lennard-Jones interacting
system, the fcc solid has 12 connections [228, 230], while the typical liquid particle has
hardly more than five connections. One can be rather generous in defining the threshold
for ‘solidicity’ (e.g. 9 in [230] and 7 in [228]). An interesting observation [230] is that
particles with at least 12 connections†† were found in the ‘interior’ of the clusters, while
particles with 8-11 connections were found on the ‘surface’ of the clusters. This led to
the idea of defining surface particles as those who are ‘solid’, but counting less than 12
connections. In our case we adopted a different procedure for defining surface particles:
‘surface’ particles were added to the solid particles afterwards, defined as those particles
that had at least one connection to a solid particle. Algorithmically, one has first to
find all the solid particles. Then a second sweep on the liquid particles identifies the
‘surface’ particles. Those ‘surface’ particles were then added to the solid and counted
in the cluster size. The reason for adding surface particles is that a certain ordering is
certainly present in particles with even only one connection (their qlm(i) has to be similar
to that of the connected neighbour). The direct, ‘first-flush’ counting of singly connected
particles as ‘solid’, was a-posteriori forbidden by the growth of percolating structures, while
their ‘second-flush’ addition always led to meaningful, compact, clusters.

10.3.4 Algorithm for ‘solidicity’ in summary

In short, we give the algorithm to assign particles to a solid cluster in liquid carbon.

††More than 12 connections were probably given by bcc ordered particles.
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• The local order detector q3m(i) is calculated for every particle .

• The inner product d3(i,j) is calculated for every pair of neighbours.

• For the diamond-like liquid: the average connectivity D3(i) is calculated for each
particle; particles for which D3(i) ≤ −0.87 are ‘diamond’ particles.

For the mainly three-fold liquid: neighbours for which d3(i,j) ≤ −0.87 are connected;
a connection counter for both particles is incremented by one; particles with at least
2 connections are ‘solid’ particles.

• ‘Solid’ (or ‘diamond’) particles are grouped in clusters: namely connected solid par-
ticles belong to the same cluster.

• ‘Liquid’ particles with one connection to a solid particle in a cluster are counted as
‘surface’ of the cluster‡‡. The size of a cluster is the sum of its ‘solid’ and ‘surface’
particles.

10.3.5 Choice of the box size: frozen nuclei analysis

In order to set the size of the simulation box, we estimate the size of the critical nucleus
by what we can call the ‘frozen spherical nucleus’ method. To the purpose:

1. we equilibrated, via NPT MC simulations, a sample of 1000 particles in a cubic box,
arranged in a diamond lattice, in state points ‘A’ and ‘B’ shown in Fig. 10.2; we only
allowed isotropic cell fluctuations, to keep the box shape a cube;

2. particles comprised in a sphere of selected radius around a selected atom, were then
fixed to the final position assumed in the equilibration run; the rest of the particles
was melted in a NPT simulation at 10000 K and at the pressure of the selected state
point;

3. still keeping the particles in the nucleus frozen, the rest of the sample was annealed
at the melting temperature corresponding to the pressure of the selected state point;

4. all those samples containing nuclei that never ended in a complete (re)crystallization
in the previous step were sampled at the initial state point, with particles in the
nucleus released; this was achieved by running at the initial temperature the samples
annealed in the previous step †;

5. several samples were prepared for each selected radius: we considered as critical
(spherical) nucleus size R∗, the size at which about half of the nuclei shrank to the
liquid and half grew to the full box crystal. Consistently, nuclei smaller than the
critical more likely shrank, while bigger nuclei almost always grew.

‡‡In the case of the diamond-like liquid the criterion for a ‘liquid’ particle to be counted as ‘surface’ is:
‘at least one connection’. ‘Surface’ particles can be ascribed to two clusters, but two clusters linked by a
‘surface’ particle that is connected to solid particles in the two clusters are not merged into one cluster.
These, rare, shared ‘surface’ particles are actually counted as belonging to both clusters.

†Samples that did not lead to re-crystallization at the melting temperature, always kept the number of
particles in the nucleus equal to the number of the fixed particles, i.e. it never occurred that some particles
attached to the nucleus unless this event avalanched towards the crystal.
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After estimating in this way R∗, the minimum lenght of the (cubic) box edge for the
nucleation procedure was set to Lmin = 2R∗ + rLR

2 , where rLR
2 (see Eq. 6.53) is the range

of the non bonded interactions for the LCBOPI+. Its value is set to 6 Å (see Table 6.2).
This choice prevents, in a box with edge equal to or bigger than Lmin, direct interactions
between the replica of the nucleus, through the applied periodic boundary conditions.
Possible indirect interactions have been neglected at this stage: these can arise from the
extension of the ordering outside the surface of the critical nucleus, that we defined rather
arbitrarily.

At state point ‘A’, i.e. in the diamond-like region of the metastable liquid, we found
that the criticality criterion was matched by nuclei of radius R∗ = 5.8 Å. Eleven neighbour
shells, i.e. 159 particles, are comprised in a sphere of radius R∗ = 5.8 Å centered on the
atom located at the center of mass of the nucleus, in a 0 kelvin lattice at the selected
pressure of 85 GPa. The number of fixed atoms after the equilibration procedure (step 1
above) was found indeed to be equal to 160. This R∗ yields Lmin = 17.6 Å. In state point
‘A’, the liquid equilibrates at the specific volume of 5.65 Å3/atom. This implies that the
smallest number of particles in the simulation box is 965. Aiming to nucleate diamond,
the nucleation box cannot contain any number of particles, but a number that can yield
a perfect lattice, given the periodic boundary conditions. Namely, for a cubic diamond
lattice, the number of particles N has to be N = 8n3, with n integer, to fit in a cubic box.
We chose to perform the nucleation procedure with a sample of 1000 atoms.

At the state point ‘B’ the same procedure gave R∗ = 6.40 Å, so that the critical cluster
contained 191 particles; with a specific volume of 7.37 Å3/atom, this requires at least 902
particles in a cubic box of edge Lmin = 18.8 Å.

10.3.6 Monte Carlo ‘time-step’

For the LCBOPI+, only a MC code is available. The rather cumbersome implementation
of the force calculation, needed for a MD code, has not yet been carried out. The flux
crossing IA was calculated in a slightly different way, if compared to Eq. 10.6, namely:

〈φA(IA)〉
〈hA〉 =

N+

V NMC τMC

(10.12)

where NMC is the number of MC sweeps‡. In order to estimate the MC ‘time-per-sweep’
τMC , we performed a DF-MD simulation in the same state point we chose for the nucleation
process. We assumed that the system as described by the density functional behaves not
too differently from the LCBOPI+. As a justification, we proved that static properties of
the LCBOPI+ liquid, e.g. as described by the radial and angular distribution functions,
are in reasonable agreement with DF-MD calculations (see chapter 9). The MC ‘time’ is
calculated [239]:

τMC =
D∗

MC

D∗
MD

(10.13)

‡This quantity is also known as “moves per particle”: in a MC algorithm this means that a sweep is
counted once a loop, comprising a number of attempted moves equal to the number of particles in the
system, is completed. This does not mean that every particle is attempted to be moved in the sweep,
since, for statistical reasons [13], at any attempted move, the particle is selected randomly; It is just in an
average sense, that every particle is attempted to be moved each sweep.
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where

D∗
MD = lim

t→∞

〈
[ri(t)− ri(t0)]

2〉
MD

t
(10.14)

is calculated in the MD run and

D∗
MC = lim

s→∞

〈
[ri(s)− ri(s0)]

2〉
MC

s
(10.15)

is calculated in the MC run. The brackets 〈. . .〉MD denotes time average and average over
all particles; 〈. . .〉MC denotes ensemble average and average over all particles. The index
s is updated every MC sweep. In a MC simulation, the quantity D∗

MC depends on the
acceptance ratio, that in turn depends on the maximum displacement of the attempted
move. Anyway, the definition of τMC is not ambiguous as soon as all the MC simulations
are performed at constant acceptance ratio.

10.4 Results

For the carbon system described by the LCBOPI+, the state A is the liquid state (L),
while the state B is diamond (D). The order parameter λ was chosen to be the size of the
biggest cluster (NBC), as recognized via the algorithm summarized in paragraph 10.3.4.
Fig. 10.9 shows an excerpt of the evolution of the order parameter in an unbiased simulation,
started in the liquid state, for a sample with 1000 atoms. The dashed line is NBCL, i.e.
the threshold for NBC, fixed putting the value of XTh = 0.997§. The threshold NBCL

defines the interface IL defining the liquid. The arrows in Fig. 10.9 indicate the stored
configurations. Note that in correspondence with the first arrow, there is more than one
crossing of the NBCL line. Only the first crossing was counted since the system was not
judged to be returned to the liquid (following the procedure of paragraph 10.2.3), before
recrossing.

10.4.1 Results at 85 GPa

For the sample of 1000 atoms, we grouped the configurations at IL into two sets and
performed two independent nucleation simulations. Subsequent interfaces were set at: I1 =
34, I2 =42, I3 =50, I4 =60, I5 =70, I6 =80, I7 =90, I8 =110, I9 =130. At every interface
40 configurations were randomly selected to be propagated (this means nCPU = 40). The
configurations at IL and at the subsequent interfaces were then used as starting points for
the calculation of the free energy barrier (see section 10.5). The nucleation procedure was
not followed until the complete crystallization. To have a box completely crystallized, one
should have the growing cluster with an orientation close enough to one of the possible
orientations compatible with the periodic boundary conditions. In contrast, the growing
cluster has a free orientation and it is not likely that its orientation is compatible with the
imposed periodic boundary conditions. Furthermore, the simulation time per trial rapidly

§The cumulative distribution X was constructed considering the number of times the liquid was sampled;
this occurred every 25 MC sweeps, since the determination of the order parameter is a rather expensive
calculation. Thus, the liquid was defined as the state in which an unbiased trajectory is found for 997 out
1000 inspections.
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increased: for clusters around size 100, the system could wander for a long time¶ before
either crossing the next interface or going back to the liquid. In fact, huge fluctuations in
the cluster size were always observed: in a typical ‘winning’ trial, the cluster size decreased
of several tens of atoms, before a sudden increase led the cluster crossing the next interface.
This can be interpreted by arguing that the liquid surrounding the cluster is always rather
ordered, so that the growing of the cluster is triggered by a sort of collective fitting into the
diamond lattice of several particles, rather than by a one-to-one attachment. We stopped
the nucleation procedure when the probability P(Ii+1|Ii) was larger than 1/2, assuming
that the top of the nucleation barrier was reached and possibly overcome. This occurred
in the 1000 particles sample on going from I8 to I9, i.e. from size 110 to 130. Rather
than the nucleation rate, we thus calculated the rate at which the top of the nucleation
barrier is reached. This is an upper boundary for the real nucleation rate. We calculated
the flux: ΦL(IL) = (4.2 ± 0.2) 10−9 Å−3 τ−1

MC . The conversion to the real time was
(see Eq. 10.13): τMC = (9.0 10−6)/(2.2 10−4) fs = 0.04 fs‖. The crossing probability
was: P(I9|IL) = (3.5 ± 2.1) 10−5. In conclusion the 1000 particles sample gives a rate:
R = (3.7 ± 2.5) 10−12 Å−3 fs−1 = (3.7 ± 2.5) 1033 m−3 s−1.
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Figure 10.9: Evolution of the order parameter NBC in an unbiased simulation of a 1000
particles liquid. The dashed line is the NBCL at the interface defining the liquid state.
The arrows indicate stored configurations.

The nucleation procedure was stopped when a nucleus of size 130 was obtained. We
checked the results obtained with 1000 particles with a sample containing 2744 particles.
Here one we will refer to the 2744 particles sample as the “big sample” and to the 1000

¶To give a representative figure: from I8 to I9 we had ∼ 12 hours per trial on a 3.4 GHz Intelr XeonTM.
‖The parameter D∗

MD was calculated from a 5 ps DF-MD run of 128 atoms at the same temperature
and density of the LCBOPI+ system.
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particle one as the “small sample”. Note that in the big sample, at the same density as
in the small sample, the biggest non directly self interacting spherical cluster counts 575
particles. The computational cost per MC sweep, needed to evaluate the bonded interac-
tions with the LCBOPI+ (as well as with any BOP), scales linearly with the number of
particles in the system, since this cost depends on the average number of neighbours, when
a dynamic list of them is book-kept. On the other hand, for the non-bonded interactions,
an evaluation of the distance, in case the distance is shorter than a given cut-off, of the in-
teractions between the trial-moved particle and all the other particles has to be performed
every trial move. Thus, the computational cost per sweep scales quadratically with the
system size, for samples that are not too big. We observed that the cost per sweep in the
big sample was ∼ 6-7 times higher than with the small sample. Typically, the trial runs
from one interface to the next were run for the same (real) time interval as for the small
sample. This means that we had on the average 6-7 times less tried runs per configuration
to deal with. We grouped the configurations at IL into three sets. From each interface, 12
configurations (i.e. nCPU = 12) per set were run. We used the same definition of IL as for
the small sample as well as all the interfaces up to I9. For the big sample, the flux at IL

is: ΦL(IL) = (7.7 ± 0.8) 10−9 Å−3 τ−1
MC . With the big sample, we found that the criterion

“P(II+1|Ii) > 1/2” to define the top of the barrier was matched at an upward shifted NBC,
if compared to the small sample. Two more interfaces were set, I10 and I11, defined at the
cluster sizes: NBC10 =150 and NBC11 =175. Two sets of initial configurations fulfilled the
criterion at I11 and one set at I10. We inspected the trials for the two sets yielding I11 fulfill-
ing the criterion and we found that in both cases the partial probability to cross an interface
at I∗ at NBC = 160, coming from I10, was bigger than 1/2 too. We evaluated also for the
third set P(I∗|I10), so that the average overall probability is: P(I∗|IL) = (2.8± 2.7) 10−5.
The rate is: R = (5.4 ± 5.3) 10−12 Å−3 fs−1 = (5.4 ± 5.3) 1033 m−3 s−1. In the big
sample case, as well as in the small sample one, we had indication that the transmission
probability to interfaces beyond the ones we stopped keeps bigger than 1/2 and increasing.
However, the computational time per trial becomes there unpracticably long, so that only
few trials could be completed and the statistics is very poor, implying that the results
should be interpreted with care.

The big sample confirms at least the order of magnitude of the rate at which the top
of the barrier is reached. The nucleation rate at that state point cannot be more than
one order of magnitude lower, since, beyond the top of the barrier, the nucleation should
proceed rather fast, due to its nature of activated process. If we compare our rate to
the nucleation rate of order 1030 m−3 s−1, found at the same undercooling for the liquid
argon, described by the Lennard Jones potential [240, 228], we see that the diamond-
like carbon would nucleate (practically instantaneously in an ideal experiment) at a rate
approximatively two orders of magnitude higher. Employing essentially the same method
we used for diamond nucleation, Valeriani et al. [236] found a nucleation rate of order
1024 m−3 s−1 for NaCl described by the Fumi-Tosi potential. Thus, compared to carbon,
NaCl nucleates into the crystal with a dramatically slower rate.

In Fig. 10.10 we show a cluster of size NBC = 177 (thus, one of the configurations that
crossed I11). In the top part of the figure, ‘diamond’ and ‘surface’ particles belonging to the
biggest cluster in the sample are highlighted, while ‘liquid’ particles (together with ‘solid’
and ‘surface’ particles belonging to smaller clusters) were made smaller in size and shown
to account for the size of the simulation box. In the bottom part the same cluster, without
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Figure 10.10: Three views of a cluster of size NBC = 177. In the top panel the atoms
in the liquid are represented with spheres of smaller diameter than for the atoms in the
cluster. In both the bottom panels the cluster is rotated by 90 degrees, with respect to the
top panel.



148 Diamond nucleation

the surrounding particles, is shown from other points of view. The diamond structure,
with few defects, is evident from this snapshot.

10.5 Calculation of the free energy barrier via um-

brella sampling

In addition to the nucleation procedure, we calculate the nucleation barrier in state point
‘A’ (see Fig. 10.2), for the small sample. In appendix 10.7 we show that the difference in
free energy from a reference state (in our case the metastable liquid) can be written as a
function of the biggest cluster size NBC, used as order parameter:

∆G = −ln
NBC

N
(10.16)

However, considering only the biggest cluster is an approximation that holds only for big,
rare, clusters. In a simulation in the liquid state, clusters are normally small, ranging from
size 5 (in the diamond-like liquid, 5 is the minimum size that can be defined for a cluster)
to 35 (the biggest cluster seen in the simulation used for the free energy calculation). After
equilibrating a liquid of 1000 particles at the state point ‘A’, we calculated the distribution
of all clusters and determined the related free energy with Eq. 10.16. The result is shown
in Fig. 10.11, up to the arrow. The point at size zero accounts for those rare configurations
in which no cluster of any size was detected. Thus, in Fig. 10.11, we note that the reference
status (the ‘normal’ liquid) most likely contains one or more cluster of size 5.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
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Figure 10.11: Gibbs free energy for the formation of a solid cluster of a given size. The
points at small cluster sizes are connected to guide the eye. The arrow indicates the size
of the biggest cluster histogrammed during the unbiased simulation.
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In order to sample the distribution of clusters bigger than ∼ 35, we employed the
method of the umbrella sampling. The umbrella sampling scheme was proposed [241]
to handle situations where important contributions to the ensemble average come from
configurations whose Boltzmann factor is small, thus leading to poor statistical accuracy
(see also paragraph 10.7.2). We constructed overlapping windows of our order parameter,
i.e. the biggest cluster size NBC. We used windows presenting hard walls; this means
that the umbrella sampling algorithm proceeds in the following way. Every 25 MC sweeps,
NBC is evaluated; if NBC is in the window, the present configuration is stored and the
simulation continues unperturbed; if NBC is outside the window, the whole trajectory of
25 MC sweeps is rejected and the stored configuration is substituted to the present one.
The windows, of width 20, were centered every 10 units, starting from size 40. This implies
that two neighbouring windows overlapped by 10 units. Initial configurations were taken
from the nucleation procedure (see previous section). Each window was simulated starting
from 3 different configurations, for each initial configuration statistics were acquired for
250000 MC sweeps (i.e. we had 10000 entries, times 3, in the histogram, for each window).
The distribution given at every window has to be rematched exploiting the overlapping
intervals. We imposed that the areas below the distribution curves of the overlapping
interval agreed. Practically, the data from the first window (up to size 35) are not rescaled,
coming from an unbiased simulation; the distribution of the second window (from size 30
to 50) was rescaled to match the first window in the overlapping interval, and so on. The
result is shown in Fig. 10.11.

The free energy barrier exhibits a maximum at size 115. Consistently, the nucleation
procedure in the small sample revealed that more than one half of the trajectories starting
from the interface at size 110 reached the interface at size 130. In the big sample this feature
is systematically shifted to a size of 160. Incidentally, the cluster size of 160 corresponds
to the ‘critical’ spherical cluster as found in the frozen nucleus analysis. It is therefore
possible that the maximum in the free energy at 115 for the small sample is a finite size
effect. This is possible, for instance, if indirect interactions between the replicas of the
cluster are present. Following this argument, the particles that are “almost solid” would
be more than those we count as ‘surface’, so that the cluster size, from a thermodynamical
point of view could be sensibly bigger than what we measure.

Regarding the shape of the nucleation barrier, the presence of a shoulder around size
80 should be noted. A rather flat distribution in the window centered at size 80 is present
also if each of the initial configurations for the window itself is histogrammed separately.
Furthermore, in all the nucleation processes that we sampled, at both sample sizes, we
found that the probability to reach the interface at size 90, starting from interface at size
80, was always approximatively double than the neighbouring probabilities, i.e. 70 → 80
and 90 → 100∗∗.

10.6 Summary and conclusions

In summary, in this chapter we illustrated the method and the results for the nucleation of
diamond from the 20 % undercooled liquid carbon. Based on the Forward Flux Sampling
method [234], we developed an efficient method to calculate the rate of nucleation, and a

∗∗The interface at 100 is not in the set mentioned in section 10.4.1, but it could be fictitiously added a
posteriori, from the knowledge of the evolution of the biggest cluster size in every single trial.
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method to recognize ‘solid’ (or ‘diamond’) particles in the liquid, based on the local order
detector of Refs. [238, 228]. Due to the large computational cost, we could only arrive to
a rough estimate of the rate to reach the top of the nucleation barrier for the diamond-
like liquid carbon we discussed in chapter 9. We found this rate to be of the order of
1033 m−3 s−1 at 20 % undercooling. This is an enormously fast rate. Having reached the
top of the barrier, we argue that the effective nucleation rate at that state point cannot be
more than one order of magnitude lower than our estimate. We compared this rate to the
value of order 1030 m−3 s−1, as found for liquid argon at the same undercooling [240, 228];
we also compared it to the much smaller rate of order 1024 m−3 s−1, calculated for NaCl
with essentially the same method we presented here. In the nucleation procedure, we
found that the top of the barrier was reached at the biggest cluster size ∼ 115 for a sample
of 1000 particles and at size ∼ 160 particles for a sample of 2744 particles. The size
∼ 160 agrees with the size predicted by a rough estimate made via the ‘frozen nucleus
method’. We presented the calculation of the free energy barrier, by means of the umbrella
sampling method, for a sample of 1000 particles in the same state point as for the nucleation
procedure. The nucleation barrier presented a maximum at size 115. We argue that the
discrepancy between the two sample sizes is due to finite size effect, if indirect interactions
between periodic replicas of the critical cluster are postulated.
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10.7 Appendix. Classical nucleation theory

We give here a selected overview of Classical Nucleation Theory. Namely, we restrict
ourselves to a) the model for the calculation of the (free energy) nucleation barrier and b)
the justification of the choice of the cluster size as order parameter à la Landau†† [242].

10.7.1 Free energy barrier

We consider two systems. The first system (I) contains the homogenous, metastable phase
β. The second system (II) contains a nucleus of the stable phase α, immersed in the
phase β. Given that the systems are at a certain temperature T and pressure P , and that
they contain the same number of particles N , we want to compute the Gibbs free energy
difference between the two systems. To the purpose, we first consider the difference in total
internal energy. Assuming that this latter quantity is a homogeneous first-order function
of the entropy S, the volume V , and the number of particle N , for system (I) it holds:

U I = T ISI − P IV I + µIN I (10.17)

where µ is the chemical potential. In system (II) we assume that the temperature T II is
constant throughout the system, but the same homogeneity does not necessarily holds for
the chemical potential and the pressure (consider that the interface can sustain a pressure
difference at equilibrium between the two phases). The total internal energy in system (II)
can thus be written:

U II = T IISII − P II
α V II

α − P II
β V II

β + µII
α N II

α + µII
β N II

β + γA (10.18)

where A is the area of the interface between phase α and β, and γ is the interfacial free
energy density. The total volume of system (II) is V II = V II

α + V II
β , the total number of

particle is N II = N II
α + N II

β . We can thus rewrite Eq. 10.18 in this form:

U II = T IISII − P II
β V II +

(
P II

β − P II
α

)
V II

α + µII
β N II +

(
µII

α − µII
β

)
N II + γA (10.19)

Since the two systems have the same number of particles, temperature, and pressure (i.e.
pressure of the phase β!), we have: N I = N II = N , P I = P II

β = P , and T I = T II = T .
Moreover, the phase β is at the same thermodynamical state in both systems, so that
µI = µII

β . We can now write the difference in Gibbs free energy between system (I) and
(II):

∆G = ∆U + P∆V − T∆S = ∆GI −∆GII =

=
(
P II

β − pII
α

)
V II

α +
(
µII

α − µII
β

)
N II

α + γA (10.20)

Up to here, no approximations have been made. A more useful expression is obtained via
the assumptions:

• phase α is incompressible, i.e. ρα
.
= Nα/Vα is a constant. From thermodynamics, it

holds ∂G/∂P |T = V , and G = µN , so that, at constant T,N :

dµ = dP
V

N
=

dP

ρ
(10.21)

††The résumé of CNT we present here is heavily based on the bright summary that Daniele Moroni gave
in appendix G of his PhD thesis [230].
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If ρ is constant, we can integrate the latter relation, getting a linear dependence of
µ on ρ:

µII
α (P II

α ) = µII
β (P II

β ) +
P II

α − P II
β

ρα

(10.22)

Substituting this expression into Eq. 10.20, if we recognize that there µII
α = µII

α (P II
α ),

and µII
β = µII

β (P II
β ):

∆G = γA +
[
µII

α (P II
α )− µII

β (P II
β )

]
ραV II

α (10.23)

• phase α is characterized by its bulk properties, in particular ρα is the density of bulk
phase α.

• the nucleus is spherical, so that A = 4πR2 and Vα = 4πR3/3 , where R is the radius
of the nucleus;

• the surface tension is independent of R.

With all these assumptions, Eq. 10.20, through, Eq. 10.23, is rewritten in the form:

∆G = 4πR2γ +
4

3
πR3ρα∆µ (10.24)

where ∆µ = µII
α (P II

β )− µII
β (P II

β ) < 0 is the difference in chemical potential between phase
α and β at the same pressure Pβ. Eq. 10.24 is the same as Eq. 10.1, where α and β were
the solid and the liquid phases, respectively. Taking the derivative of ∆G in Eq. 10.24 with
respect to R, we get an expression for the critical radius:

R∗ =
2γ

ρα|∆µ| (10.25)

that corresponds to a maximum in the free energy difference:

∆G∗ =
16πγ3

3ρα∆µ2
(10.26)

Finally, we can rewrite Eq. 10.24 as a function of the number of particles n in the nucleus
(n = 4πR3ρα/3):

∆G = 4πγ

(
3n

4πρα

)2/3

+ n∆µ (10.27)

yielding a critical nucleus of size:

n∗ =
32πγ3

3ρ2
α|∆µ|3 (10.28)
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10.7.2 Equilibrium cluster distribution

We consider a system at homogeneous temperature T , and label with Nn the number of
clusters of size n present at equilibrium. The system consists of N1 monomers, N2 dimers,
. . .Nn n-mers, in a solvent of Nβ particles in phase β. The total number of particles is N
and we assume Nβ À Nn,∀n, so that N ' Nβ. We rewrite Eq. 10.23 as:

∆G− γA + n [µα(P )− µβ(P )] = µn(P )− nµβ(P ) (10.29)

where the chemical potential of the cluster is defined as µ(P )
.
= γA+nµα(P ), and P stays

for Pβ. We consider and treat the system as an ideal solution, since we assume that the
concentration of clusters is low enough so that they do not interact with each other. We
thus use the equation of state of the ideal gas, substituted into Eq. 10.21, to integrate the
chemical potential to a different pressure:

µn(Pn) = µn(P ) + kBT ln(Pn/P ) (10.30)

where we chose the different pressure to be Pn, i.e. the partial pressure exerted by the
cluster of size n.
Substituting into Eq. 10.29, we get:

∆G = µn(Pn)− kBT ln(Pn/P )− nµβ(P ) = −kBT ln(Pn/P ) (10.31)

In the last equality we have made use of the relation µn(Pn) = nµβ(P ), that holds at
equilibrium, if a cluster of n particles in phase α substitutes an equal number of particles
in phase β. Raoults’s law relates the ratio of the partial pressures to the ratio of the
concentrations for an ideal solution: Pn/P = Nn/Nβ ' Nn/N . We write:

∆G ' −kBT ln(Nn/N) (10.32)

At this point we remind that, following the Landau definition of free-energy [242], this
quantity is written as:

G(q)
.
= constant− ln(q) (10.33)

where q is an order parameter describing the state of the system.
By comparison of Eqs. 10.32 and 10.33, we recognize that the argument of the logarithm

in Eq. 10.32 is the probability of having a cluster of size n. Thus:

P(n)
.
=

Nn

N
= e−β∆G(n) (10.34)

that relates the cluster size distribution to the CNT free energy barrier. Histogramming
the cluster size distribution of all the cluster in the system, yields ∆G. Unfortunately,
in a numerical simulation, only relatively small clusters can be efficiently sampled, since
configurations with big clusters are exponentially rare. Special techniques, such as the
umbrella sampling method (see section 10.5) are to be used. To our purposes, this technique
works biasing the sampled configurational phase space to those configuration containing a
biggest cluster of given size. It is thus instructive to show that, when the system contains
a cluster of big enough size, the distribution of the biggest cluster size, NBC, is a very
good approximation of the distribution of all the cluster sizes. We can in fact write:

P(n) =
∑

i

iPi(n) (10.35)
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where Pi(n) is the probability of having i clusters of size n. Assuming that the formation
of different clusters is uncorrelated, we can write Pi(n) = P1(n)i, so that:

P(n) =
∑

i

P1(n)i ' P1(n)
.
= P(NBC) (10.36)

The last approximation holds since the probability of having one big cluster is small, so
that the first term in the sum dominates. CNT comprises also a kinetic treatment of the
nucleation process, that leads to an estimate of the nucleation rate. This is expressed as
the product of the probability of having a critical nucleus of size n∗ (i.e. Eq. 10.34 for n∗)
times the so called kinetic pre-factor. This is built from information retrieved from the
system containing the critical nucleus. We do not assume CNT to estimate the nucleation
rate, since we use a method (see section 10.2) that directly yields this information. More
details on CNT can be found in Ref. [230] and references therein.
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11.1 Introduction

As shown in chapters 9 and 8, both the results for the liquid phase and the phase diagram,
based on the LCBOPI+, show a promising agreement with available data from ab initio
Car Parrinello Molecular Dynamics (CPMD) [62] simulations and/or experimental data.
For example, with the LCBOPI+ no LLPT was found in agreement with DF-MD, most
likely due to a weaker torsional interactions for conjugated bonds as compared to the ex-
tended Brenner II BOP. For the LCBOPI+ these interactions were fitted to recent ab initio
calculations [14] of the torsional barrier for such bonds. The pressure-volume isotherms at
6000 K from DF-MD simulations is reasonably well reproduced by the LCBOPI+ as well
as the trend in the coordination statistics over a wide range of densities, in contrast to
Brenner’s BOP’s without lr interactions.

However, significant differences in the radial distribution function (rdf) for the liquid
phase between DF-MD and LCBOPI+ prompt to further improvement of the potential.
Although the positions of the extrema in the rdf’s at various densities are reproduced
reasonably well, the minima and maxima according to the LCBOPI+ are clearly more
pronounced than those according to DF-MD [17]. In particular, the LCBOPI+, and also
Brenner’s BOP’s, give rise to a very deep minimum around the cut-off range for the short-
range interactions. It is tempting to assign this effect to the strong gradients within the cut-
off range, an artifact of the rigid cut-off. In order to clarify this point, we performed ab initio
calculations of the dissociation energy curve for a single bond, as described in appendix 11.4,
and compared it to those according to the LCBOPI+ and the REBO potential. The
comparison is shown in Fig. 11.1. Clearly, with a sr cut-off radius of 2.2 Å (2.0 Å for the
REBO potential) the LCBOPI+ cannot reproduce the energy of -2 eV at 2.2 Å in the
single bond dissociation found in the DF-MD calculation. Note that beyond the sr cut-off
radius there are only lr interactions between the two dissociating fragments, which give
rise to an effective repulsion between the fragments in the range from 2.2 to 3.5 Å. For the
REBO potential, the interaction between the fragments beyond 2 Å vanishes altogether.
In this case, we may certainly assume that the ab initio results are more reliable, and
obviously this discrepancy could very well be the reason for the mentioned difference in
the liquid structure.
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Figure 11.1: Binding energy for the single bond in (CH3)3C−C(CH3)3 as a function of the
central C-C-distance, calculated by DF (dotted line), by LCBOPII (solid line), by REBO
potential and LCBOPI+ (dashed lines).

The above discrepancy inspired us to further improvements of the LCBOPI+. The
resulting new potential is denoted LCBOPII. The many modifications and improvements
of the LCBOPII, as compared to the LCBOPI+, require a complete description, which
is given in Section 11.2. The LCBOPII reproduces much better the dissociation energy
curves for single, double and triple bonds by the addition of new attractive interactions
between atoms at middle range (mr) distances between 1.7 and 4 Å. These mr interactions,
which extend the covalent bonds where this is appropriate, depend on the mutual reac-
tivity between atoms, which is quantified in terms of the bond angles and of the presence
of dangling bonds, as described in Section 11.2.4. Further improvements of the LCBOPII
include i) an extended and more dynamic coordination dependence of the angular corre-
lation, ii) a correction for anti-bonding states by the addition of a new term to the bond
order, iii) an extended conjugation dependence of the torsional interactions based on ab
initio calculations of the torsional barriers for a set of molecular configurations, iv) a new
definition of the torsion angle not producing spurious torsion, and v) a completely new,
and more natural interpolation approach for non-integer coordination states.

After the description of the LCBOPII in Section 11.2, structural and elastic properties
for solid phase structures, including the diamond (111) and (100) reconstructed surfaces
will be presented and discussed in Section 11.3. In this Section we present also results
concerning the geometry and energetics of the diamond to graphite transformation and
of the vacancy in graphite and diamond as well as the prediction of the LCBOPII for
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the energy barrier for the formation of the so called 5-77-5 defect. In appendix 11.4, we
give details of the DF calculations used to develop the LCBOPII. In the next chapter, the
results of an extended study of liquid carbon according to the LCBOPII are given, covering
a large pressure-temperature domain of the phase diagram, and are compared to ab initio
data, where available.

11.2 The LCBOPII

For the LCBOPII, the total binding energy Eb for a system consisting of Nat is given by:

Eb =
1

2

Nat∑
i,j

(
Sdown

sr,ij V sr
ij + Sup

sr,ijV
lr
ij +

1

Zmr
i

Sup
mr,ijV

mr
ij

)
(11.1)

where V sr
ij = V sr(rij) describes the covalent, short range interactions, V lr

ij = V lr(rij) ac-
counts for the long range non-bonded interactions and V mr

ij = V mr(rij) represents the
remainder of bonded (attractive) interactions between atoms at middle range distances.
Here rij = |ri − rj| is the interatomic distance. The middle range attractive interaction,
not present in the LCBOPI, is inspired and based on the ab initio calculations of the
dissociation energy curves for single, double and triple bonds (see appendix 11.4). The
prefactor 1/Zmr

i , where Zmr
i is an effective middle range coordination number defined in

Sec. 11.2.4, takes into account many body effects. The switch functions Sdown
sr,ij = Sdown

sr (rij),
Sup

sr,ij = Sup
sr (rij) and Sup

mr,ij = Sup
mr(rij), described in detail in Sec. 11.2.1 provide a smooth

connection between the various interaction contributions.

11.2.1 Switch functions

In the description of the LCBOPII, we will make use of two families of switch functions,
Sdown(x) and Sup(x), being defined as:

Sdown(x) = Θ(−x) + Θ(x)Θ(1− x)(1 + 2x + px2)(1− x)2 (11.2)

and:

Sup(x) = 1− Sdown(x) (11.3)

respectively, where Θ(x) is the heavyside step function. As shown in Fig. 6.2, the parameter
p, ranging in the interval [-3,3], offers a certain freedom in the choice of the shape of the
switch function while staying monotonic within x ∈ [0,1]. To realize a switch as a function
of a given quantity q (e.g. distance or coordination) within a desired interval [qmin,qmax]
the dimensionless argument x is defined as:

x = x(q) =
q − qmin

qmax − qmin

(11.4)

In the description of the LCBOPII, each switch function, labeled by an appropriate sub-
script, is specified by the three numbers qmin, qmax and p, which are given in Table 11.4.
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11.2.2 Short range potential V sr

The potential V sr
ij is a Brenner type of bond order potential similar to that of the LCBOPI,

but with several important modifications. It reads:

V sr
ij = V sr

R,ij −BijV
sr
A,ij (11.5)

where V sr
R and V sr

A are repulsive and attractive radial pair potentials given by:

V sr
R (r) = Asr exp(−αr) , (11.6)

V sr
A (r) = Bsr

1 exp(−β1r) + Bsr
2 exp(−β2r) . (11.7)

The bond order Bij includes the many body effects and is the sum of several terms:

Bij =
1

2
(bij + bji) + F conj

ij + Aij + Tij (11.8)

where bij depends on the bond angles and F conj
ij accounts for conjugation. New with respect

to the LCBOPI are the terms Aij and Tij, which account for the effects of the presence of
occupied anti-bonding states and of torsion respectively.

Term bij

The bond angle dependent part bij is given by:

bij =

(
1 +

∑

k 6=i,j

Sdown
Z (rik)H(δrijk)G(cosθijk,Zijk)

)−1/2

(11.9)

where the summation runs over all neighbours k (6= j) of i, θijk is the bond angle between
the bonds ij and ik and δrijk = rij − rik. The reduced coordination number Zijk is defined
as:

Zijk =
∑

l 6=i,j,k

Sdown
Z,il = Zi − Sdown

Z,ij − Sdown
Z,ik (11.10)

where Zi is the coordination of atom i defined as:

Zi =
∑

j 6=i

Sdown
Z,ij (11.11)

and Sdown
Z,ij = Sdown

Z (rij). As compared to the LCBOPI, we have modified the angular
function G, making it coordination dependent in order to improve the energetics of con-
figurations with small bond angles (at low coordination). Such a correction of the angular
correlation was also included in the REBO potential, switching from the maximal to a
weaker angular correlation for coordinations between 3.8 and 3.2∗. We found that a good
description of various small clusters, as those of Refs. [157, 158], required different angular
functions for the coordinations two and three. Simulations for the liquid phase [17, 21],

∗Note that ‘coordination’ of atom i is defined as Zi (Eq. 11.11), thus allowed to be a non-integer
number.
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suggest that a weakening of the angular correlation for small angles is required for higher
coordinations (i.e. Z ≥ 4) as well. For the LCBOPII we have formulated a dynamic coor-
dination dependence which smoothly interpolates the angular correlation for coordinations
Zijk ≤ 8.

Using the short notations y = cosθijk and z = Zijk, the angular function G(y,z) reads:

G(y,z) = Θ(y0(z)− y)G1(y) + Θ(y − y0(z))G2(y,z) (11.12)

where G1(y) is the angular function fitting the properties of the various bulk crystal lattices
from chain to fcc as in the LCBOPI [15], and G2(y,z) gives a weaker angular correlation, as
compared to G1(y,z), for low coordinations and small angles. The function G is presented
in Fig. 11.2. The coordination dependent boundary value y0(z) where G2 is smoothly
matched to G1 is given by:

y0(z) = Ay0 + By0(z + z2) (11.13)

For high coordination y0(z) becomes larger than one and G(y,z) = G1(y) for all angles.
The functions G1(y) and G2(y,z) are given by:

G1(y) =





gmin + (y + 1)2

2∑
n=0

g1,nyn −1 ≤ y < −1
2

ggr + (y +
1

2
)

4∑
n=0

g2,nyn −1
2
≤ y < −1

3

gmax + (y − 1)2

4∑
n=0

g3,ny
n −1

3
≤ y ≤ 1

(11.14)

and:

G2(y,z) = gz,max + (1− y)2

2∑
n=0

gz,nyn (11.15)

respectively, where:

gz,max = gmax − (Ag + Bgz + Cgz
4)(1− y0)

3 (11.16)

and:

gz,2 =
Dgz

4

1 + Egz4
(11.17)

The coefficients gz,0 and gz,1 are fixed by the requirement of continuity of G(y,z) up to the
first derivative at y = y0(z), implying:

gz,1 =
G′

1(y0)

(y0 − 1)2
− 2

G1(y0)

(y0 − 1)3
− 2gz,2y0 (11.18)

and:

gz,0 =
G1(y0)− gz,max

(y0 − 1)2
− gz,1y0 − gz,2y

2
0 (11.19)

where G′
1(y0) = dG1/dy|y0 .
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Figure 11.2: Top panel: function G(y,z) (Eq. 11.12) for integer values of z. The inset
shows that G2 is smoothly matched to G1 at a coordination dependent boundary value
y0(z); the vertical axis of the inset is labeled on the right-hand side. Bottom panel: function
H(x) (Eq. 11.20).

The function H(δrijk) shown in Fig. 11.2 is almost the same as for the LCBOPI and
reads:

H(x) =





H1(x) = L

(
1 + κ(x + d)

(
1

1 + (κ(x + d))4

)1/4
)

x < −d

H2(x) = 1 + C1x +
1

2
C2

1x
2 + C4x

4 + C6x
6 −d ≤ x ≤ d

H3(x) = R0 + R1(x− d) x > d

(11.20)

with three independent parameters d, C1 and C4 and where L, κ, C6, R0 and R1 follow from
continuity of H up to its second derivative at x = ±d. By construction d2H1/dx2|x=−d =
d2H3/dx2|x=d = 0, so that C6 follows directly from d2H2/dx2|x=d = d2H2/dx2|x=−d = 0.
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Furthermore, L and R0 follow from continuity of H in x = −d and x = d respectively,
leaving R1 and κ to be found from continuity of the first derivative of H at x = ±d.

Conjugation term F conj
ij

We call atom j a full neighbour of atom i if Sdown
Z,ij = 1. If 0 < Sdown

Z,ij < 1 then atom j

is called a fractional neighbour. For the LCBOPI, as for Brenner’s potentials, F conj
ij is a

function of the reduced coordination numbers Zij and Zji, and of the conjugation number
Zconj

ij . The number Zij is defined by:

Zij = Zi − Sdown
Z,ij (11.21)

The values of F conj
ij for integer Zij and Zji were fitted to known bond energies for equi-

librium configurations with appropriate coordination environments[3, 15]. A cubic spline
was used to extend F conj

ij to non integer coordinations. In this interpolation approach, a
situation where atom i has 2 full neighbours other than j gives the same argument Zij = 2
as a situation where atom i has one full neighbour other than j and two fractional neigh-
bours k1 6= j and k2 6= j with Sdown

Z,ik1
+ Sdown

Z,ik2
= 1 which can lead to unreasonable values

for F conj
ij . Therefore, for the LCBOPII, which we wish to be applicable also to the liq-

uid phase where multiple fractional neighbours often occur, we propose an interpolation
scheme which makes use only of the values of F conj

ij for integer Zij and Zji. In this new
approach, the above situation is interpolated as a weighted sum of one configuration with
Zij = 1 (both fractional neighbours excluded), two configurations with Zij = 2 (one of the
fractional neighbours included as full neighbour and the other excluded and viceversa) and
one configuration with Zij = 3 (both fractional neighbours included as full neighbours).
Mathematically, this can be written as:

F conj
ij =

∑

{σk=0,1}

∑

{σl=0,1}
Wij,{σk}Wji,{σl}F

conj(Z̃ij,{σk},Z̃ji,{σl},Z
conj
ij,{σk}{σl}) (11.22)

where:

Wij,{σk} =
∏

k 6=j

(
σkS

down
Z,ik + (1− σk)(1− Sdown

Z,ik )
)

(11.23)

is a weight factor. The summation
∑

{σk=0,1} runs over all possible sets of numbers {σk},
one number for each neighbour k 6= j of i, with each σk assuming the value 0 or 1. Note
however that Wij,{σk} = 0 for all sets {σk} containing a σk = 0 for a full neighbour k 6= j
of i. Therefore, the summation can be restricted to the fractional neighbours, putting
σk = 1 for all full neigbours. The expression (11.22) requires only the values of F conj for
the integer arguments Z̃ij,{σk} (ranging between 0 and 3), defined as:

Z̃ij,{σk} = min(3,Zij,{σk}) (11.24)

with

Zij,{σk} =
∑

k 6=j

σk (11.25)
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The definition of the conjugation number Zconj
ij,{σk}{σl} is equivalent to that for the LCBOPI,

but is presented here in a more transparent form. By construction it is a number between
0 and 1 and reads:

Zconj
ij,{σk}{σl} =

Zel
ij + Zel

ji − Zel
ij,min − Zel

ji,min

Zel
ij,max + Zel

ji,max − Zel
ij,min − Zel

ji,min + ε
, (11.26)

where Zel
ij is the fractional number of electrons supplied by atom i to the bond ij given by:

Zel
ij =

4− M̃ij,{σk}
Z̃ij,{σk} + 1− M̃ij,{σk}

(11.27)

with M̃ij,{σk} the fractional number of saturated (i.e. with coordination at least four)
neighbours k 6= j of atom i. It is defined by:

M̃ij,{σk} = min(3,Mij,{σk}) (11.28)

where Mij,{σk} is given by:

Mij,{σk} =
∑

k 6=i,j

σkS
up
M (Zki) (11.29)

with Zki = Zk − Sdown
Z,ki according to Eq. 11.21. According to these definitions the minimal

and maximal values of Zel
ij , to be inserted into Eq. 11.26, are given by:

Zel
ij,min =

4

Z̃ij,{σk} + 1
and Zel

ij,max = 4− Z̃ij,{σk} (11.30)

respectively. We assume a linear dependence of F conj
ij,{σk},{σl} on Zconj

ij,{σk}{σl}, i.e.:

F conj
ij = (1− Zconj

ij,{σk}{σl})F
conj
ij,0 + Zconj

ij,{σk}{σl}F
conj
ij,1 (11.31)

with F conj
ij,0 = F conj(Z̃ij,{σk},Z̃ji,{σl},0) and F conj

ij,1 = F conj(Z̃ij,{σk},Z̃ji,{σl},1) given in Table
11.5. In Eq. 11.26, ε is a very small positive number that prevents the numerical singu-
larities occurring for coordination combinations (Z̃ij,{σk},Z̃ji,{σl}) = (0,0), (0,3), (3,0) and

(3,3), where Zconj
ij,{σk}{σl} = 0/ε = 0. Actually, for these combinations F conj

ij,0 = F conj
ij,1 so that

the value of Zconj
ij,{σk}{σl} becomes irrelevant.

Antibonding term Aij

The term Aij accounts for occupancy of anti-bonding states. When the supply of electrons
from atom i to the bond ij, Zel

ij , is not equal to that from atom j, Zel
ji , bonding is relatively

less effective. To illustrate this point, we refer to the configuration shown in Fig. 11.3.
For the ij-bond with Zij,{σk} = 1 and Zji,{σl} = 2 with saturated neighbours k 6= j of

i and l 6= i of j , yielding Zconj
ij,{σk}{σl} = 1, we have Zel

ij = 3 and Zel
ji = 2. Instead of a

bond energy somewhere between that of a double bond (6.2 eV , Ref. [130]) and that of
a triple bond (8.4 eV , Ref. [130]), the bond energy for this bond is only about 5.8 eV ,
according to the LCBOPI, the LCBOPII, and the REBO potential, due to the unfavorable
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Figure 11.3: Example used to describe the
term Aij that accounts for occupancy of anti-
bonding states (see text).

situation that not all electrons can make pairs, giving rise to an anti-bonding state being
occupied by the lone electron. Conversely, if the neighbours k and l are unsaturated,
yielding Zconj

ij,{σk}{σl} = 0, the bond energy is equal to 5.2 eV . With the linear dependence

in Eq. 11.31, the bond energy of this bond for 0 < Zconj
ij,{σk}{σl} < 1 is always between 5.2 eV

and 5.8 eV for the LCBOPI and the REBO potential. However, when the two neighbours
l 6= i of atom j are saturated and the neighbour k 6= j of atom i is unsaturated, we have
Zel

ij = 2 and Zel
ji = 2, i.e. a proper double bond which should have a bond energy of about

6.2 eV . For this case, Zconj
ij,{σk}{σl} = 2/5. In order to describe all these situations correctly

we introduced the anti-bonding term Aij, which, using the same interpolation approach as
for the conjugation term, is given by:

Aij =
′∑

{σk=0,1}

′∑

{σl=0,1}
Wij,{σk}Wji,{σl}aij(∆el) (11.32)

where the summations are restricted to those configurations with (Zij,{σk},Zji,{σl}) equal to
(1,1),(2,2), (1,2) or (2,1) and where:

aij(∆el) =
α0∆

2
el

1 + 10|∆el| (11.33)

with
∆el = Zel

ij,{σk} − Zel
ji,{σl} (11.34)

The function aij tends to a linear dependence on |∆el| while being continuous up to the
first derivative at ∆el = 0. For (Zij,{σk},Zji,{σl}) not equal to (1,1), (2,2), (1,2) or (2,1) the
linear interpolation Eq. 11.31 is reasonable and the correction Aij is not required.

Torsion term Tij

Also for the torsion term Tij, the same interpolation approach is used as for the conjugation
term:

Tij =
′′∑

{σk=0,1}

′′∑

{σl=0,1}
Wij,{σk}Wji,{σl}tij(yij,{σk}{σl},Z

conj
ij,{σk}{σl}) (11.35)

where now the summations are restricted only to those configurations with (Zij,{σk},Zji,{σl}) =
(2,2) . The torsional term tij for each of these configurations depends on yij,{σk}{σl} =
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conjN       = 0 conjN       = 1/8

conjN       = 1/2

conjN       = 1conjN       = 5/8

conjN       = 1/4

k2

i j

k1

l 2

l 1

Figure 11.4: Schematic molecules with a central bond between two sp2 sites (i and j,
dashed circles), for all the possible values of Zconj (Eq. 11.26) with integer coordinated
neighbours. White circles represent three-fold (sp2) sites, while black circles are for four-
fold (sp3) sites.

cos(ωij,{σk}{σl}) with ωij,{σk}{σl} the torsion angle and on the conjugation number Zconj
ij,{σk}{σl}

for this configuration. The DF calculations of the torsional barrier for the 6 cases of
Fig. 11.4, shown in Fig. 11.5, display a rather complex dependence of the torsional barrier
on each of the possible conjugation numbers. Fitting this behaviour led us to the following
form for tij:

tij(ỹ,z̃) =

{
τ1(z̃)

(
ỹ2(1− ỹ2)

)2
z̃ ≤ 1

8

τ2(z̃)(1− ỹ2)(2− ỹ2)2 z̃ > 1
8

(11.36)

where we used the short notations ỹ = cos(ωij,{σk}{σl}) and z̃ = Zconj
ij,{σk}{σl} and where:

τ1(z̃) = At (z̃ − 1/8)2 (11.37)

τ2(z̃) =
Bt1(z̃ − 1/8)2 (z̃ + Bt2∆

2
el[∆

2
el − (2/3)2])

2
(1−Bt3z̃)

Bt4 + (z̃ − 1/8)2
(11.38)

For the LCBOPI+ (see section 6.7) the torsion angle was defined as the angle between
the vector product of rij with rik and the vector product of rij with rjl, as for the REBO
potential. The total torsion term Tij was the sum of contributions from the torsion angles
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Figure 11.5: Torsional barriers according to the LCBOPII and our DF calculations for the
six values of Zconj corresponding to the molecules schematically represented in Fig. 11.4.
Simbols represent the DF results, curves the fits obtained by the LCBOPII. Top panel:
torsional barriers for the extreme values of Zconj, related to the conjugated (Zconj=0,
squares and dashed curve) and double bonds (Zconj=1, circles and solid curve). Bottom
panel: intermediate values of Zconj: 1/8 (stars and dotted curve), 1/4 (down triangles and
dashed-dotted curve), 1/2 (up triangles and solid curve) and 5/8 (diamonds and dashed
curve). Note the complex behaviour of the curves for the values 1/2 and 5/8, where the
barrier at π/2 is higher for Zconj=1/2 than for Zconj=5/8.

from all pairs of these vector products. However, apart from the problematic singularity
occurring when rik or rjl is parallel to rij this definition of the torsion term gives a non-
zero torsion for many situations, like the one shown in Fig. 11.6 where there is actually



166 The LCBOPII

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Top view

Side view

Figure 11.6: Scheme to show a case with no torsion, according to our definition. Starting
from the molecule in its planar configuration, out of plane bending described by dashed
lined arrows leave ỹ = 0, thus giving the torsional term Tij = 0. Only the twisting around
the central bond gives a ỹ 6= 0. In contrast, older definition of the torsions, such as in
Refs. [4, 130, 155], gave a spurious nonzero torsional contribution for the bending shown
in this figure.

no torsion at all. For example, it gives a non-zero torsion for the dimer bond on the
reconstructed (001) surface, leading to a too large dimer bond distance (1.555 Å for the
LCBOPI+ and 1.546 Å for the REBO potential against the experimental value 1.37 Å).
Therefore, for the LCBOPII we have formulated a different expression for the torsion angle
which does not give ’spurious torsion’ and interpolates well for any configuration. For each
configuration where two bonded atoms i and j both have two other neighbours (k1,k2) and
(l1,l2) respectively, characterized by the two sets of numbers {σk} and {σl}, we define a
single torsion angle through:

ỹ = cos(ωij,{σk}{σl}) =
tijk · tjil

|tijk||tjil| (11.39)

where the vector tijk is given by:

tijk = r̂ij × ŵ−
ijk + (r̂ij · ŵ−

ijk)(r̂ij × ŵ+
ijk) (11.40)

with:

ŵ−
ijk =

r̂ik1 − r̂ik2

|r̂ik1 − r̂ik2|
, ŵ+

ijk =
r̂ik1 + r̂ik2

|r̂ik1 + r̂ik2|
(11.41)
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and r̂ij = rij/|rij|. We note that the definition Eq.(11.40) becomes equivalent to the one
of the REBO potential for the standard case of rotation around the axis r̂ij.

11.2.3 Long range potential V lr.

The functional form of the long-range (i.e. non-bonded) pair potential V lr
ij is the same as

for the LCBOPI:

V lr(r) =
(
θ(r0 − r)V lr

1 (r) + θ(r − r0)V
lr
2 (r)

)
Sdown

lr (r) (11.42)

where V lr
i (i = 1,2) are ordinary Morse functions plus a shift:

V lr
i (r) = εi

(
e−2λi(r−r0) − 2e−λi(r−r0)

)
+ vi. (11.43)

and Sdown
lr (r) smoothly cuts off the long range interactions beyond 6 Å. The two Morse

functions are connected continuously up to the second derivative in r = r0, implying ε1 =
ε2λ

2
2/λ

2
1 and v1 = ε1 − ε2 with v2 = 0. The values of the parameters have slightly changed

as compared to those for the LCBOPI, leading to an optimal fit of the compressibility
in the direction perpendicular to the layers, namely 4.324 10−3 Å3/meV to be compared
to the experimental value 4.326 10−3 Å3/meV [243, 244]. This long range part binds the
graphitic layers at the experimental equilibrium distance of 3.35 Å, the binding energy
being 25 meV/at [15].

11.2.4 Middle range potential V mr

The middle range attractive interactions in Eq. 11.1, representing an important novelty
of the LCBOPII, are environment dependent. They depend on bond angles and on the
presence of ’dangling bonds’ as quantified by the dangling bond number Zdb defined in the
following. It reads:

V mr
ij =





Sdown
db (xdb

ij )Sup
γ,0(γij)V

mr
0,ij + Sup

db (xdb
ij )S̃up

γ,1(γij)V
mr
1,ij 0 ≤ Zdb

ij ≤ 1

Sdown
db (xdb

ij )S̃up
γ,1(γij)V

mr
1,ij + Sup

db (xdb
ij )Sup

γ,2(γij)V
mr
2,ij 1 < Zdb

ij ≤ 2

Sdown
db (xdb

ij )Sup
γ,2(γij)V

mr
2,ij 2 < Zdb

ij ≤ 3

(11.44)

where:

xdb
ij = Zdb

ij − Idb
ij (11.45)

with Idb
ij = Int(Zdb

ij ) (i.e. the largest integer smaller than Zdb
ij ). The dangling bond number

Zdb
ij is defined as:

Zdb
ij = 4−

∑

k 6=i,j

Sdown
Z,ik Zel

ki (11.46)

where Zel
ki is the number of electrons from atom k available for the bond ki, defined by:

Zel
ki =

4− Sdown
sat (Zki)Mki

Zki + 1− Sdown
sat (Zki)Mki

(11.47)
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with
Mki =

∑

m6=i

Sdown
Z (rkm)Sup

M (Zmk) (11.48)

and Sdown
sat (Zki) goes to zero for Zki ≥ 3, i.e. when atom k is saturated.

In Eq.(11.44) the attractive potentials V mr
n,ij = V mr

n (rij) are simple polynomials cut off
smoothly:

V mr
n (rij) = Amr

n Θ(rmr
1 − rij)(r

mr
1 − rij)

3 (11.49)

V mr
2 (rij) = Amr

2 Θ(rmr
2 − rij)(r

mr
2 − rij)

2 (11.50)

for situations with n=0, 1 dangling bonds and 2 dangling bonds respectively. For Zdb
ij ≥ 3

we set V mr
ij = 0. In the presence of dangling bond(s) the middle range attraction is stronger

than without dangling bond(s). The parameter γij is related to the bond angles by:

γij =
1

1 + (B/Zij)
∑

k 6=i,j (1 + cosθijk)
4 . (11.51)

For small angles, γij becomes small. If γij is smaller than the lower bounds of the switch
functions Sup

γ,n, then V mr
ij = 0 according to Eq.(11.44). According to the definition of Zdb

ij ,
Zdb

ij = 0 for each of the equilibrium bulk phases, i.e. chain, graphite, diamond etc. The
lower bound of Sup

γ,0 is chosen such that the middle range interaction vanishes for each
of these bulk phases. So the middle range interaction does not affect the equilibrium
properties of these phases to which the short range potential, combined with the given V lr,
is fitted, but it only affects the energetics for bond breaking and formation. The lower
bound for the switch functions Sup

γ,n depends also on the dangling bond number, favoring
the attraction when dangling bond(s) are involved. In order to make the attraction for a
single bond more directional than that for a double bond, we took:

S̃up
γ,1 = (Sup

γ,2)
2 (11.52)

The middle range coordination number Zmr
i is defined as:

Zmr
i =




(∑
j ṽij

)2

∑
j ṽ2

ij




δmr

(11.53)

where we used the short notation ṽij = Sup
mr,ijV

mr
ij and where δmr is a correlation exponent.

The larger δmr, the larger Zmr
i , the stronger is the middle range correlation. Without this

correlation (i.e. δmr = 0) the middle range contribution tends to become too large and
gives unrealistic configurations with accumulation of atoms in the middle range. On the
basis of simulations for the liquid phase at various densities, we took δmr = 1/2. With this
exponent the middle range correlation is equivalent with the correlation in the embedded
atom potentials and the total middle range energy of atom i becomes:

Emr
i =

1

2

∑
j ṽij

Zmr
i

=
1

2

√√√√√
∑

j ṽ2
ij(∑

j ṽij

)2

∑
j

ṽij = −1

2

(∑
j

ṽ2
ij

)1/2

(11.54)

The minus sign appear due to the fact that ṽij ≤ 0 for all pairs ij. With this mr contribu-
tion, a reasonable agreement of the dissociation energy curves calculated by the LCBOPII
and by DF is obtained, as shown in Fig.11.7 for single, double and triple bonds.

All parameters of the LCBOPII are given in Tables 11.5 and 11.4.
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Figure 11.7: Binding energy for (CH3)C≡C(CH3) (triple bond, tb), (CH3)2C=C(CH3)2

(double bond, db), and (CH3)3C−C(CH3)3 (single bond, sb), calculated by DF (dashed
curves) and the LCBOPII (solid curves) as described in the text. To determine the pa-
rameters Amr

1 and Amr
2 of Eq. 11.50, we impose the energy of the central single and double

bonds, stretched to 2.2 Å (vertical line), to be equal to the corresponding DF value.

11.3 Properties

The LCBOPII accounts by construction for the structural and elastic properties of most
crystalline structures of carbon and for these quantities gives values very close to the
LCBOPI[15]. Conversely, it gives a more accurate description of more complex structures,
such as the reconstructed surfaces of diamond, and of the energetics of phase transforma-
tions and structural defects.

11.3.1 Bulk equilibrium structures and elastic constants.

In Table 11.1 we give the values of the equilibrium interatomic distance dCC , binding
energy Eb and stretching force constant Fc for different crystalline structures, compared
to the reference values of Refs.[3, 130, 187, 149]. Table 11.1 can be directly compared to
Table I of Ref.[15] containing also the values for the LCBOPI and the REBO potential.
The values of the LCBOPI+ are the same as for the LCBOPI. In Table 11.2 we give the
elastic force constants for diamond and graphite compared to the results of Refs.[245] and
[246] respectively.
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Z dCC(Å) Eb(eV/atom) FC(eV/Å2)

1 (di) 1.315 (1.315) 3.081 (3.163)
2 (ch) 1.325 (1.330) 6.089 (6.175) 62.29 (59.67)
2 (tb) 1.200 (1.200) 8.524 (8.424) 98.85 (99.86)
3 (gr) 1.420 (1.420) 7.374 (7.374) 43.95 (43.57)
4 (d) 1.544 (1.544) 7.349 (7.349) 29.27 (29.52)
6 (sc) 1.770 (1.765) 4.760 (4.689)
12(fcc) 2.170 (2.170) 2.759 (2.759)

Table 11.1: Bond distances dCC , binding energies Eb and stretching force constants FC

calculated by the LCBOPII for the coordination Z of a C2 dimer bond (di), a linear chain
(ch), the triple bond (tb) and the crystalline structures graphite (gr), diamond (d), simple
cubic (sc) and face centered cubic (fcc). The binding energy for graphite includes the
interlayer binding energy described by Vlr. In parenthesis we give the reference values of
Refs. [3, 130, 187, 149].

Table 11.2: Elastic force constants (in

eV/Å3) for graphite (gr) and diamond (d). In
parenthesis the reference values of Ref. [246]
for graphite and Ref.[245] for diamond.

c11 (gr) 6.551 (6.616)
c66 (gr) 2.763 (2.746)
c11 (d) 6.718 (6.718)
c44 (d) 3.604 (3.604)

11.3.2 Diamond (111) and (001) reconstructed surfaces

The energy and structure of crystalline surfaces results from a delicate balance of forces
due to undercoordinated atoms at the surface and represent a severe test for interatomic

Ref. LCBOPII REBO∗ REBO LCBOPI+

(111)(2X1)

Esurf 1.87 1.2807 1.01 1.91 1.59
d12 1.43 1.460 1.437 1.445 1.455
d13 1.54 1.539 1.559 1.527 1.535
d24 1.54 1.540 1.565 1.534 1.545
d35 1.61 1.62 1.643 1.621 1.644 1.626
d46 1.65 1.64 1.647 1.653 1.690 1.664

(001)(2X1)

Esurf 2.12 1.99 2.14 2.61 2.60
d12 1.37 1.444 1.443 1.546 1.555
d13 1.50 1.519 1.556 1.539 1.521
d34 1.57 1.621 1.602 1.605 1.606
d35 1.55 1.541 1.555 1.549 1.543

Table 11.3: Surface energy (in eV/(unit cell of the unreconstructed surface)) and in-
teratomic distances (in Å) of the relaxed (2×1)-Pandey-reconstructed (111) and of (2×1)
reconstructed (001) surfaces, with the same notation of Fig.6 and Table IV of Ref.[15].
Notice that the REBO potential data in Table IV of Ref.[15] are indicated here as REBO∗

and refer to the REBO potential without torsional interactions, i.e. with bDH
ij = 0.
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Figure 11.8: The reaction path of the bulk diamond to graphite transformation as a
function of rcc,⊥ (in Å), the carbon-carbon distance perpendicular to the (111) bilayers
that transform into graphitic layers, (in Å), compared with the ab initio results from Ref.
[156]. The path is characterized by: the energy barrier E (in eV) (top panel), b) the
intraplanar carbon-carbon distance, rcc,‖ (in Å) (middle panel), and c) the buckling angle
θ (in degrees)(bottom panel). Solid line: LCBOPII; dashed line: LCBOPI+; dotted line:
Ref. [156].
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potentials. In Table 11.3 we give the surface energy and the interatomic distances of the
relaxed (2×1)-Pandey-reconstructed (111) and of the (2×1) reconstructed (001) surfaces,
with the same notation of Fig.6 and Table IV of Ref.[15]. It is important to notice that the
(2×1) reconstruction of the (001) surface does not imply any torsion of the bonds whereas
a torsional contribution is present for the (111)(2×1). With the definition of torsion of the
LCBOPII both situations are correctly described, whereas the REBO potential and the
LCBOPI+ give a spurious torsion for the (001)(2×1) surface, leading to the too large value
of the d12 distance (see Table 11.3).

11.3.3 Graphite to diamond transformation.

The transformation from graphite to diamond occurs via a reaction path that can be
parametrized by one reaction coordinate, the carbon-carbon distance rCC,⊥ between two
atoms in adjacent (111) bilayers evolving towards graphitic planes. The ab initio results of
Fahy et al. [156], for the energy barrier E, intraplanar carbon-carbon distance rCC,‖ and
buckling angle θ are compared in Fig. 11.8 with the results of the LCBOPII and also the
LCBOPI+. Notice that only the barrier height has been used in the fitting procedure as
it has been done also for the LCBOPI. The structural details of the transformation along
the reaction path are much better reproduced by the LCBOPII. The agreement with the
ab initio results is satisfactory.

Figure 11.9: Illustration of the
formation of the 5-77-5 defects
in graphite in a roughly square
sample with side Lx. We show
how the defect is formed by ro-
tation of π/2 of the bond be-
tween atoms 1 and 2, trans-
forming four hexagons into two
pentagons and two heptagons,
whence the 5-77-5 name of the
defect. A rotation of the bond
between atoms 2 and 3 gives an
equivalent transformation. xL
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11.3.4 Vacancy in diamond and vacancy in graphite

We have calculated by DF the energy of formation of a vacancy in diamond, Ed
vac = 5.64 eV

and in a single layer of graphite Egr
vac = 7.90 eV to determine the values of the parameters

F conj
23,1 = F conj

32,1 and F conj
21,0 = F conj

12,0 respectively. Previous DF calculations gave Ed
vac = 7.2

eV [247] and Egr
vac = 7.6 eV [248]. The LCBOPII gives Ed

vac = 6.78 eV and Egr
vac = 7.90 eV.

For both graphite and diamond, according to our DF calculations the first neighbours move
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Figure 11.10: Bottom panel: barrier height (filled diamond) and formation energy (empty
circles) of the 5-77-5 defect calculated for rotation of the 1−2 (solid line) and 2−3 (dashed
line) bonds as a function of the side Lx of the samples defined in Fig. 11.9. As indicated,
the total number of atoms in the sample ranges between 24 and 576. One can see that the
two estimates converge only for the largest sizes. For the largest sample we show in the top
panel the calculated energy as a function of the rotation angle φ for three cases: graphene,
i.e. a single layer of graphite (dashed line), graphene with positions constrained into the
plane (dotted line) and bulk graphite (solid line). As expected, the last two cases are
almost undistinguishable and at slightly higher energy than for graphene with out-of-plane
relaxation.
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away radially from the vacancy up to a distance of 1.52 Å and 1.73 Å, to be compared to
LCBOPII values 1.44 Å and 1.67 Å, for graphite and diamond respectively. The distance
between first and second neighbours of the vacancy is 1.40 Å for graphite and 1.50 Å for
diamond, in good agreement with our DF data of 1.40 Å and 1.49 Å, respectively.

11.3.5 The 5-77-5 defect of graphite.

The energetics of defect formation is very relevant for understanding diffusion and growth.
An important defect in graphite is the so called 5-77-5 topological defect shown in Fig. 11.9
which is formed by rotating a carbon-carbon bond by π/2 within a graphitic sheet, implying
a transformation of four hexagons into two pentagons and two heptagons. This rotation is
also called a Stone-Wales transformation [249] and plays an important role in the formation
of fullerenes and nanotubes. A tight-binding calculation by Pan et al. [250] for this defect
resulted in a formation energy of 4.43 eV, a value much lower than the 10.4 eV previously
found by Kaxiras and Pandey by means of ab initio calculations [248]. The discrepancy
is attributed by Pan et al. to a too small sample of 18-atoms used in Ref. [248], making
unreliable also the activation barrier of 13.7 eV calculated in this paper. In Fig. 11.10
we show the prediction of the LCBOPII for these quantities that indeed confirm that
formation and activation energy of this defect markedly depends on the sample size and
shape. Notice that the defect can be obtained in two equivalent ways, by rotating the
bond between atoms indicated as 1 and 2 or that between atoms indicated as 2 and 3 in
Fig. 11.9. However the calculated energies become equal only in the limit of large samples.
In the bottom panel of Fig. 11.10 we give the values of barrier height and formation energy
of this defect calculated for rotation of the 1 − 2 and 2 − 3 bonds as a function of the
side Lx of the, periodically repeated, samples as shown in Fig. 11.9. One can see that the
results for these two cases converge only for very large sizes.

For the largest sample we show in the top panel of Fig. 11.10 the calculated energy
as a function of the rotation angle φ for three cases, for graphene, i.e. a single layer of
graphite, for a single layer of graphite with positions constrained into the graphite plane
and for bulk graphite. As expected the last two cases are almost undistinguishable and at
slightly higher energy than for graphene with out-of-plane relaxation.
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11.4 Appendix. Detail of density functional calcula-

tions

The functions tij (Eq. 11.35) and V mr
ij (Eq. 11.44) are fitted to ab initio DF results

calculated to this purpose by means of the CPMD package [60]. We used the spin polar-
ized local density functional with BP [79, 78] gradient correction. The Kohn-Sham states
were expanded in a plane-wave basis set sampled at the Γ point in the Brillouin zone,
and truncated at a kinetic energy of 90 Ry. Semi-local norm-conserving Martins-Troullier
pseudopotentials [113] were used to restrict the number of electronic states to those of the
valence electrons. The pseudopotential was constructed with a valence-electron configura-
tion s2p2, using core-radii of 1.23 a.u. for both s and p orbitals. The pseudopotential was
transformed into the Kleinman-Bylander form [114] with p orbitals as the local term. All
calculations were performed using an isolated cubic cell.

Torsional barriers

In the spirit of Refs. [14, 220], we calculated by DF the torsional barriers for the bond
between the two three-fold coordinated atoms i and j (shaded circles in Fig. 11.4) for
three-fold (white circles) or four-fold (black circles) coordination of the other neighbours.
The number Zconj smoothly increases with the number of four-fold sp3 neighbours. The
cases with Zconj = 0 (i.e. with a conjugated πz orbital) and Zconj = 1 (i.e. the double
bond) correspond to the two molecules studied in Ref. [14]. Hydrogen atoms were used to
obtain the correct coordination of the four peripheral atoms.
After geometrical optimization of the planar configuration, we twisted the molecule around
the axis through i and j, in steps of π

12
; at each step we optimized the electronic wave-

function without allowing any structural relaxation, in order to have the energy barrier
as function of the twisting angle only. The results, shown by symbols in Fig. 11.5, were
used to fit the parameters of tij for the LCBOPII. Note that for the LCBOPII only the
coordination of the peripheral atoms, and not the actual positions of the further neighbours
not shown in Fig. 11.4, is relevant for the energy of the bond ij.

Dissociation energy curves

We estimated the energies needed to dissociate a single, double or triple bond by describ-
ing model molecules as described in the following, to fit the parameters Amr

1 and Amr
2 in

Eq. 11.50. Since the LCBOPII does not describe carbon-hydrogen bonds, we compared
DF results for the double bond in (CH3)2C=C(CH3)2 with the structure with Zconj = 1 in
Fig. 11.4, i.e. we considered the stretching of the bond between atom i and j, each bonded
to other two sp3 atoms. Analogously, for a single bond we compared (CH3)3C−C(CH3)3 to
a case with i and j each bonded to three sp3 sites, and, for the triple bond (CH3)C≡C(CH3)
was compared to a case with i and j each bonded to one sp3 site . After geometrical opti-
mization, we stretched the central bond in steps of 0.1 Å and optimized the wavefunction
without allowing any relaxation. The dissociation curves calculated by DF are reliable
when the bond lengths are not too far from their equilibrium value. The dissociation en-
ergy was defined as the difference between twice the Kohn-Sham energy of one isolated
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Figure 11.11: Calculated dissociation curves for the double bonded molecule
(CH3)2C=C(CH3)2.

fragment after dissociation and the Kohn-Sham energy of the molecule in its equilibrium
geometry. The binding energy has the opposite sign.

As shown in Fig. 11.7, the dissociation of the triple bond is already fairly well described
by the potential V lr(r) . The parameters Amr

1 and Amr
2 were obtained by fitting the results

obtained for single and double bond, respectively. They were fitted to have the energy of
the molecule with the central bond stretched to 2.2 Å equal to the DF binding energy at
the same elongation. Note that 2.2 Å is the cut-off of V sr

ij . Beyond 2.2 Å the DF results
are not a priori reliable, particularly for the unpaired spin of the two fragments. Therefore,
consistently with Ref.[251], we assumed that there is no barrier in the formation of the
single bond and smoothly connected the curve to zero for r > 6 Å.

For the double bond (see Fig. 11.4) we found a small barrier for the formation of the
bond at 2.9 Å if the molecule was kept in the planar configuration. Allowing relaxation
during the dissociation, the molecule found a dissociation path without any barrier, evolv-
ing to a chair configuration from bond length 2.2 Å on. The middle range potential for
the double dangling bond cannot account for this steric difference. Therefore we fitted the
parameters to a dissociation barrier lower than the DF one, as shown in Fig. 11.7.
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11.5 Appendix. Parameters for the LCBOPII

Switch q qmin qmax p

Sdown
sr rij 1.7 2.2 3.0

Sdown
lr rij 5.5 6.0 0

Sdown
db xdb

ij 0.0 1.0 0

Sup
mr rij 1.7 2.2 -2.0

Sup
M Zki 2.0 3.0 0

Sup
γ,0 γij 0.34 0.93 0

Sdown
Z rij 1.7 2.2 -3.0

Sdown
sat Zki 3.0 4.0 0

Sup
γ,2 γij 0.30 0.93 0

Short range potential V sr

VR Asr = 53026.92614 α = 6.74750993
VA Bsr

1 = 27618.35706 β1 = 6.34503890
Bsr

2 = 34.07142502 β2 = 1.19712839

G gmin = 0.0020588719 ggr = 0.0831047003
gmax = 16.0
g1,0 = 0.7233666272 g1,1 = 1.7334665088
g1,2 = 1.8701997632
g2,0 = 0.73994527795 g2,1 = −1.999211817
g2,2 = −17.43251545
g2,3 = −33.96127110 g2,4 = −44.65392079
g3,0 = −15.19 g3,1 = −25.6168552398
g3,2 = −21.51728397
g3,3 = 0.9899080993 g3,4 = 13.66416160
Ay0 = −0.4 By0 = 0.01875
Ag = 5.6304664723 Bg = 0.1516943990
Cg = 0.009832975891
Dg = −0.189175977654 Eg = 0.050977653631

H d = 0.14 C1 = 3.335
C4 = 220.0 For C6, L, κ, R0, and R1 see text.

Table 11.4: Parameters of the LCBOPII, part one. In the “Switch” table, the distances
(q = rij) are in Å. In the “Short range potential” table Asr, Bsr

1 , and Bsr
2 are in eV; rij and

d are in Å; α, β1, β2, and C1 are in Å−1; C4 is in Å−4; all the other parameters in these
tables are dimensionless.
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Short range potential V sr (continued)

F conj
ij F conj

ij,0

Zji = 0 Zji = 1 Zji = 2 Zji = 3
Zij = 0 0.0000 0.0207 -0.0046 -0.1278
Zij = 1 0.0207 0.0000 -0.0365 -0.1043
Zij = 2 -0.0046 -0.0365 0.0000 -0.0273
Zij = 3 -0.1278 -0.1043 -0.0273 0.0000

F conj
ij,1

Zji = 0 Zji = 1 Zji = 2 Zji = 3
Zij = 0 0.0000 0.0584 0.0416 -0.1278
Zij = 1 0.0584 0.1379 0.0062 -0.1243
Zij = 2 0.0416 0.0062 0.0936 -0.0393
Zij = 3 -0.1278 -0.1243 -0.0393 0.0000

Aij α0 = 0.95

Tij At = −13.15290988672
Bt1 = − 0.0486839615974 Bt2 = 3.8
Bt3 = 0.62 Bt4 = 0.005

Middle range potential V mr

rmr
1 = 4.0 rmr

2 = 2.9
Amr

0 = −0.2345 Amr
1 = −0.67

Amr
2 = −4.94

Long range potential V lr

r0 = 3.715735
λ1 = 1.338162 λ2 = 2.260479
ε2 = 2.827918 ε1 = ε2λ

2
2/λ2

1

v1 = ε1 − ε2 v2 = 0.0

Table 11.5: Parameters of the LCBOPII, part two. Amr
0 , Amr

1 , and Amr
2 are in eV; v1, ε1,

and ε2 are in meV; rmr
1 , rmr

2 , r0, are in Å; λ1, and λ2 are in Å−1; all the other parameters
are dimensionless.



The LCBOPII: performance in the
liquid

Marco Polo descrive un ponte, pietra per pietra.
— Ma qual è la pietra che sostiene il ponte? — chiede
Kublai Kan.
— Il ponte non è sostenuto da questa o quella pietra,
— risponde Marco, — ma dalla linea dell’arco che esse
formano.
Kublai Kan rimane silenzioso, riflettendo. Poi sog-
giunge: — Perché mi parli delle pietre? È solo dell’arco
che m’importa.
Polo risponde: — Senza pietre non c’è arco

Marco Polo describes a bridge, stone by stone.
— Which is the stone that holds the bridge? — Kublai Kan asks.
The bridge is not held by this or that stone, — Marco answers, —
but by the arch line that the stones design.
Kublai Kan stays silent, thinking. Then he adds: — Why do you
tell me about stones? It is only about the arch that I care of.
Polo replies: — Without stones there is no arch.

12.1 Introduction

The liquid phase of carbon provides one of the most severe benchmarks for testing the
accuracy and transferability of the long range carbon bond order potential (LCBOPII)
introduced in the previous chapter.

The purpose of this chapter is two-fold. Firstly, we will compare the LCBOPII liquid
with density functional theory based molecular dynamics (DF-MD) simulations and sim-
ulation data from the literature. Note that no reliable experimental data are available at
these extreme conditions. Secondly, we extend the DF-MD data for the liquid to a wider
range of the phase diagram employing the LCBOPII, exploiting the fact that LCBOPII
simulations are orders of magnitude faster than DF-MD simulations.

The present chapter is organized as follows. In section 12.2 we describe the simulation
methods employed, both for the classical potentials (i.e. the LCBOPII and the LCBOPI+)
and for DF-MD. In section 12.3 we describe the equation of state (EoS, P = P (ρ,T )) of
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liquid carbon, and propose a polynomial fit for the EoS. In section 12.4 we present the
distribution of sp-, sp2-, sp3-coordinated sites over a wide range of densities and tem-
peratures. Our analysis shows the impressive recovering of reference data. Subsequently,
in section 12.5 we present the radial distribution functions (g(r)) at several densities and
temperatures. We discuss both total g(r) and partial g(r) for atoms with specific coordina-
tions. In section 12.6 we briefly report the behaviour of the angular distribution functions
at different state points. Sections from 12.3 to 12.6 are naturally split in two parts, the first
comparing LCBOPII with reference data, and the second with properties for state points
not extensively covered in literature. We conclude in section 12.7 with a brief resume,
conclusions, and an outlook.

12.2 Methods

All the simulations with the LCBOPII are performed using the Metropolis Monte Carlo
(MC) algorithm, in the constant volume (NVT) ensemble. Systems consisted of 128 and
1000 atoms in a periodically replicated cubic box. Initial configuration were generated
starting from a cubic arrangement that was melted at the highest probed temperature
(15000 K). Subsequently, the temperature for the systems were fixed at 7 values (15000,
10000, 8000, 7000, 6000, 5000, 4500 K), and the systems were equilibrated for 5 105 MC
moves per particle, followed by a production run of 106 MC moves per particle. The
128 particles samples were used to compare the results of the LCBOPII with calculated
DF-MD data or with data taken from literature. The 1000-particle MC simulations with
the LCBOPII were used to generate the bulk of the data presented in this paper. The
local structure of the liquid, i.e. the coordination fractions and the radial and angular
distribution functions show a negligible dependence on the system size. However, some
collective properties, such as pressure and internal energy, show a small but non-neglible
system size dependence. Typically, the 128 and 1000-particle systems show a pressure
difference of 3% and an internal energy difference of 0.3% in energy. We selected 15
densities ∗ ranging from 3.99 103 kg/m3 to 1.73 103 kg/m3. The lowest density was chosen
to be near the graphite melting line [16]. The pressure was calculated via virtual volume
displacements. If V is the volume of the sample, its potential energy is UV at a given
configuration. The energy of the sample rescaled to a volume V ′ is then UV ′ . In the limit
of V ′/V → 1, and with V ′ fixed as well as V , then:

P = ρkBT − 〈UV ′ − UV 〉
V ′ − V

(12.1)

where 〈...〉 denotes the average in the NVT ensemble. This method avoids the measurement
of forces, not needed in MC simulations.

A small part of the simulated state points are in the region of the phase diagram where
the liquid is metastable with respect to diamond.

We have not carried out a numerical evaluation of the phase diagram predicted by the
LCBOPII, evaluation that was done in Ref. [16] for the LCBOPI+. Yet, using direct free-
energy difference calculations we determined the liquid freezing line for the LCBOPII from

∗The complete list of densities, in units of 103 kg/m3 is: 3.99, 3.87, 3.75, 3.64, 3.54, 3.44, 3.33, 3.24, 3.14,
3.05, 2.79, 2.47, 2.19, 1.95, 1.73. Points are naturally thicker where the |dT/dP | is higher, see section 12.3.
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the freezing line of the LCBOPI+ determined in Ref. [16]. We sampled with the LCBOPI+

a liquid and a diamond sample at the same phase point on the calculated diamond melting
line and at intervals a virtual swapping between the two potentials is performed. This
means that the energy of independent configurations during this run was evaluated also
with the LCBOPII. We call uI+ the energy per particle given by the LCBOPI+ at a
certain configuration and uII , the same quantity as given by the LCBOPII at the same
configuration, and ∆u = uII − uI+. Under the hypothesis that the portions of phase
space sampled by the two potentials have considerable overlap, their difference in chemical
potentials in the same phase point can be directly estimated from a simulation by using:

β∆µx = −ln〈exp(−β∆u)〉I+

where ∆µx = µII
x −µI+

x is the difference in chemical potentials between the LCBOPII and
the LCBOPI+, x is either l for the liquid or d for diamond, β = 1/kBT , and 〈...〉I+ denotes
ensemble average with the LCBOPI+. At the initial state point, it holds:

∆µ0 = ∆µd, 0 −∆µl, 0 = µII
d, 0 − µI+

d, 0 − (µII
l, 0 − µI+

l, 0) =

= µII
d, 0 − µII

l, 0
.
= ∆µII

0

in fact µI+
d,0 − µI+

l,0 = 0 for the choice of the simulation point. The last equality defines

∆µII
0 , that in general is non zero. The melting T for the LCBOPII at the chosen P can be

estimated using the thermodynamic relation:

∂β∆µII

∂β

∣∣∣∣∣
P

= hII
d − hII

l

where hII
d and hII

l are the specific enthalpies for the diamond and the liquid, evaluated
with the LCBOPII and ∆µII is now the difference in chemical potentials between the two
phases at any state point. The above differential equation can be readily solved with the
trapezoidal rule in the framework of predictor-corrector algorithms. To the purpose the
predictor is evaluated with the help of hII

d, 0 and hII
l, 0 calculated in one simulation for the

liquid and one for the diamond with the LCBOPII at the chosen state point. Then:

1

kBT̄ II
m

=
∆µII

0

hII
l, 0 − hII

d, 0

+
1

kBT I+
m

where T I+
m is the diamond melting T at the chosen pressure the LCBOPI+, T̄ II

m is the
predictor for the diamond melting T for the LCBOPII at the same pressure, and ∆µII

0 is
at T I+

m . With a simulation a the predicted temperature T̄ II
m , h̄II

d and h̄II
l are now calculated.

Hence, the corrected melting temperature T̂ II
m is:

1

kBT̂ II
m

=
∆µII

0
1
2

(
hII

l, 0 + h̄II
l − (hII

d, 0 + h̄II
d )

) +
1

kBT I+
m

We chose T = 6000 K, which gave P = 59.44 GPa for the coexistence for the LCBOPI+ [16].
We calculated β∆µd = −0.005, and β∆µl = −0.210. For the LCBOPII hd = −313.4 kJ/mol
and hd = −429.2 kJ/mol. It is important to note that the distributions of both the inter-
nal energy and the volume for the LCBOPI+ and the LCBOPII show significant overlap,
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and that the values of (ULCBOPII − ULCBOPI+) are bound within reasonable values since the
LCBOPI+ and the LCBOPII are rather similar. Both features are required for an accu-
rate estimate of the chemical potential difference using Eq. 12.2. The predictor-corrector
scheme gave a converged value of T II

m =5505 K in only two iterations. From the calcu-
lation at the final T II

m of ∆h and ∆v (i.e. the difference in enthalpy and specific volume
between the liquid and diamond), it is possible to evaluate the slope of the melting line
with the Clausius-Clapeyron equation: dT/dP = T∆v/∆h. The slope was evaluated as
28.04 K/GPa. We compare it to the very close value of 28.97 K/GPa as given by the
LCBOPI+ at the same pressure.

The DF-MD simulations were performed in the NVT ensemble, using the Car-Parrinello
[62] method as implemented in the CPMD package [60]. The electronic structure was
calculated using the Kohn-Sham formulation of density functional theory employing the
gradient-corrected density functional in its BP [79, 78] parametrization. The system con-
sisted of 128 atoms in a periodically replicated cubic cell. The Kohn-Sham states were
expanded in a plane-wave basis set sampled at the Γ point in the Brillouin zone, and
truncated at a kinetic energy (Ecut) of 35 Ry. This cut-off ensured the convergence of
the binding energy for small clusters within 5 kJ/mol per bond. We restricted the num-
ber of electronic states to those of the valence electrons by means of semi-local norm-
conserving Martins-Troullier pseudopotentials [113]. We constructed the pseudopotential
with a valence-electron configuration s2p2, using core-radii of 1.23 a.u. for both the l = s
and l = p. The pseudopotential was transformed into the Kleinman-Bylander form [114]
with l = p as the local term. The ionic temperature was controlled via a Nosé-Hoover
thermostat [94]. As in our DF-MD simulations liquid carbon is metallic, a proper imple-
mentation of the Car-Parrinello method requires the electronic degrees of freedom to be
coupled to a thermostat. Here we coupled a Nosé-Hoover chain thermostat to the elec-
tronic degrees of freedom with a target energy of 0.25 eV and a coupling frequency of
15000 cm−1. The target energy was estimated using the procedure proposed by Blöchl
and Parrinello [98]. The coupling frequency of 15000 cm−1 was chosen to be within the
dominant frequencies of the wavefunctions, determined from a DF-MD simulation with
fixed ion positions. The initial points were taken from equilibrated LCBOPII configura-
tions at the same density and temperature. These were equilibrated for about 0.5 ps,
followed by a production run of 5 ps. Pressures were evaluated with the method explained
in appendix 9.5.

12.3 Equation of state

12.3.1 Comparison

Fig. 12.1 shows ρ−P state points along the 6000 K isotherm obtained with DF-MD and the
LCBOPII. For comparison we have also plotted results from literature: data obtained with
DF-MD employing the BPE functional [14], and data obtained with the LCBOPI+ [17]
and the AIREBOII potential [220]. The difference in calculated pressures between the two
DF-MD simulations should be attributed to the use of a different functional. Differences
in Ecut and pseudopotential should not contribute significantly to this discrepancy, as both
setups yielded good binding energies. Compared to the DF-MD results, the LCBOPII
improves the performance of the LCBOPI+ by lowering the pressure towards the DF-MD
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Figure 12.1: Calculated equations of state for the LCBOPII and DF-MD employing the
BP functional. The statistical error for the pressure is smaller then the symbol size. Note,
that the DF-MD results for the 9 highest densities are also reported in Ref. [17]. For
comparison results obtained with the LCBOPI+ [17], the AIREBOII potential [220], and
DF-MD employing the BPE functional [14] are shown. From these last two series, a point
at 1.28 103 kg/m3 is not shown.

result and by suppressinf the decrease of the slope of the density-pressure curve around
3.3 103 kg/m3. The results for the AIREBOII potential [220] are similar to that of the
LCBOPII. The early short-range potentials CBOP and REBO do reproduce the DF-MD
data for the EoS reasonably well for low densities, but fail at higher densities beyond the
spurious LLPT. For the REBO potential, this is shown in Ref. [17].

12.3.2 Predictions

In Fig. 12.2 we have plotted the pressure-density curves for 7 isotherms from 4500 K to
15000 K. Also the estimated coexistence line is plotted. In the stable region all curves show
a regular monotonic increase of the slope of the curve. In the undercooled region we observe
for the 4500 K and 5000 K isotherms, in a small density region around 3.3 103 kg/m3, a
decrease of the slope. For the LCBOPI+, this wiggling of the pressure-density curve was
a pronounced feature at 6000 K, and associated with a rapid switching of the dominant
coordination from three- to four-fold. For the LCBOPII, the same coordination change
occurs in the wiggling region around 3.3 103 kg/m3 of the 4500 and 5000 K isotherms (see
below).

A wiggle in the ρ-P equation of state denounces a sudden decrease of the isothermal
compressibility (1/ρ dP/dρ). Thinking pressure as the leading parameter, in this region
the liquid reacts to an increase of pressure with an increase of density, higher than at the



184 The LCBOPII: performance in the liquid

1.5 2 2.5 3 3.5 4 4.5

Density [10
3
 kg/m

3
]

0

50

100

150

200

250

300

Pr
es

su
re

 [
G

Pa
]

Extrapolated critical isotherm (1230K)
4500 K
5000 K
6000 K
7000 K
8000 K
10000 K
15000 K

Estimated diamond melting line

Figure 12.2: Equations of state for the LCBOPII at seven different temperatures: 4500 K
(circles), 5000 K (squares), 6000 K (diamonds), 7000 K (triangles), 8000 K (plus), 10000 K
(crosses), 15000 K (stars). Each temperature is sampled at 15 different densities. Error
bars, not shown, are within the symbol size. The relative error is around 1% at the highest
pressure and increases up to 10% at the lowest (i.e. smaller than 5 GPa). The thick line at
the bottom is the extrapolated critical isotherm, at 1230 K. It has a horizontal inflection
point at density 3.66 103 kg/m3 and pressure 41.74 GPa. The dashed line is the estimated
diamond melting line, started from the calculated point shown as a diamond (at 5505 K,
59.4 GPa, and 3.12 103 kg/m3, see section 12.2), and prolonged assuming constant dT/dP .

surrounding densities. This is understandable thinking that on the left and on the right
of the wiggle, the liquid needs mainly to shorten covalent bonds to increase density. In
the transition region, a bigger increase of density is readily achieved receiving an extra
neighbour. Given the shape of the lower temperatures equation of state, nothing would
prevent to speculate the existence of a liquid – liquid phase transition at even lower tem-
peratures, eventually a first order one. We observed that samples at temperatures lower
than ∼ 4000 K rather freezed, especially at densities higher than 3 103 kg/m3. This makes
the speculation impossible to prove with this sample size. A (much) bigger sample size and
a careful annealing could reveal a scenario similar to liquid water, with its liquid – liquid
phase transition hidden in the glass region [57, 45, 47].

We employed a polynomial function to fit the calculated LCBOPII equation of state:

P (ρ,T ) = (ρ− ρ0)(c1 + c2T + c3T
2 + c4T

3) + (ρ− ρ0)
2(c5 + c6T + c7T

2 + c8T
3) +

+ (ρ− ρ0)
3(c9 + c10T + c11T

2 + c12T
3) + (ρ− ρ0)

4(c13 + c14T ) +

+ (ρ− ρ0)
5(c15 + c16T ) + (ρ− ρ0)

6(c17 + c18T ) (12.2)

The parameters of the fit function are given in table 12.1 and are obtained by minimizing
the square of the difference between the calculated and fitted pressures. The functional
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Figure 12.3: Three dimensional plot of the fitted equation of state, P = P (ρ,T ). The
solid line is the critical isotherm (at 1230 K), while the two dashed lines are the two extreme
isotherms of the simulated state points (i.e. 4500 and 15000 K).

form is fully empirical and designed to have a minimum number of parameters needed to
describe all the features of the data points. The fit could possibly be employed outside the
region of calculated state points. A reasonable extension for the density would be a range
between ∼ 1.5 to ∼ 4.5 103 kg/m3.

The polynomial fit reproduces the wiggling of the 4500 and 5000 K isotherms for the
undercooled liquid. It is tempting to explore the behavior of the fit at lower temperatures,
beyond the region of calculated state points. At these temperatures the liquid is even
more undercooled. With decreasing temperatures the wiggles become more pronounced,
yielding an inflection point with zero slope in the P − ρ plane for the 1230 K isotherm at
3.66 103 kg/m3, and 41.74 GPa. This behaviour is typical for the critical isotherm. At
lower temperatures the isotherms of the fit function show a van der Waals loop, indicating
a first-order phase transition associated with a density change. However, in our simulations
the system freezes below 4000 K, especially at densities higher than 3 103 kg/m3. Hence it
would be rather speculative to propose the presence of a liquid – liquid phase transition.
Still it might be interesting to explore the undercooled liquid by considering (much) larger
system size and perform careful annealing to see if a scenario similar to that of liquid water,
with its speculated liquid – liquid phase transition hidden in the glass region [57, 45, 47]
would appear.
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c1: -3.22435447999 107 J
c2: 9.88711221869 103 J K−1

c3: -6.05245942342 101 J K−2

c4: 1.63510457127 105 J K−3

c5: 2.53078007240 104 J m3 kg−1

c6: -9.47985686674 101 J m3 kg−1 K−1

c7: 1.20616311340 10−3 J m3 kg−1 K−2

c8: -3.42300962915 10−8 J m3 kg−1 K−3

c9: -2.49596407210 101 J m6 kg−2

c10: -2.04475278536 10−4 J m6 kg−2 K−1

c11: -5.00834553350 10−7 J m6 kg−2 K−2

c12: 1.41814229613 10−11 J m6 kg−2 K−3

c13: 5.24835967149 10−2 J m9 kg−3

c14: 2.60371540562 10−6 J m9 kg−3 K−1

c15: -3.08370110012 10−6 J m12 kg−4

c16: -2.44955788712 10−10 J m12 kg−4 K−1

c17: 5.24072792404 10−9 J m15 kg−5

c18: -3.22777913222 10−14 J m15 kg−5 K−1

ρ0: 1.35694366721 kg m−3

Table 12.1: Parameters of Eq. 12.2.

Fig. 12.4 shows the binding energy per particle at all the simulated state points. We note
that at all temperatures there is a minimum in binding energy at 2.5 103 kg/m3. The almost
perfectly parabolic dependency on density of the binding energy at the highest temperature,
is step by step lost upon decreasing temperature. At the two lowest temperatures there
appear pronounced wiggles as in the EoS. Reminding that all the reported points come from
equally long simulations, the increase of the size of the error bars at lower temperature can
be explained by the fact that the diffusion of the liquid is there slower. Thus, the system
explore a smaller region of the phase space in the same number of attempted moves, giving
a bigger uncertainty in the determination of the average binding energy.

12.4 Coordination

12.4.1 Comparison

The local coordination of atoms is determined by counting neighbours using the smoothed
cutoff functions defined for the LCBOPII. Specifically, we employed the following cut-off
radii: atoms closer than 0.17 nm to a given atom are counted as its integer neighbours,
atoms further than 0.22 nm are not counted, and atoms in between are partially counted,
by means of the cut-off function Sdown

Z,ij (Eq. 11.11). This implies that a coordination
fraction equal to e.g. three can be given by two integer and two partial neighbours. This
definition is consistently employed throughout the following analysis, in any situation the
definition of neighbour come into play (i.e. for the partial radial distribution functions
and the angular total and partial distribution function). Here we should note that in
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Figure 12.4: Energy per particle at all the temperatures. The symbol coding is the same
as for Fig. 12.2.

literature various alternative definitions of the coordination fractions are employed. These
may yield different values for a similar atomic configuration. Hence, a direct comparison
of coordinations fractions with literature data should be done with some care, a point
also noted by Marks [223]. Fig. 12.5 shows the coordination fractions calculated with the
LCBOPII and DF-MD along the 6000 K isotherm. For comparison also the results for
the LCBOPI+ from Ref. [17] are shown. We see that, except for a slight overestimation
of the three-fold fractions in the low-density regime, the LCBOPII results reproduce the
DF-MD data very well, both for the density dependence as for the absolute values. The
LCBOPII improves the predictions of the LCBOPI+: at densities up to ∼ 3.4 103 kg/m3,
the LCBOPII predicts less three-fold and more two- and four-fold sites, thus getting closer
to the DF-MD data. At higher densities, where the LCBOPI+ overestimated the four-fold
fraction, the coordination fractions predicted by the LCBOPII almost perfectly recover the
DF-MD data. Five-fold coordinated atoms (not shown in Fig. 12.5) only appear in the
high-density region. At 3.75 103 kg/m3 the fraction for the LCBOPII is 0.1, slightly larger
than DF-MD value of 0.07. Note that this is a remarkable achievement of the potential, as
the structures used to develop the LCBOPII did not have five-fold coordination. We also
note that in the high density range, short range BOPs hardly show coordination beyond
three, while for the LCBOPI+ the five-fold fraction remained negligible. The appearance
of five-fold coordinated structures in LCBOPII calculations is due to the presence of the
”middle range” part in the potential and to the softening of angular correlations. In fact,
in older BOPs as well as in the LCBOPI, a small angle such as 60 degree had a significant
energetic penalty, fitted to a twelve-fold structure (i.e. an fcc lattice) that applied also for
five-fold sites. With the LCBOPII the penalty at small angle for this lower coordination
has been reduced (see Eq. 11.12). As already shown in Ref. [17] the REBO potential yields
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Figure 12.5: Comparison of coordination fractions at 6000 K between the LCBOPII (solid
lines) and reference data coming from our own DF-MD (dashed lines). Data at density
2.79 103 kg/m3 and higher are the same shown in Ref. [17]. Circles always represents two-
fold sites, triangles three-fold, and diamonds four-fold. Five-fold sites are not shown but
can be deduced by subtraction, since no atoms with a single bond (one-fold) or six-fold
sites were observed at these densities. The error bars, not shown, are within the symbol
size, ∼ 0.01 for the LCBOPII, and ∼ 0.02 for the DF-MD points.

a negligible four-fold fraction at all the densities: the three-fold atoms replace the two-fold
upon increasing density, until the spurious LLPT at which all the atoms become three-fold.
The transition is also appears for CBOP, but the fraction of four-fold atoms raises until
∼ 10% before the transition. No data regarding coordinations in the liquid are available for
the AIREBOII potential, while the environment dependent potential (EDIP) introduced by
Marks [147] is similar to the LCBOPII in reproducing the DF-MD coordination fractions
at 5000 K [223].

12.4.2 Predictions

In Fig. 12.6 we show the average coordination fractions at several temperatures. For clar-
ity two-, three-, four-, and five-fold coordination fractions are shown in different panels,
respectively from top to bottom. The fraction of six-fold coordinated atoms were negli-
gible at all simulated state points. One-fold coordinated atoms appear only in a small
amount (a few %) at the lowest densities, and are not shown. Considering the density de-
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pendence, we observe that, for all temperatures, the atoms are mainly two- and three-fold
coordinated in the low density region, with the two-fold sites gradually replaced by three-
and four-fold sites upon increasing density. At 6000 K the two- and three-fold fractions
match around ρ =1.73 103 kg/m3. Note that the maximum of the three-fold fraction is at
ρ ∼ 2.75 103 kg/m3 for all temperatures. Beyond this density the dominant coordination
is three- and four-fold. The three-fold sites are replaced by four-fold sites over a relatively
short density range around ρ =3.4 103 kg/m3. The five-fold fraction only appears with
a significant fraction in the high-density region and shows a marked temperature depen-
dence. This also implies a stronger temperature dependence of the four-fold fraction in the
high-density region.

12.5 Radial distribution function

12.5.1 Comparison

In Figs. 12.7 we present the radial distribution functions (RDFs) obtained for the LCBOPII,
LCBOPI+, and DF-MD at four selected densities along the 6000 K isotherm. Taking DF-
MD as a reference, we see that the LCBOPII is a major improvement with respect to
the LCBOPI+. In particular the minimum between the first and second shell is now
properly described. Here we should note that the RDF and the coordination fractions, at
ρ =3.75 103 kg/m3 were used as a test system in the development of the potential.

The figures also show that the LCBOPII reproduces the DF-MD values for the peak
positions, and the height of the second and third peak. Only the fist-peak height is slighly
overestimated by the LCBOPII, consistent with the fact that the LCBOPII showed larger
values for the higher coordination numbers (Fig. 12.5).

Figs. 12.8 compare the LCBOPII RDFs for a liquid at 2.9 103 kg/m3 at four different
temperatures with 64-atom DF-MD data from Ref. [252], calculated using the local density
(LDA) functional. This figure makes clear that, up to 12000 K, also the temperature
dependence is well reproduced by the LCBOPII. The temperature dependence is typical
for a liquid: the peak heights decrease with increasing temperature, while minima increase,
indicating a gradual loss of structure. It is striking that all the curves crosses at the same
points at g(r) = 1. In fact, at ∼ 0.165, ∼ 0.230, and ∼ 0.285 nm, the value of g(r) is 1,
regardless of the temperature.

12.5.2 Predictions

Fig. 12.9 shows radial distribution functions for four selected densities at 6000 K. These
four densities are chosen with the following criterion: density 1.73 103 kg/m3 is the lowest
sampled and show almost equality of two- and three-fold fractions; density 2.79 103 kg/m3

show the maximum three-fold fraction amongst the densities; density 3.44 103 kg/m3 has
about equal fraction of three- and four-fold sites; density 3.99 103 kg/m3 is the highest
sampled and show a rather consistent fraction of five-fold sites. These selected fractions will
be analyzed at the same temperature by means of the partial radial distribution functions,
total, and partial angular distribution functions in the following sections.

In Fig.12.9 we see that the position of the first peak is rather constant, whereas the
position of the second peak moves markedly inwards with increasing density. This is
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consistent with the findings of other DF-MD [252] and tight binding [213] calculations
of liquid carbon, and is also seen in simulations of other covalently bonded liquids [253]
The height of the first peak decreases significantly when the density goes from 1.73 to
2.79 103 kg/m3. This should be attributed to the change in the coordination pattern,
going from mixed two- three-fold to mainly three-fold. Upon further increase of the density
it keeps the same height. In contrast, the second peak height increases gradually upon
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Figure 12.9: Radial distribution functions at 6000 K and four selected densities for the
LCBOPII. Density 1.73 and 3.99 103 kg/m3 are respectively the lowest and the high-
est sampled. At the lowest density two-fold and three-fold are present with the same
fraction. Density 2.79 103 kg/m3 shows the maximum in the fraction of three-fold coordi-
nated atoms. Density 3.44 103 kg/m3 has almost the same amount of three- and four-fold
sites. These same selected densities are analyzed in their partial distribution functions
(Figs. 12.10, 12.11, 12.12, 12.13), angular distribution functions (Fig. 12.15), 2nd shell an-
gular distribution functions, and 2nd shell coordinations (Figs. 12.16 and 12.17).

increasing density, while the dip between these two peaks decreases softly.

12.5.3 Partial radial distribution functions

We performed a further analysis of the liquid structure by examining the spatial correlation
between the positions of carbon atoms with a specific coordination. We determined partial
radial distribution functions (PRDF) 2gij(r), defined as the probability of finding a j-fold
site at a distance r from an i-fold site. We have found some dependence of the PRDFs
on the value of the cut-off radii used in the definition of neighbours. However, important
features such the positions of peaks and minima, and the relative height of the peaks inside
the same gij, appear to be rather independent of the cut-off radii.

In Figs. 12.10, 12.11, 12.12, and 12.13 we show the partial radial distribution functions
at 6000 K at the same four selected densities of Fig. 12.9. At a density of 1.73 103 kg/m3

the dominant coordinations are two- and three-fold both appearing with an equal fraction.
Fig. 12.10 shows that the positions of the first peaks of g22 and g33 are at 0.133 and
0.142 nm, typical for a sp and sp2 type of bonding, respectively.

This agrees with the DF-MD results of Ref. [222] yielding an average bond length from
g22 of 0.135 nm at 2.00 103 kg/m3 and 5000 K. The PRDF among two-fold coordinated
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Figure 12.10: Partial radial distribution functions (gij) at 1.73 103 kg/m3 and 6000 K
for the LCBOPII. The left panel is for the diagonal terms (i.e. i = j): the dotted line here
for the g11, the dashed-dotted line is for the g22, the dotted line for the g33, solid line for
the g44. The inset shows magnified the g11 and the g44. The right panel is for the cross
terms (i.e. i 6= j): the dotted line here for the g12 (also shown magnified in the inset), the
dashed-dotted line is for the g23, the solid line is for the g34. All the gij that are not shown
are negligible. The total RDF is given by: g =

∑
i gii + 2

∑
i

∑
j 6=i gij.

atoms (g22), apart from the first peak due to nearest neighbours, is rather structure-less.
This suggests that there are hardly any straight chains of three or more subsequent two-
fold coordinated carbons. Conversely,a second and a third peak in the radial distribution
appears among the three-fold coordinated atoms (g33). Together with a visual analysis of
liquid configurations, the PRDFs of Fig. 12.10 suggest the liquid structure to be a mixture
of short bent chains and rings that are often mutually connected. Some of the chains end
at a one-fold site. The relatively large first peak of g34 shows that the small fraction of four-
fold coordinated atoms is mainly bonded to three-fold coordinated atoms. Occasionally
there appear isolated dimers and bent trimers, as can be inferred from g11 (not shown) and
visual inspection.

At density 2.79 103 kg/m3 the three-fold sites are at their maximum probability. At
this density the g44 preserves the broadness of the first peak, even if here a 20% of four-fold
sites is already counted. The ratio between the second and the first peak position for g33

gives a value higher than the
√

3 that is, incidentally, the lattice ratio in perfect graphite.

At a density of 3.44 103 kg/m3 the dominant coordinations are three- and four-fold,
both almost equally represented. Fig. 12.12 shows substantial structure for all PRDFs with
almost equal peak heights, indicating good mixing among three- and four-fold coordinated
atoms. Note that the PRDFs at this density are rather structured. For g44 the position
of the first two peaks and minima coincide with those of diamond. Also the ratio of the
heights of the first two peaks, ≈ 1.6, is similar to that of diamond. These observations are
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Figure 12.11: Partial radial distribution functions (gij) at 2.79 103 kg/m3 and 6000 K,
where the population of three-fold atoms is the highest, for the LCBOPII. The left panel
is for the diagonal terms (i.e. i = j): the dashed-dotted line for the g22, the dotted line
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dashed-double-dotted line is for the g45. The inset is for the complete g34, together with
the g23 and g24. All the gij that are not shown are negligible. The total RDF is given by:
g =

∑
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∑
i

∑
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consistent with the observation of Ref. [17] that a mainly four-fold coordinated liquid has
a diamond-like structure up to the second shell of neighbours. The positions of the first
peak and minimum of g33 are slightly but noticeably smaller than those of g44. The small
differences among the PRDFs in the positions of peaks and minima should be attributed
to differences in bond-length for sp2 and sp3 type of bonding.

The ratio between the second and first peak position is around the lattice ratio for
perfect diamond (

√
8/3) for g44; for g33 the ratio is higher than the ratio for perfect

graphite (
√

3). Thus the almost exact
√

3 ratio between the peaks in the full g(r) at this
density is only a coincidence. In contrast, in Ref. [213] the authors infer from the same
observed ratio in the total radial distribution function some graphitic structure at this
density.

At the highest density considered (3.99 103 kg/m3) the liquid is mainly four-fold co-
ordinated with a small fraction of three- and five-fold coordinated atoms. The PRDFs at
this density reveal a local diamond-like structure for the four-fold coordinated atoms, and
show that the three- and five-fold coordinated atoms are mainly connected to four-fold
coordinated atoms.

The partial distribution functions at temperatures above and below 6000 K (not shown
here), have a temperature dependence similar to that of the total RDFs (Fig. 12.8: With
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Figure 12.12: Partial radial distribution functions (gij) for the LCBOPII at
3.44 103 kg/m3 and 6000 K, with almost equal fraction of three- and four-fold coordi-
nated atoms. The left panel is for the diagonal terms (i.e. i = j): the dotted line for the
g33, solid line for the g44, the dashed line for the g55 (also shown magnified in the inset).
The right panel is for the cross terms g23. (i.e. i 6= j): the solid line is for the g34, the
dashed line is for the g35, the dashed-double-dotted line is for the g45. In the inset are
shown magnified the g35 and the g45. All the gij that are not shown are negligible. The
total RDF is given by: g =

∑
i gii + 2

∑
i

∑
j 6=i gij.

increasing temperature, peaks tend to flatten and broaden, but in such a way that the
radial positions of the maxima are preserved.

12.6 Angular distribution function

The angular distribution function (A(cos(θ))) is determined as the distribution of the the
dot products (cos(θ)) of the pairs of vectors drown from a reference atom to any two other
atoms within a cutoff radius rco of the reference atom. Note that, using cos(θ) as the
independent variable, equally spaced sampling points cover equal amounts of the surface
of the unitary sphere; in fact the surface element is proportional to dcos(θ). In literature
one often finds the angular distribution functions defined as depending on the angle θ
(i.e. A(θ)); in this case, one has to normalize with (sin(θ))−1 (being the surface element
proportional to sin(θ)dθ).

12.6.1 Comparison

In Fig. 12.14 we show the comparison of the angular distribution functions between LCBOPII
and DF-MD calculations at the same densities as for the radial distribution function (see
Fig. 12.7). The overall agreement is impressive also in this case. The position of the



12.6 – Angular distribution function 197

2 4 6
r [Å]

0

0.05

0.1

0.15

0.2

g ij(r
)

g
33

g
44

g
55

2 4 6
r [Å]

g
34

g
35

g
45

2 4 6
0

1

Figure 12.13: Partial radial distribution functions (gij) at 3.99 103 kg/m3 and 6000 K
for the LCBOPII. The left panel is for the diagonal terms (i.e. i = j): the dotted line for
the g33, solid line for the g44, the dashed line for the g55; in the inset is shown the complete
g33. The right panel is for the cross terms (i.e. i 6= j): the solid line is for the g34, the
dashed line is for the g35, the dashed-double-dotted line is for the g45. All the gij that are
not shown are negligible. The total RDF is given by: g =

∑
i gii + 2

∑
i

∑
j 6=i gij.

main peak together with its broadness is well recovered at all densities. Compared to the
LCBOPI+, this is a significant improvement as the results of Ref. [17] showed that there was
only a qualitative agreement between the LCBOPI+ and DF-MD, with the LCBOPI+ un-
derestimating the presence of sub 90 degrees structures. The improvement of the LCBOPII
over the LCBOPI+ should be attributed to the softening of the angular part in the po-
tential yielding a lower energy for four-fold coordinated structures at small angles. As for
the RDFs, the major discrepancies are at lower densities: in this case the position and/or
the broadness of the secondary peak at low angles is only qualitatively reproduced. A
discussion on the nature of this secondary peak comes at the end of this section.

12.6.2 Predictions

Fig. 12.15 shows the total and partial angular distribution functions at the four selected
densities of Fig. 12.7. Looking at the total distributions (thick solid lines), the figures
shows that at the highest density (3.99 103 kg/m3) the angular distribution is peaked near
the tetrahedral angle (cos(θ) = −1/3), typical for diamond. Upon decreasing density, to
1.73 103 kg/m3, the peak position moves towards a value around cos(θ) = −0.5, i.e., the
angle typical for hexagonal graphite. For all densities the distribution near the peak is
rather symmetric with a Gaussian-like shape. Note also that the distributions are broad,
and cover angles from 50 degrees to 180 degrees. At all densities, the tail at small angles
features a local maximum around 50-60 degrees. These peaks are also present in our DF-
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Figure 12.14: Angular distribution functions at 1.99 (top left panel), 2.49 (bottom left),
3.32 (top right), and 3.75 103 kg/m3 (bottom right), comparing DF-MD (dotted lines) with
the LCBOPII (solid lines).

MD simulations (see Fig. 12.14 and 9.8) as well as in earlier DF-MD simulations [223, 252].
Upon visual inspection of the atomic configurations (see Fig. 12.18), we could relate the
peaks to nearly equilateral triangular structures. These peculiar triangular structures,
present at all densities, occasionally merge in pairs in a rhombohedral structure. It is
remarkable that the LCBOPII is able to recover also this feature. To make a comparison,
the environment dependent potential proposed by Marks [147], uses a definition of the
angular correlations with a harmonic functional shape, Gaussian-softened at angles far
from the preferred one (at a given coordination): in Ref. [223], Marks reports Gaussian-
shaped angular correlation functions without any sign of a minor peak at small angles.

Going back to Fig. 12.15, we now focus on the partial angular distribution functions
(padf’s). In literature, two different ways of defining padf’s are found. Following one defi-
nition (see e.g. [223]), with padf’s denoted by Ax, one considers the probability of finding
bonds at a certain (cosine of the) angle, as seen from an atom of a selected coordination
type (so, x = sp, sp2, sp3, 5-fold), whatever is the coordination of its neighbours. Thus, in
this case, the sum of the partial is the total angular distribution functions. Following the
other definition (see e.g. [222]), with the padf’s denoted by Aij, one considers the proba-
bility of finding bonds at a certain (cosine of the) angle, where one of the bond is between
two atoms of selected coordination type (i and j in Aij indicate the number of neighbours
of the two reference atoms), whatever the coordination of the third atom involved. In the
bottom panels is shown only a part of these functions, namely those in which the particle
constituting the bond are of the same coordination type.
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Figure 12.15: Total and partial angular distribution functions at 1.73 (top left panel),
2.79 (bottom left), 3.44 (top right), and 3.99 103 kg/m3 (bottom right). Each panel is
divided into two sub-plot, the top one showing the total angular distribution function and
the Ax (i.e. the probability of finding two bonds at given cos θ as seen from a site x,
whatever the coordination of its neighbours); each bottom subplot carries the Aii (i.e. the
probability of finding bonds at a certain cos θ, where one of the bond is between two atoms
of the same selected coordination type, i, whatever the coordination of the third atom
involved.

The results for Ax are shown in the top sub-plot of each panel in Fig. 12.15 (together
with the total distribution): these partial distributions follow the peak position of their
total distributions, at a lower height, yielding a poor information.

The results for Aii (i.e. the Aij for alike sites, where i = j) are shown in the bottom
sub-plot of each panel in Fig. 12.15. They show clear distinct features for the different
coordination types: the most striking example is at 3.44 103 kg/m3 where A33 has its
maximum at 2π/3, while A44 at the tetrahedral angle (cos θ = −1/3 ). At the lowest
density, 1.73 103 kg/m3, the A22 show a flat distribution from π to 2π/3, and then the
distribution mildly drops to zero. The structures depicted there are portion of chains, that
are allowed to bend indifferently from the linear configuration up to an angle of 2π/3. The
angular distribution is a property connected to a bond, rather than to a particle: this is
why the Aii carries much more information than the Ax.

We also determined the angular distribution of bonds to the second neighbours. Fig.
12.16 shows the results at the four selected densities at 6000 K. The prominent feature is a
peak at π/3 at all densities. At angles larger than π/2 the distribution is rather flat, with
more oscillations at higher densities. Peculiar is the secondary peak at small angles. At the
highest density the peak is at ∼ 2π/10; upon decreasing density the peak shifts slightly at
smaller angles, decreasing in importance and converting into a shoulder of the primary peak
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Figure 12.16: Second shell angular distribution function at 4 selected densities.
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Figure 12.17: Histogram of the 2nd neighbours fraction at 4 selected densities.

at π/3, and then increases again, but at ∼ π/3. It is instructive to compare these values to
the lattice values for diamond and graphite. Second shell angular correlations of diamond
show (see figure 9.9) entries at π, 2π/3, π/2, and π/3, with weights 0.09, 0.36, 0.18, and
0.36, respectively. In addition, an angle of ∼ 2π/10 is found in cross correlations between
the first and second shell. Second shell angular correlations of graphite have entries π,
2π/3, and π/3, with weights 0.2, 0.4, and 0.4, respectively. Besides, the angle π/6 is found
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in cross correlations between the first and second shells and between second and third
shells. The similarity between the liquid and the solid structures continues in the number
of second neighbours. Fig. 12.17 shows the histograms of the number of second neighbours
at the same phase point as in the previous figure. Where three- (at 2.79 103 kg/m3) and
four-fold (at 3.99 103 kg/m3) are predominant, the number of second neighbours is peaked
around 6-7 and 12, respectively, i.e. similar to graphite and diamond. Incidentally, the
average second neighbours coordination of 12 atoms for the highest density considered
confirms, as we noticed in section 9.3, that metastable liquid carbon has a diamond-like
structure. Where three- and four-fold atoms have the same fraction (at 3.44 103 kg/m3), the
distribution is bimodal, with peaks around 7 and 10. The second neighbours coordination
at the lowest density contains some curious features: namely a nonzero population of zero-
fold and one-fold second neighbours coordinated atoms. These two entries can be explained
as follows: atoms with zero second neighbours are part of a dimer, while atoms with only
one second neighbour are every two end atoms of a chain. This observation, together with
the peak at coordination 3-4 , confirms the structure depicted in section 12.5.3 for the
lowest density liquid.

12.7 Conclusions

In summary, in this chapter we showed the performance of the newly introduced LCBOPII
[20] for the description of the liquid carbon. We explicitly compared the equation of

Figure 12.18: Snapshots of the liquid at 1.73 103 kg/m3 and 6000 K. In the left panel
is shown a 1000 particle system, sampled via the LCBOPII; in the right panel is shown a
snapshot of a 128 particle sample simulated via DF-MD. All the neighbouring atoms having
at least one bond-angle smaller than 60 degrees are shown enlarged, and we explicitly show
only the bonds involving them; bonds are drawn when two atoms are closer than 1.7 Å (i.e.
the rmin of the Sdown

sr of the LCBOPII, see Table 11.5).
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state, the coordination fraction, and the radial distribution function of the LCBOPII with
reference data from density functional based simulations. We extended the analysis of the
liquid in region not covered from other reference data. On the basis of the equation of state,
the coordination fractions, the radial distributions function, and the angular distribution
functions, we show the extreme accuracy and transferability of the LCBOPII. Looking
at the calculated equation of state, we argue that a (first order) liquid – liquid phase
transition could only be found in a deeply undercooled liquid. It is not clear if these
condition can ever be reached. In simulation this would at least require a large system
size and a very careful cooling from a stable liquid. On the basis of the partial radial
distribution function at a density where three- and four-fold sites are equally present, we
provide a further argument against a phase separation: the alikeness of the partial radial
distribution functions suggests, at 6000 K, a negligible strain energy amongst atoms of
three- and four-fold coordination.

The present results are a first application of the LCBOPII in studies of condensed phase
carbonic materials under extreme conditions. It is well suited for the study of various
other type of carbonic materials. Future extensions of the LCBOPII could involve the
incorporation of other elements such as hydrogen, oxygen, nitrogen, and various metals.
This would open the way to the study of advanced nano-sized materials.



Who is we?
A note of the author

— What is your name?
— My name is Legion; for we are many.

In contrast to Latin-derived languages like Italian, the English language dislikes discourages
the use of impersonal forms such as “It has been found . . . ”, “It has been used . . . ”. Thus,
this as the great majority of the doctorate theses, is populated by sentences whose subject
is “We”. A reasonable question that might arise in the reader’s mind would concern the
identity of the persons that accompanied the author of the thesis, the one whose name is
engraved below the title in the first page, to constitute the “We”. In the following the
author will unveil those, all but secret, identities.

Chapters 2, 3, and 6 (up to section 6.7) are introductions in the form of a review whose
possible worthiness should be attributed to the author only. Thus, there, “We” is indeed
“the author”, unless, in some derivations, due to a commonly adopted figure of speech, the
reader, if he likes, is invited to be part of the fellowship.

The final part of chapter 6, in which the LCBOPI+ is introduced, Jan Los, Evert Jan
Meijer, Annalisa Fasolino, and Daan Frenkel worked with the author for the model shown
therein. The same impressive set of co-authors the author features for chapters 8 and 9,
regarding the results obtained with the LCBOPI+ in different aspects of carbon at extreme
conditions.

In chapters 4 and 5, about liquid phosphorus, “We” is Evert Jan Meijer with the author.
For the historical review of chapter 7 the author must acknowledge the collaboration

of his wife, Sara Iacopini, whom the author, for this chapter but not only, owes to more
than he will ever admit.

In chapter 10, the author is accompanied by Chantal Valeriani, Evert Jan Meijer, and
Daan Frenkel.

Chapter 11 is mainly a work of Jan Los, thus the author makes a step backward, putting
himself within the other co-authors, i.e. Evert Jan Meijer and Annalisa Fasolino.

Finally, chapter 12 counts as co-authors Jan Los, Annalisa Fasolino, and Evert Jan
Meijer.



Summary

This thesis orbits around carbon and phosphorus, studied by means of computer experiments.
At the beginning of this work these two chemical elements were considered good candidates for

showing the so-called liquid – liquid (first order) phase transition. In solids, phase transitions are
well-known and well-understood phenomena both at normal conditions and at high pressures. In
contrast to crystals, no robust, consistent theory for the liquid phase has been created, yet. Phase
transitions in disordered systems, such as liquids, are not well-understood. The very concept of the
existence of such transitions in simple liquids has not yet reached a universal consensus; this is due
to their counterintuitive nature and to experimental difficulties in the validation: the candidate
transitions either occur at extreme pressure and/or temperature or appear in metastable regions
(e.g. are hidden by competing solidification).

In liquid phosphorus, at pressure ∼ 1 GPa and temperature ∼ 1300 K an experimental tour-
de-force [1] showed the occurrence of a first order phase transition between two liquids of different
structure. Analysis of the x-ray data suggested that at those conditions a molecular fluid∗, made
of tetrahedral P4 molecules, reversibly transforms into a network liquid. The network structure
of the liquid is due to the covalent bonding of phosphorus. In short, a covalently bonded system
prefers certain lengths and angles. These preferred lengths and angles vary with the number of
bonds. Thus, in the liquid, even if the system remains rather disordered, only certain structures
are allowed and normally few bonds per atom are present, thus suggesting the picture of a network.

For liquid carbon no experiments are available, due to the extreme high temperatures (more
than at least 4000 K) and pressures (order of GPa) at which carbon would exhibit its liquid phase.
Nonetheless, theoretical speculations [210] led to the commonly accepted picture of graphite (the
low pressure solid phase of carbon) melting into a mainly three-fold coordinated liquid, thus
resembling the lattice structure, and diamond (the higher pressure solid phase) melting into
a mainly four-fold coordinated liquid. It was thought that these two liquids could have been
separated by a first order transition phase boundary.

In chapter 2 we review a simple model that accounts for transitions in simple liquids. This is
achieved by treating the liquid as a mixture of two species: an atom (or a molecule) belongs to
one of the two species accordingly to the local structure surrounding it. Under certain conditions
such a liquid can macroscopically separate into two liquid phases in which the relative population
of the two species is radically different. This leads to the appearance of two liquids, with different
thermodynamical properties. The chapter ends with a review of the most famous (speculated)
liquid – liquid phase transition, the one in water, and of two model (toy) interaction potentials
that can exhibit a liquid – liquid phase transition.

We studied phosphorus exclusively by means of a simulation technique that is known as ab
initio molecular dynamics. In molecular dynamics, the dynamics of a system of point particles,
interacting via some given potential, is generated by numerically integrating its (newtonian)

∗In fact, the system is at a temperature above the gas/liquid critical point.
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equations of motion. In ab initio molecular dynamics the interacting potential is not given a priori,
but rather calculated from the (more or less approximated) knowledge of the electronic density
of the system. In chapter 3 we introduce the ab initio molecular dynamics scheme, worldwide
known as Car-Parrinello molecular dynamics (CPMD) [62], we used. We pay particular attention
in explaining how constant temperature and constant pressure simulations are performed within
the ab initio molecular dynamics scheme of our choice.

In chapter 4 we analyze the issue of the liquid – liquid phase transition in phosphorus. We per-
formed constant temperature – constant pressure CPMD simulations of a system of 64 phosphorus
atoms. These were originally arranged in 16 tetrahedra. Upon increasing pressure at constant
temperature (1500 K), at 6.25 GPa we find the break up of the molecules, to give the formation
of a network liquid. The transition is accompanied by the abrupt increase (of about 30%) of the
density of the system. Together with a careful analysis of the structure and dynamics of the two
phases, and a comparison to available experimental data, we suggest a possible mechanism that
seeds the first order transition. We argue that the almost contemporary spontaneous break up
of one bond in each of three neighbouring tetrahedral molecules, can lead to the formation of a
chain of these unstable ‘butterfly’ molecules. The appearance of this last structure may trigger
the overall transition.

In chapter 5 we continue the analysis of the liquid – liquid phase transition in phosphorus at
higher temperatures. To do this, we follow several isotherms or isobars in order to collect phase
points in which transitions spontaneously occur in our simulated system. The idea is to have
information on the position of the critical point that must end the liquid – liquid phase transition
coexistence line. At the temperature of 3100 K and the pressure of 1 GPa we obtain a transition
that can be thought of as near-critical; at temperature 3500 K and pressure 0.5 GPa we find a
super-critical transition†. At these state points, we observe the phenomenon of the formation of
new tetrahedra; these comprise atoms belonging to different tetrahedra at the beginning of the
simulation. The lifetime of these ‘newly formed’ tetrahedra is variable, sometimes comparable to
the whole simulation time. Observing the samples along a slow cooling at the fixed pressure of
0.5 GPa, down to temperature 2500 K, the phenomenon of the reformation becomes more and
more frequent.

In chapter 6 we introduce the class of bond order potentials, which includes the potential
we have developed to study carbon. To the purpose, we give a two-fold theoretical justification
of the functional form that is used for this class of potentials, then we review some bond order
potentials successfully used in the last 20 years; subsequently we present the original preliminary
form of our bond order potential, the so-called LCBOP, long range carbon bond order potential,
as published in Ref. [15]; we conclude introducing the modified form of the LCBOP, i.e. the
LCBOP+, that we used in chapters 8, 9, and 10 for our calculations.

In chapter 7 we aim at giving a complete picture of the ideas put forward in the scientific
community about the phase diagram of carbon, when its bulk phases graphite, diamond, and the
liquid(s) are taken into account. The chapter is presented following a historical perspective. In
particular, we review every article that concerned the topic of the possible liquid – liquid phase
transition for (liquid) carbon.

In chapter 8 we present our calculation of the phase diagram of carbon, comprising graphite,
diamond and the liquid. Coexistence was found by equating the free energies of the three
phases. Free energies were evaluated by means of thermodynamic integration. We find a
graphite/diamond coexistence line very close to experimental data. We find a positive slope for
the diamond melting line, consistently with shock–wave experiments. We find a T-vs-P graphite
melting line always with a positive slope, in contrast to experiments that show a maximum. We

†A super-critical transition occurs at temperatures above the critical temperature. It is no longer a
first-order transition.
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discuss the possible causes of this discrepancy, that we think mainly due to the out-of-equilibrium
conditions of the experiments. We find a graphite/diamond/liquid triple point at 16.4 ± 0.7 GPa
and 4250 ± 10 K, i.e. at a somewhat lower temperature than expected from experiments.

In chapter 9 we analyze the structure of the liquid carbon. We rule out the presence of a
liquid – liquid phase transition in the region of the phase diagram we investigated. We find that
diamond melts into a mainly three-fold coordinated liquid, from the graphite/diamond/liquid
triple point up to ∼ 300 GPa, contrary to the common assumption. We find that undercooled
liquid carbon can have a diamond-like structure, i.e. a local coordination that closely resembles
the diamond lattice. We also show in detail the shortcomings, in the description of the liquid
structure, of other bond order potentials that are used nowadays.

In chapter 10 we address the topic of the homogeneous nucleation of diamond from the
bulk. Homogeneous nucleation is an activated process, i.e. a process that is difficult to initiate
spontaneously, but, when started, proceeds very quickly. More precisely, ”difficult to initiate”
means that the spontaneous fluctuation that initiates the process is very unlikely. In our system
we can estimate, afterwards, that a spontaneous nucleation could have occurred only once in a
hundred years of simulation. To cope with this unlikeliness, we adapted to our case a recently
developed technique [237] devised to study rare events. The technique we adopted, as many
other rare events methods, relies on the definition of solid particles in the liquid. The underlying
assumption, taken from classical nucleation theory (briefly accounted in this same chapter) is that
when putting the liquid in a state point in which a certain lattice structure is thermodynamically
more stable, an initially small cluster of the solid structure grows with difficulty until it reaches a
certain critical size; thenceforth the growth of the cluster proceeds very rapidly. Thus, we adapted
to our case an existing algorithm [238] that distinguishes solid particles in the liquid, looking at
their spatial correlations. The rare event method we used allows us to estimate the nucleation
rate. We successfully obtained paths from the liquid to the diamond for the diamond-like liquid
we describe in the previous chapter: we find the enormously fast nucleation rate of 1033 nuclei
per cubic meter per second.

In chapter 11 we present an overall improvement of the bond order potential used in previ-
ous chapter, yielding the LCBPOPII. The improvement was mainly motivated by the need to
overcome two known problems of the LCBOPI (as well as the LCBOP+): for the LCBOPI the
formation of a bond has to overcome a ∼ 0.3 eV barrier at ∼ 2.1 Å. This is not always true: when
atoms have dangling bonds, the formation of the bond may occur without an energy barrier. We
introduce a middle range potential that flexibly accounts for those dangling bond configurations.
Furthermore, the preferred angles between covalent bonds involving a given atom depend on the
number of those bonds. The LCBOPI accounts only roughly for this dependence, while for the
LCBOPII we make this dependence highly transferable (i.e. able to account for structures not
used to design the potential). These problems of the LCBOPI leads to a certain “stiffness” in
the liquid phase description, that reflects in structural quantities, whereas the qualitative be-
haviour of this potential is always satisfactory. The LCBOPII yields an impressive quantitative
reproduction of reference data.

In chapter 12, we thoroughly analyze structural properties of liquid carbon with the aid of
the LCBOPII. We confirm the absence of a liquid – liquid phase transition in the stable liquid
region. From the analysis of the equation of state in the region we could investigate, we argue
that such a liquid – liquid phase transition is possible only in the metastable liquid region, at a
very low temperature (with a critical point at ∼ 1200 K); the direct observation of this transition
is hindered by the freezing, possibly into an amorphous solid, of the system. This speculated
transition would be similar to the one already speculated for water.



Samenvatting

Dit proefschrift draait om koolstof en fosfor, bestudeerd met computerexperimenten.

Aan het begin van dit onderzoek zijn deze twee chemische elementen gekozen als goede
kandidaten om de zogenaamde (eerste orde) faseovergang vloeistof-vloeistof te bestuderen.
In vaste stoffen zijn faseovergangen uitgebreid bestudeerd en goed begrepen, zowel on-
der normale omstandigheden als onder hoge druk. Voor de vloeibare fase is daarentegen
nog geen degelijke, consistente theorie ontwikkeld. Over faseovergangen in ongeordende
systemen, zoals vloeistoffen, is weinig bekend. Er is zelfs geen overeenstemming of deze
overgangen in eenvoudige vloeistoffen daadwerkelijk bestaan. Dit komt doordat het een
tegenintüıtief verschijnsel is en experimenteel moeilijk te valideren: de mogelijke overgan-
gen vinden alleen plaats bij hoge druk en/of temperatuur of in een metastabiel gebied
(waar de overgang naar vaste stof de vloeistof-vloeistofovergang verbergt).

Met een knap staaltje experimenteel werk [1] is een eerste orde faseovergang gemeten in
fosfor tussen twee vloeibare fasen met een verschillende structuur bij een druk van ∼ 1 GPa
en een temperatuur van ∼ 1300 K. De resultaten van röntgendiffractie wijzen op een re-
versibele overgang van een moleculair flüıdum∗, bestaande uit tetraëdrische P4-moleculen,
naar een netwerkvloeistof. De covalente bindingen in fosfor zorgen voor de netwerkstruc-
tuur. Kort gezegd geeft een covalent systeem de voorkeur aan specifieke bindingslengtes
en -hoeken, die afhangen van het aantal bindingen per atoom. Daarom zijn zelfs in een be-
hoorlijk ongeordende vloeistof slechts bepaalde structuren toegestaan. Normaal gesproken
zijn er maar enkele bindingen per atoom aanwezig, waardoor het geheel er als een netwerk
uitziet.

Voor vloeibare koolstof zijn er geen experimentele gegevens beschikbaar, vanwege de
extreem hoge temperaturen (minimaal 4000 K) en drukken (ordegrootte GPa) waarbij
de vloeistoffase bestaat. Uit theoretische overwegingen [210] is desondanks het algemeen
geaccepteerde beeld ontstaan dat gesmolten grafiet (de vaste fase van koolstof bij lage druk)
een voornamelijk driewaardig gecoördineerde vloeistof is en gesmolten diamant (de vaste
fase bij hoge druk) voornamelijk vierwaardig. Aangenomen werd dat de fasegrens tussen
deze twee vloeistoffen een eerste orde overgang is.

In hoofdstuk 2 behandelen we een simpel model om faseovergangen in eenvoudige
vloeistoffen te beschrijven. Hierbij wordt de vloeistof als een mengsel van twee stoffen
beschouwd; afhankelijk van de plaatselijke structuur om een atoom of molecuul behoort
het tot een van beide stoffen. Onder bepaalde omstandigheden kan dit mengsel schei-
den in twee vloeibare fasen, met elk een zeer verschillende verhouding tussen de twee

∗Bij deze temperatuur bevindt het systeem zich boven het gas-vloeistof kritieke punt.
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stoffen. De twee vloeistoffen die hierdoor ontstaan, hebben verschillende thermodynamis-
che eigenschappen. Aan het eind van het hoofdstuk wordt de bekendste (veronderstelde)
vloeistof-vloeistofovergang besproken, die in water. Ook behandelen we twee sterk vereen-
voudigde modelpotentialen voor de interactie, waarmee een vloeistof-vloeistoffaseovergang
beschreven kan worden.

Voor het onderzoek naar fosfor hebben wij uitsluitend gebruik gemaakt van een simu-
latietechniek die bekend staat als ab initio moleculaire dynamica. De moleculaire dynamica
beschrijft de beweging in een systeem van puntdeeltjes met een gegeven onderlinge interac-
tie door middel van numerieke integratie van de bewegingsvergelijkingen van Newton. Bij
ab initio moleculaire dynamica is de interactiepotentiaal niet a priori bekend, maar wordt
berekend uit de (min of meer benaderde) electronendichtheid van het systeem. In hoofd-
stuk 3 introduceren we de door ons gebruikte ab initio moleculaire dynamica methode,
wereldwijd bekend als Car-Parrinello moleculaire dynamica (CPMD)[62].

In hoofdstuk 4 gaan we dieper in op de vloeistof-vloeistoffaseovergang in fosfor. We
hebben CPMD-simulaties gedaan aan een systeem van 64 fosforatomen bij constante tem-
peratuur en druk. Aan het begin van de simulatie zaten de atomen in 16 tetraëders. Bij
verhoging van de druk bij een constante temperatuur van 1500 K zien we bij 6,25 GPa dat
de moleculen zich herschikken tot een netwerkvloeistof. Tegelijkertijd wordt de dichtheid
van het systeem abrupt ongeveer 30% hoger. Aan de hand van een nauwkeurige analyse
van de structuur en dynamica van de twee fasen en vergelijking met beschikbare experi-
mentele gegevens, stellen wij een mechanisme voor dat de eerste orde overgang verklaart.
We beargumenteren dat het bijna gelijktijdig, spontaan breken van een binding in elk van
drie aangrenzende tetraëders kan leiden tot een ketting van onstabiele ‘vlinder’-moleculen.
Het ontstaan van deze structuur stimuleert een volledige overgang.

In hoofdstuk 5 vervolgen we de studie van de vloeistof-vloeistoffaseovergang in fos-
for bij hogere temperaturen. Hiertoe volgen we verschillende isothermen en isobaren om
toestanden te vinden die in simulaties een spontane overgang vertonen. Het doel is om
informatie te vinden over de plaats van het kritieke punt, dat zich moet bevinden aan het
eind van de vloeistof-vloeistofcoëxistentielijn. Bij een temperatuur van 3100 K en een druk
van 1 GPa vinden we een overgang die gezien kan worden als bijna-kritisch; bij 3500 K en
0,5 GPa vinden we een superkritische overgang†. Onder deze omstandigheden nemen we
de vorming van nieuwe tetraëders waar uit atomen die aan het begin van de simulatie tot
andere tetraëders behoorden. De levensduur van deze nieuw-gevormde tetraëders verschilt
en kan in de orde van de totale simulatietijd zijn. Wanneer de systemen langzaam gekoeld
worden tot een temperatuur van 2500 K bij een constante druk van 0,5 GPa, wordt er
steeds vaker herschikking van de tetraëders waargenomen.

In hoofdstuk 6 introduceren we de ‘bond order’ potentialen, inclusief de door ons on-
twikkelde potentiaal voor koolstof. We verantwoorden de functionele vorm van de poten-
tialen aan de hand van twee theorieën en behandelen een aantal bond order potentialen
waarmee in de afgelopen 20 jaar goede resultaten zijn behaald. Vervolgens presenteren we
onze bond order potentiaal in haar oorspronkelijke vorm, de zogenaamde LCBOP (‘long
range carbon bond order potential’), zoals die gepubliceerd is in Ref. [15]. Tot slot intro-
duceren we de aangepaste vorm van LCBOP, namelijk LCBOP+, die in hoofdstuk 8, 9 en
10 gebruikt wordt in onze berekeningen.

†Een superkritische overgang vindt plaats bij temperaturen boven de kritische temperatuur en is geen
eerste orde overgang meer.
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In hoofdstuk 7 proberen we vanuit een historisch perspectief een compleet beeld te
schetsen van de ideeën die binnen de wetenschappelijke gemeenschap leven over het fasedi-
agram van koolstof, met zijn bulkfasen grafiet, diamant en vloeistof(fen). In het bijzonder
bespreken we elk artikel dat ingaat op de mogelijke vloeistof-vloeistoffaseovergang van
(vloeibaar) koolstof.

In hoofdstuk 8 presenteren we het door ons berekende fasediagram van koolstof, dat
grafiet, diamant en vloeistof bevat. Coëxistentie is gevonden door de vrije energieën van de
drie fasen te bepalen door middel van thermodynamische integratie. We vinden een grafiet-
diamantcoëxistentielijn die zeer goed overeenkomt met experimentele data. Overeenkom-
stig met schokgolfexperimenten vinden we dat de smeltpuntslijn van diamant een positieve
helling heeft. Ook bij de smeltpuntslijn van grafiet driewaardig gecoördineerde vloeistof(T
tegen P) vinden we een positieve richtingscoëfficiënt, terwijl experimenten een maximum
laten zien. We behandelen mogelijke oorzaken van dit verschil, waarvan wij denken dat
het grotendeels te verklaren is doordat de experimenten bij niet-evenwichtsomstandigheden
zijn uitgevoerd. Wij vinden een grafiet-diamant-vloeistof tripelpunt bij 16,4 ± 0,7 GPa en
4250 ± 10 K, dus bij een iets lagere temperatuur dan op basis van experimenten verwacht.

In hoofdstuk 9 analyseren we de structuur van vloeibaar koolstof. We sluiten de mogeli-
jkheid van een vloeistof-vloeistoffaseovergang uit in het gebied van het fasediagram dat we
hebben bestudeerd. Wij vinden dat gesmolten diamant vanaf het tripelpunt tot ∼ 300 GPa
een voornamelijk driewaardige gecoördineerde vloeistof is, in tegenstelling tot hetgeen in
het algemeen wordt aangenomen. Wij zien dat onderkoeld vloeibaar koolstof een diaman-
tachtige structuur kan hebben, dat wil zeggen, een plaatselijke coördinatie die sterk lijkt op
het diamantrooster. We laten gedetailleerd zien welke tekortkomingen andere, nog steeds
gebruikte, bond order potentialen hebben bij de beschrijving van de vloeistofstructuur.

In hoofdstuk 10 gaan we in op de homogene nucleatie van diamant vanuit de bulk.
Homogene nucleatie is een geactiveerd proces: een proces dat moeilijk spontaan op gang
komt, maar snel voortschrijdt wanneer het eenmaal begonnen is. Nauwkeuriger gezegd,
”moeilijk op gang komen” betekent dat de spontane fluctuatie die het proces opstart erg
zeldzaam is. Achteraf gezien kunnen we voor ons systeem afleiden dat spontane nucleatie
ongeveer één keer in honderd simulatiejaren voor zou komen. Om toch dit proces te
kunnen bestuderen, hebben we gebruik gemaakt van een onlangs ontwikkelde techniek [237]
voor simulatie van zeldzame gebeurtenissen. Net als veel andere methoden voor zeldzame
gebeurtenissen, hangt deze techniek af van de definitie die gehanteerd wordt voor vaste
deeltjes in de vloeistof. De onderliggende aanname komt uit de klassieke nucleatietheorie
(die eveneens kort besproken wordt): wanneer vloeistof geplaatst wordt in een toestand
waar een bepaalde kristalstructuur thermodynamisch stabieler is, dan groeit er met moeite
een klein cluster van deze vaste structuur. Vanaf een bepaalde kritische grootte groeit
het cluster juist erg snel. We hebben een bestaand algoritme [238] aangepast aan onze
situatie om vaste deeltjes in de vloeistof te herkennen door naar hun ruimtelijke correlaties
te kijken. De methode voor zeldzame gebeurtenissen die wij hebben gebruikt, maakt het
mogelijk om een schatting te maken van de nucleatiesnelheid. Het is ons gelukt om paden
te vinden die lopen van de diamantachtige vloeistof, zoals eerder beschreven, naar de vaste
stof diamant: we vonden een enorm hoge nucleatiesnelheid van 1033 nuclei per kubieke
meter per seconde.

In hoofdstuk 11 stellen we een algehele verbetering voor van de bond order potenti-
aal uit het eerdere hoofdstuk, hetgeen de LCBOPII oplevert. De verbetering werd voor-
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namelijk ingegeven door de wens twee bekende problemen van de LCBOPI (en ook de
LCBOP+) op te lossen: voor de LCBOPI is er een barrière voor de vorming van bindingen
van ∼ 0,3 eV bij ∼ 2,1 Å. Dit is niet altijd correct: wanneer atomen bindingsplaatsen
beschikbaar hebben, dan vormt de binding zich zonder energiebarrière. Wij introduceren
een ‘middle range’ potentiaal die rekening houdt met dergelijke beschikbare bindingsplaat-
sen. De gewenste hoeken tussen covalente bindingen van een bepaald atoom hangt ook
af van het aantal bindingen. De LCBOPI houdt hier slechts globaal rekening mee, terwijl
voor de LCBOPII de afhankelijkheid in hoge mate overdraagbaar is (dat wil zeggen dat
LCBOPII ook bruikbaar is voor structuren die bij het ontwerp van de potentiaal niet zijn
meegenomen). Bij LCBOPI zorgen deze problemen voor een soort ‘stijfheid’ in de beschri-
jving van de vloeibare fase. Dit is terug te zien in de kwantitatieve structuur; de potentiaal
gedraagt zich kwalitatief wel goed. De LCBOPII reproduceert de referentiegegevens ook
kwantitatief uitzonderlijk goed.

In hoofdstuk 12 onderzoeken we de structuur van vloeibaar koolstof nauwkeurig met
behulp van de LCBOPII. De afwezigheid van een vloeistof-vloeistoffaseovergang in het
stabiele vloeistofgebied wordt bevestigd. Uit de analyse van de toestandsvergelijking in het
door ons onderzochte gebied kunnen we afleiden dat een dergelijke vloeistof-vloeistoffase-
overgang alleen mogelijk is in de metastabiele vloeistof bij een zeer lage temperatuur (met
een kritiek punt bij ∼ 1200 K). Directe waarneming van deze overgang wordt tegengewerkt
door bevriezing van het systeem, mogelijk naar een amorfe fase. Deze veronderstelde
overgang zou dan gelijk zijn aan de vermoede overgang in water.



Synopsis

Il lavoro di ricerca che ha portato alla stesura di questa tesi è stato svolto ad Amsterdam.
Questi tesi, prevedibilmente, tratta di diamanti. Ma non solo. L’obiettivo è più ampio,
ovvero più ambizioso. Tesi di questa tesi è che anche i liquidi semplici, elementali, possono
esibire comportamenti inaspettati, al variare della pressione e della temperatura. Il discorso
nelle precedenti pagine quindi s’aggira - cauto - intorno a due liquidi elementali, quelli del
fosforo e del carbonio, liquidi la cui coesione è dovuta a legami covalenti. Legami che hanno
una lunghezza e una direzionalità piuttosto ben definite. Definizione che mal s’accorda con
la “flessibilità” richiesta ad un atomo nella fase liquida.

In un liquido i cui atomi interagissero attraverso forze non direzionali e additive,
all’aumentare della pressione aumenterebbe gradualmente il numero dei primi vicini di
ogni atomo, s̀ı che la densità del liquido aumenterebbe parimenti gradualmente. A dire che
l’equazione di stato avrebbe andamento liscio, senza brusche variazioni; ‘smooth’, dicono
con efficace voce onomatopeica i cugini albionici. È questo il caso dell’argon liquido, per
citare solo il caso più studiato, almeno tra i teorici.

Di contro, in un liquido colavente l’aumento dei primi vicini di un atomo non sarebbe
cos̀ı indolore, perché preferenze angolari e non additività dei legami∗ renderebbero più
spesso energeticamente sfavorevole l’ingresso di un nuovo vicino. Del resto, nemmeno ac-
corciare legami è una strada percorribile a lungo, data la loro rigidità. La teoria ammette
che queste condizioni possano dare luogo a una transizione di fase nel liquido. Da liquido
a liquido. Tra due diversi gradi di disordine. Pittoricamente si potrebbe pensare ad un
aumento improvviso e collettivo di coordinazione (numero di primi vicini) ad una certa
pressione, causa di un salto in densità. Il liquido cambierebbe bruscamente la struttura
locale qualora la pressione divenisse troppo alta per supportare la struttura termodinami-
camente favorevole a basse pressioni. È altres̀ı noto che elementi che danno legami covalenti
(ma non sono i soli), mostrino fasi cristalline diverse a diverse pressioni e/o temperature,
che differiscono per la struttura del reticolo. Si specula che le transizioni nei liquidi siano
in qualche modo imparentate con queste transizioni nei solidi. Si consideri che in un dia-
gramma di fase usuale i solidi occupano la regione a bassa temperatura, mentre il (i) liquido
(liquidi) occupa (occupano) la regione a più alta temperatura (se l’immaginazione facesse
difetto, ci si rifersica alla figura 2.2, ad esempio). Nei liquidi succederebbe in maniera meno
mercata, ma parimenti macroscopicamente visibile, ciò che nei solidi è cos̀ı noto e studiato.
Questa in nuce la natura delle transizioni liquido – liquido. Il fatto che queste transizioni,

∗Con ‘non additività’ si intende che l’energia di due legami afferiti allo stesso atomo non è il doppio
dell’energia di un singolo legame. Questo perché il nuovo legame interferisce con il precedente (o i prece-
denti).
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stigmatizzate da un salto finito di densità ad una certa data pressione, esistano in natura
è ancora tesi non universalmente condivisa.

Oggetto del capitolo 2 è la rivisitazione di un modello che giustifichi l’evenienza delle
transizioni liquido – liquido. Questo vien fatto ipotizzando un liquido semplice come mis-
cela di due specie liquide, laddove le particelle dello stesso elemento appartengono ad una
ovvero all’altra specie a seconda dell’ordine locale in cui dette particelle sono immerse. La
teoria delle miscele binarie ammette che, sotto alcune condizioni, siffatto liquido si separi
in due liquidi, aventi la popolazione relativa delle due specie piuttosto diversa. In aggiunta
alla teoria classica delle miscele binarie, qui si capisce bene che particelle ascritte ad una
specie possano passare all’altra; per cui, non si osserva tipicamente una separazione di
fase in due liquidi, quanto una transizione repentina tra una certa popolazione relativa ad
un’altra molto diversa con una piccola variazione dei parametri di stato, come ad esempio
la pressione o la temperatura. Di qui la transizione di fase. Nel proseguio del capitolo si
riporta doverosamente l’esempio più celebre di transizione di fase liquido – liquido: quello
relativo all’acqua, per quanto il fenomeno sia solo oggetto di una ipotesi che pare essere
non verificabile. Il capitolo chiude con la descrizione di due potenziali modello, reperiti in
letteratura, che mostrano una transizione liquido – liquido. Questi potenziali cercano di
afferrare le condizioni fisiche necessarie per dar luogo alla transizione liquido – liquido.

Questo lavoro tesi fa uso validativo elettivo della simulazione al calcolatore, operando ciò
che gli addetti definiscono – talora provocatoriamente – come “esperimenti al calcolatore”,
per investigare due elementi, principalmente nella loro fase liquida. Si sono scelti, tra
i covalenti, il fosforo e il carbonio. Il fosforo perchè detiene la più spettacolare evidenza
sperimentale di transizione liquido – liquido [1]. Ulteriori indagini sperimentali [108] hanno
chiarito che questa transizione liquido – liquido è peculiarie, nel senso che uno dei liquidi, il
meno denso, è in realtà super-critico, rispetto alla transizione a gas. Meglio sarebbe parlare,
in questo caso, di fluido. Detto fluido lo si pensa, suffragati da analisi strutturali ai raggi
X, costituito intieramente di molecole P4, in forma tetraedrica. Alla pressione di circa 1
GPa e alla temperatura di circa 1300 K, le molecole costituenti il fluido si romperebbero
simultaneamente a dare un liquido covalente, ad una densità di un 30% superiore a quella
del fluido molecolare alla stessa pressione.

Il carbonio lo si è scelto perchè disquisizioni teoriche e simulazioni precedenti questo
lavoro avevano indicato la possibilità di una transizione del prim’ordine, da un liquido
dall’aspetto “grafitico” ad uno dall’aspetto “diamantico” (vedasi la sezione 7.3 per un’analisi
bibliografica della vicenda). Nel carbonio la presenza di una transizione liquido – liquido
porterebbe a interessanti conseguenze sulla formazione delle fasi solide, la grafite ed il dia-
mante. Infatti, una simile transizione ammetterebbe certamente un punto critico: qualora
la temperatura critica non si discostasse enormemente da quella di fusione, allora le flut-
tuazioni al punto critico connesse avrebbero una ricaduta sulla dinamica della nucleazione
della fase solida [228].

Il fosforo è stato studiato, nei capitoli 4 e 5, con il metodo della dinamica molecolare
ab initio, secondo cui le interazioni tra gli atomi, pensati come particelle classiche, sono
ricavate da informazioni quantistiche, mercè la “teoria del funzionale di densità”. La teo-
ria viene esposta, per sommi capi, nel capitolo 3. Simulazioni atomistiche e a maggior
ragione simulazioni ab initio danno spesso informazioni non immediatamente correlabili
agli esperimenti, specie in materia di transizioni di fase. Il problema risiede principalmente
nell’esiguo numero di particelle che è possibile simulare. Per ottenere risultati nel tempo
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stabilito dei 4 anni di dottorato, non si è potuto andare oltre i 64 atomi di fosforo, inizial-
mente raggruppati in 16 tetraedri. Tenendo presente il precedente caveat, nel fosforo si
è invero trovata la transizione cercata. A 1500 K, si è osservato che aumentando da 0,5
GPa la pressione gradualmente, in modo da far di volta in volta equilibrare il sistema, a
6,25 GPa i tetraedri si rompono per dar luogo ad una fase atomica, a maggiore densità.
Lusso riservato al simulatore, è possibile guardare, con un programma di visualizzazione,
il movimento delle 64 particelle, onde ravvisarvi eventuali meccanismi peculiari. In effetti,
si è potuto notare che la transizione vera e propria viene sempre anticipata da un evento
particolare: a tre tetraedri vicini si rompe un legame ciascuno e queste tre “farfalle” (vedasi
figura 4.12) si uniscono in una catena. Questa struttura è piuttosto stabile, rispetto alla
singola “farfalla” di fosforo, la cui vita è comprensibilmente breve. Ben presto la rottura
dei tetraedri si propaga a tutto il campione. Nel capitolo 5 si è inseguita la transizione nel
fosforo a più alte temperature, obiettivo l’avvicinarsi al punto critico onde poterne stimare
la posizione. In questo caso, il contenuto numero di particelle simulate limita ancor di più
la portata euristica dell’indagine. Eppure si è potuta trovare una transizione a 3100 K e
1 GPa rivelante segnali di prossima criticità, mentre a 3500 K e 0.5 GPa la transizione
era pressochè continua, specie in riferimento alla densità, che restava identica alla rottura
dei tetraedri. Nell’ultimo caso, la rottura dei tetraedri non era totale; non solo, si è os-
servata la formazione di alcuni tetraedri composti da atomi che all’inizio della simulazione
apparteneveno a tetraedri diversi; tetraedri la cui vita media poteva essere ora breve ora
paragonabile alla durata totale della simulazione.

Per il carbonio si pensato di adottare un modello per le interazioni (vale a dire un
potenziale) di stampo classico, volendo sacrificare un poco di accuratezza alla maggiore ve-
locità di calcolo. La questione si è posta in modo piuttosto delicato, perché, fin dall’inizio
di questo lavoro, si fece chiaro che modelli diversi davano risultati preoccupantemente di-
versi, specie riguardo al verificarsi stesso della transizione di fase nel liquido. Si è quindi
sviluppato un potenziale, collaborando strettamente con gli sviluppatori di uno ottimo
preesistente [15] e da quel potenziale medesimo dipartendoci, che fosse s̀ı computazional-
mente (relativamente) leggero, ma che non introducesse fenomeni spuri. Il potenziale che si
è sviluppato appartiene alla classe dei potenziali “a ordine di legame”. Si è perciò pensato
opportuno l’anteporre alla sua discussione un’introduzione e teorica e storica della classe
cui appartiene (capitolo 6). In particolare si è data una doppia giustificazione teorica della
particolare forma funzionale adottata dai potenziali “a ordine di legame”, nonché un’analisi
delle specifiche scelte di implementazione per alcuni membri della classe che hanno avuto
un certo successo diffuso, nella ventennale storia della classe stessa. A conclusione del
capitolo si introducono nei dettagli il potenziale di Los e Fasolino [15], servito da base al
lavoro sul carbonio, e la sua modifica, che si è resa in prima istanza necessaria alla sua
applicazione nella fase liquida.

Nel capitolo 7 si vorrebbe intrattenere il lettore ancora con un discorso storico su ar-
gomento scientifico, in aperta critica alla comune tendenza, nella comunità scientifica, di
affidarsi a finestre di memoria storica di pochi anni, se non mesi. Quante volte è capitato
di sentir definire vecchio un lavoro degli anni ’90 del secolo testè conclusosi? Se le tecniche
e sperimentali e simulative progrediscono ad una velocità vertiginosa, le idee appaiono
spesso molto più lente ad evolversi. Spesso, pescando in articoli degli albori del secolo
ventesimo, capita di imbattersi in considerazioni di portata quasi profetica, considerando
i mezzi. Altre volte, idee del tutto fuorvianti tendono a farsi dogma, tranne poi scoprire
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che il loro autore le aveva solo tentativamente suggerite. Nel piccolo mondo di questa tesi,
si è cercata ogni informazione possibile sullo studio del diagramma di fase del carbonio,
in riferimento alle sue celebri fasi solide, la grafite e il diamante, e al liquido (o, secondo
alcuni, i liquidi) ottenuto dalla loro fusione.

Il capitolo 8 presenta i metodi e i risultati relativi al calcolo del diagramma di fase del
carbonio, limitatamente alla finestra di temperatura e pressione dove diamante, grafite e
liquido sono stabili. Il che vuol dire che la pressione considerata è dell’ordine dei gigapascal
(decine di migliaia di atmosfere). Le temperature vanno dallo zero assoluto a 10000 K,
visto che il liquido si forma dai 4000 K in su, a seconda della pressione e della fase solida da
fondere. Il calcolo del diagramma di fase è uno dei tour-de-force in cui l’autore di questa
tesi si è prodotto. Calcolare le linee di coesistenza nel diagramma pressione-temperatura
di una sostanza ha implicato eguagliare le energie libere delle diverse fasi coinvolte. Il
calcolo delle energie libere è uno dei più laboriosi che si possano incontrare nel regno della
simulazione atomistica. Il lettore smaliziato saprà che le energie libere assolute non sono
calcolabili in tempi umani, visto che la loro stima richiederebbe il visitare una parte almeno
rappresentativa di tutto lo spazio delle fasi riferito al sistema in esame. Ci si accontenta, ed
è già tanto, di calcolare la differenza in energia libera delle fasi in gioco da stati o sistemi di
riferimento per cui, deo gratia, l’energia libera si può calcolare analiticamente. Ed è ciò che
è stato fatto per poter scrivere questo capitolo, mercè una tecnica nota come “integrazione
termodinamica”. Il diagramma di fase cos̀ı calcolato presenta (figure 8.4 e 8.5) una linea
di coesistenza tra grafite e diamante che giace molto vicina ai punti sperimentali. La
temperature di fusione del diamante cresce al crescere della pressione, cos̀ı come i pochi
esperimenti in merito suggeriscono. In contrasto con gli esperimenti, il calcolo trova una
temperatura di fusione della grafite sempre crescente; gli esperimenti trovano un massimo
in temperatura di fusione alla pressione di circa 6 GPa, sebbene la temperatura massima
misurata sia scesa di circa 1000 K in 30 anni di esperimenti. Nel capitolo si delineano ipotesi
sull’origine di questo indubbio discostarsi dagli esperimenti: per citare un solo argomento
e rimandando il lettore al capitolo, vien chiaro che gli esperimenti sono tutti stati fatti
fuori equilibrio e che essi riportano, più che la temperatura di fusione, la temperatura di
instabilità meccanica della grafite rispetto al liquido, tracciando cos̀ı, più che una linea di
fusione, una linea spinodale.

Nel capitolo 9 il palcoscenico è finalmente approntato per affrontare la questione della
transizione liquido – liquido nel carbonio. Orbene, in accordo con altrui calcoli ab initio
[14] che sono apparsi durante il presente lavoro di ricerca, non si è trovata traccia dell’attesa
transizione. È s̀ı vero che il liquido a pressioni relativamente basse, in corrispondenza della
fusione della grafite, ha aspetto “grafitico” (gli atomi tendono a coordinarsi con tre vicini,
formando con loro approssimativamente un piano, mentre gli angoli di legame valgono
in media 2π/3 radianti), ma il diamante, sino a circa 300 GPa, fonde nondimeno in un
liquido piuttosto “grafitico”. Il liquido “diamantico” (dove gli atomi hanno preferibilmente
quattro vicini, trovandosi ciascuno mediamente al centro di un tetraedro) si ritrova nella
regione dove esso è metastabile rispetto al diamante, a pressioni non minori di circa 100
GPa (un milione di atmosfere). Con metastabile si intende un liquido al di sotto della
temperatura di solidificazione (definire “di congelamento” temperature di diverse migliaia
di kelvin pare assurdo) che, per ragioni cinetiche, tarda ad “accorgersi” che il cristallo
sarebbe a quel punto termodinamicamente più stabile. Il carbonio liquido sottoraffreddato
può quindi trasformarsi in un viscosissimo liquido “diamantico” prima di solidificare. Nella
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lettura di questo capitolo, si spera che il lettore non sia troppo sconcertato nello scoprire,
eventualmente, che il diamante non è termodinamicamente stabile a pressione ambiente.
La figura 11.8 dovrebbe rassicurarlo, visto che la probabilità che la gemma si trasformi in
grafite è resa evanescente dalla enorme barriera energetica, di circa 0.6 eV, che ogni atomo
di diamante dovrebbe superare per trasformarsi in grafite.

Ed ecco, finalmente, i diamanti. Nel capitolo 10 si è cercato di iniziare a capire, forti
del potenziale e del relativo diagramma di fase, sotto che condizioni si formino i diamanti.
“Why diamonds?”, perché i diamanti? titolava originariamente il progetto per cui 4 anni
fa l’autore ha cominciato a simulare e studiare i liquidi covalenti. Studiare come il carbonio
liquido si trasforma in diamante, ossia la nucleazione del diamante, ha imposto all’autore
un secondo tour-de-force. La nucleazione cui si è mirato è quella cosiddetta “omogenea”,
cioè quella per cui il fenomeno è esclusivo prodotto delle fluttuazioni che naturalmente
agitano il liquido (o la materia in genere). In contrasto si dice “eterogenea” la nucleazione
in cui qualche corpuscolo estraneo (un atomo di un’altra sostanza) o qualche causa geo-
metrica (una parete) o meccanica (un urto) esterna si dice che agiscano da “seme”. È
facile accorgersi che in natura la nucleazione è più etero che omogenea, eppure lo studio
simulativo della seconda fornisce solitamente più chiarezza riguardo al meccanismo della
nucleazione stessa. La nucleazione omogenea è un fenomeno attivato: rarissimamente si in-
nesca, tranne poi procedere piuttosto velocemente. Negli esperimenti al calcolatore questi
eventi rari sono veramente rari, a causa del fatto che un secondo di un campione reale
verrebbe simulato in tempi che possono facilmente aggirarsi sul milione d’anni. Per questo
si utilizzano tecniche che tentano di favorire il verificarsi dell’evento raro pur senza perdere
informazione sulla probabilità che l’evento raro si verifichi. Per questo capitolo si è adat-
tato alle caratteristiche del sistema carbonio un metodo di recente sviluppo [237]. L’idea è
quella di assumere che la nucleazione si produca per crescita di un nucleo di particelle che
nel liquido si dispongono, casualmente, a guisa di cristallo. Questo nucleo talvolta cresce:
appena raggiunta una certa dimensione detta critica, le particelle del liquido tenderebbero
ad attaccarsi velocemente al nucleo sicché tutto il campione solidifica nel cristallo†. La
ricetta che il metodo usato propone, consente di inseguire quei piccoli nuclei che spon-
taneamente si formano nel liquido (anche nelle scale di tempi accessibili al simulatore) e
simularle ad oltranza finchè essi non raggiungono dimensione critica. Si è trovato che il
liquido “diamantico” nuclea precipitevolissimevolmente al rateo di 1033 nuceli per metro
cubo per secondo.

Insieme alle applicazioni del potenziale per il carbonio, modificato secondo quanto ri-
portato nel capitolo 6, si è sentito necessario lavorare ulteriormente sul miglioramento
del potenziale, sempre insieme a Jan Los e Annalisa Fasolino. Infatti, qualitativamente
il potenziale usato riproduceva sempre e soddisfacentemente le caratteristiche del liquido,
cos̀ı come suggerite dalle assai più dispendiose, in quanto a sforzo computazionale, sim-
ulazioni ab initio. Diverse considerazioni vanno riferite alla descrizione delle fasi solide,
laddove la riproducibilità anche quantitativa dei dati di riferimento (ora ab initio, ora, ove
disponibili, sperimentali) si è sempre dimostrata notevole fin dalla prima formulazione del
potenziale. Il riprodurre quantitativamente le caratteristiche strutturali del liquido alle
diverse pressioni e temperature ha richiesto un profondo ripensamento del potenziale. Il
risultato di questo lavoro certosino è riportato nei capitoli 11 e 12. Nel primo di questi

†A meno che non si siano sviluppati altri di questi nuclei che, una volta “incontratisi”, potrebbero dar
luogo ad un solido costituito di diversi nuclei diversamente orientati, quel che si dice essere un policristallo.
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capitoli si descrive in minuziosi dettagli il potenziale stesso, mentre nel secondo si analizza
il comportamento del potenziale nel liquido, e nella sua capacità di riprodurre i dati di rifer-
imento, e nelle sue potenzialità predittive. In quest’ultimo capitolo si adombra l’ipotesi che
una transizione liquido – liquido per il carbonio sia riscontrabile a temperature piuttosto
basse, con una temperatura critica ben al di sotto della temperatura di congelamento, an-
che per un campione di poche centinaia di atomi. Se detto punto critico, stimato a circa
42 GPa e 1200 K, esiste, allora le fluttuazioni ad esso connesse, ancora potrebbero giocare
un ruolo importante nella nucleazione della fase solida in regioni non necessariamente ad
esso prossime del diagramma di fase.
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[65] F. A. Bornemann and C. Scütte, Numer. Math. 78, 359 (1998).

[66] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).



220 BIBLIOGRAPHY

[67] W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

[68] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

[69] H. B. Shore, J. H. Rose, and E. Zaremba, Phys. Rev. B 15, 2858 (1977).

[70] F. W. Kutzler and G. S. Painter, Phys. Rev. Lett. 59, 1285 (1987).

[71] P. Mlynarski and D. R. Salahub, Phys. Rev. B 43, 1399 (1991).

[72] C. S. Wang, B. M. Klein, and H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985).

[73] W. Weber, Phys. Rev. Lett. 58, 1371 (1987).

[74] T. C. Leung, C. T. Chan, and B. N. Harmon, Phys. Rev. B 44, 2923 (1991).

[75] R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, and R. J. Needs, Phys.
Rev. Lett. 78, 3350 (1997).

[76] R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, and R. J. Needs, Phys.
Rev. B 57, 8972 (1998).

[77] D. C. Langreth and M. J. Meh, Phys. Rev. B 28, 1809 (1983), Erratum: Phys Rev B
29, 2310 (1984).

[78] J. P. Perdew, Phys. Rev. B 33, 8822(R) (1986), Erratum Phys. Rev. B 34, 7406 (1986).

[79] A. D. Becke, Phys. Rev. A 38, 3098 (1988).

[80] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

[81] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

[82] A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

[83] B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).

[84] X. J. Kong, C. T. Chan, K. M. Ho, and Y. Y. Ye, Phys. Rev. B 42, 9537 (1990).

[85] G. Ortiz, Phys. Rev. Lett. 45, 11328 (1992).

[86] A. Garcia, C. Elssser, J. Zhu, S. G. Louie, and M. L. Cohen, Phys. Rev. B 46, 9829
(1992).

[87] E. Fermi, Nuovo Cimento 11, 157 (1934).

[88] J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

[89] D. Vanderbilt, Phys. Rev. B 41, 7892(R) (1990).

[90] K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 43, 6796(R) (1991).

[91] M.Fuchs and M. Scheffer, Comput. Phys. Commun. 119, 67 (1999).

[92] H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
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Non è detto che Kublai Kan creda a tutto quello che dice Marco Polo
quando gli descrive le città visitate nelle sue ambascerie, ma certo
l’imperatore dei tartari continua ad ascoltare il giovane veneziano
con più curiosità e attenzione che ogni altro suo messo o esploratore.
Nella vita degli imperatori c’è un momento, che segue all’orgoglio
per l’ampiezza sterminata dei territori che abbiamo conquistato, alla
malinconia e al sollievo di sapere che presto rinunceremo a conoscerli
e a comprenderli; un senso come di vuoto che ci prende una sera con
l’odore degli elefanti dopo la pioggia e della cenere di sandalo che si
raffredda nei bracieri; una vertigine che fa tremare i fiumi e le mon-
tagne istoriati sulla fulva groppa dei planisferi, arrotola uno sull’altro
i dispacci che annunciano il franare degli ultimi eserciti di sconfitta
in sconfitta, e scrosta la ceralacca di sigilli di re mai sentiti nominare
che implorano la protezione delle nostre armate avanzanti in cambio
di tributi annuali in metalli preziosi, pelli conciate e gusci di testug-
gine: è il momento disperato in cui si scopre che quest’impero che
ci era sembrato la somma di tutte le meraviglie è uno sfacelo senza
fine né forma, che la sua corruzione è troppo incancrenita perché il
nostro scettro possa mettervi riparo, che il trionfo sui sovrani avver-
sari ci ha fatto eredi della loro lunga rovina. Solo nei resoconti di
Marco Polo, Kublai Kan riesce a discernere, attraverso le muraglie
e le torri destinate a crollare, la filigrana d’un disegno cos̀ı sottile
da sfuggire al morso delle termiti.

It is not certain that Kublai Kan trusts everything Marco Polo says when he
describes the cities he visited during his expeditions, but the emperor of Tartars
clearly keep on listening to the young Venetian with more curiosity and attention
than he shows for any other messenger or explorer of his. In the life of emperors
there is a moment that follows pride in the boundless extension of the territories
we have conquered, the melancholy and relief of knowing we shall soon give up
any thought of knowing and understanding them. There is a sense of emptiness
that frames us at evening, with the odor of the elephants after the rain and the
sandalwood ashes cooling in the braziers, a dizziness the makes tremble rivers
and mountains that are engraved on the fallow curves of the planispheres, and
rolls up, one after the other, the despatches announcing to us the collapse of the
last enemy troops, from defeat to defeat, and scrapes off the wax of the seals of
kings never heard before that beseech our armies’ protection, offering in exchange
annual tributes of precious metals, tanned hides, and tortoise shells. It is the
desperate moment when we discover that this empire, that had seemed to us the
sum of all wonders, is an endless, formless ruin, that his corruption’s gangrene
has spread too far to be healed by our scepter, that the triumph over enemy
sovereigns has made us heirs of their long fall. Only in Marco Polo’s accounts
was Kublai Kan able to discern, through the walls and towers doomed to crumble,
the tracery of a pattern so subtle it could escape the termites’ gnawing.


