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1
Introduction

I Zeolites and molecular sieves

A ”molecular sieve” is a material with selective adsorption properties capable of sepa-
rating components of a mixture on the basis of differences in molecular size, shape, and
polarity. Examples of molecular sieves include zeolites, clays, and porous glasses. Zeo-
lites are three-dimensional, microporous, crystalline solids with well-defined structures
that contain aluminum, silicon, and oxygen. Their regular frameworks have void spaces
(cavities or channels) that can host cations, water, or other molecules. The first zeolite
was discovered by Cronstedt in 1756 who found that the mineral rapidly loses water on
heating and seemed to boil. The name ”zeolite” comes from the Greek words zeo (to boil)
and lithos (stone).

Figure 1: Zeolites are three-dimensional, microporous, crystalline solids with well-defined struc-
tures that contain aluminum (green), silicon (yellow), and oxygen (red) in their regular frame-
work. Aluminosilicate zeolites induce a net negative framework charge compensated by non-
framework cations (white). Left: the silicon and aluminum atoms are tetrahedrally coordinated
with each other through shared oxygen atoms. Middle: an open framework structure made up of
corner-sharing SiO4 and AlO4 tetrahedra. Right: zeolites have cavities or channels (brown).
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Zeolites are based on TO4 tetrahedra, where T is an aluminum or silicon atom. The vast
3-dimensional networks are a result of all four corners for the tetrahedra being shared,
producing low density microporous materials. The Primary Building Units (PBU’s) are
the TO4 tetrahedra, and they form Secondary Building Units (SBU’s) that contain up to
16 T atoms. Examples are four rings (4R), five rings (5R), six rings (6R), eight rings (8R),
double four rings (D4R), double six rings (D6R), double eight ring (D8R) etc. It can be
noted that SBU’s in the isolated state of highest possible symmetry are neither left- nor
right-handed (non-chiral). It is the way that these SBUs join together that gives rise to
the huge number of different zeolites. The SBUs join to form structurally and chemically
important zeolite channels known as oxygen windows that pass through the zeolite and
form a pore system. The pores passing through the zeolite in 1, 2, or 3 directions, vary
in size and in the case of MFI-type zeolite can also be sinusoidal. A unit cell always
contains the same number of SBU’s, and although rare, some materials can have different
combinations of SBU’s within the zeolite framework. An important class of materials are
the pentasil zeolites, named so because they are constructed of five-membered rings. The
most important example is that of MFI-type zeolite shown in Fig. 1.

The framework aluminum and silicon are bound to each other through shared oxygen
atoms. The SiO4 units are neutral: Si+4 /O−

4 but the AlO4 results in a net negative charge:
Al+3 /O−

4 . The net negative charge is balanced by cations that are present during the syn-
thesis. These cations are highly mobile and can be exchanged for other cationic species.
According to the so-called Löwenstein rule, Al-O-Al linkages in zeolitic frameworks are
forbidden. As a result, all aluminate tetrahedra must be linked to four silicate tetrahedra,
but a silicate tetrahedron may have five different possible environments: Si (0 Al, 4 Si), Si
(1 Al, 3 Si), Si (2 Al, 2 Si), Si (3 Al, 1 Si) and Si (4 Al, 0 Si). In general the Löwenstein-rule
is assumed to be the correct, but recent investigations into zeolites synthesised at high
temperatures have shown non-Löwenstein distributions in sodalite materials.

Since 1982 several new families of molecular sieves based on AlPO4 have been discov-
ered. These aluminophosphates, silicoaluminophosphates, metalloaluminophosphates
and metallosilicoaluminophosphates are denoted as AlPO4-n, SAPO-n, MeAPO-n and
MeAPSO-n, respectively, where n is an integer indicating the structure type. Of the more
than twenty AlPO4 molecular sieves prepared so far, some have structures of known zeo-
lites, but many have novel structures. When Si is incorporated in the AlPO4-n framework,
the product is known as SAPO. MeAPO or MeAPSO sieves are formed by the incorpo-
ration of a metal atom (Me) into an AlPO4-n or SAPO framework. These metal atoms
include Li, Be, Mg, Co, Fe, Mn, Zn, B, Ga, Fe, Ge, Ti and As. Most substituted AlPO4-n’s
have the same structure as AlPO4-n, but several new structures were only found in SAPO,
MeAPO and MeAPSO materials. Their frameworks carry an electric charge, potentially
providing a further alteration of catalytic behavior. Recent advances in structural zeolite
chemistry have been mainly in the areas of highly siliceous zeolites, aluminophosphates
and related materials. Zeolite chemistry is thus no longer confined to aluminosilicates.

During the last years, two major trends could be observed in the synthesis community;
the development of methods for the growth of ”giant” zeolite crystals, and the explo-
ration of nanometer-sized zeolite crystals. Large crystals are of interest as model host
materials, e.g. for adsorption and/or diffusion studies. Shimizu and Hamada obtained
MFI zeolite (silicalite-1) crystallites up to 4 mm in size. Nanosized zeolites have attracted
a lot of attention due to the fact that they can be used as precursors for zeolite films
or membranes. Several new synthetic zeolites have been obtained, e.g. Engelhard tita-
nium silicate (ETS-4) having adjustable pore sizes depending on the content of water in
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the pores. Another very interesting class of materials are the metal-organic frameworks
(MOF) by using metal-organic building blocks linked by organic spacers. These materi-
als seem to be promising candidates for metal-organic heterogenous catalysis. Seo et al.
showed that a homochiral metal-organic microporous material denoted as POST-1 is an
active catalyst in transesterification reactions.

II Properties

Molecular sieves have found widespread industrial applications as highly selective ad-
sorbents, ion exchangers and, most importantly, catalysts of exceptionally high activity
and selectivity in a wide range of reactions. These applications include the drying of
refrigerants, removal of atmospheric pollutants such as sulphur dioxide, cryo pumping,
separation of air components, separation and recovery of normal paraffin hydrocarbons,
recovering radioactive ions from waste solutions, catalysis of hydrocarbon reactions and
the curing of plastics and rubber. Molecular sieves exhibit appreciable Brønsted acidity
with shape-selective features not available in amorphous catalysts of similar composition.

Molecular sieves are selective, high-capacity adsorbents because of their high intracrys-
talline surface area and strong interactions with adsorbates. Molecules of different size
generally have different diffusion properties in the same molecular sieve. Molecules are
separated on the basis of size and structure relative to the size and geometry of the aper-
tures of the sieve. Molecular sieves adsorb molecules, in particular those with permanent
dipole moments, and exhibit other interactions not found in other sorbents. Different po-
lar molecules have a different interaction with the molecular sieve framework, and may
thus be separated by a particular molecular sieve. This is one of the major uses of zeolites.
An example is the separation of N2 and O2 in the air on zeolite A, by exploiting different
polarities of the two molecules.

The quantity of adsorbed gas or liquid depends on pressure, temperature, the nature
of the adsorbate and the kind of the molecular sieve. Variations in the chemical com-
position of the sieve also affect adsorption. The adsorbed molecules can be removed by
heating and/or evacuation. It is also known that the aluminum in materials such as VPI-
5 may possess a higher coordination member than four, indicating that chemisorption
of water occurs. The structure may also be changed while the adsorbed water is driven
away. The ring sizes of molecular sieve may be determined by sorption of molecules of
different size. Water and nitrogen are two of the smallest molecules which can easily pen-
etrate almost the entire structures. These two molecules are normally used to determine
the crystallinity of molecular sieves by comparing the adsorption volume with that of a
standard sample.

Zeolites with low Si/Al ratios have strongly polar anionic frameworks. The exchange-
able cations create strong local electrostatic fields and interact with highly polar molecules
such as water. The cation-exchange behavior of zeolites depends on

• the nature of the cation species, the cation size (both anhydrous and hydrated) and
cation charge,

• the temperature,

• the concentration of the cationic species in the solution,

• the anion associated with the cation in solution,
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• the solvent (most exchange has been carried out in aqueous solutions, although some
work has been done in organics),

• the structural characteristics of the particular zeolite.

Cation exchange in a zeolite is accompanied by an alteration of stability, adsorption be-
havior and selectivity, catalytic activity and other properties. In some cases, the introduc-
tion of a larger or smaller cation will decrease or enlarge the pore opening. The location of
that cation within the crystal will also contribute to the size of pore opening. For example,
the Na+ form of zeolite A has a smaller effective pore dimension than would be expected
for its 8-membered ring framework opening. This is due to sodium ion occupancy of
sites where it will partially block the 8-membered ring window. When the Na+ ion is
exchanged for the larger K+ ion, the pore diameter is reduced so that only the very small
polar molecules will be adsorbed. If the divalent Ca2+ cation is used to balance of the
framework charge, the effective pore opening widens, as only half the number of cations
are needed. These ions occupy sites within the voids of the zeolite and do not reduce the
effective pore diameter of the 8-membered ring. Highly and purely siliceous molecular
sieves have virtually neutral frameworks, exhibit a high degree of hydrophobicity and no
ion-exchange capacity.

The most important application of molecular sieves is as catalysts. Zeolites combine
high acidity with shape selectivity, high surface area and high thermal stability and have
been used to catalyze a variety of hydrocarbon reactions, such as cracking, hydrocrack-
ing, alkylation and isomerization. The reactivity and selectivity of zeolites as catalysts
are determined by the active sites brought about by a charge imbalance between the sili-
con and aluminum atoms in the framework. Each framework aluminum atom induces a
potential active acid site. In addition, purely siliceous and AlPO4 molecular sieves have
Brønsted acid sites whose weak acidity seems to be caused by the presence of terminal
-OH bonds on the external surface of the crystal.

Shape selectivity, including reactant shape selectivity, product shape selectivity or
transition-state shape selectivity, plays a very important role in molecular sieve cataly-
sis. The channels and cages in a molecular sieve are similar in size to medium-sized
molecules. Different sizes of channels and cages may therefore promote the diffusion of
different reactants, products or transition-state species. High crystallinity and the reg-
ular channel structure are the principal features of molecular sieve catalysts. Reactant
shape selectivity results from the limited diffusivity of some of the reactants, which can-
not effectively enter and diffuse inside the crystal. Product shape selectivity occurs when
slowly diffusing product molecules cannot rapidly escape from the crystal, and undergo
secondary reactions. Restricted transition-state shape selectivity is a kinetic effect arising
from the local environment around the active site: the rate constant for a certain reaction
mechanism is reduced if the necessary transition state is too bulky to form readily.

An example of the effect of shape selective catalysis is the Methanol to Gasoline (MTG)
process developed by the Mobil Oil Company. A stream of gaseous methanol is passed
over a H-ZSM-5 catalyst bed and a dehydration-polymerization reaction takes place in-
side the pore. The resulting effect is a sharp cut off of product distribution at C11 (gasoline)
length fractions. A result of this cut-off is that no extra reprocessing is needed to remove
heavier residues. The impact of this has been immense, countries with no natural source
of crude oil such as New Zealand are generating their own gasoline via the MTG process.
It is likely to become even more popular over the next few decades as crude oil supplies
become depleted.
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III Context, scope, and structure of the thesis

Every gasoline molecule has seen the interior of a zeolite and therefore these nanoporous
materials play a very important technological role. Given the importance of these ma-
terials it is surprising that the fundamentals of diffusion and shape selectivity – used to
improve the octane number of gasoline – is so poorly understood. The reason is that ex-
perimentally it is very difficult to obtain information of the hydrocarbons inside to pores.
The aim of my research during the PhD was to obtain a fundamental understanding of
diffusion in zeolites by the application of molecular simulation techniques. Specifically,
I used it as a technique to obtain a better understanding of the effect of the zeolite con-
finement on the properties of the adsorbed molecules. I set out to work on the following
open-problems:

A The ”window”-effect (chapters 3, 4, and 5)

One of the most controversial and intriguing phenomena in the zeolite literature is the
window effect. Conventional zeolite-catalyzed (hydro)cracking yields a product distri-
bution with a single maximum, which is consistent with the currently accepted reaction
mechanisms. Chen et al. [1, 2] discovered in 1968 that ERI-type zeolites yield a bimodal
product distribution with maxima at n-C3−4 and n-C10−12, but no product in the C7−9 range
(the ”window”). This suggests the possibility of length selective hydrocracking, enabling
control over the length distribution of the product or reactant slate by selecting a zeolite
with the appropriate window.
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Figure 2: The window effect in ERI-type zeolites (a) a near-perfect correlation exists between the
product distribution by Chen et al. [1, 2] and the diffusion coefficient as a function of n-alkane
length by Gorring [3], (b) Gorring’s results are in disagreement with the results of Cavalcante et
al. [4] and Magalhães et al. [5].

For a long time the window effect has been related nearly exclusively to the diffusion
rate of n-alkanes in ERI-type zeolites. Gorring showed that a near perfect correlation
exists between the product distribution and the diffusion coefficient as a function of n-
alkane length (Fig. 2(a)) [3]. Recent diffusion measurements by Cavalcante et al. [4] and
Magalhães et al. [5] failed to reproduce the increase in diffusion rate for the appropriate
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n-alkane lengths (Fig. 2(b)). This controversy motivated us to study the window-effect
using molecular simulations focusing on the following questions

Does the window-effect exist? what is the
reason for the product distribution?

B Development of methods to compute very slow diffusion in confine-
ment (chapters 3, 4)

The diffusion coefficients in ERI-type zeolites are extremely low, as low as 10−17 m2/s.
The first difficulty we encountered when studying diffusion behavior in zeolites using
simulation is that many diffusional processes occur outside the time scale accessible to
MD, which is currently typically limited to diffusion rates in the order of 10−12 m2/s. The
first step in my PhD was

the development of a novel simulation
Transition State Theory technique to study
diffusion of linear alkanes in nanoporous
materials with exceptionally low diffusion
rates.

C Force field development (chapter 6, 7, and 8)

Different parameter sets yield different values of diffusivities. In Fig. 3 the MD-data of
Fritzsche et al. at 173K for methane in LTA-type zeolite are shown [6,7], using two differ-
ent parameters sets A and B. The diffusivities differ quantitatively by an order in magni-
tude, but also the qualitative behavior is different: set B increases with loading, while set
A decreases. The critical unresolved question is:

which of the different potential parame-
ter sets circulating in literature is the most
physically realistic one? Is it possible to
design a consistent and high-quality force
field in a systematic way?

D Development of methods to compute very slow diffusion in confine-
ment as a function of loading (chapters 9, 10, and 12)

Many of the processes of industrial importance occur at non-zero loading. A limited
number of studies deal with non-zero loading. Tunca and Ford [10] used multidimen-
sional TST to obtain the hopping rate of adsorbates from an α-cage in LTA-type zeolite
as a function of loading. Various approximations were applied to make the simulations
computationally feasible. In a subsequent study [11] the limitations of an empty receiv-
ing cage and the use of the Widom insertion method were avoided. Recently, Tunca and
Ford presented a new hierarchical approach to the molecular modeling of diffusion and
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Figure 3: Diffusion coefficients of methane in LTA-type silica at 173K as a function of loading by
MD simulations of Fritzsche et al. [6, 7]. Set A uses σ = 3.14 Å and ε = 180 K for the O-CH4

interaction, while set B uses σ = 3.46 Å and ε = 97.5 K

adsorption at nonzero loading in microporous materials [12]. Statistical mechanical parti-
tions functions are calculated on molecular level models and used as an input to a coarse-
grained model.
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Figure 4: Diffusion coefficient of methane in LTA-type silica as a function of loading. The coarse-
grained results of Tunca et al. using dynamically corrected and noncorrected TST are shown. The
MD results were taken from Fritzsche et al. on an identical system.

Fig. 4 shows the diffusion coefficients of methane in LTA-type zeolite as a function of
loading using the TST and dcTST method of Tunca et al. and the MD results of Fritzsche
et al. on an identical system. Although adsorption is well represented by the method
of Tunca et al., the coarse-grained self-diffusivity data under-predicted the diffusivity at
low loading, while significantly over-predicting the diffusivities at higher loadings, in
comparison to conventional MD. The obvious question to be answered is:
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Can we do better? Can we develop
a method that is capable of computing
quantitatively the diffusivity of adsorbed
molecules in confined systems at non-zero
loading?

E Flexibility influence on diffusion (chapter 10)

The flexibility issue has long been an open one, and is thought to be closed: ”In cation-
free zeolites, diffusivities remain virtually unchanged for small molecules when including
lattice vibrations”. Fritzsche et al. studied methane in cation-free LTA-type zeolite, and
their data is summarized in Fig. 5. By comparing with a model rigid LTA minimized
using the same force field, they found almost no influence on the diffusion coefficient.
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Figure 5: MD data of Fritzsche et al. [8] on methane in LTA-type silica (a) comparing a rigid
and flexible model varying the LJ size parameter σ at a loading of 1 and 7 molecules per cage, (b)
comparing a rigid and flexible model as a function of temperature at a loading of 1 molecule per
cage. The flexible lattice model of Demontis et al. was used [9].

Assuming a good force field, a mismatch between experimental and computed diffu-
sivities can only mean two things:

• the united-atom model is inadequate to properly describe diffusion,

• the framework flexibility should be properly modeled.

The first conclusion can only be drawn after considering the second. Therefore, the flexi-
bility issue for diffusion has to be resolved for our systems and simulation conditions

Does flexibility influences diffusion? At
what conditions and for what systems does
flexibility matter, and when can it be ne-
glected?
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F Understanding diffusion in confinement: Molecular Traffic Control
(chapters 11 and 12)

In contrast to adsorption, which is relatively well understood, diffusion in confinement is
somewhat of a mystery. Current knowledge is so limited that one can not predict whether
for a given molecule and adsorbate the diffusion coefficient will go up, go down, or re-
main constant as a function of loading. Therefore, our main objective to study diffusion
in zeolites is

Predicting diffusion behavior for arbitrary
topologies, adsorbates and loadings.
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An overview chapter focusing on molecular simulations tech-
niques applicable to periodic framework studies. The chapter is
largely based on information from the following books: Under-
standing molecular simulations: from algorithms to applications
by D. Frenkel and B. Smit [1], Computer simulations of liquids
by M. P. Allen and D. J. Tildesley [2], Molecular Modeling:
Principles and Applications by A. Leach [3], Introduction to
Computational Chemistry by F. Jensen [4], Principles of Con-
densed Matter Physics by Paul M. Chaikin, T. C. Lubensky [5],
and the manual of the software package DL POLY [6].

D. Dubbeldam 2
Molecular Simulation Techniques

I Molecular Electrostatics

A Introduction

Electromagnetic interactions dominate on the molecular scale. This is clearest in the case
of electrostatic interactions where charges on nuclei and electrons interact according to
Coulomb’s law:

U =
1

4πε0

qiq j

εrri j
(1)

where qi and q j are the magnitude of the charges, ri j is their separation, ε0 the permittivity
of free space and εr the relative dielectric constant of the medium in which the charges are
placed. Strictly speaking, Coulomb’s law can only adequately describe the interaction of
two point charges in a continuous medium. However, charges are not point charges and
the medium is not continuous. For this reason, the Coulomb’s law in its original form is a
crude approximation. Intrinsic to the electrostatic problem is the question of how charges
may be distributed in space and how such a distribution is described mathematically. A
charge distribution can be either continuous or discrete. At the most fundamentally level,
quantum mechanism teaches us that while the positive nuclear charge may be considered
discrete on the atomic scale, the negative electronic charge is distributed continuously in
the electronic clouds or orbitals, as dictated by the solutions of the electronic Schrödinger
equation. Since the size of molecules precludes quantum mechanical molecular simu-
lations, the basic continuous distribution is forsaken in favor of a discrete set of point
charges, dipoles, and perhaps higher-order multipoles, all characterized by vanishingly
small dimensions. The total electrostatic potential φ due to the charge distribution is
then expressed as a sum of successive multipolar potentials: a monopolar potential φ0,
a dipolar potential φ1, a quadrupolar potential φ2, etc. In principle, such a ”distributed
multipole” description can exactly describe the potential φ due to the true charge density,
at point distant from the expansion centers where ”penetration” effects are negligible.
In practice this expansion is truncated, usually at low order, and often at the monopole
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level in current force fields. The distributed monopoles are usually referred to as partial
charges, since they need not have integral values. The long-range effects are most pro-
nounced for the monopolar potential φ0. The monopole (1/r) dominates the dipole (1/r2),
dipole dominates quadrupole, etc.

B Partial charges

Electrostatic interactions are of fundamental importance. The most common approach is
to place a partial charge at each atomic center (nucleus). These charges then interact by
Coulomb’s Law. The charge can take fractions of an electron and can be positive or nega-
tive. Charges on adjacent atoms (joined by one or two covalent) bonds are normally made
invisible to one another - the interactions between these atoms being dealt with by cova-
lent interactions. Note that the concept of a partial charge is only a convenient abstraction
of reality. In practice many electrons and nuclei come together to form a molecule - par-
tial charges give a crude representation of what a neighboring atom will on average ”see”
due to this collection.

The standard modern way to calculate partial charges is to perform a (reasonably high
level) quantum chemical calculation for a small molecule which is representative of the
group of interest. The electrostatic potential is then calculated from the orbitals obtained
for many points on the molecular surface. A least squares fitting procedure is then used to
produce a set of partial charges which produce potential values most consistent with the
quantum calculations. Older procedures used methods in which orbital populations are
simply split between atoms (Mulliken Population Analysis). All though much simpler,
these charges do not produce a reasonable representation of the electrostatic potential
around a molecule - which is usually what is of interest in a simulation. Using partial
charges at nuclear centers is the crudest effective abstraction. To obtain a more accurate
representation two approaches are common. The first is to add dipole, quadrapole and
higher moments to the nuclear centers. The second is to introduce further non-nuclear
centers - this is commonly done to represent the anisotropy in potential cause by lone
pairs on oxygen atoms.

In many respects electrostatic interactions provided the biggest problems to computa-
tional studies. By their nature they are long range and dependent on the properties of the
surrounding medium (see discussion of dielectric effects). A simple rule of thumb is that
the more highly charged a system the harder it is to simulate - thus simulations of liquid
argon can do a wonderful job, hydrocarbons are fairly easy, water becomes difficult and
proteins more so. The limit is reached with nucleic acids like DNA which are aqueous
complex salts (each base having a charge of minus two) with counter ions and solvent
having important effects on structures. Usually some sort of ”fudge” has to be made in
simulations to keep DNA stable at all!

C Dispersive and repulsive interactions

At low temperatures gases such as argon liquefy. The attractive interactions which cause
this are called dispersion. Although they also occur between charged atoms they are
usually overwhelmed by the stronger electrostatic terms and so are normally only of im-
portance for uncharged groups. To really understand dispersion effects one must turn to
2nd order perturbation theory in quantum mechanics. Imagine that we have an atom of
argon. It can be considered to be like a large spherical jelly with a golf ball embedded
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at the center. The golf ball is the nucleus carrying a large positive charge and the jelly
represents the clouds of electrons whizzing about this. At a point external to the atom
the net average field will be zero because the positively-charged nucleus’ field will be ex-
actly balanced by the electron clouds. However, atoms vibrate (even at 0K) and so that at
any instant the cloud is likely to be slightly off center. This disparity creates an ”instan-
taneous dipole”. Suppose that we have another argon atom close to the first. This atom
will see the electric field resulting from the instantaneous dipole. This field will effect
the jelly inducing a dipole. The two dipoles attract one another - producing an attractive
interaction.

The dispersion interaction can be shown to vary according to the inverse sixth power
of the distance between the two atoms:

−
Bi j

r6 (2)

The factor Bi j depends on the nature of the pair of atoms interacting (in particular their
polarizability). It is normal to parameterize the dispersion empirically using structural
and energetic data from crystals of small molecules. It is not possible to use simple quan-
tum chemical calculations to find parameters. This is because most quantum chemical
calculations use the self consistent field approximation (SCF). Each electron is solved
independently keeping the other orbitals frozen (in a self consistency). This effectively
means that electrons only experience a time averaged picture of other electrons - so that
dispersion cannot come into effect. More advanced methods in quantum chemistry intro-
duce methods to tackle ”electron correlation” to avoid this problem.

There are no physical arguments for choosing the repulsive term to vary as r−12, this
arises due to computational convenience. A more rigorous choice for the repulsive part
of the potential would be an exponential term. The repulsive potential is dominated by
the overlap between electron clouds on different atoms. As the electron density falls off
roughly exponentially with distance from the nuclei, this repulsive interaction should
have an exponential dependence with distance [7]. This leads to the Hill [8] or Bucking-
ham potential. The use of Buckingham (exp-6) and Lennard-Jones 12-6 van der Waals
potentials in MD simulations can quite successfully reproduce experimental thermody-
namic data at low densities. However, they are less successful in producing a description
of the repulsive regions of the potential energy surface (PES) that is in accord with the re-
sults of high-level ab initio computations. One final form occasionally used is the Morse
potential. While this abandons the explicit r−6 dependence for the dispersion interaction,
this is included within the exponential term, along with the other terms in the induced
multipole-induced multipole series. Hayes et al. showed that Morse potentials can be
parameterized to give excellent fits to both the attractive and repulsive regions of the PES
for alkanes at high pressures and densities [9].

D Dielectric effects and polarizability

When two charges interact in a vacuum the energy of their mutual interaction is given by
Coulomb’s law:

U =
1

4πε0

qiq j

ri j
(3)
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However, if the charges are in a space filled with a material the energy of the interaction
is reduced by a factor known as the dielectric constant:

U =
1

4πε0

qiq j

εrri j
(4)

Here εr is the dielectric constant or to use the modern but little used alternative term
relative permittivity. Table 1 quotes the value of the dielectric constant measured for a
number of materials. The source of dielectric effects is that the electric field polarizes the
material involved. Suppose that we have two charges interacting in a vacuum. We can
draw the electric field lines (the direction in which a positive charge would be forced to
move). These charges are then placed in a dielectric medium - which can be thought of
as being composed of a large number of microscopic dipoles (a little rod with positive
charge at one end and negative at the other). These line up along the field lines. A few
important points can be made:

• every dipole lines up so that its positive end points toward the negative charge and
vice-versa. This means that the electric field caused by the dipoles will oppose the
original electric field at all places. This reduction in field causes a reduction in electric
potential and thus a reduction in the interaction energy.

• the electric field between charges permeates the whole of space - it does not only
depend on what is immediately in between the charges.

The polarizability of a molecule is a measure of its ability to respond to an electric
field and acquire an electric dipole moment p. Therefore, polarization is the separation
of positive and negative charges in a system so that there is a net electric dipole moment
per unit volume. Electric dipole moments can be induced by the electric field E or can
be permanent. There are several microscopic mechanisms of polarization in a dielectric
material.

• Electronic polarization αe

Electronic polarization αe describes the displacement of the cloud of bound electrons
with reference to the nucleus under an applied electric field. The atoms distort and
the center of the atom’s negative charge no longer coincides with the position of
the nucleus, resulting in an electric dipole moment. Every atom can be polarized in
this way. Electronic polarizability rises linearly with the inducing field up to very
high field strengths. The contribution of the electronic polarization to the dielectric
constant is usually small.

• Distortion (ionic) polarization αd

Distortion polarization αd (ionic polarization) relates to the distortion of the position
of the nuclei by the applied field, thereby stretching or compressing the bond length,
depending on the relative orientation between the ionic bond and the electric field.
The molecule is bent and stretched by the applied field and changes its dipole mo-
ment accordingly. Nonpolar molecules may acquire an induced dipole moment in an
electric field on account of the distortion the field causes in their electronic distribu-
tions and nuclear positions. Typically ionic polarization is important in ionic crystals
below the infrared wavelengths.
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water (20◦ C) 80.3
water (0◦ C) 87.7
ice polycrystalline (-10◦ C) 98
methanol 33.6
liquid H2S (-85.5◦ C) 9.3
beeswax 2.9
alkanes 2.0-2.5
liquid Argon (-191◦ C) 1.5
vacuum 1.0 (by definition)
siliceous α-quartz 2.12
siliceous sodalite zeolite 1.7
siliceous faujasite zeolite 1.5

Table 1: The dielectric constant of selected materials relative to the dielectric constant of a vacuum.

CH4 methane 0 D C6H6 1-hexyne 0.83 D
CH4O methanol 1.7 D C6H6 benzene 0 D
C2H4 ethene 0 D C6H5NO2 nitrobenzene 4.22 D
C2H6 ethane 0 D NH3 ammonia 1.3 D
C3H6 propene 0.366 D CF4 carbon tertrafluoride 0 D
C3H8 propane 0.084 D HCl hydrogen chloride 1.08 D
C4H8 1-butene 0.34 D CO carbon monoxide 0.1 D
C4H10 butane <0.05 D CO2 carbon dioxide 0 D
C4H10O 1-butanol 1.66 D HO hydroxyl radical 1.66 D
C5H12 2-methylbutane 0.13 D H2O water 1.85 D

Table 2: Selected values of electric dipole moments for molecules in the gas phase. The numerical
values are expressed in Debeye units D (1 D=3.33564× 10−30 Coulomb meter).

compound α [Å3] α [a.u.] compound α [Å3] α [a.u.]
methane 2.6 17.23 water 1.48 10
ethane 4.4 30.2 ethene 4.1 27.7
propane 6.23 42.26 methanol 3.29 22.2
n-butane 8.02 54.82 ethanol 5.21 35.2
isobutane 8.01 54.75 1-propanol 7.1 47.9
n-pentane 9.88 67.14 1-butonal 8.99 60.67
n-hexane 11.78 79.51 nitrobenzene 13.54 91.37
n-heptane 13.61 91.89 propylene carbonate 8.8 59.38
He 0.2 1.35 Ar 1.66 11.2
H2 0.82 5.53 N2 1.77 11.94
CO 1.98 13.36 HF 0.51 3.44
HCl 2.63 17.75 NH3 2.22 14.98
CF4 0 0 SO2 4.34 29.3

Table 3: Selected values of static polarizabilities α for molecules in the gas phase. The units
are volume units and atomic unit of electric polarizability (1.648777274× 10−41 C2m2/J). It is
common practice not to list α itself, but rather α/(4πε0) (ε0 = 8.854187817× 10−12 C2 s2/(kg
m3)) which has dimensions of volume.
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• Orientational (dipolar) polarization αd

Orientational polarization αd arises when randomly oriented polar molecules are ro-
tated and aligned by the application of an electric field so as to give rise to a net
average dipole moment per molecule. The net effect is that each polar molecule is
a small charge dipole which aligns with the applied electric field and influences the
total electric field both inside and outside the material. Orientational polarizability is
limited to molecules that have significant permanent dipole moments, i.e. molecules
that have a dipole moment even in the absence of an inducing field.

The average polarizability αT in the medium is given by the sum

αT = αe + αi + αd (5)

A polar molecule is a molecule with a permanent electric dipole moment. The perma-
nent dipole moment is a result of the partial charges on the atoms in the molecule that
arise from the different electronegativity or other features of bonding. Polar molecules
may have their existing dipole moments modified by the applied field.

In a material, the dipole moment per unit volume is vector field known as the polariza-
tion vector P. In the presence of electronic, ionic and dipolar polarization mechanisms,
the total polarization of a medium P will be the sum of all the contributions in terms of
the local effective field acting on each individual molecule

P = αeElocal + αiElocal + αdElocal (6)

where αe, αi, and αd are the electronic, ionic, and dipolar polarizabilities. Elocal is the local
effective field at the site of an individual molecule that causes the induced polarization.
In the simplest case (valid for gases) we can take the local field to be the same as the
macroscopic field. In solids we have to consider the actual effective field acting on a
molecule.

The quantitative relation between the dielectric constant and properties of the
molecules is described by the Debye equation

εr − 1
εr + 2

=
ρ

3ε0
(αe + αi + αd) (7)

The dielectric constant εr of materials is high if its molecules are polar and highly polariz-
able. There are several ways to decrease the dielectric constant: reduction of the density ρ,
the polarizabilities αe and αd, and also the dielectric constant is lowered when materials
do not contain polar molecules. Reducing the number of ionic bonds in the material min-
imizes the distortion polarization. The electronic polarization is minimized by lowering
the electron density in the material, i.e. introducing smaller elements.

We list selected values for dielectric constant, dipole moments, and polarizabilities in
Table 1, 2, and 3, respectively. Water has a very high dipole moment due to the electroneg-
ativity of oxygen and the fact that hydrogen-oxygen bonds are short. In methanol one of
the hydrogen atoms is replaced by a CH3 group lengthening the bond and so reducing the
dipole moment and consequently the dielectric constant by a factor of over 2. For H2S the
oxygen has been replaced by the much less electronegative sulphur atom and the bond
lengths have been increased. This has the result that the compound is unable to form
hydrogen bonds and is a gas at normal temperatures/pressures. Not surprisingly when
liquefied its dielectric constant is one eighth that of water. Going down the list we find
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that alkanes and organic, essentially unpolarized compounds have a dielectric constant
of around 2 to 3 - this will be around the value found in lipid bilayers. The contribution to
this of electron polarization can be estimated by comparison to liquid argon with a dielec-
tric constant of 1.5. The dielectric constant of ice is around 100. Although ice is crystalline
with the oxygen atoms confined to a tetrahedral pattern, Bernal and Fowler showed the
dipole moments of individual water molecules to be randomly orientated [10]. The crys-
tal does not have any restraining effect on their ability to reorient in an electric field.

So what implications does this have for interactions of importance to simulations? The
first thing to note is that the concept of a dielectric constant is an essentially macroscopic
concept. It relies on the fact that the space around the charges is uniformly filled with
a large number of small dipole moments or polarizable atoms. As the separation of the
charges is reduced to the same scale as the molecules which produce the dielectric effect
this assumption breaks down. The medium surrounding two interaction will have some
dielectric effect but it will not be as simple as a constant.

It is worth noting that typical empirical force fields use a dielectric constant of 1 to
compute charge-charge interactions. Thus, any modulation of electrostatic interactions
by electronic polarization must be implicit in other terms. For well-hydrated molecules,
this may not be a problem because the orientational polarizability of water makes up for
the lack of explicit electronic polarization. However, the neglect of electronic polariza-
tion is likely to be a significant problem in an interior of a protein, where orientational
polarizability probably cannot compensate. An alternative approach is to use a ”reaction
field”.

E Force field development for simulations

alkanes Alkanes are ubiquitous in industrial processes and form the building blocks of
biological systems. Alkanes are generally inert to chemical reagents. Carbon-carbon and
carbon- hydrogen bonds are strong, and do not break unless heated to high temperatures.
Similar electronegativities result in little polarization, so generally unaffected by most
bases. There are no unshared electrons in alkanes for attack by acids. They are non-
polar and consists of a small number of groups, making them the logical starting point
for potential model development.

Three accurate united-atom potential sets for n-alkanes have appeared recently. The
TRAPPE (Martin and Siepmann [11]) and NERD models (Nath et al. [12]) use the
Lennard-Jones potential to describe non-bonded interactions among methyl and methy-
lene groups, while the model of Errington and Panagiotopoulos [13] uses the exponential-
6 form. All three reproduce the experimental phase diagram and critical points. The
exponential-6 model is slightly better with respect to representation of the vapor pres-
sures. Deviations from experimental data for the exponential-6 united atom model are
comparable to those for a recently developed all-atom TRAPPE model (Chen and Siep-
mann [14]). United-atom potentials for branched alkanes have been developed by Cui et
al. [15], Martin and Siepmann [16], and for α-alkenes by Spyriouni et al. [17], Pascual et
al. [18], and recently Jakobtorweihen et al. [19].

polar fluids There have been several recent studies of the phase behavior of polar com-
pounds such as n-alkanols (van Leeuwen [20]), hydrogen sulfide (Kristof and Liszi [21]),
and carbon sulfide (Kristof et al. [22]). However, no transferable force fields that can be
used to obtain the phase behavior of polar fluids with reasonably accuracy are currently
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available. Visco and Kofke studied two ab initio and one empirical potential model for
hydrogen fluoride [23]. The ab initio models did not reproduce accurately the saturated
liquid densities and none of the models predicted correctly the vapor pressure and heat
of vaporization as functions of temperature.

water Because of the importance of water in biological and chemical systems, a large
number of models have been proposed for atomistic simulations. Rigid fixed point charge
models for water are often used in simulations of biological systems because of their sim-
plicity and reasonable predictions of the structure and thermodynamics of liquid water
at ambient conditions. Such models include TIP (Jorgensen et al. [24]) and SPC (Berend-
sen et al. [25]). All represent water as a single Lennard-Jones sphere within which are
embedded positive and negative charges. None of the fixed point charge models can ad-
equately reproduce thermodynamic and structural properties over a broad range. In the
inclusion of only two-body interactions also results in a higher ”effective” dipole moment
relative to the gas phase. Several polarizable models for water are available in literature,
but none seems to be better than the simple fixed points charged models with respect to
the coexistence properties and critical parameters. Recent methodological developments
permit incorporation of polarizability with a penalty of a factor 10 in CPU time relative
to non-polarizable model calculations.

mixtures A key question for all force fields for atomistic simulations is their ability to
predict properties of mixtures without use of additional adjustable parameters for the
unlike-pair interactions. For mixtures of non-polar components such as alkanes or inert
gases, there is considerable evidence that the newer force fields can be used for reliable
predictions of mixture behavior. For mixtures with large differences in polar character
between the components, current models do not result in quantitative agreement with
experiments.

II Zeolite electrostatics

A Dielectric effects and polarizability

Brønsted sites [26] A Brønsted acidic proton consists of a hydrogen atom bonded to the
oxygens atom that connects the tetrahedrally-coordinated framework cations (Fig. 1). The
tetrahedra form a three-dimensional system by sharing of one oxygen atom between
each two tetrahedra. The zeolite framework loses neutrality when lattice Si4+ framework
cations become replaced by lattice Al3+ cations. The excess lattice negative charge now
has to be compensated for by positively charged mobile cations. The zeolitic acidity can
be generated in several ways. NH+

4 ions can be introduced in the zeolite and by heating
they can subsequently be decomposed into NH3 and H+. The NH3 molecule desorbs, and
the proton is left bonded to a bridging lattice oxygen atom, which connects a tetrahedron
with four valent (Si4+) framework cation and one that contains a three valent (Al3+, Ga3+,
Fe3+) framework cation.

Formally the 3-fold coordination of the oxygen bridge is a nonclassical bonding situ-
ation, also known for instance for the hydronium ion H3O+. Compared to silanol (Fig.
1(a)), which is only weakly acidic, the acidity of the proton is enhanced, which is due to
a silanol that undergoes Lewis acid promotion by Al3+. Quantum-chemical calculations
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Figure 1: Schematic representation of (a) silanol, and (b) zeolitic Brønsted acidic hydroxyl.

indicate that the charge on the proton is very low (<0.1 eu). The stretching frequency of
the zeolite OH group is significantly higher than the highest lattice fundamental modes,
which have their maximum value around 1300 cm−1. This does not imply that the OH
bond is much stronger than the lattice TO bonds, but reflects the low proton mass. The
value for the covalent OH bond strength on many different solids for the covalent disso-
ciation energy is around 500 kJ/mol. This implies that the acidic nature of the OH group
becomes apparent only when proton transfer itself, or the response of the OH group on
an interacting basic molecule, is measured.

The polarizability of the zeolitic OH group is much higher than that of the free silanol
group. This polarizability relates of course to the electronic interactions between the oxy-
gen and neighboring atoms. The silanol group is less acidic than the zeolitic hydroxyl,
because the negative charge on the oxygen atoms is only stabilized by orbital interac-
tions with one Si4+ ion in the case of silanol, but by interactions with a Si4+ and another
T3+ ion on the bridging site. Importantly, the OH as well as the lattice OT bonds have
to be considered as strong covalent bonds superposed by small (long range) electrostatic
interactions.

For siliceous FAU-type zeolite long-range electrostatic interactions contribute only ≈
5% to the calculated vibrational frequency differences. Siliceous zeolites are insulators
with a very low dielectric constant. Only when cations such as Na+, K+ or Mg2+ and Ca2+

are located in the zeolite micropore next to tetrahedra that contain trivalent cations such
as Al3+ instead of Si4+, are large electric fields generated. They are short ranged, and the
positive cation charges are compensated for by the corresponding negative lattice charges.
The Na+ cation has only a weak covalent interaction. When Al3+ is substituted for one
of the Si4+ framework ions, the geometry is changed. The Al-O distances are longer in
alumina tetrahedra compared to that in the silicon tetrahedron, because of the weaker
Al-O bond strength. The Si-O bond lengths that neighbor the Al-containing tetrahedron
are shortened, and also the next neighbor bond lengths increase.

B Force field development for simulation

force field for alkanes in dehydrated siliceous zeolites The adsorption of hydrocarbons is dom-
inated by dispersive forces. These interactions are notoriously difficult to describe us-
ing quantum chemical approaches. The next level of sophistication is to use an all-atom
model. These models are commonly used in the simulations of proteins and other large
systems. First attempts to simply use such a force field (Consistent Valence Force Field)
for the adsorption of hydrocarbons in MFI gave a reasonable prediction of the adsorption

Page 19 of 256



isotherms. However, the much simpler united atom models yielded a significantly more
accurate description of the adsorption isotherms [27]. Of course, this observation is not
surprising since the united atom models have been specifically optimized for this type
of adsorption studies, whereas the all-atom model is a universal force field aimed at a
myriad of different applications. To obtain the same degree of accuracy for the all-atom
model as for the united atom model would require a dedicated optimization of the all-
atom model parameters. Such an optimization will be cumbersome, for it is our impres-
sion that the physical information required for such an optimization is not experimentally
available in sufficient detail.

The force field proposed we use is primarily designed to reproduce thermodynamic
properties of guest molecules in a host system at minimal computational cost. The inter-
nal structure of the guests and the guest-guest interactions are of less importance because
the properties are dominated by the strong interaction with the force field exerted by the
host. Adsorption in cation-free structures takes place at sites with little or no electric field.
For these reasons the united atom model [28] seems the most straightforward choice. We
consider the CHx groups as single, chargeless interaction centers with their own effective
potentials.

The forcefield we use for siliceous zeolites does not contain an explicit polarization
term. Polarization energies are typically less than 10% to 20% of the total energy, and even
less for silicious zeolites. However, it should be note that the ”average” polarization (and
also framework flexibility) is included implicitly in the parameterization. The parameters
are obtained empirically. Flexibility of the framework is not an issue for adsorption of
linear and branched alkanes.

force field for alkanes in dehydrated aluminosilicates When cations such as Na+ are intro-
duced into the framework, strong and inhomogeneous electric fields are generated. In
addition, the negatively charged oxygen atoms form a polarizable environment for ad-
sorbed species. Therefore our model explicitly distinguishes silicon from aluminum with
a difference of 0.3 e− between qSi and qAl [29]. Different charges are used for oxygen
atoms bridging two silicon atoms, qOSi, and oxygen atoms bridging one silicon and one
aluminum atom qOAl. Using the relation qSi + (2 qOSi) = 0 is obtained, making the zeolite
neutral in the absence of aluminum, while qOAl is chosen to make the total system charge
equal to zero [30, 31].

In the force field we use, an ”average” polarization is included implicitly in the param-
eterization by means of two effects:

• the polarization induced by the cation on the zeolite and on the alkanes. For the
cation-zeolite interactions we used the approach of Auerbach [29], taking into ac-
count the polarization effects by adjusting the partial charges on the oxygen depend-
ing whether they are connected to Si or Al.

• Concerning the polarization effects for the cation-alkane interactions, alkanes are
very difficult to polarize and therefore a logical approach was to use effective
Lennard-Jones interactions between the cations and the alkanes.

future direction of force fields The polarization is not easy to treat within the approxima-
tion of the effective pair potentials because of the many-body origin of this phenomenon.
Several models have attempted the explicit inclusion of polarization in simulations of
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aluminosilicate systems. For bare aluminosilicates the shell potential model has widely
been used in energy minimizations of crystal structures in order to describe the polar-
ization of the oxygen atoms [32]. For heterogeneous systems, a potential model for hy-
drated aluminosilicates with electric field-dependent force field parameters for flexible
water molecules has been proposed by Demontis et al. [33]. Application of the model
to water-natrolite system showed a good agreement of the calculated and experimental
infrared spectra. The introduction of electric field-dependent terms in the intramolecular
potential of water can improve the reproduction of complex electronic effects by relative
simple empirical functions. Toufar et al. combined classical Monte-Carlo techniques with
the electronegativity equalization method (EEM) and applied this scheme to cation-water
and zeolite-water clusters [34]. Smirnov and Bougeard used MD of hydrated aluminosili-
cate structures with the explicit inclusion of the polarization of both the adsorbent and the
adsorbate molecules [35]. The approach was based on an electronegativity equalization
(EE) model.

C Force field functional forms

The force field is the set of functions needed to define the interactions in a molecular
system. These may have a wide variety of analytical forms with some basis in chemical
physics. A classical force field consists at least of bonded and non-bonded terms:

Utotal = Ubonded + Unon-bonded (8)

with

Ubonded = Ubond + Ubend + Utorsion + Uintra VDW (9)

Unon-bonded =UVDW + UCoulomb (10)

Many, many force field exists. Among the force field implemented in the commercial
Cerius software package we find: universal Force Field [36] (a generic forcefield opti-
mized for organics, main group elements, and organometallic systems), Dreiding II [37]
(for organics, biological compounds, main group elements, and polymers), CFF91 and
CFF95 [38] (for organic systems and polymers), CVFF class II forcefields [39] for pro-
teins and organics), PCFF [39] (for polymers and materials science applications), COM-
PASS 1.0 [40] (for condensed phase properties), GlassFF [41] (for silicates and glasses),
MSXX [42] (for polyvinylfluoride polymers), Burchart [43] and BKS [43] (for zeolites),
specialty forcefields for morphology prediction [44] and specialty forcefields for sorption
calculations [45].

Several revised or newly developed general forcefields have been published in the past
ten years. Among them are Discover (CVFF) [46], Discover (CFF) [47–49], MM2 [50–52],
MM3 [53–58], MM4 [59, 59–63], Dreiding [37], SHARP [64, 65], VALBON [66, 67], UFF
[36], CFF95 [38], AMBER [68–72], CHARMM [73–78], OPLS/Amber [79–82], Tripos [83],
ECEPP/2 [84–86], GROMOS [87–89], and MMFF [90–95]. In one approach, forcefields
were made to be very generic, so that broad coverage of the periodic table, including in-
organic compounds, metals, and transition metals, could be achieved. At the extreme UFF
was designed for simulating molecules containing any combination of elements in the pe-
riodic table. Simple functional forms are used for the diagonal terms in the force-constant
matrix of these forcefields. To enable study of complex inorganic systems, for which the
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traditional covalent models fail, new concepts were introduced in these forcefield devel-
opments. The parameters were defined empirically or by combining atomic parameters
based on certain rules. Because of the generality of parameterization, these forcefields
are normally expected to yield reasonable predictions of molecular structures. Valida-
tion studies with respect to other molecular properties, such as vibration frequencies and
conformational properties, have been limited. In another direction, emphasis was given
to improving the ability of classical forcefields having relatively simple functional forms
to predict properties in a rather focused area of application (mostly biochemistry). For
example, much attention has recently been given to the prediction of condensed-phase
properties. This trend is clearly seen in new versions of AMBER and CHARMM. In par-
ticular, Jorgensen and coworkers published an OPLS/AMBER forcefield [80] in which the
well-known OPLS forcefield approach was extended from the united-atom model [96–99]
to an explicit all-atom forcefield.

Finally, attention has been paid to achieving high accuracy in predicting various molec-
ular properties while maintaining a fairly broad coverage of the periodic table. The prop-
erties of interest include molecular structures, conformational properties, vibrational fre-
quencies, heats of formation, etc. To achieve this goal, complicated functional forms
including off-diagonal cross-coupling terms and high-order (cubic and quartic) energy
terms are used in these forcefields. Forcefields such as MM3, MM4, CFF95 and MMFF
belong in this category. The parameters were derived by fitting to high quality experi-
mental data (MM3/MM4) or to ab initio (calculated quantum mechanically) data (CFF95,
MMFF). With the great flexibility in functional form and the immense amounts of data
in the training set, these forcefields are parameterized accurately. The calculation errors
with them are often within experimental error. However, application of these forcefields
to models in condensed phases has been limited to energy minimization of molecular
crystals. Most of the well-parameterized forcefields, such as MM3, MM4, CHARMM,
AMBER, CFF95, and MMFF, were designed mainly for biologically interesting molecules.
The Merck Molecular Force Field (MMFF) represents a systematic attempt to combine the
best features of such well-regarded force fields as MM3, OPLS, AMBER, and CHARMM
into a single force field that is equally adept in small-molecule and macromolecular ap-
plications. In particular, MMFF strives for MM3-like accuracy for small molecules in a
force field that can be used with confidence in condensed-phase simulations.

Surprisingly, these general force fields give very poor results for such a specialized
system as adsorption and diffusion in nanoporous systems. When a zeolite framework is
involved we have

Utotal = Ubonded
g + Ubonded

h + Unon-bonded
gg + Unon-bonded

gh + Unon-bonded
hh (11)

where g denotes guest and h denotes host. The thermodynamic properties of adsorbed
molecules are overwhelmed by the strong adsorbent-adsorbate (host-guest) interactions,
and these are not modeled in the force fields listed above. Even worse, it turns out that for
simple molecules like alkanes, dedicated force fields like the TRAPPE models of Martin
and Siepmann [11] perform just as well or better. Likewise, the united-atom model for
adsorption and diffusion of alkanes in zeolites of Vlugt et al. [100] outperforms all models
mentioned above. It seems that for high accuracy in specialized systems the generic force
fields are to no avail.

The functional forms of the bonded and non-bonded terms found in many force fields
are discussed below.
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Bonding potential Ubond

Neighboring atoms bonds could be modeled by keeping them at a fixed bond-distance.
However, the resulting dynamics would not be time-reversible. For our fully flexible
molecule several potentials have been proposed in the literature. They are functions of
the interatomic distances only, where the distance is defined as ri j = r j − ri.

the harmonic bond potential

Uharm(ri j) =
1
2

k
(
ri j − req

)2 (12)

fi(ri j) = k
(
ri j − req

)ri j

ri j
(13)

The motion is fastest at the equilibrium position and comes to a complete stop for an
instant at the turning points, where all of the energy is potential energy. The probability
of finding the object is highest at the turning point and lowest at the equilibrium point.

For larger displacements of the atoms (larger than 0.1 Å), the higher-order terms in the
Taylor approximation to the potential become more important and the harmonic approxi-
mation describes the system less well. The disadvantage of the harmonic potential is that
the force is too large at long distances.

the Morse potential bond The potential differs from the harmonic potential in having an
asymmetric potential well, indicating that it is harder to compress a bond then to pull it
apart. The potential has a zero force at infinite distance. Morse’s function has the advan-
tage that it more realistically describes the potential energy of diatomic molecules and
still leads to an exactly solvable quantum mechanical equation. The Morse potential fits
better over a wider range of internuclear distances but it fails at larger distances (London
dispersion forces become important at larger distances).

UMorse(ri j) = E0

[{
1− e−k(ri j−req)

}2
− 1
]

(14)

fi(ri j) = 2E0k
(

1− e−k(ri j−req)
)

e−k(ri j−req) ri j

ri j
(15)

where E0 is the depth of the well in energy units, k defines the steepness of the well in
Å−1, and req is the equilibrium distance in A. The steepness parameters k can be expressed
in terms of the reduced mass of the atoms i and j, the fundamental frequency ωi j and the
well depth E0

k = ωi j

√
µi j

2E0
(16)

and because ω =
√

kh/µ one can rewrite k in terms of the harmonic force constant kh

k =

√
kh

2E0
(17)
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For small deviations ri j − req, one can expand the exp-term to first order in the Taylor
expansion exp(−x) ≈ 1− x. Substituting this in the functional form

UMorse(ri j) = E0

[
1− e−k(ri j−req)

]2

= E0

[
1−

(
1−

√
kh

2E0

(
ri j − req

))]2

=
1
2

kh
(
ri j − req

)2

(18)

One recovers the harmonic bond stretching potential.
Disadvantages of Morse potential are that it allows a bond to stretch to an unrealistic

length and for a structure with long bonds there would be almost no force pulling the
atoms together → convergence might be problematic or nonphysical results might be
obtained.

the m-n bond potential There have been many attempts to fit the bond energy curves with
analytical functions. An early attempt due to Mie in 1903 and developed by Lennard-
Jones, combines repulsive and attractive contributions as the sum of simple hyperbolic
curves:

Um,n(ri j) =

(
A
rm

i j

)
−
(

B
rn

i j

)
(19)

fi(ri j) =
nB
rn+1

i j

− mA
rm+1

i j

(20)

The parameters m and n represent the strength of the repulsive and attractive contribu-
tions; in order for the repulsion to dominate the attraction as short distances m must be
larger than n.

The 12-6 and 12-10 potentials are used for the modeling of hydrogens, 12-6 for non-
polar hydrogens, 12-10 for polar hydrogens. This an optional hydrogen-bond term that
augments the electrostatic description of the hydrogen bond. This term adds only about
0.5 kcal mol−1 to the hydrogen-bond energy, so the bulk of the hydrogen-bond energy
still arises from the dipole-dipole interaction of the donor and acceptor groups.

the Quartic potential A Taylor-expansion of the potential energy, similar to the simple
harmonic potential, while keeping terms up to order 4.

Uquartic(ri j) =
k
2
(
ri j − req

)2 +
k′

3
(
ri j − req

)3 +
k′′

4
(
ri j − req

)4 (21)

fi(ri j) =
[
k
(
ri j − req

)
+ k′

(
ri j − req

)2 + k′′
(
ri j − req

)3]ri j

ri j
(22)

The force exerted on atoms labeled i and j is easily obtained using

f (i) =
[
∂Ustretch(ri j)

∂ri j

]
ri j

|ri j|
f ( j) = −

[
∂Ustretch(ri j)

∂ri j

]
ri j

|ri j|
(23)
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The contribution to the atom virial is

W = −ri j · f j (24)

The contribution to the stress tensor σ isri j(x)f j(x) ri j(x)f j(y) ri j(x)f j(z)
ri j(y)f j(x) ri j(y)f j(y) ri j(y)f j(z)
ri j(z)f j(x) ri j(z)f j(y) ri j(z)f j(z)

 (25)

Bond-bending potential Ubend

The angle θ jik is the angle between ri j and rik

θ = cos−1
(

ri j · rik

ri jrik

)
(26)

A general expression for most common angle potentials is

U
(
θ jik, ri j, rik

)
= A

(
θ jik
)

(27)

where A (θ) is a purely angular function.
With this reduction the force on an atom derived from the valence angle potential is

given by

f α
l = −

∂U
(
θ jik, ri j, rik

)
∂rα

l
(28)

with atomic label l being one of i, j, k and α indicating the x, y, z component. The deriva-
tive is

−
∂U
(
θ jik, ri j, rik

)
∂rα

l
= −

∂A
(
θ jik
)

∂rα
l

(29)

The derivative of the angular function A
(
θ jik
)

−
∂A
(
θ jik
)

∂rα
l

=
1

sin
(
θ jik
) ∂A

(
θ jik
)

∂θ jik

∂

∂rα
l

(
ri j · rik

ri jrik

)
(30)

with

∂

∂ri

(
ri j · rik

ri jrik

)
= − ∂

∂r j

(
ri j · rik

ri jrik

)
− ∂

∂rk

(
ri j · rik

ri jrik

)
(31)

∂

∂r j

(
ri j · rik

ri jrik

)
=

rik

ri jrik
− cos

(
θ jik
) ri j

r2
i j

(32)

∂

∂rk

(
ri j · rik

ri jrik

)
=

ri j

ri jrik
− cos

(
θ jik
) rik

r2
ik

(33)

The atomic forces are then completely specified by the derivatives of the particular func-
tion A

(
θ jik
)
.
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the harmonic potential

Uharm(θ jik) =
1
2

k
(
θ jik − θeq

)2 (34)

fi = −f j − fk (35)

f j =
k
(
θ jik − θeq

)
sin
(
θ jik
) [

rik

ri jrik
− cos

(
θ jik
) ri j

r2
i j

]
(36)

fk =
k
(
θ jik − θeq

)
sin
(
θ jik
) [

ri j

ri jrik
− cos

(
θ jik
) rik

r2
ik

]
(37)

the quartic potential

Uquartic(θ jik) =
1
2

k(θ jik − θeq)2 +
1
3

k′(θ jik − θeq)3 +
1
4

k′′(θ jik − θeq)4 (38)

fi = −f j − fk (39)

f j =
k
(
θ jik − θeq

)
+ k′

(
θ jik − θeq

)2 + k′′
(
θ jik − θeq

)3

sin
(
θ jik
) [

rik

ri jrik
− cos

(
θ jik
) ri j

r2
i j

]
(40)

fk =
k
(
θ jik − θeq

)
+ k′

(
θ jik − θeq

)2 + k′′
(
θ jik − θeq

)3

sin
(
θ jik
) sin

(
θ jik
)[ ri j

ri jrik
− cos

(
θ jik
) rik

r2
ik

]
(41)

the harmonic cosine potential

Uharm cos(θ jik) =
k
2
(
cos(θ jik)− cos(θeq)

)2 (42)

fi = −f j − fk (43)

f j =
k
(
cos
(
θ jik
)
− cos

(
θeq
))

sin
(
θ jik
) [

rik

ri jrik
− cos

(
θ jik
) ri j

r2
i j

]
(44)

fk =
k
(
cos
(
θ jik
)
− cos

(
θeq
))

sin
(
θ jik
) [

ri j

ri jrik
− cos

(
θ jik
) rik

r2
ik

]
(45)

In general, the contribution to the atom virial is

W = −(ri j · f j + rik · fk) (46)

The bending potentials given here make no contribution to the virial.
The contribution to the stress tensor σ is σαβ = rα

i j f β
j + rα

ik f β
kri j(x)f j(x) + rik(x)fk(x) ri j(x)f j(y) + rik(x)fk(y) ri j(x)f j(z) + rik(x)fk(z)

ri j(y)f j(x) + rik(y)fk(x) ri j(y)f j(y) + rik(y)fk(y) ri j(y)f j(z) + rik(y)fk(z)
ri j(z)f j(x) + rik(z)fk(x) ri j(z)f j(y) + rik(z)fk(y) ri j(z)f j(z) + rik(z)fk(z)

 (47)
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Torsion potential Utorsion

Compared to bond-and bend forces, the torsional force is much weaker. Most variations
in molecular structure and relative energies is due to complex interplay between torsional
and non-bonded interactions.

The dihedral angle potentials describe the interaction arising from torsional forces in
molecules. They require the specification of four atomic positions.

The dihedral angle is defined by

φi jkn = cos−1 (B (ri j, r jk, rkn
))

(48)

where

B
(
ri j, r jk, rkn

)
=
(
ri j × r jk

)
·
(
r jk × rkn

)
|ri j × r jk||r jk × rkn|

(49)

With this definition, the sign of the dihedral angle is positive if the vector product(
ri j × r jk

)
·
(
r jk × rkn

)
is in the same direction as the bond vector r jk and negative if in

the opposite direction. The angle φ is the angle between the i jk and jkl planes, with φ = 0
corresponding to the cis configuration (i and l on the same side). This definition is called
the protein convention.

The force on an atom arising from the dihedral potential is given by

fl = − ∂

∂rl
U(φi jkn) (50)

with l being on of i, j, k, n. This may be expanded into

− ∂

∂rl
U
(
φi jkn

)
=

1
sin
(
φi jkn

) ∂

∂φi jkn
U
(
φi jkn

) ∂

∂rl
B
(
ri j, r jk, rkn

)
(51)

The derivative of the function B
(
ri j, r jk, rkn

)
is

∂

∂rl
=

1
|ri j × r jk||r jk × rkn|

∂

∂rl

((
ri j × r jk

)
·
(
r jk × rkn

))
−

cos
(
φi jkn

)
2

[
1

|ri j × r jk|2
∂

∂rl
|ri j × r jk|2 +

1
|r jk × rkn|2

∂

∂rl
|r jk × rkn|2

]
α

(52)

with

∂

∂ri

((
ri j × r jk

)
·
(
r jk × rkn

))
=− r jk

[
r jkrkn

]
α
+ rkn

[
r jkr jk

]
α

∂

∂r j

((
ri j × r jk

)
·
(
r jk × rkn

))
=− ri j

[
r jkrkn

]
α
+ r jk

[
r jkrkn

]
α

+ rkn
(
−
[
ri jr jk

]
α
−
[
r jkr jk

]
α

)
+ 2r jk

[
ri jrkn

]
α

∂

∂rk

((
ri j × r jk

)
·
(
r jk × rkn

))
=ri j

([
r jkr jk

]
α
+
[
r jkrkn

]
α

)
− r jk

[
ri jr jk

]
α

+ rkn
[
ri jr jk

]
α
− 2r jk

[
ri jrkn

]
α

∂

∂rn

((
ri j × r jk

)
·
(
r jk × rkn

))
=− ri j

[
r jkr jk

]
α
+ r jk

[
ri jr jk

]
α

(53)
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and

∂

∂ri
|ri j × r jk|2 = −2ri j

[
r jkr jk

]
α
+ 2r jk

[
ri jr jk

]
α

∂

∂r j
|ri j × r jk|2 = 2ri j

[
r jkr jk

]
α
+ 2ri j

[
ri jr jk

]
α
− 2r jk

[
ri jri j

]
α
− 2r jk

[
ri jr jk

]
α

∂

∂rk
|ri j × r jk|2 = −2ri j

[
ri jr jk

]
α
+ 2r jk

[
ri jri j

]
α

∂

∂rn
|ri j × r jk|2 = 0

(54)

and

∂

∂ri
|r jk × rkn|2 = 0

∂

∂r j
|r jk × rkn|2 = 2rkn

[
r jkrkn

]
α
− 2r jk [rknrkn]α

∂

∂rk
|r jk × rkn|2 = −2rkn

[
r jkr jk

]
α
− 2rkn

[
r jkrkn

]
α
+ 2r jk [rknrkn]α + 2r jk

[
r jkrkn

]
α

∂

∂rn
|r jk × rkn|2 = 2rkn

[
r jkr jk

]
α
− 2r jk

[
r jkrkn

]
α

(55)

where

[ab]α = ∑
β

(
1− δαβ

)
aβbβ (56)

[ab]x = ayby + azbz

[ab]y = axbx + azbz

[ab]z = axbx + ayby

Formally, the contribution to be added to the atomic virial is given by

W = −
4

∑
i=1

ri · fi (57)

However it is possible to show that the dihedral makes no contribution to the atomic
virial.

The contribution to be added to the atomic stress tensor is given by

σαβ = rα
i j p

β
i + rα

jk pβ
jk + rα

kn pβ
n −

cos
(
φi jkn

)
2

(
rα

i jg
β
i + rα

jkgβ
k + rα

jkhβ
j + rα

knhβ
n

)
(58)
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with

pi =
r jk
[
r jkrkn

]
α
− rkn

[
r jkr jk

]
α

|ri j × r jk||r jk × rkn|

pn =
r jk
[
ri jr jk

]
α
− ri j

[
r jkr jk

]
α

|ri j × r jk||r jk × rkn|

p jk =
r jk
[
r jkrkn

]
α
− rkn

[
ri jr jk

]
α
− 2r jk

[
ri jrkn

]
α

|ri j × r jk||r jk × rkn|

gi =
2
(
ri j
[
r jkr jk

]
α
− r jk

[
ri jr jk

]
α

)
|ri j × r jk|2

gk =
2
(
r jk
[
ri jri j

]
α
− ri j

[
ri jr jk

]
α

)
|ri j × r jk|2

h j =
2
(
r jk [rknrkn]α − rkn

[
r jkrkn

]
α

)
|r jk × rkn|2

hn =
2
(
rkn [rknrkn]α − r jk

[
r jkrkn

]
α

)
|r jk × rkn|2

(59)

the cosine potential

Ui jkn = A
[
1 + cos

(
mφi jkn − δ

)]
(60)

the harmonic potential

Ui jkn =
1
2

k
(
φi jkn − φeq

)2 (61)

the harmonic cosine potential

Ui jkn =
1
2

k
(
cos
(
φi jkn

)
− cos

(
φeq
))2 (62)

the triple cosine potential The Pitzer potential used in OPLS is given by the first four terms
of a Fourier series

Ui jkn = A0 +
1
2

[A1 (1 + cos (φ)) + A2 (1− cos (2φ)) + A3 (1 + cos (3φ))] (63)

An gives the energy barrier to rotation, n = 1,2,3 in nφ the number of maxima (or
minima) in one full rotation. The use of the sum allows for complex angular variation
of the potential energy (in effect a truncated Fourier series is used). Barriers for dihedral
angle rotation can be attributed to the exchange interaction of electrons in adjacent bonds.
Steric effects can also be important. It was found that the Pitzer potential was insufficient
to give a full representation of the energy barriers of dihedral angle change. Modern
potential energy functions normally model the dependence of the energy on dihedral
angle change by a combination of Pitzer potential terms and non-bonded effects.
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the Ryckaert-Bellemans potential For alkanes the following dihedral potential the
Ryckaert-Bellemans potentials are often used. Note that a conversion can be achieved
by multiplying every coefficient by (−1)n. The use of this potential implies exclusion of
LJ-interactions between the first and last atom of the dihedral, and θ = φ− π is defined
according the polymer convention θtrans = 0.

Ui jkn = ∑
n

Cn cosn (θ) (64)

The RB potential can also be used to include the OPLS dihedral potential. Because of the
equalities cos (2φ) = 2 cos2 (φ)− 1 and cos (3φ) = 4

(
cos3 (φ)− 3 cos (φ)

)
one can translate

the OPLS parameters to Ryckaert-Bellemans parameters as follows:

C0 = A0 + A2 +
1
2

(A1 + A3)

C1 =
1
2

(3A3 + A1)

C2 = −A2

C3 = −2A3

C4 = 0
C5 = 0

(65)

with OPLS parameters in protein convention and Ryckaert-Bellemans in polymer con-
vention.

non-Bonded Potentials UVDW

In addition to the bonded interactions between atoms described above, force fields also
contain non-bonded interactions. Non-bonded interactions act between atoms in the
same molecule and those in other molecules. Force fields usually divide non-bonded
interactions into two: Van der Waals interactions and electrostatic interactions.

pair-potentials In general, the system potential energy can be expressed as

U = ∑
i

U1(ri) + ∑
i

∑
j>i

U2(ri, r j) + ∑
i

∑
j>i

∑
k> j>i

U3(ri, r j, rk) + . . . (66)

where the first term denotes the effect of external fields and other terms denote the inter-
actions between particles. Among them, U2 is the potential between pairs of particles, U3

is the potential between triplets, and U4 and U5 are the interactions between quadruplets
and quintuplets, respectively, etc. . . .

The dominant term is the two-body interaction and higher terms are usually neglected.
In some cases, tree-body interactions are important, but they rapidly increase the time
needed for simulation. The atomic pairwise potential is the foundation for evaluating
molecular properties, because molecules are composed of atoms.

VDW potentials The most common potentials, as Lennard-Jones, have an infinite range.
The problem of this is that we must analyze n ∗ (n− 1) pair-potentials each time step. It is
not possible for large applications, and for this reason it is customary to establish a cutoff

Page 30 of 256



radius rc and disregard the interactions between atoms separated by more than rc . This
results in simpler programs and enormous savings of computer resources, because the
number of atomic pairs separated by a distance r grows as r2 and becomes quickly huge.

The force is derived from the potential as

f j(r) = − 1
ri j

[
∂

∂r
U(ri j)

]
ri j (67)

12 - 6 potential

U
(
ri j
)

=

(
Ai j

r12
i j

)
−
(

Bi j

r6
i j

)
(68)

− ∂

∂r
U(ri j) =

12
r

[
A
r12 −

1
2

B
r6

]
(69)

Lennard-Jones

U
(
ri j
)

= 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

(70)

− ∂

∂r
U(ri j) =

48
r

[(σ

r

)12
− 1

2

(σ

r

)6
]

(71)

Buckingham potential

U
(
ri j
)

= −
Ai j

r6
i j

+ Bi je−Ci jri j (72)

− ∂

∂r
U(ri j) = −6

r
Ai j

r6 + Bi jCi je−Ci jri j (73)

electrostatic interaction UCoulomb The electrostatic interaction arises due to the unequal dis-
tribution of charge in a molecule. Within the force field framework this uneven distribu-
tion of charge can be modeled by placing point charges at each of the atomic sites. Due
to charge conservation for a neutral molecule these sum to zero. The interaction between
point charges is generally modeled by a Coulomb potential

U =
1

4πε0

qiq j

ri j
(74)

where ε0 is the permittivity of free space, q are atomic charges, and ri j is the distance be-
tween atom i and j. An alternative approach used in some force fields is to model the
electrostatics using point dipoles on the atoms or bonds. This can be extended by plac-
ing point multipoles on the atomic sites, a method called Distributed Multipole Analysis
(DMA).
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III Boundary conditions

Periodic boundary conditions are commonly applied to overcome the problems of sur-
face effects. The original simulation box, including all the atoms within it, is replicated
throughout space. When a molecule in the original box moves, its periodic images in each
of the surrounding boxes moves in exactly the same way. If a molecule leaves the central
box, one of its images will enter the box through the opposite face. It is not necessary to
store the coordinates and momenta of all the images, only the ones in the central box are
needed, because the images can be obtained from translation operators. The boundary of
the periodic box does not have any physical significance, only the shape and orientation
is fixed.

Usually, one uses the minimum-image convention, where the distance between two
particles is taken to be the shortest distance between their periodic images, and a trun-
cation (and shifted such that the potential vanishes at the cutoff) of the potential at some
distance smaller then half the box length to be consistent with the minimum image con-
vention. The advantage of using a truncated and shifted potential is that the intermolecu-
lar forces are always finite. This is important because impulsive forces are hard to handle
in MD simulations. The cutoff-distance has to be larger than the distance where pair-
correlations are present, i.e. g(r) ≈ 1 at the cutoff distance. The function g(r) gives the
probability of finding a pair of atoms a distance r apart, relative to the probability ex-
pected for a complete random distribution at the same density.

In crystallography, the crystal structure is defined by the unit cell, and by the fractional
coordinates of the atoms within the unit cell. These coordinates form an orthonormal
dimensionless S-space. The transformation from S-space to real R -space can be carried
out by the matrix H :

H =

a b cos (γ) c cos (β)
0 b sin (γ) cζ
0 0 c

√
1− cos2 β − ζ2

 (75)

with
ζ =

cosα− cosγ cosβ

sinγ
(76)

Conversely, H −1 transforms real coordinates to fractional coordinates. With the chosen H
the scaled box has a length of 1. Our potential forcefield is defined in real space, therefore
it is convenient to store position in R space, transform them to S space, apply periodic
boundary conditions in S space, and transform back to R space to compute distances
within the simulation box

s = H −1r
s′ = s− rint (s)
r′ = H s′

(77)

where the ”rint”-function returns the rounded integer value of its argument. The smallest
perpendicular width of the unit cell has to be larger than twice the spherical cutoff in R
space.

For computational reasons a rectangular unit cell is preferred. Not only is the matrix
conversion more expensive, if the the unit cell is severely distorted from cubic many dis-
tances will be calculated that are outside the cutoff in R space reducing the efficiency.
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However, for computation of free energy profiles in complex zeolite structures, the frac-
tional space is often very convenient.

IV Monte-Carlo (MC)

A The Metropolis algorithm

The Markov Chain Monte Carlo method (MCMC) is an important tool to estimate the
average properties of systems with a very large number of accessible states. Often the
quantity of interest are not the configurational part of the partition function itself, but
averages of the type

〈A〉 =
R

e−βU(rN)A
(
rN
)

drNR
e−βU(rN) drN

(78)

where β = 1/(kBT), with kB the Boltzmann constant, and U
(
rN
)

is the total energy of the
system with N particles at positions rN. The configurational part of the partition function
is denoted by Z

Z ≡
Z

e−βU(rN) drN (79)

the ration e−βU/Z is the probability density of finding the system in a configuration
around rN. The Monte Carlo scheme makes use of the fact that only the relative prob-
ability of visiting points in configuration space is needed, not the absolute probability.
To visit points with the correct frequency, the MCMC algorithm generates random trial
moves from the current (”old”) state (o) to a new state (n). To show that an arbitrary ini-
tial distribution eventually relaxes to the equilibrium distribution, it is often convenient
to apply the condition of detailed balance (as is used in the original Metropolis scheme).
If PB(o) and PB(n) denote the probability of finding the system in in state (o) and (n), re-
spectively, and α(o → n) and α(n → o) denote the conditional probability to perform a
trial move from o → n and o → n, respectively, then the probability Pacc(o → n) to accept
the trial move from o → n is related to Pacc(n → o) by the following

PB(o)α(o → n)Pacc(o → n) = PB(n)α(n → o)Pacc(n → o) (80)

Metropolis et al. assumed that

α(o → n) = α(n → o) (81)

and fixed the acceptance probability using

Pacc(o → n) = min
(

1,
PB(n)
PB(o)

)
(82)

B Recycling of micro-states

In the Metropolis scheme, the rejected trial states are not contributing to the average, but
to the proper normalization. As a consequence, conventional Monte Carlo algorithms
are wasteful because they tend to generate many trial states that are unused for averages
and distributions. However, we can do better; the properties of the rejected states can
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be included in the sampling by using the Waste-Recycled Monte Carlo (WRMC) method
by D. Frenkel [101]. The weaker condition ”balance” is both sufficient and necessary to
guarantee that a particular Markov chain algorithm leads to equilibrium sampling. The
balance condition requires only that the Markov chain leaves the equilibrium distribution
invariant.

Assume that we start with an old configuration (o). Instead of generating a single new
configuration we generate a set of possible new configurations, which we denote by {n}.
Now, with the set (o + {n}) we do a thought experiment in which we sample states within
this set only using the conventional Metropolis scheme. If we would carry out this simu-
lation with an infinite number of steps, then we can exactly predict the ensemble average
of an observable A of this set.

〈A〉 = ∑
n
i=1 e−βU(i)A(i)
∑

n
i=1 e−βU(i) (83)

Furthermore, the probability that the system is in state i after this simulation is given by

P(i) =
e−βU(i)

∑
n
j=1 e−βU( j) (84)

The sampling of the set (o + {n}) can be considered as a coarse-grained move in which
the final configuration is selected with a probability given by Eq. 84. By averaging over
many of these coarse-grained moves we obtain the correct ensemble average. All states
that we have generated, both accepted and rejected, contribute to this ensemble average,
but with a different weight.

It is important to note that this scheme only works if the underlying method to generate
configurations obeys detailed balance. The whole set of coarse-grained moves obeys the
weaker condition of balance, but still samples the correct distribution.

C Ensembles

canonical NVT ensemble

In the canonical ensemble, the number of particles N, the temperature T, and the volume
V are constant. The partition function is

ZNVT =
1

Λ3N N!

Z
e−βU drN (85)

where Λ =
√

h2/ (2πmkBT) is the thermal de Broglie wavelength. The probability of find-
ing configuration rN is given by

N
(
rN) ∝ e−βU(rN) (86)

The average of the variable A
(
rN
)

in the NVT ensemble is given by〈
A
(
rN)〉 =

R
A
(
rN
)

e−βU drNR
e−βU drN (87)

Computing properties like the average energy is obvious, but pressure and the chemical
potential are more difficult. The definition for pressure from thermodynamics is

p = kBT
(

∂ log ZNVT

∂V

)
N,T

(88)
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Making the coordinate change (assuming a cubic box for simplicity)

si =
ri

L
L = V

1
3 for i = 1,2, . . . , N (89)

we can write(
∂ log ZNVT

∂V

)
N,T

= NVN−1
Z 1

0
. . .

Z 1

0
e−βU dsN − βVN

Z 1

0

Z 1

0

Z 1

0
e−βU ∂U

∂V
(90)

with

∂U
∂V

= ∑
i

dU(rα
i )

drα
i

drα
i

dV
(91)

= −∑
i

fα
i

1
3

V− 2
3 rα

i (92)

= − 1
3V ∑

i
fi · ri (93)

Conversion to the initial coordinates and using

∂ log ZNVT

∂V
=

1
ZNVT

∂ZNVT

∂V
(94)

we see that the first term is the density, and the second term is the ensemble average of
the sum of the force times coordinate

pV = NkBT− 1
3
〈fi · ri〉 (95)

The second term on the right is called the virial, and this equation the virial equation.
A particularly simple and elegant method for measuring the chemical potential µ in a

pure fluid or in a mixture is the Widom particle insertion method (WPI). From thermody-
namics, we know that µa of species a is defined as

µa =
(

∂F
∂Na

)
Na 6=bVT

(96)

where F is the Helmholtz free energy. The expression for the Helmholtz free energy is

FNVT = −kBT ln ZNVT (97)

= −kBT ln
(

VN

Λ3N N!

)
− kBT ln

(Z
e−βU(sN) dsN

)
(98)

= Fid
NVT + Fex

NVT (99)

For large enough in Eq. 96, the chemical potential is given by

µ = −kBT ln
ZN+1

ZN
(100)

= −kBT ln
V

Λ3(N + 1)
− kBT ln

R
e−βU(sN+1) dsN+1R

e−βU(sN) dsN
(101)

≡ µid (ρ) + µex (102)
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We now separate the potential energy function of the N-particle system, and the interac-
tion energy of the (N + 1)th particle with the rest

∆U ≡ U(sN+1)−U(sN) (103)

and we can write

µex = −kBT ln
(Z 〈

e−β∆U〉 dsN+1
)

(104)

where 〈. . . 〉 denotes canonical ensemble averaging over the configurational space of the
N-particle system.

Widom test-particle method.

• Perform NVT MC simulation for the system of N particles

• Calculate the average of the e−βU(N+1), by inserting the “ghost” particle at random
positions inside the box, and calculating its interaction energy with the rest of the
system, as if it were real.

This technique works fine at moderate densities around the critical point, but turns out to
have problems at high densities around liquid-solid coexistence, because the probability
to insert the “ghost” at the place where the e−βUN+1 is very small.

NPT ensemble

The constant volume ensemble is not very convenient for the study of phase transitions.
Some experimental values, like the excess properties, are measured at constant pressure,
not at constant volume, therefore it would be nice to have a method to simulate the iso-
baric conditions also. The average of the value A

(
sN
)

in the NPT ensemble is given as:

〈A〉NPT =
1

ZNPT

Z ∞

0
e−βPVVN

(Z 1

0
A
(
sN) e−βU dsN

)
dV (105)

with

ZNPT =
βP

Λ3N N!

Z
VNe−βPV

(Z
e−βU dsN

)
dV (106)

Here we again made the transformation to the “primed” coordinates, rescaling them
by the box dimensions. If we perform a random walk in ln V, the probability of finding
volume V is given by

N
(
ln (V) ; sN) ∝ e−β(PV+U)+(N+1) ln V (107)

For a random walk in ln V, instead of in V, the domain of this walk coincides with all pos-
sible values of V. Furthermore, the average step size turns out to be less sensitive to the
density. Metropolis algorithm is implemented in the same way as for NVT ensemble, but
now we also allow the volume to change. We have two kinds of the Monte Carlo moves:
particles displacement, performed the same way as in the NVT simulations, and volume
change. The acceptance criterion is, of course, modified now, as instead of the energy
difference between the old and new states, it is based on the difference of enthalpies:

∆H = ∆U + P
(
V′−V

)
− (N + 1)

1
β

ln
V′

V
(108)

acc (o → n) = min
(
1, e−β∆H) (109)
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For the computation of the chemical potential we must evaluate

µ =
∂G
∂N PT

(110)

Entirely analogous to the NVT case we find that µ = G(N + 1, P, T)−G(N, P, T) reads

µ = −kBT ln
〈

V
Λ3(N + 1)

Z
e−β∆U dsN+1

〉
(111)

= −kBT ln
kBT
PΛ3 − kBT ln

〈
PV

(N + 1)kBT

Z
e−β∆U dsN+1

〉
(112)

= µid(P) + µex(P) (113)

We now define the ideal gas reference state at the same pressure, rather than at the same
average density as the system under study. The fluctuating quantity that we are averaging
is no longer e−β∆U, but Ve−β∆U.

Gibbs ensemble

The Gibbs ensemble Monte Carlo simulation technique allows direct simulation of phase
equilibria in fluids. Gibbs ensemble simulations are performed in two separate micro-
scopic regions, each within periodic boundary conditions.

An n-component system at constant temperature T, total volume V, and total number
of particles N is divided into two regions, with volumes VI and VI I = V−VI and number
of particles NI and NI I = N− NI . The partition function is given by

QGibbs
NVT ≡ 1

Λ3N N!

N

∑
N I=0

(
N
NI

)Z V

0
(VI)NI (VI I)NI I

(Z
e−βU(sNII ) dsNI I

I I

Z
e−βU(sNI

I ) dsNI
I

)
dV I (114)

The probability of finding a configuration with NI particles in box 1 with volume VI , and
positions sNI

1 and sNI I
2 is given by

N
(

NI, VI, sNI
1 , sNI I

2

)
∝ (VI)NI (VI I)NI I

NI!NI I!
e−β

(
U(sNI

I )+U(sNII
I I )

)
(115)

In the Gibbs scheme we consider the following trial moves

• displacement of a randomly selected particle
The acceptance rule is identical to that used in a conventional NVT ensemble simu-
lation

• change of box volumes while keeping the total volume constant
The acceptance rule for a random walk in ln

(
VI/VI I

)
is

acc(o → n) = min(1,

(
VI(n)
VI(o)

)NI+1(VI I(n)
VI I(o)

)NI I+1

e−β∆(U(sN) (116)

• transfer of a randomly selected particle from one box to the other
We can generate a new configuration n from configuration o (NI particles in box 1) by
removing a particle from box 1 and inserting this in box 2. At random, it is selected
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to transfer a particle from box 1 to box 2 or vice versa. Out of the n components, one
the components j is selected at random. A particle that obeys the first two choices
is selected at random and transfered to a random position in the other box. The
acceptance rule is given by

acc(o → n) = min
(

1,
NI, jVI I

(NI I, j + 1)VI
e−β(U(sN

n )−U(sN
o ))
)

(117)

Alternatively, one can first select a particle at random from all N particles and then
try to move this particle to the other simulation box. The acceptance rule is

acc(o → n) = min
(

1,
V I I

V I e−β(U(sN
n )−U(sN

o ))
)

(118)

For pure component systems, the phase rule requires that only one intensive variable
(the temperature) can be independently specified when two phases coexists. The
vapor pressure is obtained from the simulation. By contrast, for multi-component
systems pressure can be specified in advance, with the total system being considered
at constant NPT. The only change necessary is that the volume changes in the two
regions are now independent. The acceptance rule for a volume change of region I,
while the other remains unchanged is given by

acc (o → n) = min
(

1, e−β∆UI−βP(VI (n)−VI (o))+(NI+1) ln VI (n)
VI (o)

)
(119)

grand-canonical ensemble (µ, V, T)

In adsorption studies one would like to know the amount of materials adsorbed as a
function of pressure and temperature of the reservoir with which the sieve is in contact.
Therefore the natural ensemble to use is the grand-canonical ensemble (or µ, V, T ensem-
ble). In this ensemble, the temperature T, the volume V, and the chemical potential µ are
fixed. The partition function is given by

ZµVT ≡
∞

∑
N=0

eβµNVN

Λ3N N!

Z
e−βU(sN) dsN (120)

with a corresponding probability density

NµVT ∝
eβµNVN

Λ3N N!
e−βU(sN) (121)

Metropolis algorithm is implemented in the same way as for NVT ensemble, but now
we also allow the number of particles to change. We have two additional Monte-Carlo
moves. The creation of a particle is accepted with a probability

acc(N → N + 1) = min
(

1,
V

Λ3(N + 1)
eβ(µ−U(N+1)+U(N))

)
(122)

and the removal of a particle is accepted with a probability

acc(N → N− 1) = min
(

1,
Λ3N

V
e−β(µ+U(N−1)−U(N))

)
(123)
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The equilibrium conditions are that the temperature and chemical potential of the gas
inside and outside the adsorbent must be equal. The imposed chemical potential µ can
be related to the fugacity f

βµ = βµ0
id + ln

(
β f
)
, (124)

where µ0
id is the reference chemical potential. All information of the reference state drops

out, because it simply acts as a shift of the chemical potential that has no effect on the
observable thermodynamic properties of the system. The fugacity f j of component j in
the reservoir is defined as the partial pressure of component j in the reservoir under the
condition that the reservoir would be an ideal gas. Using the ideal gas law

f jVβ = N j (125)

we obtain for the insertion and deletion of a particle in the system

acc(N → N + 1) = min
(

1,
Vβ f

(N + 1)
e−β(U(N+1)−U(N))

)
(126)

acc(N → N− 1) = min
(

1,
N

Vβ f
e−β(U(N−1)−U(N))

)
(127)

The pressure p is related to the fugacity f by

f = φp, (128)

where φ is the fugacity coefficient computed directly from the equation of state of the
vapor in the reservoir. For most adsorbates, the experimental equation of state is well
known and we use the Peng-Robinson equation of state to convert the pressure to the
corresponding fugacity, introducing only a small correction for the currently studied sys-
tems.

Semigrand ensemble

The quantity ∆µex ≡ (µA − µB)ex is problematic to compute accurately. Fortunately, ∆µex

can be obtained much more directly by measuring the Boltzmann factor associated with
a virtual move, where a randomly selected particle of type B is transformed into type A.
Then

∆µex = −kBT ln
〈

NB

NA + 1
e−β∆U±

〉
(129)

where ∆U± denotes the change in potential energy of the system if one particle of type B
is changed into type A; −kBT ln

(
NB/ (NA + 1)

)
is simply the ideal mixing contribution to

the chemical potential. For a perfect mixture (i.e. A and B have the same intermolecular
interactions), ln

〈
e−β∆U±〉 is identically equal to 0. Therefore, we may obtain very good

statistics on ∆µex even when the direct measurement of the excess chemical potential of
the individual species would yield poor statistics.

The use of identity switch is a very efficient trial move. Out of n components, two
components i 6= j are selected. At random it is decided whether i is from box A and j
from box B, or vice versa. In each box a particle is randomly selected with the desired
identity. The acceptance rule is given by

acc(o → n) = min

(
1,

NA
i NB

j

(NA
j + 1)(NB

i + 1)
e−β∆U

)
(130)
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This trial move is easily rewritten for use in grand-canonical simulations, because we can
write

NA
i

NA
j + 1

=
fi

f j
(131)

The acceptance rules becomes

acc(o → n) = min
(

1,
fiN j

f j (Ni + 1)
e−β∆U

)
(132)

This type of trial move in the grand-canonical ensemble is sometimes called semi-grand
canonical ensemble.

Parallel tempering

The method of parallel tempering is a Monte Carlo scheme that has been derived to
achieve good sampling of systems that have a free energy landscape with many local min-
ima. In parallel tempering we consider n systems. In each of these systems we perform
a simulation in the canonical ensemble, but each system is in a different thermodynamic
state. Usually, but not necessarily, these states differ in temperature. In what follows we
assume that this is the case. Systems with a sufficiently high temperature pass all bar-
riers in the system. The low temperature systems, on the other hand, mainly probe the
local energy minima. The idea of parallel tempering is to include MC trial moves that
attempt to “swap” systems that belong to different thermodynamic states, e.g., to swap
a high temperature system with a low temperature system. If the temperature difference
between the two systems is very large, such a swap has a very low probability of being
accepted. This is very similar to particle displacement in ordinary Monte Carlo. If one
uses a very large maximum displacement a move has a very low probability of being
accepted. The solution to this problem is to use many small steps. In parallel temper-
ing we use intermediate temperatures in a similar way. Instead of making attempts to
swap between a low and a high temperature, we swap between ensembles with a small
temperature difference.

The total partition function of a system with n canonical subsystems (Z) equals

Z =
i=n

∏
i=1

ZNVT(i) (133)

in which ZNVT(i) is the canonical partition function of the individual system i. For each of
these systems, individual trial moves are performed. After a randomly selected number
of trial moves, an attempt is made to exchange configurations. Two systems (i and i + 1)
are selected at random. The trial move is accepted with probability

acc(i ↔ i + 1) = min
(
1, e(βi+1−βi)(Ui+1−Ui)

)
(134)

and after an accepted move all particle positions are swapped. The acceptance rule for
parallel tempering in the grand-canonical ensemble reads

acc(i ↔ i + 1) = min
(
1, e(βi+1−βi)(Ui+1−Ui)−(βi+1µi+1−βiµi)(Ni+1−Ni)

)
(135)

Swap moves are very inexpensive because they do not involve additional calculations.
Note theat the swap moves do not disturb the Boltzmann distribution corresponding to
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a particular ensemble. Therefore one can determine ensemble averages from every in-
dividual ensemble just as we do for an ordinary Monte Carlo simulations. This is an
important advantage over simulated annealing. Parallel tempering is a true equilibrium
Monte Carlo scheme.

D Configurational-bias Monte-Carlo (CBMC)

Conventional Monte Carlo is time-consuming for long chain molecules. The fraction of
successful insertions into the sieve is too low. To increase the number of successfully
inserted molecules we apply the CBMC technique. In the CBMC scheme it is convenient
to split the total potential energy U of a trial site into two parts.

U = Uint + Uext. (136)

The first part is the internal, bonded potential Uint which is used for the generation of trial
orientations. The second part of the potential, the external potential Uext, is used to bias
the selection of a site from the set of trial sites. This bias is exactly removed by adjusting
the acceptance rules. In the CBMC technique a molecule is grown segment-by-segment.
For each segment we generate a set of k trial orientations according to the internal energy
Uint and compute the external energy Uext

i ( j) of each trial position j of segment i. In this
work the number of trial positions k for both NVT and µVT is set to 10. We select one of
these trial positions with a probability

Pi( j) =
e−βUext

i ( j)

∑
k
l=1 e−βUext

i (l)
=

e−βUext
i ( j)

w(i)
. (137)

The selected trial orientation is added to the chain and the procedure is repeated until
the entire molecule has been grown. For this newly grown molecule we compute the
so-called Rosenbluth factor

Wnew = ∏
i

w(i). (138)

To compute the old Rosenbluth factor Wold of an already existing chain, k − 1 trial ori-
entations are generated for each segment. These orientations, together with the already
existing bond, form the set of k trial orientations. In a dynamic scheme, a Markov chain
of states is generated. The average of a property is the average of over the elements of the
Markov chain. For an infinite Markov chain the expression is exact. Every new configu-
ration is accepted or rejected using an acceptance/rejection rule.

We have defined µex as the difference in chemical potential of the interacting alkane
and an alkane in the ideal gas state. The Rosenbluth weight

〈
WIG

〉
of the reference state

of the ideal gas is needed when comparing with real experimental data. When CBMC is
used, it is straightforward to show that e−β∆U has to be replaced by W(new chain)

W(IG) for inserting
a particle and by W(IG)

W(old chain) for the deletion of a particle. There are two ways to obey
detailed balance:

• Every time a transfer attempt to and from the reservoir, the Rosenbluth factor WIG is
computed. Because the particle reservoir is an ideal gas, there are only intramolecular
interactions present.

• Detailed balance is also obeyed when WIG is replaced by
〈
WIG

〉
, i.e. the average Rosen-

bluth weight of a chain in the reservoir. This implies that
〈
WIG

〉
has to be computed

only once for a given molecule and temperature.
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E Monte-Carlo moves

Several Monte Carlo moves can be employed during a simulation.

• Displacement move
A chain is selected at random and given a random displacement. The maximum
displacement is taken such that 50% of the moves is accepted. The acceptance rule is

acc (old → new) = min
(

1, e−β(Unew−Uold)
)

. (139)

Note that the energy of the new configuration Unew and the energy of the old config-
uration Uold only differ in the external energy.

• Rotation move
A chain is selected at random and given a random rotation. The center of the rotation
is the center of mass. The maximum rotation angle is selected such that 50% of the
moves are accepted. The acceptance rule is given by Eq. 139. Again, the energy of
the new configuration Unew and the energy of the old configuration Uold only differ
in the external energy.

• Insertion move
A chain is grown at a random position. The acceptance rule for insertion of the par-
ticle is given by

acc(N → N + 1) = min
(

1,
WnewβV

N + 1
f

〈WIG〉

)
. (140)

• Deletion move
A chain is chosen at a random position and the old Rosenbluth factor is computed.
The acceptance rule for deletion of the particle is given by

acc(N → N− 1) = min

(
1,

N
WoldβV

〈
WIG

〉
f

)
. (141)

• Full regrow move
A chain is selected at random and is completely regrown at a random position. This
move is essential for N, V, T to change the internal configuration of a molecule, and
during this move data for the average Rosenbluth weight can be collected. The ac-
ceptance rule for full regrow is given by

acc (old → new) = min
(

1,
Wnew

Wold

)
. (142)

• Partial regrow move
A chain is selected at random and part of the molecule is regrown. It is decided at
random which part of the chain is regrown and with which segment the regrown is
started. The acceptance rule for partial regrow is given by Eq. 142.
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• Identity change move (mixtures)
The identity-change trial move is called semi-grand ensemble, but it can also be seen
as a special case of the Gibbs ensemble. One of the components is selected at random
and an attempt is made to change its identity. The acceptance rule is given by

acc (A → B) = min

(
1,

Wnew fB
〈
WIG

A

〉
NA

Wold fA 〈WIG
B 〉 (NB + 1)

)
, (143)

where fA and fB are the fugacities of components A and B, and NA and NB are the
number of particles.

The relative probabilities for attempting these moves were such that in the NVT-
simulations 10% of the total number of moves were displacements, 10% rotations, 10%
partial regrowths, and 70% regrowths of the entire molecule. For the case of grand-
canonical simulations of the pure components the distribution of moves was: 15% dis-
placements, 15% rotations, 15% partial regrowths, and 55% exchanges with the reservoir.
For alkane mixtures the number of exchanges was reduced to 50% and the remaining 5%
of the moves were attempts to change the identity of a molecule.

V Molecular dynamics (MD)

In MD successive configurations of the system are generated by integrating Newton’s
laws of motion. Newton’s second law states f = ma, where f is the force exerted on the
particle, m the mass of the particle, and a its acceleration. Integration of the equations of
motion then yields a trajectory that describes the positions, velocities and accelerations
of the particles as they vary with time. The Verlet algorithm is probably the most widely
used method for integrating the equations of motion in a molecular dynamics simulation
and is also our method of choice.

r(t + ∆t) = r(t) + v(t)∆t +
f(t)
2m

∆
2t (144)

v(t + ∆t) = v(t) +
f(t) + f(t + ∆t)

2m
∆t (145)

We can compute the new velocities only after we have computed the new positions and,
from these, the new forces. The algorithm is fast, requires little memory (only r,v, f are
stored), is time reversible (as are Newton’s equations), phase-space area-preserving, and
exhibits little long time energy drift. To test the energy drift ∆E of the numerical integra-
tion algorithm for a given time step ∆t after M integration steps, one usually computes

∆E (∆t) =
1
M

i=M

∑
i=1

∣∣∣∣E (0)− E (i∆t)
E (0)

∣∣∣∣ < 10−3. (146)

After equilibration, we perform the actual measurements by determining the average
values of properties from the trajectories of the particles. The ergodic hypothesis states
that ensemble averages can be obtained from time averages. A system is ergodic when
every accessible point in configuration space can be reached in a finite number of steps
from any other phase space. In practice, the ergodic hypothesis applies to systems with
low free energy barriers.
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The self-diffusion coefficients Dα
S in the direction α = x, y, z are computed by taking the

slope of the mean-squared displacement (msd) at long times

Dα
S =

1
2N

lim
t→∞

d
d t

〈
N

∑
i=1

(riα (t)− riα (0))2

〉
(147)

where N is the number of molecules, t the time, and riα the α-component of the center-of-
mass of molecule i. Equivalently, Dα is given by the time integral of the velocity autocor-
relation function

Dα
S =

1
N

Z ∞

0

〈
N

∑
i=1

viα(t)viα(0)

〉
dt (148)

where viα is the α-component of the center-of-mass-velocity of molecule i. A separation of
time scales occurs for interacting particles roughly at the times between particle-particle
and particle-zeolite collisions. The mean-squared displacement thus bends over to at-
tain a different slope, and we are interested in the long-time diffusion coefficient. The
collective diffusion coefficients Dα

C are given by

Dα
C =

1
2N

lim
t→∞

d
d t

〈(
N

∑
i=1

(riα (t)− riα (0))

)2〉
(149)

and

Dα
C =

1
N

Z ∞

0

〈(
N

∑
i=1

viα(t)

)(
N

∑
i=1

viα(0)

)〉
dt (150)

Collective diffusivity measures the transport of mass and the decay of density fluctuations
in the system, while self-diffusion measures the diffusive motion of a single particle. The
directionally averaged diffusion coefficient is given by

D =
Dx + Dy + Dz

3
(151)

The calculation of the diffusion coefficients requires much memory and CPU power,
especially when fluctuations decay slowly. The order-n algorithm to measure correlations
allows us to measure fast and slow dynamics simultaneously at minimal computational
cost by using adjustable sampling frequencies [1]. The order-n scheme is equally accurate
as the conventional scheme but the saving in memory as well as CPU time is significant
for computing the mean-squared displacements at long times.

In a conventional NVE Molecular Dynamics simulation, the total energy E, the number
of particles N, and the volume V are constant. Hence, MD measures (time) averages in
the microcanonical ensemble, while in a conventional Monte-Carlo simulation the canon-
ical ensemble (NVT-ensemble) is probed. The extended Lagrangian approach has become
one of the most important tricks for MD in the NVT ensemble and is completely dynamic
in origin. The Nosé-Hoover Chain (NHC) formulation extends the Lagrangian with ad-
ditional coordinates and velocities containing the system to a constant temperature NVT-
ensemble. We use the NHC method as implemented by Martyna et al. [102] in which
the dynamics is still reversible. The instantaneous kinetic temperature fluctuates, but the
probability to find the system in a given energy state follows the Maxwell-Boltzmann
velocity probability distribution function

P(vx, vy, vz) =
(

m
2πkBT

)3/2

exp

(
−m(v2

x + v2
y + v2

z)
2kBT

)
(152)
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which reduces to

P(vx) =
√

m
2πkBT

exp
(
−mv2

x

2kBT

)
(153)

for the case of a single direction.
For the instantaneous temperature we measure the total kinetic energy of the system

and divide this by the number of degrees of freedom N f (= 3N − 3 for a system of N
particles with fixed total momentum)

kBT (t) =
N

∑
i=1

miv2
i (t)

N f
(154)

The disadvantage of most methods for working at constant temperature is that the dy-
namics is changed in an artificial way. Because in our simulations we do not have pho-
tons or electrons, i.e. the system is mechanical, heat is transported at the speed of sound
or slower. However, most thermostat methods have a coupling constant, i.g. the masses
of the NHC, and the effect of the thermostat on the particles is instantaneous. The NHC
masses should therefore be chosen as large as possible to alter the dynamics as little as
possible. If this is taken care of, the non-physical effects for dynamical properties will be
of order (1/N) in general.

To prepare the system at the desired temperature in an equilibrium configuration we
initialize the system by the following procedure

• N molecules are inserted into the framework at random positions as long as no over-
laps occur with the framework or other particles, and as long as the positions are
accessible from the main cages and channels.

• During the initializing period we perform an NVT MC simulation to rapidly achieve
an equilibrium molecular arrangement.

• After the initialization step, we assign all the atoms velocities from the Maxwell-
Boltzmann distribution at the desired average temperature. The total momentum of
the system is set to zero. Next, we equilibrate the system further by performing a
NVT MD simulation using the NHC thermostat.

• The equilibration is completed and during the production run we collect statistics
using either the NVE or NVT-ensemble. Following this equilibration procedure, the
average temperature using NVE over the entire production period is usually within
a few Kelvin of the desired average temperature, while NVT would give the exact
desired average temperature if simulated sufficiently long.

VI Ewald summation in periodic frameworks

A Coulomb potential in periodic systems

Suppose there are N point charges q1, q2, . . . , qN at positions ri, r2, . . . , rN within the unit
cell U satisfying q1 + q2 + · · ·+ qN = 0. The vectors aα, which need not be orthogonal,
form the edges of the unit cell. The conjugate reciprocal vectors a∗α are defined by the
relations

a∗α · aβ = δαβ α,β = {x, y, z} (155)
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Let a be the 3× 3 matrix having the lattice vectors aα as columns. Note that the volume
V of the unit cell is given by the determinant of a. Furthermore a−1 is the 3× 3 matrix
having the reciprocal lattice vectors a∗α as rows.

The point charge qi as position ri has fractional coordinates sαi defined by

sαi = a∗α · ri (156)

The charges interact according to Coulomb’s law with periodic boundary conditions.
Thus a point charge qi at position ri interacts with all other charges q j (with j 6= i) at
positions r j as well as with all of their periodic images at positions r j + n1a1 + n2a2 + n3a3

for all integers n1, n2, n3. It also interacts with its own periodic images at ri + n1a1 + n2a2 +
n3a3 for all integers n1, n2, n3 not all zero.

The electrostatic energy of the unit cell U can then be written

E(r1, . . . , rN) =
1
2

,

∑
n

∑
i j

qiq j

|ri − r j + n| (157)

where the outer sum is over the vectors n = n1a1 + n2a2 + n3a3, the prime indicating that
terms with i = j for n = 0 are omitted.

We define the reciprocal lattice vectors k by k = k1a∗1 + k2a∗2 + k3a∗3 with k1, k2, k3 integers
not all zero. We define the structure factor S(k) by

S(k) =
N

∑
j=1

q j exp(2πık · r j) (158)

=
N

∑
j=1

q j exp
[
2πı(k1s1 j + k2s2 j + k3s3 j)

]
(159)

The structure factor S(k) can be viewed as a discrete Fourier transform of a set of charges
place irregularly within the unit cell.

The technique of Ewald summation is popular in molecular dynamics simulation, even
though it applies to a special case: namely, true periodic systems. By this we mean that
the simulation region or unit cell is effectively replicated in all spatial directions. so that
particles leaving the cell reappear at the opposite boundary. For systems governed by a
short-ranged potential - say Lennard-Jones or hard spheres - it is sufficient to take just
the neighboring simulation volumes into account, leading to the minimum image config-
uration. The potential seen by the particle is summed over all other particles or their
periodic images, whichever is closest. For long-range potentials this arrangement is in-
adequate because the contributions from more distant images at 2L,3L etc, are no longer
negligible. One might argue that these contributions should more or less cancel, which
they nearly do, but one has to take care in which order to do the sum: a simple example
serves to illustrate the problem. Consider a system of two oppositely charged ions, peri-
odically extended to form an infinite one-dimensional line of charges, each separated by
a distance R. The potential energy of the reference ion with charge −q is:

U = −2q2
(

1
R
− 1

2R
+

1
3R

− 1
4R

. . .

)
= −2q2

R

(
1− 1

2
+

1
3
− 1

4
. . .

)
= −2q2

R
log 2

(160)
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The factor 2 log 2 is the Madelung constant, which is of central importance in the theory
of ionic crystals. The series is actually conditionally convergent, i.e. the results depends on
the summation order. We can choose a different ordering, for example

1 +
1
3
− 1

2
+

1
5

+
1
7
− 1

4
+

1
9

+ . . . (161)

that is, two positive terms followed by a negative term. Then it can be shown it now
converges to 3

2 log 2, giving a 50% higher potential energy then before! In three dimen-
sions, determination of the Madelung constant - and hence the lattice potential energy -
is non-trivial because successive terms in the series must be arranged so that positive and
negative contributions nearly cancel. This is exactly the problem we are faced with: in
what order should we sum over image boxes. An intuitive and elegant way of doing this
is to build up sets of images contained within successively larger spheres surrounding
the simulation region. According to this scheme the energy is expressed as in Eq. 157.

B Ewald Transformation

The total electrostatic potential energy of interaction between point charges qi at the posi-
tions ri is given by

U =
1

4πε0
∑
i< j

qiq j

|ri − r j|
=

1
8πε0

∑
i 6= j

qiq j

|ri − r j|
(162)

In this expression, the first form explicitly counts all pairs, while the second form counts
all interactions and divides by 2 to compensate for double counting.

For a finite system of charges, this expression can be evaluated directly. However, for
a large or infinite system, the expression does not converge and numerical tricks must be
used to evaluate the energy. In fact, for the infinite system, one has an infinite amount of
charge and the energy of interaction is undefined. If the system is neutral, it is possible to
define a meaningful interaction energy by use of an Ewald transformation.

The basic idea of the Ewald approach is as follows. The error function erf(x) and its
complement are defined as:

erf(x) =
2√
π

Z x

0
e−t2

dt (163)

erfc(x) = 1− erf(x) =
2√
π

Z ∞

x
e−t2

dt (164)

Ewald noted that
1
r

=
erf (αr)

r
+

erfc (αr)
r

(165)

In this expression, the first term goes to a constant
(

2α√
π

)
as r → 0, but has a long tail as

r →∞. The second term has a singular behavior as r → 0, but vanishes exponentially
as r →∞. Ewald’s idea is to replace a single divergent summation with two convergent
summations. The first summation has a convergent summation in the form of its Fourier
transform and the second has a convergent direct summation. Thus the calculation of the
electrostatic energy would be evaluated using:

U =
1

8πε0
∑
i 6= j

qiq j

|ri − r j|
=

1
8πε0

(
∑
i 6= j

qiq jerf
(
α|ri − r j|

)
|ri − r j|

+ ∑
i 6= j

qiq jerfc
(
α|ri − r j|

)
|ri − r j|

)
(166)
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For an appropriate choice of the parameter α, the second summation converges quickly
and can be evaluated directly. The first term in the summation must be transformed into
Fourier space.

In order to describe these summations explicitly, we assume that we have a periodic
lattice so that every ion can be located by ri = r′i + n, i.e. a location r′i within a unit cell and
a periodic translation vector n. In this way, the summation becomes

∑
i j

= N ∑
i, j,n

, (167)

where N denotes the number of unit cells in the system. Since we have a periodic system,
N is infinite, but the energy per unit cell U/N is well defined. The other identity that we
must use is that a sum over lattice translation n may be transformed into an equivalent
sum over reciprocal lattice translations k according to the identity:

∑
n

δ3 (t− n) =
1
V ∑

k
eık·r, (168)

where V denotes the unit cell volume.
The first term thus becomes

∑
i 6= j

qiq jerf
(
α|ri − r j|

)
|ri − r j|

= ∑
i, j

qiq jerf
(
α|ri − r j|

)
|ri − r j|

−∑
i= j

qiq jerf
(
α|ri − r j|

)
|ri − r j|

(169)

= N

(
∑
i, j

qiq j ∑
n

erf
(
α|ri − r j + n|

)
|ri − r j + n| − 2α√

π ∑
i

q2
i

)
(170)

where the last term comes from subtracting out the self-interaction (i = j) term from the
complete lattice sum. Using the short hand notation ri j, the lattice sum can be evaluated

1
V ∑

k

Z
eık·r erf

(
α|ri j + n|

)
|ri j + n| d3r =

4π

V

∑
k 6=0

e−ık·ri j e−
k2

α2

k2 +
1
2

Z α

0

1
u3 du

 (171)

where the last term, which is infinite, comes from the k = 0 contribution.
If the last term cannot be eliminated, it is clear that the electrostatic energy is infinite.

The term can be eliminated if and only if the system is neutral. taking all the terms into
account, we find the final Ewald expression to be

U
V

= ∑
i, j

qiq j

8πε0

(
4π

V ∑
k 6=0

e−ık·ri j e−k2/α

k2 − 2α√
π

δi j +
,

∑
n

erfc
(
α|ri j + n|

)
|ri j + n|

)
(172)

where the ′ in the summation over the lattice translations n indicates that all self-
interaction terms should be omitted.

C General formulism

Consider a finite system of interacting molecules possessing atomic charges, dipoles, and
anisotropic polarizabilities. We will start by focusing on the total potential energy of
such a system arising from the long-range Coulomb and dipole interactions including
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induction effects. Throughout, the Einstein summation convention is used for Greek letter
indices. We employ the interactions tensors

Ti j =
1
ri j

(173)

T α
i j =∇αTi j = −

ri j,α

r3
i j

(174)

T αβ
i j =∇α∇βTi j =

3ri j,αri j,β

r5
i j

− δαβ

r3
i j

(175)

T αβγ
i j =∇α∇β∇γTi j = −

15ri j,αri j,βri j,γ

r7
i j

+
3
(
δαβri j,γ + δαγri j,β + δβγri j,α

)
r5

i j
(176)

Here, ri j,α = r jα − riα, where riα is the α-component of the position vector atom i. We
define Ti j = T α

i j = Tαβ
i j = T αβγ

i j ≡ 0 when atoms i and j belong to the same molecule.
In addition, we define

T̂i j =
erfc

(
αri j

)
ri j

(177)

T̂ α
i j =∇αT̂i j =−

(
2αe−α2r2

i j

√
πr2

i j
+

erfc
(
αri j

)
r3

i j

)
ri j,α (178)

T̂ αβ
i j =∇α∇βT̂i j =

(
6αe−α2r2

i j

√
πr4

i j
+

4α3e−α2r2
i j

√
πr2

i j
+

3erfc
(
αri j

)
r5

i j

)
ri j,αri j,β

− δαβ

(
2αe−α2r2

i j

√
πr2

i j
+

erfc
(
αri j

)
r3

i j

)
(179)

T̂ αβγ
i j =∇α∇β∇γT̂i j

=−
(

30αe−α2r2
i j

√
πr6

i j
+

20α3e−α2r2
i j

√
πr4

i j
+

8α5e−α2r2
i j

√
πr2

i j
+

15erfc
(
αri j

)
r7

i j

)
ri j,αri j,βri j,γ

+ δαβ

(
6αe−α2r2

i j

√
πr4

i j
+

3erfc
(
αri j

)
r5

i j

)
ri j,γ + δαγ

(
6αe−α2r2

i j

√
πr4

i j
+

3erfc
(
αri j

)
r5

i j

)
ri j,β

+ δβγ

(
6αe−α2r2

i j

√
πr4

i j
+

3erfc
(
αri j

)
r5

i j

)
ri j,α (180)

and define

T̃i j =
erfc

(
αdi j

)
di j

(181)

T̃ α
i j =∇αT̃i j =−

(
2αe−α2d2

i j

√
πd2

i j
+

erfc
(
αdi j

)
d3

i j

)
di j,α (182)

T̃ αβ
i j =∇α∇βT̃i j =

(
6αe−α2d2

i j

√
πd4

i j
+

4α3e−α2d2
i j

√
πd2

i j
+

3erfc
(
αdi j

)
d5

i j

)
di j,αdi j,β

− δαβ

(
2αe−α2d2

i j

√
πd2

i j
+

erfc
(
αdi j

)
d3

i j

)
(183)
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T̃ αβγ
i j =∇α∇β∇γT̃i j

=−
(

30αe−α2d2
i j

√
πd6

i j
+

20α3e−α2d2
i j

√
πd4

i j
+

8α5e−α2d2
i j

√
πd2

i j
+

15erfc
(
αdi j

)
d7

i j

)
di j,αdi j,βdi j,γ

+ δαβ

(
6αe−α2d2

i j

√
πd4

i j
+

3erfc
(
αdi j

)
d5

i j

)
di j,γ + δαγ

(
6αe−α2d2

i j

√
πd4

i j
+

3erfc
(
αdi j

)
d5

i j

)
di j,β

+ δβγ

(
6αe−α2d2

i j

√
πd4

i j
+

3erfc
(
αdi j

)
d5

i j

)
di j,α (184)

where di j is the intramolecular distance between atom i and j.
After a generalization of the approach by Veseley, the total potential energy of a set of

atoms possessing charges, dipoles, and anisotropic polarizabilities can be expressed as

U = Uint + Upol

Uint =
1
2 ∑

i, j 6=i
qiTi jq j︸ ︷︷ ︸

charge-charge

+ qiT α
i j µ j,α︸ ︷︷ ︸

charge-total dipole

− µi,αT α
i j q j︸ ︷︷ ︸

total dipole-charge

− µi,αT αβ
i j µ j,β︸ ︷︷ ︸

total dipole-total dipole

Upol =
1
2 ∑

i
µind

i,α α−1
i,αβµ

ind
i,β

(185)

where qi is the charge on atom i, µi,α the α-component of the total dipole moment of
atom i, µind

i,α the α-component of the induced dipole moment of atom i, and αi,αβ the αβ-
component of the polarizability tensor of atom i. The Einstein summation convention is
used for Greek indices.

In Eq. 185 the four terms in Uint represent the charge-charge, the charge-total dipole, the
total dipole-charge, and the total dipole-total dipole interaction respectively, whereas Upol

represents the work of forming the induced dipoles. The total dipole moment of atom i is
given by

µi,α = µstat
i,α + µind

i,α , (186)

where µstat
i,α denotes the α-component of the permanent (static) dipole moment of atom i.

By introducing a infinitesimal test charge ∂q at r, the electrostatic potential at r is de-
fined according to

φ (r) ≡ lim
δq→0

∂U
∂δq

(187)

where U is the potential energy of the system including the test charge. The α-component
of the electrostatic field is defined as

Eα (r) ≡ −∂φ (r)
∂rα

, (188)

and the αβ-component of the electric field gradient at r as

Eαβ (r) ≡ ∂Eα (r)
∂rβ

. (189)
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The inclusion of the test charge in the summation of Eq. 185 and the application of Eqs.
187-189 on Eq. 185 gives the electrostatic potential, field, and field gradients. The corre-
sponding quantities on atom i become (after ommission of any self-terms):

φi ≡ φ (ri) = ∑
j 6=i

(
Ti jq j + T α

i j µ j,α

)
, (190)

Ei,α ≡ Eα (ri) = ∑
j 6=i

(
T α

i j q j + T αβ
i j µ j,β

)
, (191)

Ei,αβ ≡ Eαβ (ri) = −∑
j 6=i

(
T αβ

i j q j + T αβγ
i j µ j,γ

)
. (192)

The induced dipole moments are determined by a minimization of U with respect to µind
i,α ,

and we get
µind

i,α = αi,αβ Ei,β , (193)

where Ei,α is the α-component of the electrostatic field on atom i arising from other
charges and total dipole moments as given by Eq. 191.

The potential energy is often separated into two physically appealing contributions: an
electrostatic and an induction term. With the use of Eq. 186 and 193, Eq. 185 can be recast
according to

U = Uelec + Uind (194)

where the electrostatic energy is given by

Uelec =
1
2 ∑

i

(
qiφ

stat
i − µstat

i,α Estat
i,α

)
, (195)

and the induction energy by

Uind = −1
2 ∑

i
µind

i,α Estat
i,α , (196)

with φstat
i denoting the electrostatic potential and Estat

i,α the α-component of the electrostatic
field at atom i arising from other charges and static dipoles. The quantities φstat

i and Estat
i,α

are obtained from Eq. 190 and Eq. 191 by replacing µ j,α with µstat
j,α according to

φstat
i = ∑

j 6=i

(
Ti jq j + T α

i j µstat
j,α

)
, (197)

and
Estat

i,α = ∑
j 6=i

(
T α

i j q j + T αβ
i j µstat

j,β

)
. (198)

By taking the derivative of the total potential energy U given by Eq. 185 with respect to
the position of atom i and noting that U is stationary with respect to variation of µind

i,α , we
obtain the α-component of the force on atom i arising from its interaction with atom j
according to

fi j,α = qiT α
i j q j + qiT αβ

i j µ j,β − µi,βT βα
i j q j − µi,βT βαγ

i j µ j,γ . (199)

The α-component of the total force acting on atom i can conveniently be expressed as

fi,α = ∑
j 6=i

fi j,α = qiEi,α + µi,β Ei,βα, (200)
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where Ei,α is the α-component of the electrostatic field and Ei,αβ the αβ-component of the
field gradient on atom i arising from other charges and total dipole moments as given by
Eq. 191 and Eq. 192, respectively.

Finally, the virial Φ, which enters the expression for the pressure, p = pideal −Φ/3V, is
given by

Φ = 3V
〈

∂U
∂V

〉
, (201)

where V denotes the volume of the system. Consider first the general case of pairwise in-
teractions according to U = 1

2 ∑i, j 6=i u
(
ri j
)
. The application of the Anderson scaling relation

for cubic systems, ri j = V1/3ρpp′ + di −d j, where ρpp′ is a scaled and volume independent
center-of-mass-center-of-mass vector between molecules p and p′ (i ∈ p and j ∈ p′) and di

the location of atom i relative to the center-of-mass of its molecule, leads to

Φ =
1
2 ∑

i, j 6=i
ri j

∂u
(
ri j
)

∂ri j
− 1

2 ∑
i, j 6=i

(
di − d j

)
· ri j

1
ri j

∂u
(
ri j
)

∂ri j

= −1
2 ∑

i, j 6=i
ri j · fi j + ∑

i
di · fi

(202)

where fi j = −∇u
(
ri j
)

= −
(
ri j/ri j

)
∂u(ri j)/∂ri j denotes the pairwise force and fi = ∑ j 6=i fi j

the total force acting on atom i. With the same approach applied on Eq. 185, we find
that the virial for a molecular system composed of charges, static, and induced dipole
moments formally is also given by

Φ = −1
2 ∑

i, j 6=i
ri j · fi j + ∑

i
di · fi, (203)

but with fi j and fi now given by Eq. 199 and Eq. 200, respectively.
In numerical applications, the procedure for calculating the electrostatic and induc-

tion contributions of the energy, forces, and the virial in a molecular system, where each
molecule is described by atomic charges, dipole moments, and anisotropic polarizabili-
ties, can be outlined as follows

1. Calculate the electrostatic potential φstat
i and the electrostatic field Estat

i,α from charges
charges and static dipole moments, according to Eq. 197 and Eq. 198, respectively.

2. Calculate the induced dipole moments µind
i,α either by prediction, or self-consistent

iteration using Eq. 193 and Ei,α = Estat
i,α + Eind

i,α with Eind
i,α = ∑ j 6=i T αβ

i j µind
j,β .

3. Calculate the electrostatic energy Uelec and the induction energy Uind from Eq. 195
and Eq. 196, respectively.

4. If the induced dipole moments were predicted above, calculate Eind
i,α .

5. Calculate the electrostatic field gradient Ei,αβ from charges and total dipole moments
according to Eq. 192.

6. Calculate the forces fi,α from Eq. 200.

7. Calculate the virial Φ from Eq. 203.
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The procedure is so far general in the sense that it is valid for a finite system with an
arbitrary cutoff.

When applying truly periodic boundary conditions, the summations over j 6= i are re-
placed by infinite lattice sums. These are conveniently evaluated by using the Ewald
summation technique. In this approach a Gaussian charge distribution of equal magni-
tude and opposite sign is surrounding each charge making the interactions short-ranged.
Of course, canceling charge distributions are also added, and after a Fourier transforma-
tion their contribution is readily given in a closed expression. In the Ewald formalism, the
expression of a given property is conventionally divided into four different terms viz. (i)
a real term arising from the short-range interaction in the real space, (ii) a reciprocal term
arising from the long-range interaction in the reciprocal space (iii) a self-term correcting
an overcounting in the reciprocal space, and (iv) a surface term appearing in systems with
nonconducting surroundings.

In this section expressions will be provided for U, φi, Ei,α, Ei,αβ , fi,α and Φ for a truly
infinite periodic system of charges, static dipoles, and anisotropic polarizabilities. The
expressions correctly reduce to those for systems of only charges, or of only dipoles.

We define the volume V = LxLyLz, where Lx, Ly, and Lz denote the lengths of the box
edges. We define Ak according to

Ak =
1
k2 e−

k2

4α2 , (204)

and Qqµ according to

Qqµ = Qq + Qµ

Qq = ∑
j

q je−ık·r j

Qµ = Qµ(stat) + Qµ(ind)

= ∑
j

ı
(
µstat

j · k
)

+ ∑
j

ı
(
µind

j · k
)

eık·r j ,

(205)

where ı2 ≡ −1. We will use Q̄qµ for the complex conjugate of Qqµ. The vector k is defined
as

k = 2π

(
nx

Lx
,

ny

Ly
,

nz

Lz

)
, (206)

where n =
(
nx, ny, nz

)
is a vector of integers.
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the potential energy For a system of charges, static dipoles, and anisotropic polarizabili-
ties in an infinite lattice, the potential energy can be written as

U =
1
2 ∑

i, j 6=i

(
qiT̂i jq j + qiT̂ α

i j µ j,α − µi,αT̂ α
i j q j − µi,αT̂ αβ

i j µ j,β

)
︸ ︷︷ ︸

Real part

+
2π

V ∑
k 6=0

Ak |Qqµ|2︸ ︷︷ ︸
Reciprocal part

−∑
i

(
α√
π

q2
i +

2α3

3
√

π
µ2

i

)
− 1

2 ∑
p

∑
i, j 6=i;i, j∈p

(
qiT̃i jq j + qiT̃ α

i j µ j,α − µi,αT̃ α
i j q j − µi,αT̃ αβ

i j µ j,β

)
︸ ︷︷ ︸

Self part

+
2π

(2εsur + 1) V

(∑
i

qiri

)2

+ 2

(
∑

i
qir j

)
·
(

∑
j

µ j

)
+

(
∑

i
µi

)2


︸ ︷︷ ︸
Surface part

+Upol

(207)

where the four terms are the real, the reciprocal, the self, and the surface contribution,
respectively, to the potential energy and Upol represents the work of forming the induced
dipoles.

In Eq. 207, Ureal is obtained from Eq. 185 after considering the screening of the
charges and the dipoles by the Gaussian distributions. Formally this is done by in-
troducing the modified interactions tensors T̂ . In practice, this surmounts to replacing
r−(2n+1), n ∈ {0,1,2,3}, in the interaction energy expressions by its screened counterpart
̂r−(2n+1), where

1̂
r

=
erfc (αr)

r
(208)

and
1̂

r2n+1 =
1
r2

[
1̂

r2n−1 +
(
2α2
)n

√
πα (2n− 1)

e−α2r2

]
, (209)

for n > 0. Note that this can straightforwardly be extended to higher order moments
through the use of the recursion formula Eq. 209. From Eq. 207 and on, we assume that
the Ewald convergence parameter α is chosen such that the screening is sufficiently large
to ensure that only particles in the primary box need to be considered when calculating
the real space sum. In the self-term Uself, the single sum over i is always present. In the
remaining part, the index p runs over all particles and the notation i, j ∈ p means that
atomic sites i and j both reside within particle p. Hence, the double sum over i and j
contributes only if atom i and j belongs to the same particle.

Finally, the surface term Usur originates from the total dipole moment of the simulation
box. The quantity εsur entering in Usur is the dielectric constant of the continuum sur-
rounding the replicated sample, and is often chosen to be either ∞ (tinfoil conditions) or
1 (vacuum conditions). For systems such as ionic and dipolar ones, where long-range in-
teractions are important, Ewald summation with tinfoil boundary conditions corresponds
to the physically most desirable situation.

The general energy expression reduces correctly for systems consisting of (i) only
charges by setting µstat = µind = 0 and (ii) only dipoles by setting q = 0 and µind = 0.
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the electrostatic potential The electrostatic potential on atom i arising from other charges
and total dipole moments is obtained from Eq. 207, and becomes

φi =∑
j 6=i

(
T̂i jq j + T̂ α

i j µ j,α

)
︸ ︷︷ ︸

real part

+
4π

V ∑
k6=0

AkRe
(
eık·ri Q̄qµ)

︸ ︷︷ ︸
reciprocal part

− 2α√
π

qi − ∑
j 6=i;i, j∈p

(
T̃i jq j + T̃ α

i j µ j,α

)
︸ ︷︷ ︸

self-term

+
4π

(2εsur + 1) V

[
ri ·∑

j

(
q jr j + µ j

)]
︸ ︷︷ ︸

surface part

(210)

For systems of only atoms the sum in the self-term vanishes. For a system of charge
neutral molecules we may write the surface term as

φsur
i = − 2π

(2εsur + 1) V ∑
j

[
q j
(
r j − ri

)2 + 2µi ·
(
r j − ri

)]
. (211)

the electrostatic field Similarly, the expression for the corresponding α-component of the
electrostatic field on atom i is obtained from Eq. 207, and we get

Ei,α =∑
j 6=i

(
T̂ α

i j q j + T̂ αβ
i j µ j,β

)
︸ ︷︷ ︸

real part

−4π

V ∑
k 6=0

Akkα

[
Re
(
ıeık·ri Q̄qµ)− µi,βkβ

]
+

4π

3V
µi,α︸ ︷︷ ︸

reciprocal part

− ∑
j 6=i;i, j∈p

(
T̃ α

i j q j + T̃ αβ
i j µ j,β

)
︸ ︷︷ ︸

self part

− 4π

(2εsur + 1) V ∑
j

(
q jr j,α + µ j,α

)
︸ ︷︷ ︸

surface part

(212)

In particular, for a system consisting of only charges the reciprocal term reduces to

Erec
i,α = −4π

V ∑
k 6=0

AkkαRe
(
ıeık·ri Q̄q) , (213)

and for a system of only static dipoles it becomes

Erec
i,α = −4π

V ∑
k6=0

Akkα

[
Re
(
ıeık·ri Q̄µ(stat))− µstat

i,β kβ

]
+

4π

3V
µstat

i,α (214)

where Qq and Qµ(stat) were defined in Eq. 205. For an atomic system, the self term is
zero. The α-component of the electrostatic field on atom i arising from other induced
dipoles only, Eind

i,α , is needed later, and it is obtained from Eq. 212 by setting Qi = 0 and by
replacing µi,α by µind

i,α and Qqµ by Qµ(ind).
For the finite system, it can be shown after some algebra that (i) the induced dipole

moments are still given by Eq. 193, but Ei,α is now given by Eq. 212, and (ii) the potential
energy can again be separated into an electrostatic and induction term according to Eq.
194. The electrostatic term Uele is still given by Eq. 195 and the induction term by Eq. 196,
but φstat

i and Estat
i,α are now given by Eq. 210 and Eq. 212, respectively, after replacing µi,α

with µstat
i,α and Qqµ by Qq + Qµ(stat).
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the electrostatic gradient The αβ-component of the field gradient i on atom i is similarly
obtained from Eq. 207, and it is given by

Ei,αβ =−∑
j 6=i

(
T̂ αβ

i j q j + T̂ αβγ
i j µ j,γ

)
︸ ︷︷ ︸

real part

+
4π

V ∑
k 6=0

Akkαkβ

[
Re
(
eık·ri Q̄qµ)− qi

]
− 4π

3V
qiδαβ︸ ︷︷ ︸

reciprocal part

+ ∑
j 6=i;i, j∈p

(
T̃ αβ

i j q j + T̃ αβγ
i j µ j,γ

)
︸ ︷︷ ︸

self term

(215)

For an atomic system, the self-term is zero. We note that Esur
i,αβ is zero.

the force The expressions for the α-component of the force on atom i is also readily avail-
able from Eq. 207 by taking its derivative with respect to ri,α. After some algebra, we
get

fi,α =∑
j 6=i

(
qiT̂ α

i j q j + qiT̂ αβ
i j µ j,β − µi,βT̂ βα

i j q j − µi,βT̂ βαγ
i j µ j,γ

)
︸ ︷︷ ︸

real part

−4π

V ∑
k6=0

AkkαRe
[(

ıqi − µi,βkβ

)
eık·ri Q̄qµ]

︸ ︷︷ ︸
reciprocal part

− ∑
j 6=i;i, j,∈p

(
qiT̃ α

i j q j + qiT̃ αβ
i j µ j,β − µi,βT̃ βα

i j q j − µi,βT̃ βαγ
i j µ j,γ

)
︸ ︷︷ ︸

self part

− 4π

(2εsur + 1) V
qi ∑

j

(
q jr j,α + µ j,α

)
︸ ︷︷ ︸

surface part

(216)

Now, one can show that the use of Ei,α given by Eq. 212 and Ei,αβ given by Eq. 215 leads
exactly to Eq. 200. Moreover, Eq. 200 holds term wise. For a system consisting of only
charges the reciprocal term reduces to

f rec
i,α =

4π

V ∑
k6=0

AkkαqiIm
[
eık·ri Q̄q] , (217)

and for a system consisting of only static dipoles we have

f rec
i,α =

4π

V ∑
k6=0

Akkαkβµ
stat
i,β Re

[
eık·ri Q̄µ(stat)] . (218)

We notice that the self-term is not constant due to the presence of µi,α. For an atomic
system, the self-term is zero.
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the virial Starting with Eq. 201 and Eq. 207, the virial is separated according to

Φ = Φ
real + Φ

rec + Φ
self + Φ

sur. (219)

With the help of Eq. 203, the real contribution to the virial can be expressed directly as

Φ
real = −1

2 ∑
i, j 6=i

ri j · fi j + ∑
i

di j · freal
i , (220)

where freal
i is given by the first term of Eq. 216. In order to get the reciprocal contribution,

we apply the scaling relation ri = V1/3ρp + di, where ρp is a scaled and volume indepen-
dent center-of-mass vector for molecule p (i ∈ p) and we note similarly that k is volume
independent. The use of Urec and the derivatives

∂Ak

∂V
=

2
3V

(
1 +

k2

4α2

)
Ak (221)

and
∂|Qqµ|2

∂V
= − 2

3V
Re

[(
Qµ + ∑

i
k · di

(
ıqi −µ · k

)
eık·ri

)
Q̄qµ

]
, (222)

leads after some manipulations to

Φ
rec = −4π

V ∑
k 6=0

Ak

[
Re
(

QµQ̄qµ)+
1
2
|Qqµ|2

(
1− k2

2α2

)]
+ ∑

i
di · frec

i , (223)

where frec
i j is defined by the second term of Eq. 216. In the polyatomic case a self-term

arises, which is given by

Φ
self = −1

2 ∑
p

∑
i, j∈p

di j · fself
i j (224)

where fself
i j is given by the third term of Eq. 216. In the case of a monoatomic system, the

self contribution vanishes.
The surface term is obtained by substituting Usur given by Eq. 207 into Eq. 201 accord-

ing to

Φ
sur = 3V

[
∂Usur,qq

∂V
+

∂Usur,qµ

∂V
+

∂Usur,µµ

∂V

]
(225)

with

Usur,qq ≡ 2π

(2εsur + 1) V

(
∑

i
qiri

)2

, (226)

Usur,qµ ≡ 4π

(2εsur + 1) V

(
∑

i
qiri

)
·
(

∑
j

µ j

)
, (227)

Usur,µµ ≡ 2π

(2εsur + 1) V

(
∑

i
µi

)
(228)
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With the scaling relation ri = V1/3ρp + di, we get

Φ
sur = −

(
Usur,qq + 2Usur,qµ + 3Usur,µµ +

4π

(2εsur + 1) V

[(
∑

j

(
q jr j + µ j

))
·∑

i
qidi

])
= − (Usur,qq + 2Usur,qµ + 3Usur,µµ) + ∑

i
di · fsur

i

(229)

where fsur
i is given by the fourth term if Eq. 216.

Hence, the substitution of Eq. 220, 223, 224, and 229 into Eq. 219 gives the final expres-
sion of the virial according to

Φ = −1
2 ∑

i, j 6=i
ri j · freal

i j︸ ︷︷ ︸
real part

−4π

V ∑
k6=0

Ak

[
Re
(

QµQ̄qµ)+
1
2
|Qqµ|2

(
1− k2

2α2

)]
︸ ︷︷ ︸

reciprocal part

−1
2 ∑

p
∑

i, j∈p
di j · fself

i j︸ ︷︷ ︸
self part

− (Usur,qq + 2Usur,qµ + 3Usur,µµ)︸ ︷︷ ︸
surface part

+∑
i

di ·
(
freal

i + frec
i + fsur

i

) (230)

D Charge only systems

The expressions of the previous section reduce to the familiar ones for systems consisting
of only charges. They are easily incorporated into the usual Ewald summation routines.

the potential energy The potential energy can be written as

U = Ureal + Urec + Uself (231)

where

Ureal =
1
2 ∑

i, j 6=i
qiT̂i jq j

=
1
2 ∑

i, j 6=i
qiq j

erfc
(
αri j

)
ri j

Urec =
2π

V ∑
k6=0

Ak|Qq|2

=
2π

V ∑
k6=0

1
k2 e−

k2

4α2

∣∣∣∣∣ N

∑
i=1

qi cos (k · ri)

∣∣∣∣∣
2

+

∣∣∣∣∣ N

∑
i=1

qi sin (k · ri)

∣∣∣∣∣
2


Uself = −∑
i

α√
π

q2
i

(232)

the electrostatic potential The electrostatic potential in atom i arising from other charges
is given by

φi = φreal
i + φrec

i + φself
i (233)
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where

φreal
i = ∑

i, j 6=i
T̂i jq j

=
1
2 ∑

j 6=i
q j

erfc
(
αri j

)
ri j

φrec
i =

4π

V ∑
k6=0

AkRe
(
eık·ri Q̄q)

=
4π

V ∑
k6=0

1
k2 e−

k2

4α2

[
cos (k · ri)

N

∑
j=1

q j cos
(
k · r j

)
+ sin (k · ri)

N

∑
j=1

q j sin
(
k · r j

)]

φself
i = − 2α√

π
qi

(234)

the electrostatic field The α-component of the electrostatic field on atom i is given by

Ei,α = Ereal
i,α + Erec

i,α (235)

where

Ereal
i,α = −∑

j 6=i
T̂ α

i j q j

= ∑
j 6=i

q j

(
2αe−α2r2

i j

√
π

+
erfc

(
αri j

)
ri j

)
ri j,α

r2
i j

Erec
i,α = −4π

V ∑
k=0

AkkαRe
(
ıeık·ri Q̄q)

=
4π

V ∑
k 6=0

1
k2 e−

k2

4α2 kα

[
sin (k · ri)∑

j
q j cos

(
k · r j

)
− cos (k · ri)∑

j
q j sin

(
k · r j

)]
(236)

the electrostatic field gradient The αβ-component of the field gradient on atom i is given
by

Ei,αβ = Ereal
i,αβ + Erec

i,αβ (237)
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where

Ereal
i,αβ =−∑

j 6=i
T̂ αβ

i j q j

=−∑
j 6=i

q j

(
6αe−α2r2

i j

√
πr2

i j
+

4α3e−α2r2
i j

√
π

+
3erfc

(
αri j

)
r3

i j

)
ri j,αri j,β

r2
i j

+ δαβ ∑
j 6=i

q j

(
2αe−α2r2

i j

√
π

+
erfc

(
αri j

)
ri j

)
1
r2

i j

Erec
i,αβ =

4π

V ∑
k 6=0

Akkαkβ

[
Re
(
e−ık·riQ̄ qµ)− qi

]
− 4π

3V
qiδαβ

=
4π

V ∑
k 6=0

1
k2 e−

k2

4α2 kαkβ

[
cos (k · ri)

N

∑
j=1

q j cos
(
k · r j

)
+ sin (k · ri)

N

∑
j=1

q j sin
(
k · r j

)
− qi

]

− 4π

3V
qiδαβ

(238)

the force The α-component of the force on atom i is given by

fi,α = f real
i,α + f rec

i,α (239)

where

f real
i,α = −∑

j 6=i
qiT̂ α

i j q j

= qi ∑
j 6=i

q j

(
2αe−α2r2

i j

√
π

+
erfc

(
αri j

)
ri j

)
ri j,α

r2
i j

f rec
i,α =

4π

V ∑
k=0

AkkαqiIm
(
eık·ri Q̄q)

= qi
4π

V ∑
k 6=0

1
k2 e−

k2

4α2 kα

[
sin (k · ri)∑

j
q j cos

(
k · r j

)
− cos (k · ri)∑

j
q j sin

(
k · r j

)]
(240)

example In this case study we have four particle at different positions and with different
charges. We are interested in the electrostatic potential, the electric field, the force, and
the electric field gradient at the positions of the particles, which will be of vital value
for future exploration of electric field-dependent potentials in molecular simulations. In
addition, the electrostatic field and the electrostatic field gradients are also quantities of
their own importance in spectroscopy, e.g. NMR quadrupole relaxation. In Fig. 2(a) we
have four particles at which positions we would like to evaluate the electric properties.
When there are more than two particles present, we must supplement Coulomb’s law
with the principle of superposition. That’s all there is to electrostatics. The properties of
a particle in Fig. 2(a) is given by the superposition of the fields of the other three particles
(Fig. 2(b)) evaluated at the position of the chosen particle. The charges are taken to be
static. Electricity and magnetism are distinct phenomena as long as charges and currents
are static.
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Figure 2: (a) Two positively charged ions: q = 0.5 at (−1,0) and q = 1.5 at (1,0) and two
negatively charged ions: q = −0.75 at (0,1) and q = −1.25 (0,−1), (b) Two positively charged
ions: q = 0.5 at (−1,0) and q = 1.5 at (1,0) and one negatively charged ion: q =−0.75 at (0,1).

E Electric-field dependent potentials

Let us consider a system of N charged particles, interacting with each other via a poten-
tial energy function depending on their positions and on the electric field acting upon
each of them and generated by other particles (which also depend on the positions of the
particles):

U = U
(
r1, . . . , rN|E1, . . . ,EN

)
= U

(
{ri} |Ei {r j}

)
(i, j = 1, . . . , N) (241)

where ri are the positions of the particles and ri are the electric fields. The force acting on
a particle i is given by

fi = −∂U
∂ri

= −
(

∂U
∂ri

)
E
−∑

j

∂U
∂E j

∂E j

∂ri
(242)

where E stands for {Ei}. In particular, it is worth to note that the terms in Eq. 242 includ-
ing the 3N× 3N matrix,

∂E j

∂ri
(243)

corresponds to many-body forces involving in principle all the particles of the system as
it is better illustrated if the atom pair approximation is assumed. In this approximation,
the potential energy is represented by the sum of pairwise interactions Up

(
ri j|E

)
between

i and j. Therefore Eq. 242 and Eq. 243 become

U = ∑
i

∑
j>i

Up
(
ri j|E

)
(244)

fi = −
(

∑
j>i

∂Up
(
ri j|E

)
∂ri

)
E

−∑
j>i

∂Up
(
ri j|E

)
∂Ei

∂Ei

∂ri
−∑

k 6=i
∑
j>k

∂Up
(
rki|E

)
∂Ek

∂Ek

∂ri
(245)
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where, again, E stands for {Ei} and the terms containing the electric field gradients have
been grouped in two sums, the former including the gradient of the electric field acting
on particle i for which the force is calculated, and the latter including the gradient of the
electric field acting on all the other particles multiplied by the derivatives, with respect to these
electric fields, of the potential function terms involving particle j, even though these terms do not
include explicitly any interaction with the particle i. It is worthy to note that in general the
last group of terms is not zero: indeed it ensured that the third law of the dynamics (as
generalized for many-body forces) is obeyed.

VII Rigid Frameworks

A Pressure and Stress

There is no unique definition of the internal stress or pressure of framework system. The
pressure of a system in space with periodic boundary conditions is defined in terms of
the molecular virial

W =
1
3

N

∑
i=1

N

∑
j 6=i

Ri j · Fi j (246)

But the framework has no center-of-mass, and so the quantity Ri j can not be defined. The
site-virial is of no assistance as the definition of the ”internal” coordinate piα involves the
center-of-mass coordinate Ri. Neither can one simply choose a convenient reference Ri.
Since the force exerted by a fluid acting on the framework is in general non-zero, the term

∑
i

∑
α

piαfiα = ∑
i

∑
α

riαfiα −∑
i

RiFi (247)

clearly depends on Ri. The situation may also be viewed physically. The definition of
pressure of a system is the derivative of the free energy with respect to volume. But with
an infinite rigid framework the volume derivative can not be defined.

The useful quantity in this case is the partial pressure of the fluid. The partial pressure
is that pressure it would exert if it would occupied the entire volume by itself. Dalton’s
law states that the total pressure exerted by a mixture is the sum of the partial pressures
of the components.

B Charged Frameworks

A minor complication arises when using a framework which has a non-zero net elec-
tric charge. Although the system a whole may be electrically neutral, the omission of
framework-framework interactions from the calculation also means the Ewald Fourier-
contributions should be splitted into separate net-charged sums. Not only the interac-
tions of a framework atoms with other framework atoms should be omitted, but also the
interactions with all its images.

Splitting of the potential energy into separate contribution involves computing cross
terms between component A and B . In real space this is trivially accomplished, but the
reciprocal separation is more difficult. Cross term interaction energies in reciprocal space
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are given by

Urec
A ,B =

2π

V ∑
k 6=0

1
k2 e−

k2

4α2

[(
∑
i∈A

qi cos (k · ri)

)(
∑
i∈B

qi cos (k · ri)

)

+

(
∑
i∈A

qi sin (k · ri)

)(
∑
i∈B

qi sin (k · ri)

)]
.

(248)

It is important to note that Eq. 248 only applies when both the separate sums over species
A and B are charge neutral. This is in general not the case. For example, in Monte-
Carlo adsorption simulations one often encounters a negatively charged zeolite charge-
compensated by either cations or protons. All-silica zeolites devoid of cations are neutral,
but framework ions as aluminum induce a net-charge.

It is custom to treat charged periodic systems via a uniform neutralizing background
plasma. However, this leads to serious artifacts in both system energy and pressure and
leads to unrealistic behavior. Bogusz et al. corrected these artifacts by instituting a net-
charge correction term that consists of subtracting off the Ewald sum for a single particle
with charge equal to the net charge. This correction implicitly restores α-independence
in net-charged systems.

We define Uζ as the reciprocal energy of single ion place at the center of charge o

Uζ =
2π

V ∑
k 6=0

1
k2 e−

k2

4α2

[
(cos (k · o))2 + (sin (k · o))2

]
− α√

π
. (249)

If only the energy is needed the particle can simply be placed at the origin. Note that the
term then only depend on the shape and size of the simulation cell and has be computed
only once if the cell does not change.

We define
Q (A ,k) = ∑

i∈A
qieı(k·ri) (250)

The interaction energy of component A and B is given by

Urec
A ,B =

2π

V ∑
k 6=0

1
k2 e−

k2

4α2 Re
[
Q (A ,k)Q (B ,k)

]
+

(
∑
i∈A

qi

)(
∑
i∈B

qi

)
Uζ − (1− δAB)

α√
π ∑

i∈A ,B
q2

i ,

(251)

where δi j = 1 if i = j, zero otherwise, denotes the Kronecker delta.
These expressions are valid in any kind of net-charge arrangement, including a net-

charge of the total system.
Most Monte-Carlo moves are based on changing the coordinates of single chain and

computing the energy difference of a new trial-chain with respect to the old chain. As
the positions of all the other chains are unaltered it is unnecessary to recompute the re-
ciprocal energy of the non-moving chains . An important example is a rigid zeolite. The
precomputing and storing of the Ewald sums makes the Ewald-summation method the
preferred method for Monte Carlo simulations.

We assume the simulation starts with a full computation of Eq. 251, and the sums per
k vector are stored in Q (A ,k). For each of the n-specie the sums Q (A ,k) and the net-
charges per specie needs to be stored. After an accepted move the sums and net-charges
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are updated

∀kQ (A ,k) → Q (A ,k) + Q (New,k)−Q (Old,k)

N (A ) → N (A ) + ∑
i∈New

qi − ∑
i∈Old

qi
(252)

The difference of a trial-chain and the old chain belonging to specie A can be calculated
by

∆Urec
A =

2π

V ∑
k 6=0

1
k2 e−

k2

4α2

[
|Q (A ,k) + Q (New,k)−Q (Old,k)|2 − |Q (A ,k)|2

]

+
α√
π

[
∑

i∈New
q2

i − ∑
i∈Old

q2
i

]
+

(∑
i∈A

qi + ∑
i∈New

qi − ∑
i∈Old

qi

)2

−
(

∑
i∈A

qi

)2
Uζ ,

Urec
A ,B =

2π

V ∑
k 6=0

1
k2 e−

k2

4α2 Re
[
(Q (A ,k) + Q (New,k)−Q (Old,k))Q (B ,k)−Q (A ,k)Q (B ,k)

]
+

[(
∑
i∈B

qi

)(
∑

i∈New
qi

)
−
(

∑
i∈B

qi

)(
∑

i∈Old
qi

)]
Uζ .

(253)
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Molecular simulations corroborate the existence of the disputed win-
dow effect, i.e. an increase in diffusion rate by orders of magnitude
when the alkane chain length increases so that the shape of the alkane
is no longer commensurate with that of a zeolite cage. This window
effect is shown to be characteristic for molecular sieves with pore
openings that approach the diameter of the adsorbate. Furthermore,
the physical compatibility between the adsorbate and the adsorbent
has a direct effect on the heat of adsorption, the Henry coefficients,
the activation energy, and the frequency factors.

D. Dubbeldam, S. Calero, T. L. M. Maesen, B. Smit 3
Incommensurate Diffusion in Confined

Systems

Zeolites are confined systems with pore
sizes comparable to the molecular size.
These microporous materials are used for
separations, water softeners, and as cata-
lysts in many (petro)chemical applications.
From a scientific point of view zeolites are
ideal systems to study the effect of con-
finement on the properties of the adsorbed
molecules [1–6]. The effect of confinement
on diffusion is still poorly understood de-
spite its importance for practical applica-
tions. Experimentally this is a very diffi-
cult subject; depending on the experimen-
tal technique the measured diffusion coef-
ficients may differ many orders of magni-
tude [7].

Zeolites are designated by three capi-
tal letter codes derived from the names of
the type materials: ERI (Erionite), CHA
(Chabazite), LTA (Linde Type A), OFF
(Offretite), and MFI (ZSM-5 five). In 1973
Gorring reported an experimental study
of diffusion of linear alkanes in ERI-type
zeolite (a cage/window-type structure) as
a function of chain length indicating a
window-effect [8]. Surprisingly, the diffu-
sion rates reportedly increase significantly
going from C8 to C12 before the usual mono-

tonic decrease with chain length sets in. Ac-
cording to Gorring the diffusion rate ex-
hibits a maximum for C12 because the shape
is incommensurate with that of an ERI-type
cage, so that C12 is always inside an ERI-
type window. Smaller molecules are com-
mensurate with the ERI-type cage and re-
main trapped in its potential well.

Perhaps the simplest model for molecules
that are either commensurate or incommen-
surate with the framework structure is the
Frenkel-Kontorowa (FK) model [9] for ad-
sorbed atoms on a periodic substrate. Mod-
els based on the FK-theory have been pro-
posed by Ruckenstein and Lee [10], Der-
ouane et al. [11], and by Nitsche and Wei
[12] to explain the observed increase of the
diffusion coefficient as a function of the
chain length qualitatively. However, due to
the simplifications the quantitative predic-
tions of these models are poor. For example,
these models can not predict the location
and magnitude of the local maximum, nor
can they describe the inner-cage behavior
correctly. Recent attempts [13, 14] failed to
experimentally corroborate Gorring’s diffu-
sion data. The discrepancy between the
experiments and the lack of a molecu-
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lar model that quantitatively explains the
window-effect motivated us to develop a
molecular simulation method to quanti-
tatively study diffusion in cage/window-
type geometries.

In this work we focus on self-diffusion of
linear alkanes in ERI-, CHA-, and LTA-type
zeolites as a function of chain length. These
types of zeolites have a cage/window-
type structure with highly tortuous dif-
fusion paths. The CHA-type cages are
slightly shorter than the elongated ERI-
type cages and both cage types are signifi-
cantly smaller than the spherical LTA-type
cages. Conventional molecular simula-
tions are limited to relatively fast diffusing
molecules [15, 16] or small rigid molecules
[17]. Here, we combine the Configura-
tional Bias Monte-Carlo (CBMC) method
with rare-event molecular simulation tech-
niques [18,19]. The diffusion coefficients are
4-10 orders of magnitude lower than what
currently can be computed by conventional
molecular simulation methods.

We use the united-atom model [20] and
consider the CH3 and CH2 groups as sin-
gle interaction centers with their own effec-
tive potentials. The beads in the chain are
connected by harmonic bonding potentials.
The bond bending between three neighbor-
ing beads is modeled by a harmonic cosine
bending potential and changes in the tor-
sional angle are controlled by a Ryckaert-
Bellemans potential. The beads in a chain
separated by more than three bonds in-
teract with each other through a Lennard-
Jones potential. Lattice vibrations, inter-
growths and defects, cations and associated
aluminum atoms create strong disorder and
complicate the diffusion process. In this
work we focus on the influence of the con-
finement on the diffusion coefficient and
therefore we use rigid all-silica ERI-, CHA-,
and LTA-type molecular sieves. In all-silica
structures the electric field does not vary
much across the channels and cages, and
Coulomb contributions to the energy of the
hydrocarbons can be neglected. The chains

Figure 1: The reaction coordinate q is defined as
the position of the second bead of a chain mapped
orthogonal to the axis of projection (the line per-
pendicular to the window). The resulting free
energy profile F(q) indicates a high free energy
barrier at the position of the window q∗ separat-
ing cage A and B. On the right we show two
pictures: the unit cell of ERI in 3D (top), and
the connectivity of the cages within the unit cell
(bottom). At infinite dilution the molecules per-
form a random walk on a lattice spanned by the
cage-centers.

interact with the oxygens atoms of the zeo-
lite through a Lennard-Jones potential. Fur-
ther details, including the parameters, are
given by Vlugt et al. [21] and Maesen et
al. [22], who have shown that with these pa-
rameters one can reproduce the adsorption
isotherms, heats of adsorption, and Henry
coefficients of linear alkanes in all-silica ze-
olites accurately.

The structures of interest here consist of
cages A and B separated by a narrow win-
dow forming a high free energy barrier. In
the Bennet-Chandler approach [18, 19, 23]
one computes the transmission rate over
the barrier in two steps. First one com-
putes the probability to find a chain on top
of the barrier and subsequently the trans-
mission coefficient κ, defined as the fraction
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of particles coming from A that successfully
reaches B out of those starting on top of the
barrier. At infinite dilution the chains per-
form a random walk on a lattice spanned
by the cage-centers. The transmission rates
are then easily converted to diffusion coef-
ficients. Transition State Theory (TST) as-
sumes that no recrossing occurs (κ = 1) and
predicts a transmission rate kTST

A→B given by

kTST
A→B =

√
kBT
2πm

e−βF(q∗)R q∗
−∞ e−βF(q) dq

,

where kB is the Boltzmann constant, T the
temperature, β = 1/ (kBT), m the mass of
the particle, and F(q) the free energy as a
function of q. The reaction coordinate q
defines the progress of the diffusion event
from cage A to cage B. We define q∗ to
be the location of the dividing barrier. The
omission of the transmission coefficient κ
is not allowed for our systems and we cor-
rect the TST results by computing the trans-
mission coefficients in a separate Molecular
Dynamics calculation. It is vital to choose
an appropriate reaction coordinate. By trial
and error we concluded that using the sec-
ond bead of the chain gave near optimal re-
sults for the systems discussed here. The
transmission coefficient κ = 1 for methane
and within the range κ = 0.1− 0.3 for other
chain lengths. The more intuitive middle
bead and center of mass gave very small
transmission coefficients resulting in an ex-
tremely inefficient computation.

For long chains the conventional tech-
niques are prohibitively expensive. How-
ever, the CBMC technique used to simulate
adsorption isotherms [24] can be extended
to compute the free energy of a chain.
In a CBMC simulation chains are grown
bead by bead biasing the growth process
towards energetically favorable configura-
tions avoiding overlap with the zeolite.
During the growth the Rosenbluth factor
is calculated. The average Rosenbluth fac-
tor is directly related to the excess chemical
potential, free energy, and the Henry coef-
ficient [19]. The CBMC algorithm greatly
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Figure 2: Diffusion coefficients as a function
of chain length at 600 K for ERI-, CHA-, and
LTA-type zeolite; M ERI-type silica sim. results,
N exp. results of Gorring [8], ∗ Cavalcante et al.
[13], •Magalhães et al. [14]; O CHA-type silica
sim. results, H exp. results of Gorring [25]; ♦
LTA-type silica sim. results, � exp. compiled in
Ref. [7].

improves the conformational sampling of
molecules and increases the efficiency of
chain insertions by many orders of magni-
tude. To compute the free energy as a func-
tion of the position in the zeolite, chains are
inserted at random positions and grown us-
ing the CBMC scheme. The mapping of the
second bead of a chain is depicted in Fig.
1. A part of the ERI-type silica with cages
A and B (connected to other cages) is sliced
half open. We show two examples: a C14

chain in cage A and a C10 chain in cage
B. Free energy values are mapped onto the
one-dimensional free energy profile F(q) by
orthogonal projection of the position of the
second bead onto the line perpendicular to
the window.

For most zeolites the diffusion coeffi-
cients of linear alkanes are monotonically
decreasing as a function of chain length [7].
Fig. 2 shows a qualitatively different behav-
ior in ERI- and CHA-type silica. We ob-
serve a range of intermediate chain lengths
in which the diffusion coefficient is constant
or increases with increasing chain length,
followed by a pronounced local maximum.

Page 73 of 256



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

A
ct

iv
at

io
n 

en
er

gy
 E

D
 [k

J/
m

ol
]

Carbon number of n−alkane

ERI−type silica simulation
CHA−type silica simulation
ERI−type zeolite exp. Gorring
ERI−type zeolite exp. Magalhães
ERI−type zeolite exp. Cavalcante
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ting diffusion simulation results at 300, 400,
500, 600, and 700 K to the Arrhenius law com-
pared to the experimental results taken from
Gorring [8], Cavalcante et al. [13], and Mag-
alhães et al. [14].

Good quantitative agreement with the non-
disputed experimental data for LTA-type
zeolite is found, although one has to real-
ize that the scatter in the experimental data
can be as much as two orders of magni-
tude. We note that the input of our simu-
lations is the crystal structure of LTA and
the force field, which has been optimized
for the adsorption in a silicalite. It is there-
fore encouraging that such a good agree-
ment is obtained without any adjustment
of the parameters. More importantly, our
simulation reproduce the chain length de-
pendence and is consistent with the exper-
imental data of Gorring [8]; we not only
confirm the occurrence of a maximum for
both ERI- and CHA-type zeolite at the same
carbon number as observed experimentally,
but also the shift of this maximum to lower
carbon numbers for CHA-type silica. The
increase in the diffusion rate originating
from the geometry-chain interaction is a re-
markable four orders of magnitude for both
ERI- and CHA-type silicas. Additionally,
we have computed the activation energies
and frequency factors by fitting the diffu-
sion results at several temperatures to the
Arrhenius law. The simulation curves in
Fig. 3 are qualitatively the inverse of the
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Figure 4: The free energy difference between
maximum and minimum for ERI-type silica at
600 K.

general shape of the diffusion curves, i.e.
if a chain has a high mobility the activa-
tion energy is low and visa versa. The fre-
quency factors (data not shown) show a
maximum where the diffusion also shows
a maximum and where the activation en-
ergy is at a minimum. Visual inspection of
the simulations snapshots and end-to-end
distance histograms show that the chain is
stretched across a cage tethered at opposite
windows: C13 for ERI-type silica, C11 for
CHA-type silica, and C23 for LTA-type sil-
ica. These chains correspond to the largest
chains still able to fit into a single cage and
have the lowest orientational freedom.

In simulations we are able to extract de-
tailed information such as F(q). The free
energy differences for ERI-type silica are
shown in Fig. 4 and are analyzed in terms
of the value inside the cage and the value
at the barrier. For the chains in the cage we
observe that as we increase the chain length
the minimum of the free energy decreases
until we reach an optimum chain length be-
yond which the chain no longer fits com-
fortably in one cage. For chain lengths
longer than this optimum length the free
energy increases rapidly until the chain is
so big that additional beads are added com-
fortably in the second cage and the mini-
mum free energy is decreasing again. For
the free energy of a chain on top of the
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CHA- and LTA-type silica as a function of chain
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barrier we observe an increase from C1 to
C3, as more beads are placed on top of
the barrier. For C3 all beads feel the influ-
ence of the window. Any additional bead
will be placed in more favorable positions
outside the window and therefore the bar-
rier decreases for C4 and continues to de-
crease until the chain is so large that it feels
the limitations of the cage. Beyond this
chain length the maximum of the free en-
ergy increases rapidly. Combining these ef-
fects gives the generic, non-monotonic dif-
fusion behavior. First a decrease followed
by a possible plateau, an increase, and fi-
nally a decrease again. Key parameters in
this mechanism are the presence of a nar-
row window combined with a cage struc-
ture. By optimizing the effective cage size
one can shift the location of the second max-
imum to a desired value.

We have argued that the maximum of the
diffusion is related to a relative unfavor-
able adsorption for this chain length. This
is also reflected in the Henry coefficient as
a function of chain length shown in Fig.
5. At sufficiently low pressures the num-
ber of adsorbed molecules is proportional
to the Henry coefficient. The Henry coeffi-
cients are directly related to the minimum
of the free energy profile. The data for OFF-
type silica shows the common behavior of

many channel-type zeolites. In contrast,
cage/window-type zeolites show a typical
non-monotonic, periodic dependence of the
Henry coefficients on the chain length. The
same applies to the heat of adsorption (data
not shown). The local minima nicely cor-
respond to the local maxima in the diffu-
sion coefficient. The repeating period in the
Henry coefficients corresponds to chains fit-
ting into one, two, or three cages, respec-
tively. We note that the period of LTA-
type zeolite is large. The confinement deter-
mines the variety of conformations present
and for LTA-type zeolites this entropy effect
is large as chains up to C23 still fit into a sin-
gle cage. An important argument against
the existence of the window effect was that
experimental data for LTA do not provide
evidence in support of this effect [7]. Exper-
imentally, the maximum chain length that
has been studied is C16. This chain length is
in the plateau region; only for much longer
chain lengths a moderate increase can be ex-
pected.

Our simulations show that the window
effect is a very generic effect that can be
found in an entire class of zeolites. When
a chain is incommensurate with the cage
structure the diffusion rate increases by or-
ders of magnitude. The crossover points, at
which a chain fits in n-cages and a longer
one into (n + 1)-cages, are directly related
to the local minima in the Henry coeffi-
cients, the heats of adsorption, and the ac-
tivation energies, and to the local maxima
in the diffusion coefficients and the fre-
quency factors. Although closely related,
this is not necessarily an exact multiple of
the window-to-window distance, nor is half
the window-to-window distance the chain
length which is always commensurate with
the cage, as theory suggests. In fact, there
can be more than one minimum of diffu-
sion per period. From a simulation point
of view it is encouraging that our method
allows us to compute very low diffusion co-
efficients that vary six orders of magnitude
for alkanes ranging from C1 to C20. It is par-
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ticularly useful at conditions accessible to
neither conventional simulation techniques
nor experiments, but where diffusion limi-
tations can be an important factor in under-
standing practical applications.
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Dedicated molecular simulation techniques afford the study of the
abnormal adsorption and diffusion of linear alkanes in ERI-, CHA-,
and LTA-type zeolites. The exceptionally slow diffusion rates required
the development of a combination of rare-event transition state theory
techniques and the configurational-bias Monte Carlo algorithm. The
diffusion coefficients computed by this novel method agree well
with the non-disputed rates determined experimentally for LTA-type
sieves. The computed rates corroborate the non-monotonic variation
of the diffusion rate with alkane chain length published by Gorring,
i.e. the rate increases by orders of magnitude when the molecular and
cage shape are no longer commensurate, so that a molecule ends up
stretched across a cage tethered at opposite windows. The simulations
corroborate this ”window-effect” for both ERI- and CHA-type sieves,
and suggest that it is characteristic for all sieves with windows
approximately 0.4 nm across. They predict that it also occurs for
LTA-type sieves provided that the n-alkane is long enough to exceed
the diameter of the LTA-type supercage.

D. Dubbeldam and B. Smit 4
Computer Simulation of Incommensurate

Diffusion in Zeolites: Understanding
Window-Effects

I Introduction

With the potential substitution of methyl-
tertiarybutylether (MTBE) by ethanol in
gasoline, it will be difficult to maintain
gasoline volatility without removing a sub-
stantial amount of the volatile pentanes to-
gether with the MTBE. In the 1960-ies the
selective hydrocracking of pentanes and
hexanes under reforming conditions was
commercialized using a catalyst based on
an ERI-type zeolite [1]. One could envisage
a resurgence of such a process if the cata-
lyst could somehow be reformulated so as
to exhibit a higher selectivity for pentane re-
moval than the ERI-type zeolite. An imped-
iment to such a development is that the fun-
damental operating principles of the ERI-
type zeolite have never been fully under-

stood at a molecular level. This paper at-
tempts to remedy this situation by applying
state of the art molecular simulation tech-
niques to assess the catalytically relevant
diffusion and adsorption phenomena.

In 1973 Gorring reported an experimen-
tal study of diffusion of several n-alkanes
over zeolite T [2]. Zeolite T is a disordered
intergrowth of OFF- and ERI-type zeolites:
The OFF-type structure consists of chan-
nels 0.67 nm across, the ERI-type structure
of cages linked by a highly tortuous diffu-
sion path through 0.4 nm windows. Sur-
prisingly, the diffusion and reaction rates
in ERI-type zeolites reportedly increase sig-
nificantly going from n-C8 to n-C12 before
the usual monotonic decrease with alkane
chain lengths sets in. According to Gor-
ring [2] and Chen [3, 4] the diffusion rate
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exhibits a maximum for n-C12 because the
shape is incommensurate with that of an
ERI-type cage, so that n-C12 is always inside
an ERI-type window. Smaller molecules are
commensurate with the ERI-type cage and
remain trapped in its potential well. Larger
molecules also gain stability from the inter-
actions with the cage. Gorring argued that
the occurrence of the window effect might
be a general phenomenon common to dif-
fusion of long molecules in many zeolites,
with the position of minima and maxima
determined by identifiable crystal parame-
ters.

The origin of the window effect is a rela-
tively unfavorable adsorption for the chain
lengths close to the cage size combined with
a low orientational freedom as the chains
are stretched across a cage tethered at oppo-
site windows [5,6]. As the movement of the
incommensurate chain is less impeded by
the higher free energy barriers a commen-
surate chain would feel, it has an enhanced
mobility around integer values of the ratio
of the chain length to the period of a lattice.
Perhaps the simplest model for molecules
that are either commensurate or incommen-
surate with the framework structure is the
1938 Frenkel-Kontorowa (FK) model [7, 8]
for adsorbed atoms on a periodic substrate.
The model, consisting of a string of atoms
connected by springs and subjected to a pe-
riodic potential, contains for a vanishing
potential a ”floating phase” which is incom-
mensurate for almost all values of the ra-
tio a/b, where a is the equilibrium lattice
spacing of the harmonic chain and b the
lattice period. Similar models have been
proposed by Ruckenstein and Lee [9], Der-
ouane et al. [10], and by Nitsche and Wei
[11]. However, we are aware neither of the-
oretical studies closer to reality nor of ad-
ditional experimental confirmation of the
non-monotonic variation of diffusion with
alkane chain length. On the contrary, recent
attempts [12, 13] failed to corroborate Gor-
ring’s diffusion data.

An intensive research effort on mea-

suring diffusion rates in zeolites aug-
mented the number of techniques to mea-
sure the diffusion rates, and the dis-
crepancies between the rates obtained by
the various methods. Thus, agreement
between microscopic (pulsed field gradi-
ent NMR, quasi-elastic neutron scattering),
mesoscopic (micro-FT IR), and macroscopic
(membrane permeation, uptake methods,
zero length column, frequency response)
techniques is rare. As compared to Caval-
cante et al. [12] and Magalhães et al. [13]
Gorring used too much sample in his mass
uptake measurements and changed his sor-
bate concentration too drastically, so that
his data were prone to the intrusion of heat
transfer and extra-crystalline mass trans-
fer phenomena. The discrepancy between
the experiments motivated us to develop
a molecular simulation method that would
allow us to study the adsorption and diffu-
sion and shed some light on the experimen-
tal dispute. Furthermore, we hope to con-
tribute valuable new insights to the theory
of diffusion in zeolites.

In this paper we use configurational-bias
Monte Carlo (CBMC) to obtain the Henry
coefficients and heats of adsorption in OFF-
, ERI-, CHA-, and LTA-type silica. We ap-
ply the transition state theory (TST) Bennet-
Chandler approach [14, 15] and the tech-
niques developed by Ruiz-Montero et al.
[16], combined with CBMC, to calculate dif-
fusion coefficients in ERI-type, CHA-type,
and LTA-type silica. Both Henry coeffi-
cients and diffusion coefficients are calcu-
lated over a wide range of chain lengths
and temperatures. The diffusion data is fit-
ted with an Arrhenius law producing acti-
vation energies and frequency factors. For
ERI- and CHA-type sieves we confirm the
existence of the window-effect. The physi-
cal origin of the window-effect and the con-
ditions under which the phenomenon oc-
curs are studied in detail.

The remainder of this paper is organized
as follows. First, we introduce our simula-
tion model in Sec. II and review the relevant
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theoretical foundations in Sec. III. Next we
discuss the choice of the reaction coordinate
needed in the transition state theory in Sec.
IV. A detailed description of the zeolites
is presented in Sec. V. In Sec. VI simula-
tion results on adsorption, diffusion, activa-
tion energies, and frequency factors are re-
ported and we discuss the comparison with
the scattered experimental results. We dis-
cuss the comparison with some theoretical
and experimental results in Sec. VII and
end in Sec. VIII with some concluding re-
marks.

II Simulation model

We use the united atom model [17] and con-
sider the CH3 and CH2 groups as single in-
teraction centers with their own effective
potentials. The pseudo-atoms in the chain
are connected by harmonic bonding poten-
tials. Bond bending between neighboring
pseudo-atoms i, j, and k is modeled by
a harmonic cosine bending potential, and
changes in the torsional angle are controlled
by a Ryckaert-Bellemans potential [18]. The
pseudo-atoms in different molecules, or be-
longing to the same molecule but separated
by more than three bonds, interact with
each other through a shifted Lennard-Jones
potential.

In the CBMC scheme it is convenient to
split the total potential energy of a trial site
into two parts. The first part is the internal,
bonded potential Uint which is used for the
generation of trial orientations. The second
part of the potential, the external potential
Uext, is used to bias the selection of a site
from the set of trial sites. Note that the split
can be made completely arbitrary. The in-
ternal energy Uint is given by

Uint = Ubond + Ubend + Utorsion, (1)

with

Ubond = ∑
bonds

1
2

k1(r− r0)2, (2)

Ubend = ∑
bends

1
2

k2(cos θ− cos θ0)2, (3)

Utorsion = ∑
torsions

5

∑
n=0

Cn cosn φ, (4)

where k1/kB = 96500 K/Å2 is the bond force
constant, r0 = 1.54 Å the reference bond
length, k2/kB = 62500 K the bend force con-
stant, θ0 = 114◦ the reference bend angle, φ
the dihedral angle (defined as φtrans = 0),
and where the torsion parameters are given
by C0 = 1204.654, C1 = 1947.740, C2 =
−357.845, C3 = −1944.666, C4 =
715.690, C5 = −1565.572 with Cn/kB in
K. The external energy Uext consists of a
guest-guest intermolecular energy, a guest-
zeolite interaction, and an intra-molecular
Lennard-Jones interaction

Uext = Ugg
i j + Ugz

i j + Uintra
i j , (5)

with

Ugg,gz,intra
i j =

∑
LJ-pairs

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
− Ecut,

(6)

where ri j is the distance between site i
and site j, rcut = 13.8 Å, the cutoff radius,
and Ecut the energy at the cut-off radius.
Jorgensen mixing rules, σi j = √

σiσ j and
εi j = √

εiε j, are used for the cross terms of
the Lennard-Jones parameters, σ = 3.75 Å,
ε/kB = 98.0 K for CH3, and σ = 3.95 Å,
ε/kB = 46.0 K for CH2. The interactions be-
tween the zeolite and the guest molecules
are assumed to be dominated by the oxy-
gens atoms [19]. The interactions with the
Si atoms are implicitly taken into account
in this effective potential. The dispersive
interactions with the oxygens are described
with the Lennard-Jones potential with pa-
rameters σ = 3.6 Å and ε/kB = 80 K for O-
CH2, ε/kB = 58 K for O-CH3. Further details
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are given by Vlugt et al. [20] and Maesen et
al. [21], who have shown that with these pa-
rameters one can reproduce the adsorption
isotherms, heats of adsorption, and Henry
coefficients of various linear and branched
alkanes in several zeolites accurately.

Instead of the experimentally studied
cation-exchanged aluminosilicates, we use
OFF-, ERI-, CHA-, and LTA-type silica de-
void of cations. In all-silica sieves the elec-
tric field does not vary much across the
channels and cages, and Coulomb forces
can be neglected. The positions of the
atoms are taken from Ref. [22]. The zeo-
lite is considered to be rigid [19] as this al-
lows for the use of efficient grid interpola-
tion techniques to compute interactions and
forces. In cation-free all-silica sieves, there
is evidence that adsorption and diffusivi-
ties are virtually unchanged for small alka-
nes when lattice vibrations are included
[23–25]. Although with a fixed framework
a flexible molecule can not dissipate its
energy, there is still some thermalization
through the transfer of translational energy
into the internal degrees of freedom of the
molecule.

Conventional Monte Carlo (MC) is time-
consuming for long chain molecules. The
fraction of successful insertions into the
sieve is too low. To increase the number
of successfully inserted molecules we apply
the CBMC technique [26, 27]. In the CBMC
technique a molecule is grown segment-by-
segment. For each segment we generate a
set of k trial orientations according to the in-
ternal energy Uint and compute the external
energy Uext

i ( j) of each trial position j of seg-
ment i. We select one of these trial positions
with a probability

Pi( j) =
e−βUext

i ( j)

∑
k
l=1 e−βUext

i (l)
=

e−βUext
i ( j)

w(i)
, (7)

where β = 1/(kBT), with kB the Boltzmann
constant and T the temperature. The se-
lected trial orientation is added to the chain
and the procedure is repeated until the en-
tire molecule has been grown. For this

newly grown molecule we compute the so-
called Rosenbluth factor [28]

W = ∏
i

w(i). (8)

The Rosenbluth factor of the new configu-
ration is related to the free energy F

F = − 1
β

ln
〈W〉
〈Wid〉 , (9)

where
〈
Wid

〉
is the Rosenbluth factor of an

ideal chain (defined as a chain having only
internal interactions), which can be calcu-
lated from a simulation of a single chain. In
addition, the Rosenbluth factor is related to
the Henry coefficient KH

KH = β
〈W〉
〈Wid〉 . (10)

In the limit of zero coverage the Henry co-
efficient is related to the heat of adsorption
Qst via a thermodynamic relation [27]

Qst =
∂ log (KH)

∂β
. (11)

Although this formula can be used to check
the consistency, in practice it is more conve-
nient to obtain the heat of adsorption in the
infinite dilution limit from

Qst = 〈Ugz〉 − 〈Uz〉 − 〈Ug〉 − kBT, (12)

where 〈Ugz〉 and 〈Ug〉 are the ensemble av-
erage of the potential energy of the zeolite-
guest system and the energy of an iso-
lated ideal chain, respectively, and where
the average zeolite energy 〈Uz〉 is zero for a
rigid zeolite. The CBMC algorithm greatly
improves the conformational sampling of
molecules and increases the efficiency of
chain insertions, required for the calcula-
tion of the free energy and Henry coeffi-
cients, by many orders of magnitude.

III Transition State Theory

ERI-, CHA-, and LTA-type zeolites consist
of cages separated by 0.4 nm wide win-
dows. These windows form large free en-
ergy barriers to diffusion. If the barrier is
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much higher than kBT, diffusion is an ac-
tivated process. Once in a while a par-
ticle hops from one cage to the next, but
the actual crossing time is negligible com-
pared to the time a particle spends inside
the cage. To compute the hopping rate from
one cage to the next the rare-event simu-
lation techniques of Bennet and Chandler
[14, 15] can be readily applied. We give a
brief overview of the main results of the
Bennet-Chandler approach.

We consider a system which can be in two
stable states, A and B. The reaction coor-
dinate, a value that indicates the progress
of the diffusion event from adsorption site
A to site B, is denoted by q. Here, q is a
function of the Cartesian coordinates, q̇ de-
notes the derivative in time, q∗ is the loca-
tion of the dividing surface, and qA, qB are
the minima of the free energy correspond-
ing to state A and B, respectively. We intro-
duce two characteristic functions nA and nB

that measure whether the system is in state
A or B. A possible and often used definition
is

nA = θ
(
q∗− q

)
, (13)

nB = θ
(
q− q∗

)
, (14)

where θ is the Heaviside function θ(x),
which has value zero for x < 0 and value
1 for x ≥ 0. With these definitions the tran-
sition rate kA→B is given by [16]

kA→B =
〈
δ
(
q− q∗

)〉〈
θ
(
q∗− q

)〉︸ ︷︷ ︸
P(q)

×
〈
q̇δ
(
q− q∗

)
θ
(
q (t)− q∗

)〉〈
δ
(
q− q∗

)〉︸ ︷︷ ︸
R(t)

,

(15)
where P

(
q
)

is the equilibrium probability
density of finding the system at the top of
the barrier divided by the equilibrium prob-
ability of finding it at state A, and where
R (t) is the averaged flux at the top of the
barrier multiplied by the probability that
the system ends up in state B at time t.
The expression is rigorously correct for ar-
bitrary crossings provided that the barrier
is much larger than kBT. P

(
q
)

is a time-
independent equilibrium quantity and can be

computed explicitly

P
(
q
)

=
〈
δ
(
q− q∗

)〉〈
θ
(
q∗− q

)〉 =
e−βF(q∗)R q∗

−∞ e−βF(q) dq
, (16)

where F
(
q
)

is the free energy as a func-
tion of the diffusion path q. R (t) is a
conditional average, namely the product〈
q̇ (0) θ

(
q (t)− q∗

)〉
, given that q (0) = q∗.

Using the assumption that the velocities
of the atoms within the molecules follow
a Maxwell-Boltzmann distribution, we can
estimate from kinetic theory the long time

value of R (t) by 1
2 |q̇(0)| =

√
kBT
2πm , where m

is the mass of the segments of the particle
involved in the reaction coordinate (the to-
tal mass of the particle if the center of mass
is used or the mass of only one segment if
the reaction coordinate is a single segment
like the middle bead in a molecule). Tran-
sition state theory predicts a crossing rate
kTST

A→B given by

kTST
A→B =

√
kBT
2πm

e−βF(q∗)R q∗
−∞ e−βF(q) dq

. (17)

Calculating TST rate constants is therefore
equivalent to calculating free energy differ-
ences. In the Bennet-Chandler approach it
is sufficient to assign the barrier position
q∗ inside the barrier region. The result of
the scheme does not depend on the spe-
cific location, although the statistical accu-
racy does. If the dividing surface is not
at the top of the barrier the probability of
finding a particle will be higher than at q∗,
but the fraction of the particles that actually
cross the barrier will be less than predicted
by transition state theory. It is convenient to
introduce the time-dependent transmission
coefficient κ(t), defined as the ratio

κ (t) ≡ kA→B (t)
kTST

A→B

=
〈
q̇δ
(
q (0)− q∗

)
θ
(
q (t)− q∗

)〉〈
1
2 |q̇(0)|δ

(
q (0)− q∗

)〉 .

(18)

The correction κ(t) is the fraction of parti-
cles coming from the initial state that suc-
cessfully reaches the final state out of those
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that cross the dividing surface at t = 0.
It corrects for trajectories which cross the
transition state from A but fail to equili-
brate in B. It can be shown that κ(0) = 1 and
kA→B (0) = kTST

A→B. There is a large separa-
tion of time scales. The recrossings are com-
pleted in a time much less than the time to
react and Eq. 18 will reach a plateau value
κ. For classical systems 0 < κ ≤ 1 and Eq.
17 is corrected as

kA→B = κ kTST
A→B. (19)

Standard Molecular Dynamics (MD)
yields the transmission coefficients, a
separate MC simulation the starting con-
figurations. The reaction coordinate is
restricted to the dividing surface q∗. The
MC moves involved are translations of the
reaction bead in the plane of the dividing
surface and complete regrowing of the
molecule starting from the restricted bead.
Subsequently the transmission coefficient
is calculated by standard MD in the micro
canonical ensemble using a velocity Verlet
integrator with a time step of 0.2 fs. The
beads are given independent velocities,
corresponding on average to the desired
temperature, by sampling from a Maxwell-
Boltzmann distribution. A molecule
sampled at a particular temperature at
the top of the barrier will acquire a huge
velocity once it has arrived in the valley.
No thermal equilibration takes place. In
fact, the velocity is so high that it will very
likely cross another window or (as in ERI-
and CHA-type structures) bounce back
from the opposite wall and recross the
initial window again. For this reason it is
necessary to terminate a trajectory once a
valley has been reached. Failing to end the
trajectory can lead to spurious, undamped
oscillations in κ(t).

The approach of κ (t) to its plateau value
can be quite slow [16]. Moreover, in the case
of diffusive barrier crossings the transmis-
sion coefficient is quite small and κ can not
be calculated accurately by using Eq. 15.
The Bennet-Chandler approach becomes in-

efficient for systems with low transmission
coefficients because the scheme prepares
the system in a state that is not close to
the steady-state situation. In addition, the
scheme employs the θ-function to detect
what state the system is in. The scheme
can be improved by devising a perturbation
that prepares the system immediately close
to the steady-state, and by constructing a
more continuous detection function.

One of the problems, when devising a
more sophisticated scheme, is the lack of ex-
act knowledge of the free energy of the sys-
tem as a function of the order parameter.
It is shown that in practice we need to ap-
proximate only F

(
q
)

[16]. We denote our
estimate of F

(
q
)

by Fest
(
q
)
. Any reason-

able guess will lead to a more rapid con-
vergence than the delta function. Using
the free energy estimate we can compen-
sate approximately for the effect of the en-
ergy barrier. This leads to a more or less
uniform distribution over the entire range
of q. Only trajectories starting in the bar-
rier region yield relevant information and
therefore a weighting function w(q) is ap-
plied, restricting the sampling to the barrier
region

w
(
q
)

=
e2βFest(q)R qB

qA
e2βFest(q) dq

. (20)

The following expression for kA→B can be
derived [16]

kA→B =
Z ∞

0

〈
q̇ (0) q̇ (t) eβFest(q(t))−βFest(q(0))

〉
w

dtR qB
qA

e2βFest dq[R qB
qA

eβFest dq
]2

〈
w
(
q
)〉

eq

〈nA〉eq
.

(21)

If F
(
q
)

is known in advance or, as in our
case, Fest

(
q
)

is the best possible measure-
ment in a simulation, then Fest

(
q
)

and F
(
q
)

become synonymous. This leads to a sim-
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plification of the expressions

κ(t) =
Z ∞

0

〈
q̇(0)q̇(t)eβF(q(t))−βF(q(0))

〉
w

dt

eβF(q∗)R qB
qA

eβF(q) dq

2
〈|q̇|〉 , (22)

kA→B =

R ∞
0

〈
q̇ (0) q̇ (t) eβF(q(t))−βF(q(0))

〉
w

dt

〈nA〉eq

R qB
qA

eβF(q) dq
R ∞
−∞ e−βF(q) dq

.

(23)

At infinite dilution the molecules per-
form a random walk on a lattice spanned by
the cage-centers. The transmission rates are
easily converted to diffusion coefficients if
the jump distance and the number of equiv-
alent diffusion paths are known [29]. Er-
ror calculations are performed for the mea-
sured quantities, including the free energy
profiles F(q), the heats of adsorption, the
Henry coefficients, and the diffusion coeffi-
cients. Each insertion of a chain molecule
is statistically independent and error bars
are easily calculated for each point on the
free energy profile and for the Henry coef-
ficients. Error bars on the diffusion coeffi-
cients, obtained from the transmission rate
kAB, are less trivial. The complete free en-
ergy profile is regenerated for each point
from their average value and error value
σ, assuming a Gaussian distribution with
width σ around its average value [30]. A
smooth cubic approximation spline is fit-
ted to the regenerated data and Eq. 16 is
evaluated using the spline-approximation.
The procedure is repeated many times and
the error P(q) is assumed to be twice the
standard deviation in the resulting data-set
(95 percent confidence interval). The er-
ror in the diffusion coefficient is then calcu-
lated by applying normal error propagation
rules.

IV Reaction coordinate

To compute the free energy as a function of
the position in the zeolite, one has to relate

a position in the channel or cage to a reac-
tion coordinate q. Such a map should sat-
isfy several criteria

• Every coordinate in the simulated vol-
ume should be uniquely designate a
position in a single cage.

• All Cartesian space should be used and
partitioned into equivalent regions in
order to have a correct entropic con-
tribution. Not only all pore volume
should be used, but also the zeolite vol-
ume. The space-group of the zeolite
indicates how to exploit the inherent
symmetry.

• The mapping should achieve the high-
est free energy barrier. If not, the trans-
mission coefficient can become very
small, making the computation ex-
tremely inefficient or even impossible.

In addition, a linear mapping is preferred
from a computational point of view, to
avoid correcting the density distribution for
the use of constraints [16].

We stress that choosing an appropriate re-
action coordinate is vital. By trial and error
we concluded that using the second bead of
the alkane chain gave near optimal results
for all alkane chains and zeolites discussed
here. Chains are always newly grown start-
ing from this bead. The mapping is de-
picted in Fig. 1, where a part of the ERI-
type silica is shown with cages A and B
(connected to other cages) sliced half open.
Two examples of the mapping are depicted:
a C14 chain in cage A and a C10 chain in
cage B. Free energy values are mapped onto
the one-dimensional free energy profile F(q)
by orthogonal projection of the position of
the second bead onto the line perpendicu-
lar to the window. Only chains that have
the smallest distance to either cage A or B
(of all the cages in the zeolite) give a contri-
bution to the transmission rate kA→B.

There are two ways to obtain an near-
optimal mapping: try all beads, compute
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Figure 1: The reaction coordinate q, indicating
the progress of the diffusion event from adsorp-
tion site A to adsorption site B, is defined as the
position of the second bead of a chain mapped
orthogonal to the axis of projection (the line per-
pendicular to the window). The resulting free
energy profile F(q) indicates a high free energy
barrier at the position of the window q∗ sepa-
rating cage A and B. Shown here are two ex-
amples in ERI-type silica: C14 in cage A, and
C10 in cage B. Also shown a C8 molecule, but it
would contribute to the diffusion between cage
B and the C8 cage (these contributions can be
converted into a kA→B contribution due to sym-
metry reasons). The C8 molecules fit snugly in-
side the erionite cages, C10 adapts high energy
configurations, while the C14 stretches energeti-
cally more favorable across two cages.

the free energy profiles and then choose
the one which gives the highest free energy
difference, or try all beads, compute the
transmission coefficient κ and then choose
the one which gives the highest κ. Fig.
2 shows the free energy profiles (raw, un-
smoothed data) in ERI-type silica at 600 K
for mappings using the various beads of C9

as the order parameter. The maximum of
the free energy is at the q = 0 position cor-
responding to the dividing window q∗, the
minimum values are at q ≈ |4| correspond-
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Figure 2: Free energy profiles F(q) (raw, un-
smoothed data) in ERI-type silica at 600 K for
C9 using bead 1, 2, 3, 4 and 5 as the mapping
bead (lines from top to bottom at q = 0 in order
of the legend).
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Figure 3: Transmission coefficients κ(t) in ERI-
type silica at 600 K plotted against simula-
tion time for C1-C5 and C9 using the second-
bead-mapping, and C∗

9 using the middle-bead-
mapping (lines from top to bottom in order of
the legend).

ing to values deep inside cage A and B.
We note that the x-axis corresponds to the
line perpendicular to the window in Fig. 1.
The second-bead-mapping gives the high-
est free energy barrier and in addition, the
shape of the free energy profile indicates
that molecules will fall off the barrier the
fastest. With the second bead on top of the
barrier the tail of the chain is bended and
close to the wall. It has already one bead
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Figure 5: Histogram of the sampled positions
of the second bead of propane in ERI-type silica.
The q = 0 position corresponds to the position
of the dividing window. The solid curve denotes
the curve eβF(q) with F(q) the spline fit through
the free energy profile of propane.

through the window and combined with
the asymmetry of the molecule it is dynam-
ically most balanced. Using the middle-
bead-mapping (bead 5) it is nearly impos-
sible to obtain κ. The chains tend to sit
comfortable in a (small) local free energy
minimum and diffuses on top of the bar-
rier without actually falling off the barrier.
For other chain lengths similar results have
been obtained.

In Fig. 3 we show the transmission co-
efficient κ(t) for C1-C5, C9 for ERI-type sil-
ica at 600 K with a second-bead-mapping.
For comparison we show the result for C9

with a middle-bead-mapping. The position
of the middle bead can not be used, since
κ(t) does not reach a clear positive plateau
value. Note that a change in the barrier
height results in a exponential change of
the transmission coefficient. Computing
the transmission coefficient for the various
mappings is therefore more sensitive. Fig.
4 shows the transmission coefficient κ as a
function of chain length at 600 K for the ze-
olites ERI-, CHA-, and LTA-type silica. The
second-bead-mapping works well and the
transmission coefficients are for C3–plus of
approximately equal magnitude (κ = 0.1−
0.3). This facilitates the interpretation and
comparison of the free energy profiles as a
function of chain length.

The free energy profiles (in combination
with the transmission coefficients) can be
used to calculate kA→B. The Ruiz-Montero
et al. method uses the free energy profile to
define a weighting function w(q) for sam-
pling initial configurations. In Fig. 5 we
show the histogram of the position of the
second bead of propane chains around q∗

in ERI-type silica. The shape of the distri-
bution is proportional to eβFest(q) with Fest(q)
the free energy profile of propane. The sam-
pled configurations are then used to mea-
sure the diffusion coefficient on top of the
barrier by calculating the velocity autocor-
relation function taking the weighting func-
tion into account. In Table IV we com-
pare the diffusion results for both meth-
ods for C1-C9 in ERI-type silica at 600 K.
The Bennet-Chandler method is performed
using the second-bead-mapping, while the
Ruiz-Montero et al. method is performed
with the middle-bead-mapping. Note that
the methods are equal for C1-C4. The re-
sults are consistent, and although the statis-
tics is rather poor, the Ruiz-Montero et al.
method worked for this poor choice of reac-
tion coordinate where the Bennet-Chandler
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method completely failed. It provides
much more freedom and worked for sev-
eral mappings, including the ones which
have inherent diffusive behavior on top of
the barrier. The validity of the diffusion re-
sults was checked by using both methods.

V Zeolite Description

Small differences in the crystal structure
of silica cause large differences in the dif-
fusion rates of an alkane as a function of
chain length. The OFF-type silica structure
[31] crystallizes in the hexagonal-ditrigonal
dipyramidal spacegroup P6̄m2 with a =
1.31 nm, b = 1.31 nm, c = 0.76 nm, and
α = β = 90◦, γ = 120◦. In the absence of
stacking faults OFF-type silica would con-
sist of channels 0.67 nm across. The perpen-
dicular 0.36-0.49 nm wide windows have
a significantly slower diffusion rate, and
are only accessible to small molecules. The
pores are girthed at 0.76 nm intervals by
12T-membered ring structures of approxi-
mately 0.67 × 0.68 nm. The ERI-type sil-
ica structure [32] crystallizes in the hexago-
nal dipyramidal spacegroup P63/mmc with
a = b = 1.31 nm, c = 1.52 nm, and α =
β = 90◦, γ = 120◦. The elongated erionite
cages are approximate the shape of 1.3 ×
0.63 nm cylinders connected by 0.36× 0.51
nm windows. Only linear molecules are
able to penetrate the windows. There are
three windows at the top of the cage ro-
tated 120◦ with respect to each other. At
the bottom of the cage there are also three
windows rotated 120◦ with respect to each
other. The top three windows are aligned
with the windows at the bottom. Zeolite
T is an intergrowth of OFF- and ERI-types
zeolites [33]. It consists primarily of OFF-
type zeolite interspersed by thin layers of
ERI-type zeolite. Each ERI-type cage blocks
an OFF-type channel and forces diffusion
through the ERI-type window. The CHA-
type structure [34] has the spacegroup R3̄m
(a squashed cube) with a = b = c = 0.942

nm, and α = β = γ = 94.47◦. The CHA-
type cage is an ellipsoidal cavity of about
1.0 × 0.67 nm across, accessible through
0.38 nm wide windows. Only linear alkanes
are able to penetrate the windows. There
are three windows at the top of the cage ro-
tated 120◦ with respect to each other. At
the bottom of the cage there are also three
windows rotated 120◦ with respect to each
other. The bottom three are at a 60◦ angle
relative to the top ones. The LTA-type struc-
ture [35] has a cubic spacegroup Fm3̄c with
a = b = c = 2.4555 nm, and α = β = γ = 90◦.
The crystallographic unit cell consists of 8
large spherical cages (named α-cages) of
approximately 1.12 nm interconnected via
windows of about 0.41 nm diameter.

In Fig. 6(a), 6(b), 6(c), and 6(d) we show
the volume-rendered pictures of the OFF-
, ERI-, CHA-, and LTA-type silica, respec-
tively. The unit cell is divided into 150 ×
150× 150 voxels (constant valued volume-
elements). At millions of random positions
in the unit cell the free energy of a test-
particle (methane molecule) is calculated
and assigned to the appropriate voxel. To
visualize this energy landscape the three-
dimensional dataset is volume rendered
[36, 37], removing the parts that generate
overlap (the zeolite itself) by making it com-
pletely transparent. Low energy values
are rendered with medium transparency, al-
lowing the inside of the cages to be viewed
as voids. Higher energy values are ren-
dered less and less transparent until the en-
ergy approaches a cutoff energy and is re-
garded as part of the zeolite wall. Also
color is assigned according to the energy
value: brown for the inside view of a cage,
green for the outside view of a cage. For
simulation efficiency all structures are con-
verted to orthorhombic periodic unit cells
with dimensions a = 2.3021 nm, b = 1.3291
nm, and c = 0.7582 nm for OFF a = 2.2953
nm, b = 1.3252 nm, and c = 1.481 nm for
ERI, a = 1.5075 nm, b = 2.3907 nm, and c =
1.3803 nm for CHA. In addition to the rele-
vant cages and channels there are also topo-
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(a) (b)

(c) (d)

Figure 6: The structure of a single periodic unit cell of (a) OFF-type silica, (b) ERI-type silica, (c)
CHA-type silica, and (d) LTA-type silica. Distance-labels are plotted in units Å.
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logically disconnected pockets. A methane
molecule does fit at that position, but it
is not accessible from the main cages and
channels. An example is the visibly discon-
nected SOD-type sodalite-cage (β-cage) in
LTA. To obtain correct results it is necessary
to artificially block the inaccessible pockets
for adsorbing molecules.

To examine the critical molecular length
at which molecules are forced to stretch into
two cages the silica structures are probed
with molecules of various lengths. The sim-
ulation snap-shots are visually inspected
and end-to-end distance histograms (data
not shown) are studied. The OFF-type
channels can host all chain lengths. The
largest molecule that fits in a single ERI-
type cage is n-C13. It assumes a serpentine-
like configuration extending tethered be-
tween opposite windows which makes it
about 1.6 nm long. Similarly, 1.35 nm long
n-C11 is the longest molecule that can be
tethered between two opposing windows
in a CHA-type cage. LTA-type cage can har-
bor molecules as long as n-C22–n-C24 in a
conformation coiled like a snake in a basket.
Pictures of these snapshots are published in
Ref. [6].

VI Results and Discussion

A Henry Coefficients and Isos-
teric Heats of Adsorption

Molecular sieves have the ability to trap
molecules, which can access their intra crys-
talline void volume. For low pressures the
amount of adsorbed molecules is linearly
related to the pressure, with the Henry coef-
ficient as the proportionality constant. If the
external pressures are sufficiently low, the
Henry coefficient provides a good estima-
tion of the extent of adsorption isotherms.
In Fig. 7(a) the Henry coefficients at var-
ious temperatures as a function of chain
length for OFF-type silica are shown. The
Henry coefficients increases exponentially

with alkane chain length, because the en-
thalpy gained by molecule-wall interaction
outweighs the loss in entropy. Other chan-
nel structures like MFI-and TON-type silica
exhibit a similar pattern.

ERI- and CHA-type zeolites show a
markedly different behavior (Fig. 7(c)). A
clear cage-effect of many orders of magni-
tude is present: a periodic, non-monotonic
dependence of the Henry coefficient on
chain length. The local maximum indicates
that the shape of n-C8–n-C9 is commensu-
rate with the shape of an ERI-type cage,
whereas the shape of n-C5–n-C6 is commen-
surate with that of a CHA-type cage. A
sharp decrease in the Henry coefficient is
observed when molecules are forced to curl
up, so as to fit into a single cage. When they
are even longer, this conformation becomes
becomes too unfavorable, and they stretch
across two cages instead. In ERI-type sil-
ica the first molecule to stretch across two
cages is n-C14, in CHA-type silica it is n-C12.
This neatly reflects the difference in size be-
tween the ERI-and CHA-type cages. In-
creasing the chain length improves adsorp-
tion again, until the molecule has to curl up
and eventually has to stretch across three
cages. As opposed to the small, elongated
ERI- and CHA-type cages, molecules have
more orientational freedom in the spherical,
larger LTA-type cages. As a result, the n-
alkane that fit best is more temperature de-
pendent than for ERI- and CHA-type silica.
At 300 K the molecule that fit most snugly is
n-C20, at 500 K it is n-C14–n-C18, while at 700
K the plateau stretches from n-C6 to n-C14.
The largest molecules that fit inside a sin-
gle cage are C22-C24, and represent the local
minimum in the Henry coefficient.

For all silicas studied here, the adsorp-
tion decreases with increasing temperature,
since the thermal energy increase causes a
lowering of the physisorption energy. The
positions of the maxima, i.e. the best
adsorbing molecules, shift towards lower
chain lengths for increasing temperature.
The maxima themselves become broadened
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Figure 7: Henry coefficients as a function of chain length at various temperatures for (a) OFF-
type silica, (b) ERI-type silica, (c) CHA-type silica, and (d) LTA-type silica. At low pressure the
loading is linear in the pressure with the Henry coefficient as the proportionality constant. Error
bars are only shown when larger than the symbol size.
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and can even become large plateaus of
equally well adsorbing molecules. Also
the local minima shift towards lower chain
lengths with increasing temperatures. The
position of these minima indicates a cross-
over point. Below this cross-over point the
molecules fit into a single cage, above this
point the chains start to find it energetically
more favorable to stretch across two cages.

The heat of adsorption Qst is related to
the Henry coefficient. The isosteric heat
of adsorption obtained from simulation is
plotted in Fig. 8 as a function of chain length
for OFF-, ERI-, CHA-, and LTA-type sil-
ica. The heat of adsorption is obtained
from a single NVT (600K) simulation in the
gas phase and a single simulation of one
molecule adsorbed in ERI-type silica, mea-
suring the average energies as needed in
Eq. 12. The result is consistent with the
thermodynamic limit Eq. 11, where we ob-
tained the heat of adsorption as an average
over a temperature range. The heat of ad-
sorption has only a slight temperature de-
pendence for these silicas. We were un-
able to find comparative experimental data
on ERI-, CHA-, or LTA-type silica or alu-
minum phosphates. The heat of adsorption
for OFF-type silica is directly proportional
to the alkane length, while that of ERI- and
CHA-type silica shows a non-monotonic,
periodic behavior, with similar periods as
the Henry coefficient data. The heat of
adsorption Qst in LTA-type silica is also
non-monotonic, although only for alkanes
longer than C21 (data not shown).

Many zeolites show a well defined linear
variation of adsorption energy with carbon
number and a linear relationship between
the entropy and energy of adsorption (com-
pensation effect). In Ref. [38] Ruthven and
Kaul present such correlations for sorption
of linear alkanes on the Na-form of zeolite
X, the Na-form of zeolite Y, Ultra Stable ze-
olite Y, and silicalite. We found that pores
with constrictions (windows) that approach
the diameter of the adsorbate exhibit a
dramatically different behavior. Instead
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Figure 8: Heat of adsorption Qst as a function
of chain length of the alkanes adsorbed in OFF-,
ERI-, CHA-, and LTA-type silica at 600 K using
Eq. 12. Error bars are only shown when larger
than the symbol size.

of attractive adsorbate-adsorbent interac-
tions, windows exert repulsive adsorbate-
adsorbent interactions that increase the ad-
sorption enthalpy of any n-alkane partially
adsorbed inside such a window. Accord-
ingly, the usual compensation between ad-
sorption enthalpy and adsorption entropy
ceases as soon as n-alkanes become too
long to fit comfortably inside the wider
part of these pores (cages) [6]. Our simu-
lations indicate that the compensation the-
ory is true for channel-type zeolites, but for
cage/window-type zeolites with windows
smaller than approximately 0.45 nm the re-
sults apply only to effective chain lengths
much smaller than the cage size. At higher
carbon numbers the data deviates and the
linear relationship breaks down.

B Diffusion

The simulation results of diffusion of n-
alkanes in ERI-type silica as a function of
chain length at several fixed temperatures
are presented in Fig. 9(left), while the ex-
perimental results found by Gorring on a
potassium-exchanged intergrowth of OFF-
and ERI-type zeolites are plotted in Fig.
9(right). The order of magnitude and over-
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Figure 10: Diffusion coefficients as a function of chain length at various temperatures in CHA-
type zeolite, (left) silica simulation results, (right) experimental results of Gorring on H-CHA [3]
(the crystal size r is unknown). Error bars on the simulation data are only shown when larger
than the symbol size.
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Figure 11: Diffusion coefficients as a function of chain length at various temperatures in LTA-
type zeolite, (left) silica simulation results, (right) experimental results of Eic and Ruthven [39]
on the Ca/Na-form of LTA-type zeolite. Error bars on the simulation data are only shown when
larger than the symbol size.
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all trend is well reproduced. The simula-
tion data clearly supports the existence of a
diffusional window-effect. The positions of
the minima at C8 and the maxima at C12-C13

are well in agreement with Gorring’s exper-
imental data. In addition to the C8 mini-
mum, the simulation data shows a second
local minimum at C3.

In Fig. 10(left) we plot the simulation re-
sults for CHA-type silica and the experi-
mental curve of Gorring is shown in Fig.
10(right). Also the simulated data for CHA-
type silica corroborate the existence of a dif-
fusional window effect with the the maxi-
mum diffusion rate at C10-C11. The overall
shape of the diffusion curve is satisfactorily
reproduced. The simulation data finds the
local minima at C3, while Gorring results in-
dicates a C5 minimum, although the differ-
ence is small.

The behavior found for ERI- and CHA-
type silica is markedly different from that
of LTA-type silica (Fig. 11 left). The ex-
perimental results taken from Ref. [39, 40]
are plotted in Fig. 11(right). The activa-
tion energies reported in the references are
used to extrapolate the experimental diffu-
sion coefficients to 600 K. In Ref. [39] the
authors explicitly state that no evidence for
a window effect in LTA-type zeolites has
been found. Our simulation data agrees
qualitatively well with the experimental re-
sults and also the order of magnitude is
well reproduced for LTA-type silica. A pos-
sible window-effect is, however, expected
at higher chain lengths (C23-C24) than have
been studied experimentally. In addition,
our simulation data seem to suggest that
the slight decrease in diffusion beyond the
C10-region corresponds to the critical length
where molecules feel the limitation of the
cage and start to fold or coil.

For all silicas studied here, the diffusion
coefficient decreases with decreasing tem-
perature. The positions of the maxima and
minima shift towards lower chain lengths
for decreasing temperature. The window-
effect in ERI- and CHA-type silica is sev-

eral orders in magnitude and increases with
lower temperatures. LTA-type silica does
not possess an order of magnitude window
effect in the C1-C20 range, but shows com-
plex intra-cage behavior. The agreement be-
tween simulated data on a cation-free LTA-
type sieve and the experimental data on a
cation loaded LTA-type zeolite is remark-
able.

Gorring provided an explanation for the
window-effect in terms of a match between
the effective length of a molecule and the
size of the zeolite cage (the window-to-
window distance) [2]. Eic and Ruthven ap-
plied similar logic to LTA-type zeolites [39].
They argued that the maximum activation
energy should then occur at C13-C14 in the
LTA-type structure. When they found that
the activation energy increased monotoni-
cally with carbon until C16 they dismissed
the window effect. Our simulations indi-
cate that they did not take adequately into
effect that molecules usually curl and fold
into energetically more favorable confor-
mations, and thereby reduce their effective
length [6]. Simulations predict that a win-
dow effect for LTA-type silica will occur, not
at the chain lengths predicted by Eic and
Ruthven, but around chain length C24.

We obtained convincing evidence of a dif-
fusional window-effect for both ERI- and
CHA-type silica with positions for the max-
ima of diffusion corresponding to the cage
size, as suggested by Gorring. The sim-
ulations results agree qualitatively with
Gorring’s experimental results, but devi-
ate somewhat for small chain lengths in
ERI-type silica. Discrepancies are not sur-
prising, since we model Gorring’s compli-
cated intergrowth of ERI- and OFF-type ze-
olites loaded with potassium cations with
ERI-type silica. Fig. 12 depicts two OFF-
type channels, one of which is blocked by
an ERI-type intergrowth. ERI-type moi-
eties only block the OFF-type channels for
molecules larger than C4. A portion of
the small molecules can easily ”navigate”
around the ERI-type block. They have so
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Figure 12: Zeolite T is a disordered intergrowth
of OFF- and ERI-type zeolite and crystallo-
graphic not well defined. Although OFF-type
zeolite is dominating, it is believed that ERI-
type zeolite is the controlling bottleneck for dif-
fusion. The top channel is an unobstructed of-
fretite channel, the bottom channel is blocked by
two unit cells ERI-type zeolite. The exact ar-
rangement of the ERI-type intergrowth inside
OFF-type zeolite is unknown, although ERI-
type zeolite is thought to form thin layers con-
verting OFF-type zeolite into a zeolite which
can only adsorb linear molecules.

much orientational freedom that the diffu-
sion path into the OFF-type side-cages is
just as tortuous as the diffusion into the
ERI-type moieties. These diffusional short
cuts for n-C4–minus could contribute to
change in diffusion rate by orders of mag-
nitude.

C Activation energies and fre-
quency factors

For the OFF/ERI intergrowth [2, 12, 13] and
both the Ca/Na- and Na-forms of LTA-type
zeolites [39, 40] experimental data on diffu-
sion activation energies are available. There
are also some data on frequency factors in
the K-form of the OFF/ERI intergrowth [2]
and the Ca/Na-form of the LTA-type ze-
olite [39]. In our simulations we use all-
silica with the equivalent framework struc-
ture, but without non-framework cations.
Accordingly, the simulation data show the
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Figure 13: The natural logarithm of the dif-
fusion coefficient in ERI-type silica plotted
against the reciprocal temperature for C1-C4,
C8. The data is fitted with a straight line
over the complete simulated temperature range
showing Arrhenius-type behavior of the form
D∞e−ED/kBT. Error bars are only shown when
larger than the symbol size.

influences of the structure of the zeolite it-
self and exclude loading and cation-effects.

To calculate the activation energy and fre-
quency factor in simulation we exploit the
fact that diffusion in cage-zeolites can be
described as an activated process. If the
jump distance is l and we have n equiva-
lent jump sites, and d is the dimensionality,
we can use the Einstein equation and relate
the diffusion coefficient to the jump rate

D (T) =
nl2ν0

2d
e−

EV+EA
kBT = D∞e−

ED
kBT (24)

Here, ν0 can be though of as an attempt fre-
quency (frequency of oscillation) at the free
energy minima, EA the hopping activation
energy, and EV the vacancy formation en-
ergy. At infinite dilution the vacancy for-
mation energy is zero. The self-diffusion
activation energy ED is the energy needed

to ”activate” the diffusion (with e−
ED
kBT the

probability that the molecule has enough
energy). The pre-exponential factor or fre-
quency factor D∞ is a material property
of both the zeolite as well as the diffusing
molecule. It accounts for directional steric
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Figure 14: Fit to the Arrhenius expression for ERI- and CHA-type silica, (a) activation energies
in units kJ/mol, (b) logarithm of the frequency factors D0 in units m2/s, both as a function of chain
length. The simulation results are compared to the experimental results obtained by Gorring [2],
Cavalcante et al. [12], and Magalhães et al. [13]. Error bars on the simulation data are only shown
when larger than the symbol size.

effects that are difficult to predict.
Fig. 13 plots the logarithm of the diffu-

sion coefficient as a function of inverse tem-
perature for several chain lengths in the
ERI-type silica. Over the complete tem-
perature range (300-700 K) Arrhenius-type
behavior of the form D∞e−ED/kBT is found.
The slope of a fitted line in the figure cor-
responds to −ED and the value at infinite
temperature is D∞. The activation energy
is related to the height of the energy barrier
arising from the repulsive forces involved
in penetrating the relatively small windows
of the zeolite framework. The nature of the
surface and the precise shape of the pore
appear to be of secondary importance [40].
The precise form of the frequency factor D∞
varies with the shape of the free energy bar-
rier.

The activation energy for diffusion ED is
plotted in Fig. 14(a) for ERI- and CHA-type
silica. The simulation curve is qualitatively
the inverse of the general shape of the dif-
fusion curves, i.e. if a molecule has a high
mobility the activation energy is small and
visa versa. The experimental results for
ERI-type zeolites are more difficult to inter-
pret. The diffusion path of a C13 is still quite

tortuous and an activation energy of zero
is doubtful. Measuring diffusion of C13 or
higher accurately in ERI-type zeolites or in-
tergrowths between ERI- and OFF-type ze-
olites might prove to be beyond current ex-
perimental techniques. The order of magni-
tude of the C6-C12 range is however quite
well represented by our simulation data.
We find significantly higher activation en-
ergies for C3-C5.

In Fig. 14(b) the frequency factors for ERI-
and CHA-type silica are shown. Gorring
found a compensation effect where the D∞
increases as the activation energy ED in-
creases. The simulation results show only
structural effects and the curves are rel-
atively straightforward to interpret. The
molecules in the C2-C5 range have the high-
est orientational freedom, while for higher
chain lengths the alkane gets more and
more constrained. This effect continues up
to the C10 for CHA-type silica and C12-C13

for ERI-type silica. These molecules repre-
sent local maxima. Longer molecules have
to stretch through a window into two cages,
leading again to more orientational free-
dom. We note that the maximum in the fre-
quency factor corresponds to the minimum
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Figure 15: Fit to the Arrhenius expressions for LTA-type silica, (a) activation energies in units
kJ/mol, (b) logarithm of the frequency factors D0 in units m2/s, both as a function of chain length.
The results are compared to the experimental results obtained by Eic and Ruthven [39], and data
published in Ref. [40]. Error bars on the simulation data are only shown when larger than the
symbol size.

of the activation energy and the maximum
in the diffusion constant.

In Fig. 15(a) the activation energy ob-
tained for LTA-type silica from simulation
is plotted along with experimental results
for the Na- and Ca/Na-form of LTA-type
zeolites from Refs. [39,40]. For a given chain
length the activation energy for diffusion in
the Na-form of LTA-type zeolites is higher
than for the Ca/Na-form reflecting their
difference in the pore size. We were unable
to find data on the all-silica version of the
LTA-type zeolite, but despite this the qual-
itative agreement with the Ca/Na-form of
the LTA-type zeolite is already reasonable
and agreement with a cation-free LTA-type
sieve is expected to be quantitatively bet-
ter. Fig. 15(b) shows the frequency fac-
tors. Both data sets suggest that C4-C5 has
the most orientational freedom and lead to
the lowest attempt-frequency. Unlike ERI-
and CHA-type silica, LTA-type silica ex-
hibits a compensation-effect, i.e. the activa-
tion energy increases and the frequency fac-
tor concomitantly. The former increases be-
cause the higher mobility that comes with
an increase in temperature impedes diffu-
sion through a window, the latter because

the same mobility results in more attempts
to pass through the window. Apparently
both of these effects cancel out each other.

We note that the LTA-type cavities are
large enough to contain molecules up to C23.
They can bend, fold, or coil like a spring. In
addition to inter-cage entropic barriers (i.e.
windows) also intra-cage entropic energy
barriers can be present. For lower temper-
atures the temperature dependence of the
frequency factor becomes important. For
ethane molecules at low temperatures (150-
300 K) diffusion can even decrease with in-
creasing temperatures because heating the
system moves the molecule away from the
window, increasing the entropic barrier for
cage-to-cage motion [41].

D Free energy profiles

The Henry coefficient can be considered as
a spatial average of the free energy over
the complete zeolite space (see Eq. 10). In
simulations we are able to extract more de-
tailed information such as the free energy of
a molecule as a function of position. This is
not an easily obtainable quantity in experi-
ments. In addition to the potential energy,

Page 96 of 256



-6
-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

-6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6

F
re

e 
en

er
gy

 β
F

 [-
]

Reaction coordinate q [-]

C3 
C4
C5
C8
C2
C1

Figure 16: Free energy profiles for C1-C5, C8 in
ERI-type silica in dimensionless units as a func-
tion of the dimensionless reaction coordinate q
(lines from top to bottom at q = 0 in order of
the legend). The 8T-ring window corresponds
to q = 0, q ≈ |4| corresponds to a location deep
inside cage A or B, respectively.

the free energy F(q) also contains an en-
tropy contribution and is directly related to
the probability of the molecule to be found
at position q (see Eq. 16). We have plot-
ted the free energy profiles (spline fits) in di-
mensionless units for C1-C5, C8 in Fig. 16 at
600 K in erionite. The description as an acti-
vated process is well justified, as ∆F � kBT.

The free energy difference of ERI- (Fig. 17
top), CHA- (Fig. 17 middle), and LTA-type
silica (Fig. 17 bottom) can be analyzed in
terms of the value inside the cage and the
value at the barrier. The simulations show
that the dominating contribution to the dif-
fusion coefficient is the height of the free en-
ergy barrier associated with the window be-
tween the cages. This height is given by the
free energy difference between a molecule
positioned in the cage and a molecule on
top of the barrier. The depth of the free en-
ergy is directly related to the Henry coef-
ficients. For the molecules in the cage we
observe that as we increase the chain length
the minimum of the free energy decreases
until we reach an optimal chain length be-
yond which the n-alkanes no longer fit com-
fortably in one cage. For chain lengths
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Figure 17: The free energy maximum, min-
imum, and difference between maximum and
minium in dimensionless units for (top) ERI-
type silica, (middle) CHA-type silica, and (bot-
tom) LTA-type silica at 600 K.

longer than this optimal length the free en-
ergy increases rapidly until the molecule is
so big that additional atoms are added com-
fortably in the second cage and the mini-
mum free energy is decreasing again. For
the free energy of a molecule on top of the
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barrier we observe an increase from C1 to
C3, as more atoms are placed on top of
the barrier. For C3 all atoms feel the influ-
ence of the window. Any additional atom
will be placed in more favorable positions
outside the window and therefore the bar-
rier decreases for n-C4 and continues to de-
crease until the molecule is so large that it
feels the limitations of the cage. Beyond
this chain length the maximum of the free
energy increases rapidly. Combining these
effects gives the generic diffusion behav-
ior as a non-monotonic function of chain
length. First a decrease followed by a pos-
sible plateau, an increase, and finally a de-
crease again. Key parameters in this mech-
anism are the presence of a narrow window
combined with a cage structure. By opti-
mizing the effective cage size one can shift
the location of the second maximum to a de-
sired value.

VII The window effect re-
examined

The idea of adsorption on a periodic sub-
strate that forms periodic arrays that are
either commensurate or incommensurate
with the substrate originates from the 1938
Frenkel-Kontorowa (FK) model [7, 8, 42].
The adsorbed atoms at positions xn are
treated as a harmonic chain with equilib-
rium lattice spacing a. The substrate is a
one-dimensional periodic lattice with pe-
riod b. The interaction between the nth ad-
sorbed atom and the periodic substrate is
described by a potential energy V(xn). The
model contains a ”floating phase” in which
the equilibrium lattice spacing a of the ad-
sorbed lattice can be an arbitrary multiple
of the substrate periodicity b. The diffu-
sion and thermodynamic characteristics of
molecules whose shape is commensurate
with that of the zeolite pore is very differ-
ent from that of the incommensurate ones.
It has been demonstrated that molecular
sieves favor the formation of reaction inter-

mediates that have a shape commensurate
with their pore shape [43].

The similar models of Nitsche and Wei
[11] and Ruckenstein and Lee [9] use stiff
rods to model n-alkanes. Due to the simpli-
fications the model can not predict the loca-
tion of the maximum, nor can it describe the
intra-cage behavior correctly, i.e. the min-
ima. The entropy effect (there is variety of
conformations depending on the structure
of the adsorbate) has been ignored and only
a one-dimensional diffusion path is taken
into account. Despite these simplifications,
they corroborate the essence of the window
effect: a stochastic motion through a reg-
ular array of potential barriers. An ear-
lier proposed model by Derouane et al. [10]
analyzed Gorring’s results in terms of en-
ergy and surface curvature effects by ap-
plying a segmentational diffusion principle,
i.e. a translation occurs by successive seg-
mental displacements. All segments are
affected by different free energy environ-
ments. The model includes two distinct
trapping cases: a portion of the molecule ly-
ing in the cage, and the remaining portion
lying in the interconnecting window space
or the opposite filling order. For the sake
of simplicity the probability of the cases is
equally weighted. In contrast to the other
models the authors attribute the changes in
the diffusivity to a variation in the stick-
ing force. Due to the distinction between
a cage and window region this model cap-
tures the physics of the intra cage behavior
somewhat better than the rod models.

Tsekov and Smirniotis [44] extended the
concept of resonance diffusion by Rucken-
stein and Lee [9] to include the effect of
the zeolite structure and the alkane vibra-
tions. As the mechanics of crossing chan-
nels is hard to describe with a theoreti-
cal model, it is again restricted to channel-
type zeolites like those with LTL-type struc-
ture. They demonstrate that the existence
of a sequence of expansions and apertures
alone is not enough. The energy barrier
should be sufficiently high to observe the
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diffusion peaks. Talu et al. [45] found ex-
perimental evidence of a resonance diffu-
sion effect in silicalite. Their results ob-
tained by steady-state single-crystal mem-
brane technique agreed well with the MD
results of Runnenbaum and Maginn [46]. In
the latter report it has been suggested that
although resonance diffusion is a real ef-
fect in zeolite, it will only occur under spe-
cial conditions: low temperature, rigid sor-
bate, smooth channels, and low loadings.
The acceleration of the diffusion rate due
to resonance effects does not exceed a fac-
tor of two. Therefore, the authors attribute
the more dramatic acceleration reported by
Gorring to other effects.

It is important to note that in our ap-
proach all possible configurations (trans-
lations, rotations, and internal configura-
tional changes) and as a consequence all
possible diffusion paths through the zeo-
lite are represented with the proper weight.
As such the techniques can be straightfor-
wardly applied to other cage/window-type
zeolites. The heats of adsorption and the
Henry coefficients shed light on a possible
window-effect, before computing the more
computationally demanding diffusion coef-
ficients at interesting chain lengths.

We would like to comment on the po-
sitions and total amount of the cations
within the zeolite structure and of their
relevance for the obtained results. The
available experimental data on zeolites
with window-effects is contradictory and
very scattered. There exists systematic
data for n-alkanes upto C14 on potassium-
exchanged OFF/ERI intergrowths [2], upto
C12 on proton-exchanged CHA-type zeo-
lites [3], and for a few selected alkanes on
various types of ERI/OFF intergrowths by
Cavalcante et al. [12] and Magalhães et al.
[13] [13]. Lattice intergrowths and defects,
cations, and associated aluminum atoms
create strong disorder, increase the hopping
activation energy, inhibit the mobility of
sorbates, and slow down the diffusion pro-
cess. Factors such as the existence of several

different energetically favorable cation sites
complicate the diffusion process. In addi-
tion, our Henry coefficients indicate abnor-
mally low adsorption in ERI- and CHA-
type zeolites for chain lengths close to or
longer than the cage-size.

The positions of ions are of critical impor-
tance if they are located in the windows ob-
structing the diffusion. The difference be-
tween the Na-form of the LTA-type zeolite
and the Ca/Na-form is a striking example
[40]. The Ca/Na-form (zeolite 5A) has 4 cal-
cium and 4 sodium ions per cage. None of
the windows is blocked by an ion and the
free diameter of the windows is 5 Å. The
Na-form (zeolite 4A) contains 12 sodiums
per cage and 100% of the windows are oc-
cupied with an ion, reducing the effective
window size to 4 Å. Exchange with potas-
sium would reduce the window size to 3 Å
(zeolite 3A). The difference in diffusion is
large: the coefficients in 4A are 4 orders of
magnitude lower than that in 5A. The Ca-
form of CHA-type zeolite is another exam-
ple where the ions are located in the win-
dows [47]. However, the positions are de-
pendent on pretreatment of the zeolite sam-
ple (the dehydration steaming process).

Although the locations of protons can po-
tentially be determined by neutron diffrac-
tion in an empty zeolite, they are easily dis-
placed by diffusing adsorbates and consid-
ering their small size the impediment of dif-
fusion is expected to be small. In accor-
dance with this view our all-silica CHA-
type zeolite results agree well with the
H-CHA experimental results, although a
quantitative comparison is difficult due to
the unknown crystal size in the experiment.
We note that the original cracking data of
Chen was performed using H-ERI. The ac-
tual samples used by Gorring [2], Caval-
cante et al. [12], and Magalhães et al. were
rather different in composition of cations
and intergrowth ratio. However, in some
forms of the ERI-type zeolite [48] and the
Ca/Na-form of the LTA-type zeolite [40] the
ions are known to be located in the cages
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and not in the windows. Hence, they are
expected to have a somewhat better adsorp-
tion inside the cage (Henry coefficients) but
the maximum of the free energy at the win-
dows may be virtually unchanged. There-
for, the order of magnitude difference in dif-
fusion could possibly also be found in some
of the cation-loaded versions of ERI-type
zeolite.

To unambiguously detect the window ef-
fect in reality is by far no trivial task, both
in view of the requirements for the exper-
imental techniques and the quality of the
nanoporous materials. In view of the dif-
ficulties, it would be of high interest to
the simulation community to experimen-
tally validate the diffusion behavior of alka-
nes as a function of chain length in ERI-
, CHA-, and LTA-type silica or their alu-
minum phosphate analogues (viz. AlPO-17
[49], AlPO-34 and SAPO-42, respectively).
We note that recently an all-silica form of
the CHA-type zeolite has been synthesized
[50].

VIII Conclusions

We studied the effect of the zeolite struc-
ture on the diffusion of n-alkanes as a func-
tion of carbon number. The ERI-, CHA-,
and LTA-type frameworks consist of cages
separated by small windows, but differ in
the size and shape of the cages and in the
orientation of the windows with respect to
the cage. In contrast to channel zeolites like
those of the OFF-type, the cage/window-
type zeolites showed a cage effect for ad-
sorption and diffusion: a non-monotonic,
periodic dependence of the Henry coeffi-
cients, heats of adsorption, and diffusion
coefficients on the chain length. The simu-
lations corroborate the existence of the win-
dow effect in ERI- and CHA-type silica with
the positions of the minima and maxima
determined by size and orientational crys-
tal parameters. When a molecule is incom-
mensurate with the cage structure the diffu-

sion rate increases by orders of magnitude.
The corresponding chain length is the max-
imum length at which a molecule still fits in
a single cage: C13 for ERI-type silica, C11 for
CHA-type silica, and C23 for LTA-type sil-
ica. These crossover points are directly re-
lated to the local minima in the Henry co-
efficients, the heats of adsorption, and the
activation energies, and to the local max-
ima in the diffusion coefficients and the fre-
quency factors. In the controversy about
the experimental results we side with Gor-
ring, who was the first and only to report
experimental data indicating the ”window-
effect”. This opens the possibility of length
selective cracking, where the length distri-
bution is controlled by choosing structures
with the appropriate cage size.
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Traditionally, cracking mechanisms in the zeolite literature have
assumed full adsorption. Our simulations indicate abnormally
low adsorption in ERI-, AFX-, CHA-, RHO-, and KFI-type zeolites
for chain lengths close to or longer than the cage-size. Very long
molecules adsorb partially into a cage near the outer surface. After
scission the non-adsorbed part can end up in the product or re-adsorb
and undergo another scission. This mechanism is characteristic for
cage/window-type zeolites with small windows close to the diameter
of the adsorbate. The newly gained understanding of length-selective
hydrocracking affords prediction of selectivity as a function of cage-
size.

D. Dubbeldam, S. Calero, T. L. M. Maesen, and B. Smit 5
Understanding the Window Effect in

Zeolite Catalysis

The window-effect is one of the most con-
troversial and intriguing phenomena in the
zeolite literature. Chen et al. discovered
in 1968 that ERI-type zeolites yield a bi-
modal product distribution with maxima
at n-C3−4 and n-C10−12, but no products
in the C5−8 range (the window) [1]. Con-
ventional zeolite-catalyzed (hydro)cracking
yields a product distribution with only a
single maximum, which is consistent with
the currently accepted reaction mechanisms
[2, 3]. A comprehensive and fundamen-
tal understanding of the product selectiv-
ity associated with these catalytic processes
is of considerable practical significance, as
the results of Chen would open the pos-
sibility of length-selective hydrocracking [4].
Where the mandatory addition of volatile
ethanol to gasoline is imminent [5–7], the
more volatile components that are currently
part of gasoline will have to be removed so
as to maintain gasoline volatility. This re-
vives the interest in a process to selectively
hydrocrack the linear pentanes and hexanes
so as to reduce volatility and increase the
octane number. Such a process was com-
mercialized in the 1960’s, went by the name

selectoforming [8], and used ERI-type zeo-
lite cages. Improvements on such a pro-
cess would involve a better understanding
of the hydrocracking process of linear alka-
nes up to a certain chain length. The newly
gained understanding affords a prediction
of length-selective hydrocracking.

For a long time the window effect has
been related almost exclusively to the dif-
fusion rate of n-alkanes in ERI-type zeo-
lites. Gorring showed that the product dis-
tribution and the diffusion coefficient as
a function of n-alkane length correlate ex-
tremely well [9]. The low diffusion coef-
ficients for n-C7 to n-C9 suggest that these
molecules diffuse too slowly to leave the ze-
olite without cracking; the high diffusion
coefficients for n-C10 to n-C12 suggest that
these molecules diffuse rapidly enough to
escape. However, recent diffusion measure-
ments by Cavalcante et al. [10] and Mag-
alhães et al. [11] failed to reproduce the in-
crease in diffusion coefficient for the appro-
priate n-alkane lengths. This controversy
motivated us to simulate the window-
effect at the molecular level using advanced
molecular simulations [12–14]. In these
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Configurational-Bias Monte Carlo simula-
tions molecules are grown atom by atom
biasing the growth process towards ener-
getically favorable configurations avoiding
overlap with the zeolite. During the growth
we compute the Rosenbluth factor, which is
directly related to the excess chemical po-
tential, the free energy, and the Henry coef-
ficient [15].

Although our simulations of the diffu-
sion [16] confirm the experimental obser-
vations of Gorring, the results nevertheless
point to an alternative mechanism based
on anomalously low adsorption of long
molecules. At sufficiently low pressures
the amount of adsorbed molecules is di-
rectly proportional to the pressure. The
proportionality constant is known as the
Henry coefficient, and shown in Fig. 1 as
a function of chain length for various ze-
olites. OFF-type sieves exhibit the usual
monotonic increase of the Henry coefficient
with n-alkane length. Longer n-alkanes
have more attractive adsorbent-adsorbate
interactions, and -therefore- a lower ad-
sorption enthalpy. Longer n-alkanes also
have fewer conformations in the adsorbed
phase as compared to the gas phase, and -
therefore- a lower adsorption entropy. The
decrease in enthalpy offsets the decrease
in entropy, so that the Gibbs free energy
of adsorption decreases (and the Henry
coefficient increases) with lengthening of
the n-alkane. We found that pores with
constrictions (windows) that approach the
diameter of the adsorbate exhibit a dra-
matically different behavior. Instead of
attractive adsorbate-adsorbent interactions,
these windows exert repulsive adsorbate-
adsorbent interactions that increase the ad-
sorption enthalpy of any n-alkane partially
adsorbed inside such a window. Accord-
ingly, the usual compensation between ad-
sorption enthalpy and adsorption entropy
ceases as soon as n-alkanes become too long
to fit comfortably inside the wider part of
these pores (cages). For these longer n-
alkanes the loss of entropy with increasing
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Figure 1: Henry coefficients at 600K for vari-
ous types of zeolites as a function of alkane chain
length. At sufficiently low pressures the amount
of adsorbed molecules is linearly related to the
pressure with the Henry coefficient as the pro-
portionality constant.

length dominates their adsorption proper-
ties. For example, n-C13 in an ERI-type cage
predominantly adsorbs in a limited num-
ber of curled conformations, whereas n-C14

has to stretch through a window into two
cages. For even longer n-alkanes this pat-
tern is repeated, now involving a second
window. The Henry coefficients of molec-
ular sieves with <0.45 nm windows exhibit
periodic behavior (Fig. 1). The local minima
correspond to alkanes that barely fit into n
cages, so that alkanes one methylene group
longer require n + 1 cages. Our simula-
tions indicate that all molecular sieves with
a window smaller than the 0.45 nm across
EUO-type window exhibit such a remark-
able decrease of the Henry coefficient with
n-alkane length. To the best of our knowl-
edge there are no experimental data avail-
able for comparison. In fact, anomalously
low adsorption has never been cited when
interpreting the catalytic or diffusion data
on the large number of zeolites that should
exhibit this window or cage effect in ad-
sorption. In what follows we will amend
this situation for ERI- and AFX-type zeo-
lites.

Our simulations for ERI-type zeolite in-
dicate that exactly for n-C9 and longer n-
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Figure 2: The crystalline structures OFF-, ERI-, RHO-, CHA-, KFI-, and AFX-type zeolites.
The size of the CHA-, ERI-, and AFX-type cages limit the n-alkanes to 11, 13, and 16 carbon
atoms, respectively. The large cages of RHO- and KFI-type zeolites accommodate molecules up to
n-C24 and n-C26, respectively, in snake-in-a-basket conformations. The red balls represent CH3- or
CH2-groups. Arrows at the origin are 0.3 nm in length.
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alkanes the amount adsorbed decreases.
This nicely corresponds with the observed
decline in activity [17], and if we assume
that the hydroconversion in ERI is similar to
that of zeolites with windows nearly twice
as wide (e.g. FAU-type zeolites), this de-
cline may be seen as indirect evidence for
our Henry coefficients. The selectivity as
observed by Chen [1] concerns n-alkanes
as long as n-C36. It is important to note
that the window effect has become associ-
ated only with a high n-C10−12 yield. How-
ever, a closer inspection of the raw data
of Chen et al. published for n-C36 reveals
additional yield maxima at n-C24−26 and
at n-C15−17 in the complete chromatogram
of the n-C36 cracking products. From the
calculated variation of Henry coefficients
with chain length it is immediately appar-
ent that the complete n-C36 adsorption can
be excluded, and yet ERI-type zeolites crack
n-C36 shape selectively. The preferential
yield of n-C24−26 and n-C15−17 is indicative
of consecutive scissions of C10−12 fragments
from n-C36. The maximum at n-C10−12 indi-
cates that the most rapidly diffusing crack-
ing product can escape complete consump-
tion into more refractory alkanes with six or
fewer carbon atoms. This selective crack-
ing process leaves minima at n-C18−23 and
at n-C13−14. A reasonable explanation for
persistence of shape-selective cracking of
very long alkanes by ERI-type zeolites is
that these long molecules adsorb partially
in the surface pockets created by the ERI-
type cages at the outer crystal surface. Full
adsorption by more than 12 carbon atoms
is unlikely. The adsorbed n-C10−12 part is
chopped off, and the non-adsorbed part
is released. Released parts end up in the
product slate or undergo further scission re-
actions. This process becomes less selec-
tive with an increasing number of cracking
steps due to concomitant isomerization re-
actions. AFX-type zeolites exhibit a hydroc-
racking pattern similar to ERI-type zeolites.
This is not surprising, for these zeolites only
differ in cage size. Similar to ERI-type ze-

olites [4], AFX-type zeolites preferentially
hydrocrack shorter rather than longer n-
alkanes [18] when given a choice. Thus,
they consume exclusively n-C6 when pro-
cessing a mixture of n-C6 and n-C16, even
though they hydroconvert more than 50%
of either n-C6 or n-C16 when processing
them separately. Inspection of our Henry
coefficients shows that n-C6 adsorbs fully,
whereas n-C16 can only adsorb partially.
Since partial adsorption is thermodynami-
cally highly unfavorable [19], fully adsorb-
ing molecules can effectively block adsorp-
tion and hydroconversion for partially ad-
sorbing molecules.

Naturally, windows approaching the di-
ameter of the adsorbate are a barrier to both
adsorption and diffusion, and these two
factors cannot be seen in isolation. Diffu-
sion rates determine the impact of the very
low adsorption on catalysis. Its impact will
be higher when the diffusion is slower, be-
cause the path through consecutive win-
dows is highly tortuous (as in ERI-, AFX-,
and CHA-type zeolites). Its impact will be
lower when the diffusion is faster because
the path through consecutive windows is
straight (as in RHO- and KFI- type zeolites)
(Fig. 2).

This newly gained understanding of
length-selective hydrocracking affords a
prediction of selectivity as a function of
cage size. We would predict that the larger
AFX-type cage shifts the cracking selectiv-
ity by 2 carbon atoms towards longer n-
alkanes as compared to the smaller ERI-
type cage, and that the even smaller CHA-
type cages shift the cracking selectivity fur-
ther towards n-C5. We further predict that
RHO- and KFI-type zeolites afford length-
selective hydrocracking of n-alkanes longer
than those removed by AFX-type zeolites.

In summary, we refute some of the tradi-
tional cracking mechanisms found in zeo-
lite literature based on full adsorption. The
simulation results indicate abnormally low
adsorption in ERI-, AFX-, CHA-, RHO-, and
KFI-type zeolites for chain lengths close to
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or longer than the cage size. Hence, very
long molecules adsorb partially into a cage
near the outer surface. After scission the
non-adsorbed part can end up in the prod-
uct or re-adsorb and undergo another scis-
sion. This mechanism is characteristic for
cage/window-type zeolites with small win-
dows close to the diameter of the adsorbate.
The newly gained understanding of length-
selective hydrocracking affords prediction
of selectivity as a function of cage size.
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We present a method to determine potential parameters in molecular
simulations of confined systems through fitting on experimental
isotherms with inflection points. The procedure uniquely determines
the adsorbent-adsorbate interaction parameters, and is very sensitive
to the size-parameter. The inflection points in the isotherms are often
related to a subtle interplay between different adsorption sites. If a
force field can predict this interplay, it also reproduces the remaining
part of the isotherm correctly, i.e. the Henry coefficients and saturation
loadings.

D. Dubbeldam, S. Calero, T. J. H. Vlugt, R. Krishna,
T. L. M. Maesen, E. Beerdsen, and B. Smit 6

Force Field Parameterization through
Fitting on Inflection Points in Isotherms

The effect of confinement on adsorption
and diffusion is still poorly understood de-
spite its importance for practical applica-
tions. The performance of molecular sieves
in separation and catalytic processes de-
pends critically on the match between sieve
topology and the shape and size of the ad-
sorbate [1]. It is therefore of considerable in-
dustrial importance to explore the adsorp-
tion and diffusion of linear and branched
alkanes in different topologies using realis-
tic simulations at the microscopic level [2].
Different parameter sets yield values of dif-
fusivities that differ not only quantitatively
but also show a different qualitative depen-
dence on the molecular loading [3]. The
critical unresolved question is: which of
these parameter sets is the most physically
realistic one? Here, we hope to remedy this
situation.

Potential parameter sets can be checked
only via comparison with experiment. For
diffusion the comparison is complicated
by large discrepancies between microscopic
and macroscopic experimental measure-
ment methods, and even within the same
measurement technique there are many dis-

Figure 1: (color online). Silicalite-1 has linear
channels intersected with zig-zag channels four
times per periodic unit cell.

agreements between various studies. How-
ever, adsorption results seem to be well es-
tablished and provide a more solid basis for
a detailed comparison between experiment
and simulation. Moreover, a large amount
of data exists on adsorption of hydrocar-
bons in siliceous zeolites.
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Figure 2: (color online). Isotherms of 2-
methylpropane at 308 K in silicalite-1 compared
to various computational models.

Silicalite-1 (Fig. 1) consists of a three-
dimensional pore system with straight par-
allel channels, intersected by zig-zag chan-
nels [4]. The channels of approximately 6
Å in diameter lead to shape selectivity, es-
pecially for the isomers of hexane which
have dimensions close to the silicalite-1
pores. The linear channels intersect with
the zig-zag channels four times per unit
cell. Interestingly, for n-heptane, and for the
branched alkanes in silicalite-1 a kink in the
isotherm is observed [5]. This inflection is
directly related to the number of intersec-
tions in the structure and occurs at exactly 4
molecules per unit cell. As these inflections
are caused by a subtle interplay between
the size and configuration of the molecule
and two different adsorption sites, it be-
comes clear that the adsorbent-adsorbate
potential size-parameter σ is the most sen-
sitive parameter in the force field.

In general, adsorption in any periodic
structure will have steps or kinks. The rea-
son is that steps and kinks signal transitions
between different types of packing and sim-
ilar to adsorption on substrates, at low load-
ings the packing of molecules will often
be imposed by the sieve while at higher
loading such packing is only by exception
commensurate with the packing of the ad-
sorbed molecules. This change in packing
is reflected in a kink or plateau in an ad-

sorption isotherm. To illustrate our method
we exploit the close physical connection be-
tween potential parameters and inflection
points in isotherms to optimize a forcefield
for adsorption and diffusion of alkanes in
siliceous zeolites.

We use the united-atom model [6] and
consider the CHx groups as single interac-
tion centers with their own effective poten-
tials. The beads in the chain are connected
by harmonic bonding potentials. A har-
monic cosine bending potential models the
bond bending between three neighboring
beads, a Ryckaert-Bellemans potential con-
trols the torsional angle. The beads in a
chain separated by more than three bonds
interact with each other through a Lennard-
Jones potential. The Lennard-Jones poten-
tials are shifted and cut at 12 Å. The interac-
tions between the rigid framework and the
guest molecules are assumed to be domi-
nated by the oxygen atoms [7]. Some of the
alkane-alkane interactions are taken from
Ref. [8].

In adsorption studies, the natural ensem-
ble to use is the grand-canonical ensem-
ble (or µ, V, T ensemble). The adsorbed
phase is simulated by specifying the tem-
perature T, the volume V, and the chemical
potential µ. At these conditions the num-
ber of adsorbed molecules is computed. We
convert the imposed chemical potential to
the corresponding pressure using the Peng-
Robinson equation of state. To successfully
insert and remove molecules we use the
configurational-bias Monte Carlo (CBMC)
technique [9], in which chains are grown
bead by bead biasing the growth process
towards energetically favorable configura-
tions. This bias is exactly removed by ad-
justing the acceptance rules. Further details
are given in Refs. [5].

In Fig. 2 we show the influence of the
size parameter σO-CHx on the inflection of
2-methylpropane (CH3-CH[-CH3]-CH3) in
silicalite-1. The experimental data are taken
from Ref. [10] and simulation data from
Refs. [5, 11–14]. The models of Smit et
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al. and Vlugt et al. exaggerated the inflec-
tions because their size-parameters were
too large. The models of Pascual et al., June
et al., and the all-atom CVFF force field did
not show a clear inflection at all because
their size-parameters were too small. Al-
though the size-parameters differ by less
than 10%, the shape of the isotherms is dra-
matically different. The model of June et al.
uses a small value of σ = 3.364 Å, the AUA-
model uses σO-CH3 = 3.30 Å, σO-CH2 = 3.23
Å, and σO-CH = 3.18 Å. The models of Vlugt
et al. and Smit et al. use a fixed σ; σO-CH3 =
σO-CH2 = σO-CH = 3.60 Å for the Vlugt-
model, and σO-CH3 = σO-CH2 = σO-CH = 3.64
Å for the Smit-model. The model proposed
in this work uses σO-CH3 = 3.48 Å, σO-CH2 =
3.58 Å, and σO-CH = 3.92 Å. It yields exact
overlap with experimental data and the in-
flection is reproduced faithfully. We stress
that only a single strength/size parameter
pair is able to describe the inflection and the
entire isotherm properly. This is in contrast
with the common belief that for each value
of σ there is a corresponding ε that can de-
scribe the isotherm correctly [8, 15].

In practice we proceed as follows. A
reasonable starting size parameter is cho-
sen. For this parameter we iteratively
search for the corresponding strength pa-
rameter ε that matches the experimental
data at a pressure significantly below the
inflection. The entire isotherm is then fol-
lowed for increasing pressure until a de-
viation from the experimental data is ob-
served. The ”updated” size parameter is
then found by choosing a higher value for
a deviation to the left of the experimental
data, and by choosing a lower value for
the size parameter for a deviation to the
right of the experimental data. This scheme
proceeds iteratively until the entire exper-
imental isotherm is accounted for. The
adsorbent-adsorbate parameters obtained
from fitting to inflections are listed in Table
1 and the errors in the size- and strength-
parameters are limited to no more than 0.01
Å and 5 K, respectively.

O CH4 CH3 CH2 CH C
CH4 115.0 158.50 130.84 94.21 51.91 11.26

3.47 3.72 3.74 3.84 4.17 4.87
CH3 93.0 130.84 108.00 77.77 42.85 9.30

3.48 3.74 3.76 3.86 4.19 4.90
CH2 60.5 94.21 77.77 56.00 30.86 6.69

3.58 3.84 3.86 3.96 4.30 5.03
CH 40.0 51.91 42.85 30.85 17.00 3.69

3.92 4.17 4.19 4.30 4.67 5.46
C 10.0 11.26 9.30 6.69 3.69 0.80

4.56 4.87 4.90 5.03 5.46 6.38

Table 1: Force field guest-host and guest-
guest interactions of hydrocarbons in cation-
free nanoporous materials. Lennard-Jones pa-
rameters, ε/kB [K] in top-left corner, σ [Å] in
bottom-right corner of each field. Some of the
alkane-alkane interactions are taken from Ref.
[8] and optimized to reproduce vapor-liquid co-
existence curves of the phase diagrams. The pa-
rameters may be combined with any reasonable
internal interaction model.

Ethane, n-heptane, and 2-methylpropane
exhibit isotherms of the Brunauer type-VI
in silicalite-1. Experimental data are taken
from Sun et al. [10, 16], Choudhary et al.
[17], and Zhu et al. [18, 19]. Ethane (CH3-
CH3) shows a small inflection point in the
adsorption isotherm at high loading [20].
The εO-CH3 and σO-CH3 are uniquely obtain-
able from the ethane isotherm (Fig. 3 top).
When the channel interiors are occupied the
probability distribution shows a remark-
able order: a repeating pattern of ethane
molecules ”locked” in the zig-zag chan-
nels between two intersections. The εO-CH2

and σO-CH2 are obtained from n-heptane.
The inflection behavior of n-heptane (CH3-
CH2-CH2-CH2-CH2-CH2-CH3) is well es-
tablished [9, 16]. Smit and Maesen ex-
plained this effect in terms of commensu-
rate freezing: n-heptane has a size commen-
surate with the size of the zig-zag chan-
nel. At high pressures the molecules shift
from a random distribution to a distribu-
tion where the molecules are localized ex-
clusively in the channels and not at the
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Figure 3: (color online). Fitting to the
isotherms of ethane (top), and 2-methylpropane
(bottom) in silicalite-1 at various temperatures.

intersections. Various branched molecules
show inflections for another reason [5].
2-methylpropane preferentially adsorbs at
the intersections. At a loading of four
molecules per unit cell the intersections
are fully occupied and additional molecules
have to be pushed into the channels requir-
ing a significantly higher driving force [21].
The εO-CH and σO-CH are uniquely obtainable
from the isotherm of 2-methylpropane (Fig.
3 bottom).

For 3-methylpentane (CH3-CH2-CH[-
CH3]-CH2-CH3) in silicalite-1 (Fig. 4) the
prediction of our isotherms obtained from
simulation is in excellent agreement with
Zhu et al. [22] and Jolimaitre et al. [23].
Thus, the agreement between simulated
and experimental data on the adsorption
of molecules not part of the calibration set
is remarkably good. The accuracy of the
model and the successful extension to other
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Figure 4: (color online). Prediction of the
isotherm of 3-methylpentane in silicalite-1 at
various temperatures.

sorbates, mixtures, and topologies will be
published elsewhere.

In Table 2 we compare our simulation
results on low-coverage adsorption prop-
erties with the experimental results on
silicalite-1 from Denayer et al. [24]. It is
noteworthy that also Denayer’s data set
was not part of the set used as a basis for
our force field. The quantitative agreement
and consistency on low-coverage proper-
ties of simulated and experimental data is
therefore truly remarkable. The value of
σO-CHx also has an effect on the maximum
loading and packing efficiency. De Meyer
et al. [25] performed experiments of long
chain n-alkanes in silicalite. Experiments
show that the maximum packing is ap-
proximately 53.2 carbon atoms per unit cell
for n-C14, while the current model yields
52.5 carbon atoms per unit cell in excellent
agreement with experiment.

Although the fitting procedure is applied
to hydrocarbons, it is by no means re-
stricted to alkanes. In the literature many
isotherms with inflections can be found and
these molecules are easily included. Exam-
ples include adsorbates in clays [26], aro-
matic molecules in silicalite, gasses, alka-
nes and cyclo-alkane isomers in AFI, ad-
sorbates in silica gels, water and methonal
in FER, and benzene, acetonitrile, water in
mesoporous materials like MCM-41 silica.
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CN KH 573K [mol/kg/Pa] K∞ [mol/kg/Pa] −∆H [kJ/mol]
Sim. Exp. Sim. Exp. Sim. Exp.

5 3.04× 10−6 2.99× 10−6 2.33× 10−11 2.64× 10−11 56.13 55.7
6 6.10× 10−6 5.93× 10−6 6.07× 10−12 6.07× 10−12 65.87 66.0
7 1.23× 10−5 1.22× 10−5 1.53× 10−12 1.29× 10−12 75.77 76.7
8 2.43× 10−5 2.49× 10−5 3.67× 10−13 3.25× 10−13 85.82 86.6
9 4.61× 10−5 4.73× 10−5 8.59× 10−14 8.41× 10−14 95.81 96.1

relation Sim. Exp.
−∆H = αCN + β α = 9.93 α = 10.1
−∆S = γCN + δ γ = 11.65 γ = 11.99

− ln (K∞) = −A∆H + B A = 0.141, B = 16.54 A = 0.143, B = 16.4

Table 2: Comparison of our simulations results of low-coverage properties in silicalite-1 with the
experimental results of Denayer et al. [24]. Both the Denayer and the simulation Henry coefficients
KH of the linear alkanes have been fitted to KH = K∞e

−∆H
RT in the temperature range T=473-673

K. Here, K∞ denotes the pre-exponential Henry coefficient, ∆H the enthalpy of adsorption, and
R = 8.31451 J/mol/K the gas constant. The entropy ∆S per carbon number is related to the slope
of ln(K∞) plotted as a function of Carbon Number (CN) [24].

For systems that lack inflection data, the
strategy would be to use an initial set of pa-
rameters to identify for which type of sieve
an inflection can be expected. Experiments
can then focus at accurately determining
the location of such an inflection rather then
determining ”at random” entire isotherms
for many different systems.

The fitting to well-established inflection
points in the isotherms has many advan-
tages and overcomes problems that have so
far impeded the development of more ac-
curate force fields. We obtain a unique set
of parameters that all directly relate to a
well-defined physical property. Therefore,
the parameters are much better transferable
to other systems than parameters from pre-
vious attempts. By explicitly fitting to en-
tire adsorption isotherms we guarantee the
proper reproduction of properties such as
Henry coefficients, heats of adsorption, ad-
sorption entropies, and saturation loadings.
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A novel united atom force field affords accurate and quantitative
reproduction of the adsorption properties of linear and branched
alkanes in nanoporous framework structures. The force field was
generated by adjusting the parameters so as to faithfully reproduce
the experimentally determined isotherms (particularly the inflection
points) on MFI-type zeolite over a wide range of pressures and
temperatures. It reproduces extremely well the Henry coefficients,
heats of adsorption, pre-exponential factors, entropies of adsorption,
and maximum loading. It is shown that the extension of the force
field from MFI to other nanoporous framework topologies is suc-
cessful, that it affords the prediction of topology-specific adsorption
properties, and that it can be an effective tool to resolve the many
discrepancies among experimental data sets.

D. Dubbeldam, S. Calero, T. J. H. Vlugt,
R. Krishna, T. L. M. Maesen, and B. Smit 7

United Atom Force Field for Alkanes
in Nanoporous Materials

I Introduction

Molecular sieves are of importance for
many refinery and petrochemical processes
such as the separation of linear and
branched alkanes [1]. The pore sizes of
these nanoporous materials are of the same
order of magnitude as those of the adsorb-
ing molecules so that adsorption can occur
selectively. The performance of molecular
sieves in separation and catalytic processes
depends critically on the match between
sieve topology and the shape and size of
the adsorbate [2]. It is therefore of consid-
erable industrial importance to explore the
adsorption of linear and branched alkanes
in different topologies using realistic simu-
lations at the microscopic level [3].

Many molecular simulation studies have
aimed at providing accurate data at a mi-
croscopic level under catalytic process con-
ditions [4]. At these conditions adsorption
properties are not readily amenable to ex-

perimental evaluation, but they are still ac-
cessible to molecular simulations. How-
ever, the simulation results are not beyond
dispute, for there is no consensus on which
force field is best suited to study e. g. the
adsorption of hydrocarbons in nanoporous
materials. Some groups claim that an all-
atom representation is required [5], while
others assume that a united atom approach
should suffice [6, 7]. It is also argued
that three-body interactions are required for
these systems [8]. Within these approaches
different parameter sets have been pub-
lished. Despite these differences most stud-
ies claim a good agreement with experi-
mental data, so that it is not trivial to select
the best force field to address future practi-
cal catalytic or separation problems.

From a molecular simulation point of
view the development of a reliable force
field for as wide a variety of systems as pos-
sible is of preeminent importance. Notwith-
standing the plethora of published experi-
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mental data, these experimental results in-
volve different zeolite samples or different
experiments so that it is difficult to un-
ambiguously compare one experiment with
the next. When different experimental data
are used as a calibration point to develop
a molecular simulation model the result is
a different set of parameters or potentials.
In this work we develop a unique set of pa-
rameters. Although we use this approach to
develop a significantly more accurate force
field for hydrocarbons in nanoporous mate-
rials than previous attempts, a similar opti-
mization strategy can be used for other sys-
tems.

The novel parameter-optimization starts
by obtaining a reduced set of reliable exper-
imental data sets, preferably of several in-
dependent research groups, to calibrate the
simulations results. Next, we fit, starting
with the smallest number of free parame-
ters, and increase the number of parame-
ters incrementally. The most important part
is to analyze the physical connection be-
tween a parameter and the various adsorp-
tion properties. For example, we found that
fitting to inflections in isotherms uniquely
determines the adsorbate-adsorbent inter-
action parameters, and is very sensitive to
the size-parameters. Inflection points in the
isotherm are often related to a subtle inter-
play between different adsorption sites. It
turns out that if our force field can predict
this interplay, it also reproduces the remain-
ing part of the isotherm correctly. Once
a reasonable set of parameters had been
obtained, we reexamined the experimental
data set and included those data that were
consistent with the original data set. This
extended data set was subsequently used
to further refine the parameters. This pro-
cedure was repeated until all experimental
data were accounted for. The resulting force
field not only yields a superior description
of the experimental data that formed the ba-
sis for the fitting procedure, but also yields
an excellent description of reference sys-
tems which were not included in the cali-

bration set.
The remainder of this paper is organized

as follows. In section II we explain the
new fitting procedure. The choice of the
model is discussed, followed by a screen-
ing of the experimental data used in the fit-
ting procedure. The parameter optimiza-
tion strategy is explained and we present
the final parameter set. This section is con-
cluded with a detailed comparison of this
work with various other models proposed
in literature. We show in section III that
this procedure leads to an excellent descrip-
tion of adsorption properties not included
in the initial optimization procedure: other
sorbates, mixtures, low-coverage proper-
ties (Henry coefficients, enthalpies and en-
tropies of adsorption), and other topolo-
gies. As an application we have scrutinized
the available experimental data indicating
common sources for error. We end with
some concluding remarks on the applicabil-
ity of the model.

II Model

A Choice of models and methods

The first step in an optimization strategy is
the selection of the type of force field. In
the literature one can find claims that very
different force fields yield an equally good
description of the adsorption isotherms.
However, the following practical consider-
ations limit the choice. The adsorption of
hydrocarbons is dominated by dispersive
forces. These interactions are notoriously
difficult to describe using quantum chem-
ical approaches. The most successful ap-
proach is a hybrid technique where, in ad-
dition to the ab-initio quantum chemical
calculation, the dispersive interactions are
taken into account using ad-hoc empirical
potentials [9].

The next level of sophistication is to use
an all-atom model. These models are com-
monly used in the simulations of proteins
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framework density [kg/m3] cells unit cell size [nm]
x y z x y z

MFI 1796.358 2 2 4 4.0044 3.9798 5.3532
TON 1968.733 3 3 7 4.1577 5.2260 3.5266
AFI 1729.848 2 3 5 4.7548 4.1178 4.2420
DDR 1759.963 2 3 1 4.8012 4.1580 4.0892
MWW 1673.460 1 2 1 2.4447 2.8228 2.4882

Table 1: Unit cells used in the simulation. For convenience the crystallographic cells are converted
to orthorhombic cells.

and other large systems. First attempts
to simply use such a force field (Consis-
tent Valence Force Field) for the adsorp-
tion of hydrocarbons in MFI gave a reason-
able prediction of the adsorption isotherms.
However, the much simpler united atom
models yielded a significantly more accu-
rate description of the adsorption isotherms
[5]. Of course, this observation is not sur-
prising since the united atom models have
been specifically optimized for this type of
adsorption studies, whereas the all-atom
model is a universal force field aimed at
a myriad of different applications. To ob-
tain the same degree of accuracy for the all-
atom model as for the united atom model
would require a dedicated optimization of
the all-atom model parameters. Such an
optimization will be cumbersome, for it is
our impression that the physical informa-
tion required for such an optimization is
not experimentally available in sufficient
detail. Thus, it is not straightforward to
obtain a physically realistic value for e. g.
the ratio of the size parameters for C and
H atoms. Optimization of the all-atom
model will be more difficult commensu-
rate with its higher level of detail and so-
phistication, even if the pertinent informa-
tion were available. It requires fine tun-
ing a larger number of parameters and -
accordingly- a significantly larger exper-
imental data set than is needed for the
united atom model. In our opinion, the cur-
rently available experimental data suffice to
optimize the united atom model, but not
the all-atom model.

The force field proposed here is primar-
ily designed to reproduce thermodynamic
properties of guest molecules in a host sys-
tem at minimal computational cost. The in-
ternal structure of the guests and the guest-
guest interactions are of less importance be-
cause the properties are dominated by the
strong interaction with the force field ex-
erted by the host. Adsorption in cation-
free structures takes place at sites with lit-
tle or no electric field. For these reasons
the united atom model [10] seems the most
straightforward choice. We consider the
CHx groups as single, chargeless interac-
tion centers with their own effective poten-
tials. The beads in the chain are connected
by harmonic bonding potentials. A har-
monic cosine bending potential models the
bond bending between three neighboring
beads, a Ryckaert-Bellemans potential con-
trols the torsional angle. The beads in a
chain separated by more than three bonds
interact with each other through a Lennard-
Jones potential. The Lennard-Jones poten-
tials are shifted and cut at 12 Å. Analyti-
cal tail-corrections do not apply in zeolites
[5]. A truncated and shifted potential is
equally suitable to Monte Carlo and Molec-
ular Dynamics. Flexibility of the frame-
work is not an issue for adsorption of lin-
ear and branched alkanes [11]. The interac-
tions between the rigid framework and the
guest molecules are assumed to be domi-
nated by the oxygen atoms [12]. We have
used the crystallographic structures of van
Koningsveld et al. [13], B. Marler [14], S.
Qiu et al. [15], H. Gies [16], and M. A. Cam-
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Figure 1: Isotherm of n-hexane in MWW at
various temperatures. The experimental data
are taken from Du et al. [49].

blor et al. [17]. The used unit cells and their
sizes are listed in Table 1.

The conventional simulation techniques
to compute adsorption isotherms are
prohibitively expensive for long alkanes.
The Configurational Bias Monte Carlo
(CBMC) technique simulates the adsorp-
tion isotherms at affordable cost [18]. In
a CBMC simulation chains are grown
bead by bead biasing the growth process
towards energetically favorable config-
urations, and avoiding overlap with the
zeolite. During the growth the Rosenbluth
factor is calculated. The average Rosen-
bluth factor is directly related to the excess
chemical potential, the free energy, and the
Henry coefficient KH [19, 20]. The CBMC
algorithm greatly improves the conforma-
tional sampling of molecules and increases
the efficiency of chain insertions by many
orders of magnitude. More details on the
simulations can be found in Refs. [7, 19, 20]
and in the Appendix.

B Selection of experimental
datasets

The parameters in current force fields for
adsorption in porous media are usually
tuned to reproduce heats of adsorption and
Henry coefficients. However, it is difficult
to identify unambiguously correct physical
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Figure 2: Isotherm of methane at 77 K in
an aluminophosphate AlPO4-5 (AFI-topology).
The experimental data are taken from Martin et
al. [21], the M3, M4, and M5 simulation data
from Ref. [8], and the simulation data of Vlugt
are from Ref. [65].

values for these parameters. Figure 1 il-
lustrates the problem. It shows the exper-
imentally determined n-hexane adsorption
by a MWW-type zeolite along with our pre-
diction from simulation. The loading is di-
rectly proportional to the pressure only at
the extremely low pressures in the Henry
regime. When plotted on log-log scale it be-
comes apparent that most available exper-
imental isotherms are not inside but out-
side the Henry regime. Experimentally, it
is quite difficult to obtain reliable measure-
ments at very low pressures. Usual exper-
imental procedures to obtain Henry coef-
ficients involve fitting the measured data
with an equation for an isotherm, followed
by extrapolation to zero pressure and load-
ing. In the absence of actual low pressure
data, this introduces significant errors. The
margin for error increases further, when the
heats of adsorption are determined from
the temperature dependence of the Henry
coefficients. Our results strongly indicate
that in many instances extrapolation to zero
loading was not justified, because of a lack
of low pressure data, a lack of high pressure
data, or because there were altogether too
few experimental data points.

A better approach would be to fit on en-
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model O-CH3 O-CH2 O-CH
σ [Å] ε/kB [K] σ [Å] ε/kB [K] σ [Å] ε/kB [K]

AUA 3.30 106 3.23 89.84 3.18 69.05
June et al. 3.364 83.8 3.364 83.8 - -
This work 3.48 93 3.58 60.5 3.92 40
Vlugt et al. 3.60 80 3.60 58 3.60 58
Smit et al. 3.64 87.5 3.64 54.4 3.64 51.3

Table 2: Adsorbent-adsorbate interaction size parameters σ and strength parameters ε used in
various united atom models.

tire isotherms. However, several problems
arise. At very high pressures (to determine
the saturation loading) a commonly occur-
ring experimental difficulty is that adsorp-
tion is not restricted to the pores defined
by the framework topology under investi-
gation, but also occurs at the exterior crys-
tal surface. Since the texture of the crys-
tals and crystal agglomerates varies widely,
the maximum loading reported in literature
tends to show a wide scatter. An example
is methane in tubular AFI-like structures.
Figure 2 shows the isotherm of methane
in an AFI-type aluminophosphate at 77 K.
AFI-type structures consist of straight, non-
intersecting channels that are 0.73 nm ×
0.73 nm in diameter. The experimental re-
sults of Martin et al. [21] illustrate a prob-
lem frequently encountered when trying to
link experiments on the AFI-type pores to
simulation. Simulation uses perfect crys-
tals, while the pores in the actual samples
used by Martin are (partially) blocked. Due
to the one-dimensional character, a very
small structural imperfection can block off
a large part of the zeolite. In fact, Martin
et al. studied several samples of different
origin and found significantly different ad-
sorption capacities. The authors estimate
the ideal sorption capacity at 6 molecules
per unit cell (4.16 mol/kg), which matches
our maximum loading from simulation. At
1000 Pa, condensation on the external sur-
face intrudes the experimental measure-
ments, whereas simulation uses fugacity
and is not hampered by this transition from
gas to liquid phase adsorption.

C Parameter Optimization Strat-
egy

Instead of calibrating a force field with ex-
trapolated experimental data, we propose
to calibrate it by by explicitly fitting the en-
tire isotherm over a wide range of pressures
and temperatures. If this procedure were
followed for individual molecules it would
not necessarily yield a consistent force field,
for many different sets of model parame-
ters are able to properly reproduce one and
the same isotherm. A necessary and suffi-
cient procedure is to utilize isotherms that
exhibit inflection points, and use these in-
flection points as calibration points for the
parameter optimization.

It is instructive to discuss the role of the
size-parameter σO-CHx . In Figure 3 we show
the influence of the σ parameters on the
inflection of 2-methylpropane in MFI. The
O-CH parameters remain fixed at σ = 3.92
Å and ε/kB = 40 K, while εO-CH3 is ex-
amined over a range of reasonable values
for two values of σO-CH3 : one significantly
too small and one significantly too large.
A crucial observation is that only a single
strength/size parameter pair is able to de-
scribe the inflection and the entire isotherm
properly. This is in contrast with the com-
mon belief that for each value of σ there
is a corresponding ε that can describe the
isotherm correctly [22]. The shape of the
isotherm and the inflection points are the
most sensitive to the size-parameter of the
interactions, whereas the loading at a given
pressure is most sensitive to the strength-
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Figure 3: Isotherms of 2-methylpropane at 308 K in MFI. The O-CH parameters remain fixed
at σ = 3.92 Å and ε/kB = 40 K, while εO-CH3 is examined over a range of reasonable values for
two fixed values of σO-CH3 a) a rather too small of σO-CH3 = 3.36 Å and b) a too high value of
σO-CH3 = 3.60 Å. Only a single parameter pair, εO-CH3/kB = 93 and σO-CH3 = 3.48 combined with
the CH parameters (Table 2), is able to describe the experimental data of Sun et al. [36] and Zhu et
al. [33].

parameter of the interaction. A higher
strength parameter ε induces an increased
loading, and a lower strength parameter re-
sults in a decrease in loading (for a fixed
pressure). The amount of inflection is con-
trolled by the size parameter σ. These prop-
erties can be exploited to obtain unique pa-
rameters.

In practice we proceed as follows. A rea-
sonable starting size parameter is chosen.
For this parameter we iteratively search for
the corresponding strength parameter that
matches the experimental data at a pressure
significantly below the inflection. The en-
tire isotherm is then followed for increasing
pressure until a deviation from the exper-
imental data is observed. The ”updated”
size parameter is then found by choosing a
higher value for a deviation to the left of the
experimental data, and by choosing a lower
value for the size parameter for a deviation
to the right of the experimental data. This
scheme proceeds iteratively until the entire
experimental isotherm is accounted for.

In Figure 4 we show the influence of
the σ parameter on the inflection of 2-
methylpropane in MFI. Although the size-

parameters listed in Table 2 differ by less
than 10%, the shape of the isotherms is
dramatically different. The model of June
et al. [23] uses a small value of σ = 3.364
Å, the AUA-model [24] uses σO-CH3 = 3.30
Å, σO-CH2 = 3.23 Å, and σO-CH = 3.18 Å.
The models of Vlugt et al. [7] and Smit et
al. [25] use a fixed σ; σO-CH3 = σO-CH2 =
σO-CH = 3.60 Å for the Vlugt-model, and
σO-CH3 = σO-CH2 = σO-CH = 3.64 Å for the
Smit-model. The model proposed in this
work uses σO-CH3 = 3.48 Å, σO-CH2 = 3.58 Å,
and σO-CH = 3.92 Å. It yields exact overlap
with experimental data and the inflection is
reproduced faithfully. In the remainder of
this paper we will demonstrate their accu-
racy.

The fitting to well-established inflection
points in the isotherms has many advan-
tages and overcomes problems that have so
far impeded the development of more accu-
rate force fields.

• We obtain a unique set of parameters
that all relate directly to a well defined
physical property. We therefore ex-
pect these parameters to be much bet-
ter transferable to other systems than
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Figure 4: Isotherms of 2-methylpropane at 308
K in MFI compared to various computational
models. The experimental data are taken from
Ref. [36], the simulation data from June et al.
[23], Vlugt et al. [7], Smit et al. [25], AUA from
Pascual et al. [24], and CVFF from Macedonia
et al. [5].

previous attempts.

• The parameters are determined accu-
rately. The inflection in an isotherm
is extremely sensitive to the size-
parameter σO−CHx .

• By explicitly fitting to entire adsorp-
tion isotherms we guarantee the proper
reproduction of properties such as
Henry coefficients, heats of adsorption,
adsorption entropies, and maximum
loadings.

• Inflections are found at moderate pres-
sures and here the experimental data is
most reliable. Experimentally there is
minimal intrusion from adsorption at
the exterior surface.

• The inflection is directly related to the
structure e. g. for n-heptane and 2-
methylpropane in MFI the inflection
occurs exactly at 4 molecules per unit
cell.

D Parameters from MFI/AFI-
inflections

The isotherms measured on MFI are opti-
mally suited for calibration of a force field,
because they have been reported by many
different experimental research groups, and
the fundamental reason for their shapes is
very well established. The MFI-type struc-
ture consist of a three-dimensional pore sys-
tem with straight, parallel channels inter-
sected by zig-zag channels. The linear chan-
nels intersect with the zig-zag channels four
times per unit cell. Interestingly, for n-
hexane, n-heptane, and for the branched
alkanes in MFI a kink in the isotherm is
observed [7]. This inflection is directly re-
lated to the number of intersections in the
structure and occurs at exactly 4 molecules
per unit cell. The fundamental understand-
ing of the inflection points affords an inde-
pendent check on the consistency of exper-
imental data. If isotherms do not show an
inflection point at the correct loading they
can be summarily excluded.

Ethane, n-heptane, and 2-methylpropane
exhibit isotherms of the Brunauer type-
VI in MFI. Ethane shows a small inflec-
tion point in the adsorption isotherm at
high loading [26]. The εO-CH3 and σO-CH3

are uniquely obtainable from the ethane
isotherm. When the channel interiors are
occupied the probability distribution shows
a remarkable order: a repeating pattern
of ethane molecules ”locked” in the zig-
zag channels between two intersections.
The εO-CH2 and σO-CH2 are obtained from
n-heptane. The inflection behavior of n-
heptane is well established [18, 27]. Smit
and Maesen explained this effect in terms
of commensurate freezing: n-heptane has a
size commensurate with the size of the
zig-zag channel. At high pressures the
molecules shift from a random distribution
to a distribution where the molecules are
localized exclusively in the channels and
not at the intersections. Various branched
molecules show inflections for another rea-
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O CH4 CH3 CH2 CH C

CH4
115.00

3.47
158.50

3.72
130.84

3.74
94.21

3.84
51.91

4.17
11.26

4.87

CH3
93.00

3.48
130.84

3.74
108.00

3.76
77.77

3.86
42.85

4.19
9.30

4.90

CH2
60.50

3.58
94.21

3.84
77.77

3.86
56.00

3.96
30.86

4.30
6.69

5.03

CH 40.00
3.92

51.91
4.17

42.85
4.19

30.85
4.30

17.00
4.67

3.69
5.46

C 10.00
4.56

11.26
4.87

9.30
4.90

6.69
5.03

3.69
5.46

0.80
6.38

bond Ubond = 1
2 k1(r− r0)2

k1/kB = 96500 K/Å2, r0 = 1.54 Å
bend Ubend = 1

2 k2(cos θ− cos θ0)2

k2/kB = 62500 K, θeq = 114◦

torsion Utorsion = ∑
5
n=0 ηn cosn φ ηn/kB in K

(x1 . . . xi)−A− B− (y1 . . . y j)
type 1 Cx-CH2-CH2-Cx n-butane
type 2 H-CH-CH2-Cx 2-methylbutane
type 3 Cx-C-CH2-Cx 2,2-dimethylbutane
type 4 Cx-C-C-Cx 2,2,3,3-tetramethylbutane
type 5 Cx-C-CH-H 2,2,3-trimethylbutane
type 6 H-CH-CH-H 2,3-dimethylbutane

η0 η1 η2 η3 η4 η5

type 1 1204.654 1947.740 -357.845 -1944.666 715.690 -1565.572
type 2 1367.086 4360.147 416.005 -6499.427 -832.004 1646.129
type 3 1293.324 3879.849 0 -5173.163 0 0
type 4 2045.657 6136.797 0 -8182.447 0 0
type 5 1575.127 4725.259 0 -6300.384 0 0
type 6 1092.268 2822.786 -908.033 -3007.027 1816.066 -1816.059

Table 3: Force field guest-host and guest-guest interactions of hydrocarbons in cation-free
nanoporous materials. Lennard-Jones parameters, ε/kB [K] in top-left corner, σ [Å] in bottom-
right corner of each field, bond and bend parameters, and the torsion potential: the torsion type on
the left, on the right an example of a molecule with this type of torsion potential, and on the bottom
the parameters. Some of the alkane-alkane interactions are taken from Ref. [66] and optimized to
reproduce vapor-liquid coexistence curves of the phase diagrams, the internal bond from Ref. [67],
the internal bend from Ref. [41], and the torsion from T. J. H. Vlugt and M. Frash [68].
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son [7]. 2-methylpropane preferentially ad-
sorbs at the intersections. At a loading
of four molecules per unit cell the inter-
sections are fully occupied and additional
molecules must be pushed into the chan-
nels requiring a significantly higher driv-
ing force [28]. The εO-CH and σO-CH are
uniquely obtainable from the isotherm of 2-
methylpropane. Detailed inspection of the
experimental data showed that for ethane,
2-methylpropane, and n-heptane several in-
dependent groups provided consistent data
and we used these data as our primary set
of experimental data. As basis for calibra-
tion we utilized the experimental data from
several different research groups of Caval-
cante et al. [29], Jolimaitre et al. [30, 31],
Eder et al. [32], Zhu et al. [33–35], Sun et
al. [27, 36], and Choudhary et al. [37].

Whereas inflection points in the
isotherms of MFI-type zeolites can be
used to calibrate most of the parameters, it
does not afford calibration of the parame-
ters for CH4. For this molecule we resorted
to AFI-type sieves. The isotherms for CH4

at 77 K have a clearly defined inflection
point at 4 molecules per unit cell (2.77
mol/kg) loading. Therefore εO-CH4 and
σO-CH4 are obtained from the isotherm of
methane in AFI. There are no experimental
isotherms of double branched alkanes
with an inflection, so that the εO-C and
σO-C could not be uniquely and accurately
determined. Their initial values had to be
estimated from mixing rules. Calibration of
these values utilizing an entire isotherm of
2,2-dimethylbutane in MFI indicated that
the initial estimates were essentially cor-
rect. The resulting force field is described
by the parameters listed in Table 3.

E Comparing this work and cali-
bration data

The inflection of methane in AFI at 77 K
is found at the experimental pressure, and
the isotherm shape is satisfactorily repro-
duced (Figure 2). The εO-CH4 and σO-CH4

could be uniquely determined, with an ac-
curacy better than 0.02 Å for σ and better
than 5 K for ε/kB. Figure E shows the results
of the fitting procedure of ethane and n-
heptane in MFI along with the experimen-
tal basis set. The εO-CH3 and σO-CH3 parame-
ters are uniquely fixed with a precision bet-
ter than 0.01 Å for σ and better than 1 K
for ε/kB. The simulation results for ethane
are in excellent agreement with the experi-
mental data from Choudhary et al. (Figure
5(a)). The agreement with the data from
Zhu et al. and Sun et al. is fair, for the for-
mer deviate at low pressures and the lat-
ter at high pressures. Considering the good
agreement between the simulations and ex-
periments, the results may be interpreted as
indirect evidence for the ethane inflection,
even though the experimental high pres-
sure confirmation is missing. Normal hep-
tane has a much more pronounced inflec-
tion behavior (Figure 5(b)). The εO-CH2 and
σO-CH2 are uniquely fixed with a precision
better than 0.02 Å for σ and better than 5 K
for ε/kB. The simulated isotherms overlap
perfectly with data of Eder et al. and well
with the data of Sun et al. The few high
pressure points of Sun et al. at 303 K are
in disagreement with the simulations and
with most experimental data on maximum
loadings (1.25 mol/kg Yang and Rees [38]
and 1.265 mol/kg van Well et al. [39]).

The 2-methylpropane isotherms are com-
pared in Figure 6(a) to the data of Sun et
al. and Zhu et al. The agreement is again
excellent, except for the low pressure part
of the Sun data for 277 K. The experimen-
tal loadings are probably too high because
the inflection is expected at 4 molecules per
unit cell (0.6935 mol/kg). The εO-CH and
σO-CH are uniquely fixed with a precision
better than 0.01 Å for σ and better than
1 K for ε/kB. Figure 6(b) shows the dou-
ble branched 2,2-dimethylbutane isotherm.
The simulation data overlaps with Joli-
maitre et al., and Cavalcante and Ruthven.
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Figure 5: Isotherms of linear alkanes a) ethane, and b) n-heptane in MFI at various temperatures.
Experimental data are taken from Sun et al. [27, 36], Choudhary et al. [37], Eder et al. [32], and
Zhu et al. [33, 35].
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Figure 6: Isotherms of branched alkanes used in the calibration set of the force field a) 2-
methylpropane, and b) 2,2-dimethylbutane in MFI at various temperatures. Experimental data
are taken from Sun et al. [27, 36], Zhu et al. [33, 35], Cavalcante et al. [29], and Jolimaitre et
al. [30, 31].
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F Comparing this work and pre-
ceding models

To show the improvement of this work
compared to previous approaches we refer
again to Figure 2. The figure shows another
important point. Our approach clearly out-
performs complex all-atom models contain-
ing two-and three-body dispersion interac-
tions between guest and framework atoms
(up to quadrupole terms), induced inter-
actions (polarization), and repulsive terms.
As an example, the M3, M4, and M5 models
are taken from Ref. [8]. These three models
differ only by a slight change in repulsive
interaction. The M5 model is the best of the
three, but not better than our significantly
less complex united atom approach. The
success of the united atom model supports
the notion that adsorption properties are
dominated by dispersive forces, and that a
united atom model captures these satisfac-
torily.

We also refer again to Figure 4 to discuss
the comparison with various united atom
approaches previously proposed in litera-
ture. The figure showed the inflection in
the isotherm of 2-methylpropane at 308 K in
MFI. The models of Smit et al. and Vlugt et
al. exaggerated the inflections because their
size-parameters were too large. The models
of Pascual et al., June et al., and the all-atom
CVFF force field did not show a clear in-
flection at all because their size-parameters
were too small.

The value of σO-CHx also has an effect
on the maximum loading and packing effi-
ciency. De Meyer et al. [40] performed both
experiments and simulations of long chain
n-alkanes in MFI. Experiments show that
the maximum packing is approximately
53.2 carbon atoms per unit cell for n-C14 and
longer n-alkanes, while simulations using
the model of Vlugt et al. find a value of
49.0 carbon atoms per unit cell. The cur-
rent model yields 52.5 carbon atoms per
unit cell in excellent agreement with exper-
iment, but not with the model of Vlugt et al.
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Figure 7: Isotherms of ethane, butane, and 2-
methylbutane compared to isotherms obtained
using different internal interaction potentials
and parameters as described in the text.

This is another indication that the value for
σO-CHx in the Vlugt model is too high.

G Internal interaction parameters

To test the dependence of the adsorbent-
adsorbate interaction parameters derived in
this work on the internal interaction param-
eters, we apply different sets to ethane, bu-
tane, and 2-methylbutane and compare the
isotherms with the loadings obtained using
the internal interactions of this work (Table
3). We modified the harmonic cosine po-
tential to a fixed distance of 1.54 Å and re-
computed the isotherm of ethane. The bu-
tane model was modified to the TraPPE-UA
model [41], which uses a fixed bond dis-
tance of 1.54 Å, and a bending and torsion
potential of the form

Ubend = ∑
bends

1
2

kθ(θ− θ0)2, (1)

with kθ/kB = 62500 K, θ0 = 114◦, and

Utorsion = ∑
torsions

η0 + η1 [1 + cos (φ)]

+ η2 [1− cos (2φ)] + η3 [1 + cos (3φ)]
(2)

with ηn/kb = {0,335.03,−68.19,791.32}.
Another possible combination of parame-
ters applied to 2-methylbutane is a fixed
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bond length of 1.53 Å, a bending poten-
tial of the form Eq. 1 with kθ/kB = 85000
K, θ0 = 113◦, and the torsion potential of
the this work. The results for the three
test-cases shown in Figure 7 suggests a
minimal dependency of the adsorption re-
sults on the internal interaction parameters,
and that the adsorbent-adsorbate interac-
tion parameters may be combined with any
other physically reasonable internal inter-
action model. The results are also largely
independent of the intermolecular poten-
tials, because these too are dominated by
the adsorbent-adsorbate interactions.

III Validation and applica-
tions

A Extension to other sorbates in
MFI

To demonstrate that our parameters are
transferable to other molecules in MFI we
have selected methane, 2-methylbutane, 2-
methylpentane, and 3-methylpentane. The
simulated and experimental isotherms for
methane on MFI are shown in Figure 8(a).
The agreement of the simulations and ex-
periments is satisfactory considering the
scatter in the experimental data sets. The
temperature dependence, the amount ad-
sorbed, and the shape of the isotherms are
well reproduced. For 2-methylbutane (Fig-
ure 8(b)) we find excellent agreement with
Jolimaitre et al. The data are obtained us-
ing pulse chromatography and uptake mea-
surements, and are in good agreement with
each other. Once again we find a devia-
tion at the lowest temperature. Reasons
for deviations include adsorption in meso-
pores and on the external surface, and at
low temperatures the sorption equilibration
of particularly branched molecules materi-
alizes extremely slowly.

Figure 9(a) shows the computed
isotherms for 2-methylpentane com-

pared to Jolimaitre et al., Zhu et al., and
Cavalcante et al. The discrepancy between
the experimental sets is clearly visible. A
likely cause for the difficulty in obtaining
reliable data on 2-methylpentane is that
the molecule is asymmetric and too long
to easily change orientation at the intersec-
tions. For the more symmetric and smaller
2-methylbutane molecule this is less of a
problem. The optimal packing at a certain
pressure is hard to attain, in both exper-
iment and simulation. The Cavalcante
loading is too high in comparison with
ours. The agreement with Jolimaitre is rea-
sonable, although only one temperature is
available. The data of Zhu et al. deviates at
higher temperatures. For 3-methylpentane
(Figure 9(b)) we find excellent agreement
with Zhu et al. and Jolimaitre et al. Thus,
the agreement between simulated and
experimental data on the adsorption of
molecules not part of the calibration set
is remarkably good, especially when the
disagreement between the experimental
data from various sources is taken into
consideration.

B Extension to mixtures in MFI

Binary mixtures represent a critical test for
our force field. Figure 10 compares the
loading of the individual components of a
mixture of n-hexane and 2-methylpentane
as a function of 2-methylpentane in the
gas phase at 433 K and 6.6 kPa as ob-
tained by simulation with those obtained
through experiments [42]. The loadings
of the individual components at fractional
compositions zero and one correspond to
the pure component values, and agree well
with the simulation results. The simula-
tion results show no clear preference for ei-
ther n-hexane or 2-methylpentane in this
temperature and pressure region. The ex-
perimental results show a small preferen-
tial adsorption of n-hexane compared to 2-
methylpentane. We note that the agreement
with experiment is significantly improved
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Figure 8: Isotherms of a) methane and b) 2-methylbutane in MFI at various temperatures. Ex-
perimental data are taken from Sun et al. [36], Jolimaitre et al. [30, 31], and Zhu et al. [33, 35].
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Figure 9: Isotherms of branched alkanes a) 2-methylpentane and b) 3-methylpentane in MFI
at various temperatures. Experimental data are taken from Cavalcante et al. [29], Jolimaitre et
al. [30], and Zhu et al. [34].
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CN KH 573K [mol/kg/Pa] K∞ [mol/kg/Pa] −∆H [kJ/mol]
Sim. Exp. Sim. Exp. Sim. Exp.

5 3.04× 10−6 2.99× 10−6 2.33× 10−11 2.64× 10−11 56.13 55.7
6 6.10× 10−6 5.93× 10−6 6.07× 10−12 6.07× 10−12 65.87 66.0
7 1.23× 10−5 1.22× 10−5 1.53× 10−12 1.29× 10−12 75.77 76.7
8 2.43× 10−5 2.49× 10−5 3.67× 10−13 3.25× 10−13 85.82 86.6
9 4.61× 10−5 4.73× 10−5 8.59× 10−14 8.41× 10−14 95.81 96.1

relation Sim. Exp.
−∆H = αCN + β α = 9.93 α = 10.1
−∆S = γCN + δ γ = 11.65 γ = 11.99

− ln (K∞) = −A∆H + B A = 0.141, B = 16.54 A = 0.143, B = 16.4

Table 4: Comparison of our simulations results of low-coverage properties in MFI with the ex-
perimental results of Denayer et al. [44]. Both the Denayer and the simulation Henry coefficients
KH of the linear alkanes have been fitted to KH = K∞e

−∆H
RT in the temperature range T=473-673

K. Here, K∞ denotes the pre-exponential Henry coefficient, ∆H the enthalpy of adsorption, and
R = 8.31451 J/mol/K the gas constant. The entropy ∆S per carbon number is related to the slope
of ln(K∞) plotted as a function of Carbon Number (CN) [44].
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compared to the model of Vlugt et al. Their
model yielded a loading that is too high
(0.69 mol/kg for n-hexane and 0.65 mol/kg
for 2-methylpentane), and a small prefer-
ence for the branched instead of the experi-
mentally preferred linear alkane [42]. The
pressure is too low to observe the exclu-
sion effect of branched molecules compared
to their linear isomers due to the configura-
tional entropy effect [43].

C Extension to low-coverage in
MFI

The force field developed thus far yields
isotherm data that agree not only qualita-
tively, but also quantitatively with many
experimental data sets, such as Sun et al.,
Jolimaitre et al., Choudhary et al., Zhu et
al., and Eder et al. Surprisingly, the agree-
ment between the experimental data, and
between simulated and experimental data
breaks down at low coverage. This is es-
pecially striking because most of these data
were obtained by extrapolating the very
same isotherms to low pressure and load-
ing. An analysis of the experimental data
reported by Denayer and coworkers [44]
sheds light on the likely reasons for these
discrepancies. In marked contrast to other
experimentalists, Denayer took special care
to verify that the results were indeed ob-
tained in the Henry-regime.

In this section we compare our simula-
tion results with the experimental results
from Denayer et al. on MFI. The results are
summarized in Table 4. It is noteworthy
that Denayer’s data set was not part of the
set used as a basis for our force field. The
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quantitative agreement and consistency on
low-coverage properties of simulated and
experimental data is therefore truly remark-
able. We reproduce the chain length de-
pendence of the enthalpy of adsorption and
the entropy of adsorption, as well as the
absolute values of Henry coefficients, pre-
exponential factors, and enthalpies of ad-
sorption.

A point of continued interest is the vari-
ation of the heat of adsorption with car-
bon number. Figure 11 shows this varia-
tion as obtained from simulation and from
various experimental groups. Our results
are consistent with Denayer et al. data at
573 K, and also with other experimental
data obtained around 300 K. Sun et al.
for C1-C12 derived his heats of adsorp-
tion from isotherms through extrapolation.
These vary clearly in a more erratic fashion
with carbon number than the data obtained
through dedicated experiments at low pres-
sure. A visual inspection of the simulated
and most of the experimental data suggests
that there are two linear correlations be-
tween the heat of adsorption and the Car-
bon Number (CN), one for C1-C5, and an-
other for C6-C12. Our simulation at 300
K indicates a slope of 9.22×CN for C1-C5,
and a slope of 11.3×CN for C6-C12. Vari-
ous different values have been reported in
the literature 9.81, 10.08, 10.2, 11.0, 11.3,
and 12 kJ/mol carbon number. We note
that simulation models of June et al., and
Vlugt et al. do not resolve these two distinct
regimes. The model of Smit et al. resolves
two regimes with a crossover at C8 instead
of C6.

Compared to linear alkanes, far fewer ex-
perimental data are available on the ad-
sorption of branched alkanes in MFI. A de-
tailed study of linear and branched alka-
nes in protonated MFI is available from De-
nayer et al. [45]. Despite the absence of
protons in the simulated framework struc-
ture and the presence of protons in the ex-
perimental sample, the agreement between
simulated and experimental Henry coeffi-
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Figure 11: Comparison of computed heats of
adsorption with experimental data for methane
up to n-dodecane in MFI. Experimental data are
taken from Sun et al. [27, 36], and Denayer et
al. [44], and values found in the literature as
compiled by Refs. [7, 44].

cients in Table A is fair. Both the simula-
tions and the data of Denayer et al. agree
on the ordering of the Henry coefficients
for a set of isomers: linear > 2-methyl > 3-
methyl > dibranched. The same order ap-
plies to the heats of adsorption. Compar-
ison between simulated and experimental
heats of adsorption from sources other than
Denayer and coworkers does not seem to be
a meaningful endeavor, for the scatter in the
experimentally data in Table A (compiled
by Refs. [7, 44]) is huge.

The good match between simulated and
a single set of experimental data outside
our calibration set strongly suggests that
the pulse chromatographic technique used
by Denayer is uniquely suited to obtain reli-
able low coverage data, and that extrapola-
tion of isotherms from intermediate to low
coverage tends to introduce major errors.

D Extension to different topolo-
gies

Validation of our model for siliceous zeo-
lites other than MFI relies on the relatively
few data available for DDR [46, 47], TON
[48], and MWW [49]. The DDR topology
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Figure 13: Isotherms of linear alkanes a) ethane and b) propane in TON at various temperatures.
Experimental data are taken from Hampson and Rees [48].

consists of 19-hedron cavities connected
through 8-ring windows of 0.35 nm × 0.44
nm across into an hexagonally arranged
two-dimensional cage/window-type sys-
tems. Figure 12 shows our simulation re-
sults for ethane compared with the exper-
imental data of Zhu et al. for DDR. The
agreement is excellent and we find overlap
at all temperatures. The heat of adsorp-
tion computed at 300 K for ethane is 28.96
kJ/mol, while Zhu et al. found 24.74 kJ/mol
when he used the virial form of the thermo-
dynamic equilibrium equation to extrapo-
late the data to low loading. The Henry co-
efficients obtained in this way are fitted to
the van’t Hoff equation to provide the heat
of adsorption. However, a closer inspection
of the data plotted at log-log reveals that
the data of Zhu et al. are too far outside the
Henry regime to produce reliable results.

The TON topology consists of nar-
row, unidimensional 10-ring channels with
small apertures of 0.46 nm × 0.57 nm.
Hampson and Rees measured adsorption
data for ethane and propane on TON [48].
Our simulation data and the experimen-
tal data are in excellent agreement. For
C2 and C3 the simulated (32.0 and 41.6
kJ/mol) and experimental heat of adsorp-
tion (31.9 and 42.0 kJ/mol) are virtually
identical. If framework flexibility were to
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Figure 12: Isotherm of ethane in DDR at var-
ious temperatures. Experimental data are taken
from Zhu et al. [46].

be important it would be in this highly con-
fined environment. The agreement of simu-
lation utilizing the model with a completely
fixed framework corroborates earlier sug-
gestions that framework flexibility does not
significantly influence the adsorption prop-
erties, even in tight confinements. For a
comparison of the heat of adsorption ob-
tained from simulations based on TON and
those obtained from experiments on TON
aluminosilicates, the differences are appar-
ent, particularly for longer alkanes. These
are probably caused by adsorption on the
Brönsted acid sites [50]. For TON zeo-
lite with a Si/Al ratio of 30 Denayer et al.
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Figure 14: Isotherm of n-hexane in MWW
at various temperatures. Experimental data is
taken from Du et al. [49].

[45] found: n-pentane 62.1 kJ/mol (simu-
lation 61.96 kJ/mol), n-hexane 75.0 kJ/mol
(simulation 72.5 kJ/mol), n-heptane 87.9
kJ/mol (simulation 83.6 kJ/mol), n-octane
100.5 kJ/mol (simulation 95.1 kJ/mol).

MWW structures have two independent
10-ring pore systems, a large cavity (0.71
nm × 1.8 nm) pore system, and a channel-
type (0.4 nm × 0.55 nm) pore system. The
computed isotherms for n-hexane at vari-
ous temperatures are shown in Figure 14.
The experimental results are the data of
Du et al. [49]. Considering the complex-
ity of the experimental measurements the
agreement is good. Much of the complex-
ity originates from the existence of 0.9 nm
deep pockets on the external surface that
may have adsorption properties similar to
that of the intra-crystalline region. This
phenomenon obscures especially the lower
temperature results of Du et al.

The heats of adsorption computed at
300 K are 54.0 kJ/mol for n-hexane, 59.15
kJ/mol for 3-methylpentane, and 59.24
kJ/mol for 2-methylpentane. Du et al. ob-
tained 38.0 kJ/mol for n-hexane computed
from the van ’t Hoff plot, and 46.9 kJ/mol
from the isotherms. The former is inac-
curate because the data were determined
too far outside the Henry regime, the lat-
ter is inaccurate due to intrusion by ex-
ternal surface adsorption at low temper-
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Figure 15: Heat of adsorption of linear and
mono-branched alkanes as a function of carbon
number in MWW, computed at 300 K. Experi-
mental data are taken from Du et al. [49], and
Eder et al. [50] on a protonated MWW zeolite.

ature. Interestingly, the heat of adsorp-
tion is not directly proportional to the car-
bon number (Figure 15), because the MWW
combines two effects: the linear behavior
of channel-type zeolites, and the nonlinear,
periodic behavior of the heat of adsorption
in cage/window-type systems [51, 52].

IV Discussion

Simulations are becoming increasingly less
expensive, faster, and more accurate. Sim-
ulations utilizing the current force field af-
ford valuable guidance for experimental
adsorption research. Firstly, it can serve
as a reference. Before doing any experi-
ments, the model can predict the type of the
isotherm, low-coverage properties such as
the heats of adsorption and Henry coeffi-
cients, and the maximum loading. Interest-
ing pressure and temperatures regimes can
be identified, and the range of the Henry
regime can be established. A second prac-
tical use of these simulations is to resolve
experimental discrepancies. As an exam-
ple we have scrutinized the available ex-
perimental data and have highlighted the
lack of low or high pressure data as a com-
mon source for error. Experimental mea-
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surements in suboptimal pressure regimes
can explain the high scatter found in the
Henry coefficients and heats of adsorption
as reported by various groups. A third
advantage of simulations is its predictive
power. We predict a surprisingly non-
linear dependence of the heat of adsorp-
tion on carbon number for MWW-type ze-
olites, that might inspire experimentalists
to verify this dependence. A fourth use of
simulations is the explanation of adsorption
data on a molecular level. Simulations can
forge the connection between the location
of the adsorbates inside the channels and
cages and peculiarities (such as inflection
points) in the adsorption isotherm. These
explanatory data are very difficult to ob-
tain experimentally. For adsorption of mix-
tures in zeolites, CBMC simulations have
revealed new ways of separating linear and
branched alkanes by exploiting subtle en-
tropy effects [53].

We like to comment on the applica-
tion of the current model to diffusion in
molecular sieves. The currently proposed
model faithfully reproduces the inflection
points in isotherms. Proper reproduction
of the inflection is necessary, since an in-
flection in the isotherm leads to a sharp
inflection in the diffusion behavior [54,
55]. The adsorbent-adsorbate parameters
are uniquely determined and in that sense
the model can be directly applied to dif-
fusion in zeolites. However, it remains
to be seen if the united atom approxima-
tion also holds for diffusion in molecular
sieves. There seems to be some indication
that framework vibrations can alter the dif-
fusivities of tightly fitting molecules [56,57],
even though this appears not to be the case
for the diffusion of small alkanes through
cation-free sieves [58, 59]. We stress that to
compare a flexible framework with a rigid
framework, the flexibility should be mod-
eled in such a way that the two structures
are on average identical. This implies that
the reference bond lengths should be taken
from the rigid structure [11].

In most nanoporous framework struc-
tures, the large oxygen atoms shield the
much smaller silicon, aluminum, and phos-
phorus atoms. Therefore, the model only
needs to consider interactions between the
adsorbate and the oxygen atoms, provided
there is no net negative electrical charge
on the framework [12]. Theoretical studies
have suggested that the electron density on
a cation-free framework is lower in an alu-
minophosphate than in silica, which would
induce a lower polarization and a lower
heat of adsorption for alkanes. Some au-
thors found experimental support for this
theory, whereas others found none (see for
discussion Ref. [60] and reference therein).
If the latter are correct, this would ex-
tend the applicability of our parameters to
aluminophosphates, and possibly even to
more recently described nanoporous frame-
work materials based on sulphur or nitro-
gen instead of oxygen atoms. In principle,
one can extend the force field to adsorption
of alkanes in pillared clays [61]. A further
extension would be to include more types
of pseudo atoms. Although the fitting pro-
cedure is applied to hydrocarbons, it is by
no means restricted to alkanes. In the liter-
ature many isotherms with inflections can
be found and these molecules can easily be
included.

V Conclusions

A united atom model is presented that
is capable of a quantitative prediction of
adsorption properties of both linear and
branched alkanes in cation-free molecular
sieves. Very good agreement between ex-
perimental and simulated isotherms was
found for AFI-, MFI-, TON-, DDR- and
MWW-type structures over a wide range of
pressures and temperatures. The simula-
tions highlight three common sources for
discrepancies between experimental data
sets: 1) a lack of low pressure data, 2) a lack
of high pressure data, and 3) the too short
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experimental equilibration times. These can
explain the large scatter in the experimen-
tally reported values for the heat of ad-
sorption and the Henry coefficients. The
united atom molecular simulation results
afford selection of the experimentally most
sound values, and afford prediction of these
values if none are available experimentally.
This should be of great value when study-
ing the use of nanoporous framework struc-
tures in industrial separation or catalytic
processes and is particularly advantageous
for mixtures, for which very few experi-
mental data are available.
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Appendix

Adsorption ensemble. In adsorption
studies one would like to know the amount
of materials adsorbed as a function of pres-
sure and temperature of the reservoir with
which the sieve is in contact. Therefore
the natural ensemble to use is the grand-
canonical ensemble (or µ, V, T ensemble).
In this ensemble, the temperature T, the
volume V, and the chemical potential µ are
fixed. The equilibrium conditions are that
the temperature and chemical potential of
the gas inside and outside the adsorbent
must be equal. The imposed chemical
potential µ can be related to the fugacity f

βµ = βµ0
id + ln

(
β f
)
, (3)

where β = 1/(kBT), with kB the Boltzmann
constant, and µ0

id is the reference chemical
potential. The pressure p is related to the
fugacity f by

f = φp, (4)

where φ is the fugacity coefficient com-
puted directly from the equation of state of
the vapor in the reservoir. For all adsor-
bates, the experimental equation of state is
well known and we use the Peng-Robinson
equation of state to convert the pressure
to the corresponding fugacity, introducing
only a small correction for the currently
studied systems.

Configurational Bias Monte Carlo
(CBMC). Conventional Monte Carlo is
time-consuming for long chain molecules.
The fraction of successful insertions into
the sieve is too low. To increase the number
of successfully inserted molecules we
apply the CBMC technique [6,20,62]. In the
CBMC scheme it is convenient to split the
total potential energy U of a trial site into
two parts.

U = Uint + Uext. (5)

The first part is the internal, bonded po-
tential Uint which is used for the genera-
tion of trial orientations. The second part
of the potential, the external potential Uext,
is used to bias the selection of a site from
the set of trial sites. This bias is exactly re-
moved by adjusting the acceptance rules. In
the CBMC technique a molecule is grown
segment-by-segment. For each segment we
generate a set of k trial orientations accord-
ing to the internal energy Uint and compute
the external energy Uext

i ( j) of each trial posi-
tion j of segment i. In this work the number
of trial positions k for both NVT and µVT is
set to 10. We select one of these trial posi-
tions with a probability

Pi( j) =
e−βUext

i ( j)

∑
k
l=1 e−βUext

i (l)
=

e−βUext
i ( j)

w(i)
. (6)

The selected trial orientation is added to the
chain and the procedure is repeated until
the entire molecule has been grown. For
this newly grown molecule we compute the
so-called Rosenbluth factor

Wnew = ∏
i

w(i). (7)
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To compute the old Rosenbluth factor Wold

of an already existing chain, k− 1 trial ori-
entations are generated for each segment.
These orientations, together with the al-
ready existing bond, form the set of k
trial orientations. In a dynamic scheme, a
Markov chain of states is generated. The
average of a property is the average of over
the elements of the Markov chain. For an
infinite Markov chain the expression is ex-
act. Every new configuration is accepted or
rejected using an acceptance/rejection rule.

We have defined µex as the difference in
chemical potential of the interacting alkane
and an alkane in the ideal gas state. The
Rosenbluth weight

〈
WIG

〉
of the reference

state of the ideal gas has to be computed
in separate simulation. This quantity is
needed when comparing with real experi-
mental data.

Energy computation. We describe in
some detail the computation of the energies
using CBMC for our molecular united atom
model. The total energy U is split into two
contributions

U = Uint + Uext. (8)

The internal energy Uint is given by

Uint = Ubond + Ubend + Utorsion, (9)

with

Ubond = ∑
bonds

1
2

k1(r− r0)2, (10)

Ubend = ∑
bends

1
2

k2(cos θ− cos θ0)2, (11)

Utorsion = ∑
torsions

5

∑
n=0

ηn cosn φ, (12)

where k1/kB = 96500 K/Å2 is the bond en-
ergy constant, r0 = 1.54 Å the reference
bond length, k2/kB = 62500 K the bend
energy constant, θ0 = 114◦ the reference
bend angle, φ the dihedral angle (defined
as φtrans = 0), and ηn/kB in K denote the

six torsion parameters. The torsion poten-
tial around A − B is not split up in sev-
eral torsions. When A = CH2 or B = CH2

a dummy hydrogen is added to this group.
The dummy atom does not have any non-
bonded interactions, only bendings and a
single torsion interaction. The external en-
ergy Uext consists of a guest-guest inter-
molecular energy Ugg, a host-guest interac-
tion Uhg, and an intra-molecular Lennard-
Jones interaction Uintra for beads in a chain
separated by more than three bonds

Uext = Ugg
i j + Uhg

i j + Uintra
i j , (13)

with

Ugg,hg,intra
i j =

∑
LJ-pairs

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
− Ecut,

(14)

where ri j is the distance between site i and
site j, rcut = 12.0 Å, the cutoff radius, Ecut the
energy at the cut-off radius, and Ugg,hg,intra

i j =
0 when ri j > rcut. The Lennard-Jones poten-
tial consists of two parameters, σ is the size-
parameter, and ε is the strength-parameter.
The force field is described by the parame-
ters listed in Table 3.

Monte Carlo moves. Several Monte Carlo
moves can be employed during a simula-
tion.

• Displacement move
A chain is selected at random and
given a random displacement. The
maximum displacement is taken such
that 50% of the moves is accepted. The
acceptance rule is

acc (old → new) =

min
(

1, e−β(Unew−Uold)
)

.
(15)

Note that the energy of the new config-
uration Unew and the energy of the old
configuration Uold only differ in the ex-
ternal energy.
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• Rotation move
A chain is selected at random and
given a random rotation. The center
of the rotation is the center of mass.
The maximum rotation angle is se-
lected such that 50% of the moves are
accepted. The acceptance rule is given
by Eq. 15. Again, the energy of the
new configuration Unew and the energy
of the old configuration Uold only differ
in the external energy.

• Insertion move
A chain is grown at a random position.
The acceptance rule for insertion of the
particle is given by

acc(N → N + 1) =

min
(

1,
WnewβV

N + 1
f

〈WIG〉

)
.

(16)

• Deletion move
A chain is chosen at random and the
old Rosenbluth factor is computed.
The acceptance rule for deletion of the
particle is given by

acc(N → N− 1) =

min

(
1,

N
WoldβV

〈
WIG

〉
f

)
.

(17)

• Full regrow move
A chain is selected at random and is
completely regrown at a random posi-
tion. This move is essential for N, V, T
to change the internal configuration of
a molecule, and during this move data
for the average Rosenbluth weight can
be collected. The acceptance rule for
full regrow is given by

acc (old → new) =

min
(

1,
Wnew

Wold

)
.

(18)

• Partial regrow move
A chain is selected at random and part

of the molecule is regrown. It is de-
cided at random which part of the
chain is regrown and with which seg-
ment the regrown is started. The accep-
tance rule for partial regrow is given by
Eq. 18.

• Identity change move (mixtures)
The identity-change trial move [63] is
called semi-grand ensemble, but it can
also be seen as a special case of the
Gibbs ensemble. One of the compo-
nents is selected at random and an at-
tempt is made to change its identity.
The acceptance rule is given by [64]

acc (A → B) =

min

(
1,

Wnew fB
〈
WIG

A

〉
NA

Wold fA 〈WIG
B 〉 (NB + 1)

)
,

(19)

where fA and fB are the fugacities of
components A and B, and NA and NB

are the number of particles.

The relative probabilities for attempting
these moves were such that in the NVT-
simulations 10% of the total number of
moves were displacements, 10% rotations,
10% partial regrowths, and 70% regrowths
of the entire molecule. For the case of
grand-canonical simulations of the pure
components the distribution of moves was:
15% displacements, 15% rotations, 15% par-
tial regrowths, and 55% exchanges with the
reservoir. For alkane mixtures the number
of exchanges was reduced to 50% and the
remaining 5% of the moves were attempts
to change the identity of a molecule.

Duration/length of simulation. Simula-
tions are performed in cycles. The number
of cycles needed for equilibration depends
on the number of molecules. We define a
cycle to consists of smaller steps propor-
tional to the number number of molecules
with 20 as the minimum.

Ncycles = max (20, N)× Nsteps. (20)

Page 136 of 256



property formula units

Henry coefficient KH KH = 1
RTρ f

〈W〉
〈WIG〉 mol/kg/Pa

Internal energy ∆U ∆U =
〈
Uhg

〉
− 〈Uh〉 −

〈
Ug
〉

J/mol

Helmholtz free energy ∆A ∆A = −RT ln 〈W〉
〈WIG〉 J/mol

Gibbs free energy ∆G ∆G = ∆A− RT J/mol

Isosteric enthalpy of adsorption ∆H ∆H = −∂ ln(KH)
∂(RT)−1 = ∆U− RT J/mol

Isosteric heat of adsorption Q Q = −∆H J/mol
Entropy ∆S ∆S = ∆U−∆A

T = ∆H−∆G
T J/(mol K)

Table 6: Adsorption properties computed at the infinite dilution from a NVT-simulation. The
Rosenbluth factor 〈W〉, the Rosenbluth factor of an ideal chain

〈
WIG

〉
, the ensemble average of

the potential energy of the host-guest system
〈
Uhg
〉
, the energy of an isolated ideal chain 〈Ug〉,

and the average host energy 〈Uh〉 (zero for a rigid framework) are computed from two independent
simulations of a single chain: a NVT-simulation of a chain adsorbed in the framework, and a NVT-
simulation of an isolated chain in the ideal gas phase. Here, T is the temperature, R = 8.31451
J/(mol K) the gas constant, and ρ f in kg/m3 the density of the framework.

In each step one Monte Carlo move is per-
formed. For molecules smaller than pen-
tane at least 5× 105 cycles are used to com-
pute the isotherms. For longer molecules
and all NVT-simulations we used at least
1× 106 cycles.

Computation of low-coverage adsorption
properties. If the chemical potential is
sufficiently low the loading q is propor-
tional to the Henry coefficient KH and the
pressure

q = KH p. (21)

The Henry coefficient is related to the
Rosenbluth factor

KH =
1

RTρ f

〈W〉
〈WIG〉 . (22)

where ρ f is the density of the framework.
The chemical potential is related to the
Helmholtz free energy A

µ =
(

∂A
∂N

)
V,T

. (23)

In the infinite dilution limit

∆A = A(1)− A(0) = µ. (24)

Therefore the Helmholtz free energy can be
computed from a NVT-simulation

∆A = −RT ln
〈W〉
〈WIG〉 . (25)

The entropy ∆S is given by

∆S =
(∆U− ∆A)

T
, (26)

or equivalently

∆S =
(∆H− ∆G)

T
. (27)

In the limit of zero coverage the Henry
coefficient is related to the enthalpy of ad-
sorption at a fixed loading ∆H via a ther-
modynamic relation

∆H = −∂ ln (KH)
∂ (RT)−1 . (28)

In a simulation the isosteric enthalpy can be
computed more conveniently from the in-
ternal energy difference

∆H = ∆U− RT. (29)
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From Eq. 26, Eq. 27, and Eq. 29 we obtain
for the Gibbs free energy difference ∆G at
infinite dilution

∆G = ∆A− RT. (30)

The formulas are summarized in Table 6.
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We have developed a united atom force field able to accurately
describe the adsorption properties of linear alkanes in the sodium
form of FAU-type zeolites. This force field successfully reproduces
experimental adsorption properties of n-alkanes over a wide range of
sodium cation densities, temperatures, and pressures. The force field
reproduces the sodium positions in dehydrated FAU-type zeolites
known from crystallography and it predicts how the sodium cations
redistribute when n-alkanes adsorb. The cations in the sodalite
cages are significantly more sensitive to the n-alkane loading than
those in the supercages. We provide a simple expression that ad-
equately describes the n-alkane Henry coefficient and adsorption
enthalpy as a function of sodium density and temperature at low
coverage. This expression affords an adequate substitute for complex
configurational-bias Monte Carlo simulations. The applicability of
the force field is by no means limited to low pressure and pure
adsorbates, for it also successfully reproduces the adsorption from
binary mixtures at high pressure.

S. Calero, D. Dubbeldam, R. Krishna, B. Smit, T. J. H. Vlugt,
J. F. M. Denayer, J. A. Martens, and T. L. M. Maesen 8

Understanding the role of sodium during
adsorption: A force field for alkanes in

sodium exchanged faujasites

I Introduction

Research activity on zeolites, and on ad-
sorption and heterogeneous catalysis in
general, has experienced increased interest
in the last few years [1–4]. Zeolitic materi-
als have outstanding properties due to their
regular structures and high internal surface
areas and they are used in industry as ion
exchangers, catalysts and adsorbents [5, 6].
Molecular simulations are a powerful tool
for gaining insight into these industrial pro-
cesses at a molecular level. With the de-
creasing cost of computer simulations there
is an increasing demand for the use of de-
tailed simulations to predict the properties

resulting from the interaction of molecules
and zeolites.

FAU-type zeolites are the most widely
used zeolites in catalysis and separation
processes [2, 7–9]. In their synthesized
form the composition of the unit cell is
NaxAlxSi192−xO384, where 96 ≥ x ≥ 0. FAU-
type zeolites have been labeled either X
and Y depending on their framework alu-
minum density (x). Zeolite X has a frame-
work aluminum density between 96 and
77 aluminum atoms per unit cell, whereas
zeolite Y contains fewer than 77 frame-
work aluminum atoms per unit cell. The
FAU-type pore structure consists of sodalite
cages arranged in 1.2 nm wide supercages
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accessible through 0.72 nm windows. Since
the sodalite cages are not readily accessible
for alkanes, adsorption tends to be limited
to the supercages.

The adsorption properties of FAU-type
zeolites containing framework aluminum
and sodium cations depend on the inter-
action of the zeolite framework and the
non-framework cations with the adsorbate
molecules. Therefore, a thorough character-
ization involving all interactions between
these elements (zeolite framework, adsor-
bates and non-framework cations) is a miss-
ing key-ingredient for understanding their
performance as adsorbents.

A variety of computational studies have
been reported on the location of cations
in adsorbate-free faujasites [10–18]. Most
of these studies used force fields with the
same partial charge on silicon and alu-
minum. However, due to the close proxim-
ity between cations and framework atoms
this approach is unsuited for modeling
cations in zeolites and it cannot account
for the allocation of cations to specific po-
sitions [11, 13, 14, 17–19]. Simulations with
force fields distinguishing aluminum from
silicon have also been performed, but these
were mostly limited to zeolites with al-
ternating silicon and aluminum to min-
imize the number of different types of
bridging oxygen atoms [11, 20]. More im-
portantly, these simulations completely ig-
nored cation mobility [11]. Not until the
publication of a force field by Auerbach et
al. [14] in 1999 were these constraints over-
come.

Computer simulation studies on the ad-
sorption of molecules in cation-free FAU-
type silica have also been reported [21].
There are a few simulations on the ad-
sorption behavior of hydrocarbons in the
sodium form of FAU-type zeolites (”Na-
FAU”) focusing on halocarbons [12, 22–25]
and aromatics [26, 27]. There are hardly
any simulations involving linear alkanes
on Na-FAU except for a few studies on
the adsorption of the smallest, and com-

putationally least expensive, hydrocarbons;
methane [21, 28–30, 32] and ethane [33].
In 1978 Bezus et al. [28] used an atom-
istic representation in Monte Carlo simula-
tions of methane in zeolite NaX. A decade
later, Yashonath et al. [34], reported the
first Monte Carlo study of the adsorption
of a single methane molecule in NaY and
Woods and Rowlinson [29] computed the
adsorption isotherms and isosteric heats of
adsorption of methane in NaX and NaY us-
ing Grand Canonical Monte Carlo (GCMC)
simulations. In both cases the Kiselev po-
tential model was used [35] where interac-
tions between methane and the atoms of
the framework were modeled in terms of
a short-range Lennard-Jones potential and
a long range Coulombic term. It is impor-
tant to note that these simulations treated
sodium cations as immobile and do not es-
tablish distinctions between silicon and alu-
minum and therefore cannot correctly allo-
cate specific cation positions.

More recently, Maddox and Rowlinson
[36] have studied the adsorption of nitro-
gen and methane mixtures in NaX using
the GCMC technique. As before, sodium
cations were considered as an immobile
part of the zeolitic framework and the in-
teractions with the adsorbates were de-
fined through the Kiselev potential model.
Later studies increased the complexity of
the potential model obtaining relatively
good agreement with experimental adsorp-
tion data for methane [31]. Adsorption of
ethane in NaY has been studied by Hen-
son et al. using both inelastic neutron scat-
tering and ab initio calculations [33]. They
used the same set of parameters as Mellot
et al. [12] in their simulations of chloroform
in NaY. Finally, Yashonath et al. have also
performed simulations of propane [37, 38],
n-butane [39], and several n-alkanes [40] in
NaY but again discounting sodium mobil-
ity.

In this paper we present a force field
where the nature, density, and mobility of
the non-framework cation, the density of
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the framework aluminum, and all host-
guest interactions are carefully taking into
account. In section II we explain the gen-
eral computational methodology, the choice
of our model and the parameter optimiza-
tion strategy. We also report a complete
validation of the force field, as it accurately
reproduces the sodium cation locations in
adsorbate-free zeolites and the adsorption
isotherms of n-alkanes (from methane to n-
decane) in Na-FAU. In section III we ana-
lyze the applications of this force field. We
1) address the question of cation location
during adsorption, subsequently we 2) sim-
plify the results with an empirical expres-
sion for Henry coefficients and heats of ad-
sorption as a function of the sodium con-
centration, temperature, and linear alkane,
and finally we 3) extend our calculations to
mixtures of alkanes at high pressure. In sec-
tion IV we give some concluding remarks.

II Methodology

The development of our force field required
1) a model for the framework structure, 2)
the partial charges of the zeolite atoms and
3) the interatomic potentials as well as 4)
an unambiguous optimization of potential
parameters using CBMC simulations. The
conventional simulation techniques to com-
pute adsorption isotherms are prohibitively
expensive for long alkanes whereas the
CBMC technique simulates them at afford-
able cost [41]. In a CBMC simulation
molecules are grown bead by bead biasing
the growth process towards energetically
favorable configurations avoiding overlap
with the zeolite. During the growth the
Rosenbluth factor is calculated. The aver-
age Rosenbluth factor is directly related to
the free energy and the Henry coefficient
[42, 43].

Simulations are performed in cycles and
in each cycle one move is chosen at ran-
dom with a fixed probability of perform-
ing a molecule displacement (0.15), rota-

tion around the center of mass (0.15), ex-
change with the reservoir (0.55), and par-
tial regrowth of a molecule (0.15). For mix-
tures we include an exchange of the type
of molecules (0.05) and an exchange with
the reservoir (0.5). The maximum transla-
tional and rotational displacements are ad-
justed to achieve an acceptance probability
of 50%. The total number of cations remains
constant during simulations so only trans-
lation movements and regrowth at a ran-
dom position in the zeolite are considered
for this type of particles. The regrowing at
a new, randomly selected position bypasses
energy barriers.

Henry coefficients were computed in the
NVT ensemble including translation (0.1),
rotation (0.1), partial regrowths (0.1) and re-
growths of the entire molecule (0.7). For the
NVT simulations the total number of cycles
was at least 1×107. For the grand-canonical
simulations the number of cycles for one-
component isotherms was 2 × 107 and at
least 3× 107 for the mixtures. More details
on this simulation technique can be found
elsewhere [42, 44, 45, 58, 59].

A Model

The FAU-type framework was built from
silicon, aluminum, and oxygen utilizing the
crystallographic positions of these atoms in
dehydrated NaX [19]. Zeolites structures
with lower framework aluminum densi-
ties were obtained by randomly substitut-
ing aluminum by silicon. This procedure
automatically satisfies the Löwenstein rule
and it should afford a reasonable approxi-
mation of the framework aluminum distri-
butions obtained by experimental methods
[46–49]. The charge distribution on the oxy-
gen framework was considered static; i.e.
polarization of oxygen by nearby sodium
cations was neglected. Our model explicitly
distinguishes silicon from aluminum with a
difference of 0.3 e− between qSi and qAl [14].
Different charges are used for oxygen atoms
bridging two silicon atoms, qOSi, and oxy-
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OSi OAl Si Al Na CH4 CH3 CH2

CH4
115

3.47
115

3.47 - - 582.17
2.72

158.5
3.72

130.84
3.74

94.21
3.84

CH3
93.0

3.48
93.0

3.48 - - 443.73
2.65

130.84
3.74

108.0
3.76

77.7
3.86

CH2
60.5

3.58
60.5

3.58 - - 310.0
2.95

94.21
3.84

77.7
3.86

56.0
3.96

Na 23.0
3.4

23.0
3.4 - - 124.4

2.16
582.17

2.72
443.73

2.65
310.0

2.95
charge q=-1.025 q=-1.2 q=+2.05 q=+1.75 q=+1.0 - - -
bond Ubond = 1

2 k1 (r− r0)2

k1/kB = 96500 K/Å2, r0 = 1.54 Å
bend Ubend = 1

2 k2 (cos θ− cos θ0)2

k2/kB = 62500 K, θ0 = 114◦

torsion Utorsion = ∑
5
n=0 ηn cosn φ

ηn=0...5/kB = {1204.654,1947.740,−357.845,−1944.666,715.690,−1565.572}

LJ Ugg,hg,intra
i j =

4εi j

[(
σi j

ri j

)12
−
(

σi j

ri j

)6
]
− Ecut if r < rcut

0 if r ≥ rcut

Table 1: Lennard-Jones parameters, ε/kB [K] in top-left corner, σ [Å] in bottom-right corner of
each field, partial charges [e] of the framework and the sodium cations, and the bond, bend, and
torsion potential and parameters. The O-CHx interactions are taken from our previous works
[58, 59], OAl are the oxygens bridging one silicon and one aluminum atom, and OSi are oxygens
bridging two silicon atoms, rcut = 12 [Å] the cutoff distance, and Ecut denotes the energy at the
cutoff radius (shifted potential).

gen atoms bridging one silicon and one alu-
minum atom qOAl. qOSi is obtained using
the relation qSi + (2 qOSi) = 0, making the ze-
olite neutral in the absence of aluminum,
while qOAl is chosen to make the total sys-
tem charge equal to zero [50,51]. All partial
charges are listed in Table 1.

The non-framework sodium cation den-
sity was adjusted to match the framework
aluminum density and the density of the
zeolites is determined by the framework
atoms (aluminum, silicon and oxygen) and
the non-framework cations (sodium). In
our model, the sodium cations can move
freely and adjust their position depending
on their interactions with the framework
atoms, other sodium cations, and alkane
molecules. To sample cation motions we
use displacements and insertions at new
randomly selected positions. These random
insertions bypass energy barriers.

Molecular simulations using flexible ze-
olites show that a flexible lattice can po-

tentially influence diffusion properties [52].
To diffuse inside a zeolite the molecules
have to pass energy barriers posed by chan-
nels and intersections. In a flexible zeo-
lite framework fluctuations can affect the
size of the channels and intersections and,
thereby, the height of these energy barriers.
However, our study focuses at the low en-
ergy, equilibrium configurations, so that the
fluctuations in the higher energy configu-
rations in flexible zeolite models are negli-
gible [53]. The interactions between guest
molecules (alkanes and sodium cations)
with the zeolite host framework are mod-
eled by Lennard-Jones and Coulombic po-
tentials. The Coulomb interactions in the
system are calculated using the Ewald sum-
mation [42]. The alkanes are described
with a united atom model, in which CHx

groups are considered as a single interac-
tion centers with their own effective po-
tentials [54]. The beads in the chain are
connected by harmonic bonding potentials.
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(a) LTA (b) FAU

Figure 1: Positions of non-framework Na+ cations in (a) LTA-type zeolites, (b) FAU-type zeolites.

The bond bending between three neighbor-
ing beads is modeled by a harmonic cosine
bending potential and changes in the tor-
sional angle are controlled by a Ryckaert-
Bellemans potential. The beads in a chain
separated by more than three bonds in-
teract with each other through a Lennard-
Jones potential. The interactions of the ad-
sorbed molecules with the zeolite are dom-
inated by the dispersive forces between the
pseudo-atoms and the oxygen atoms of the
zeolite [28, 35, 44] meaning that the silicon
van der Waals interactions are taken into
account through an effective potential with
only the oxygen atoms.

In the force field described here an ”aver-
age” polarization is included implicitly in
the parameterization by means of two ef-
fects: the polarization induced by the cation
on the zeolite and on the alkanes. For the
cation-zeolite interactions we used the ap-
proach of Auerbach [14], taking into ac-
count the polarization effects by adjusting
the partial charges on the oxygen depend-
ing whether they are connected to Si or Al.
Concerning the polarization effects for the
cation-alkane interactions, alkanes are very
difficult to polarize and therefore a logi-

cal approach was to use effective Lennard-
Jones interactions between the cations and
the alkanes.

B Parameter Optimization

This work is concerned with a realistic
description of the interaction between the
sodium cations, the zeolite framework, and
the alkanes. It turns out that the sodium
cation distribution is a key factor to under-
stand the adsorptive properties of the Na-
FAU family of materials. However, diffrac-
tion methods are not always able to pro-
vide this information fully accurately. Even
for well studied systems such adsorbate-
free NaX or NaY the precise location of
some cations has remained uncertain [19,
55, 56]. In marked contrast, there is gen-
eral agreement on the sodium distribution
in LTA-type zeolites. Especially, LTA-type
zeolites with alternating silicon and alu-
minum atoms have a highly symmetrical
ion-distribution. The sodium form of such
an LTA-type zeolite has 12 sodiums per
supercage distributed amongst 3 crystallo-
graphic sites (see Figure 1): in the center
of the 6-ring (type 1), in the 8-ring window
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This Other work experimental data simulation data
work [19] [56] [75] [11] [77] [73] [18] [78] [14] [81]

Na(I)-O(3) 2.53 2.74 2.71 2.71 2.71 2.3-2.4 2.56 2.11-2.29
Na(I)-O(2) 3.53 3.55
Na(I)-O(1) 3.74 3.82
Na(I’)-O(3) 2.5 2.24-2.36 2.24 2.32 2.24 2.44 2.27 2.25 2.07-2.27 2.14
Na(I’)-O(2) 3.11 2.94-2.97 2.97 2.9 2.93 3.08
Na(II)-O(2) 2.47 2.34 2.39 2.34 2.36 2.33 2.35 2.34 2.15-2.36 2.4
Na(II)-O(4) 3.06 2.89 2.86 2.89 2.9 2.88 3.1
Na(II’)-O(2) 2.52
Na(II’)-O(4) 3.31
Na(III’a)-O(4) 2.64 2.22 2.77 2.3 2.26 2.37
Na(III’a)-O(1) 2.9 2.85 2.58 2.87
Na(III’b)-O(4) 2.5 2.58 2.56
Na(III’b)-O(1) 2.74 2.61 2.44
Na(III’c)-O(4) 2.51 2.41
Na(III’c)-O(1) 2.67 2.44

Table 2: Sodium-Oxygen distances [Å] in faujasites.

(type 2), and opposite to a 4-ring (type 3)
[57]. Crystallographic studies indicate that
these sites are occupied for 97.2, 24.2, and
6.6 %, respectively. Molecular simulations
with our optimized force field yield occu-
pations of 100, 23.9 and 6.25 %, respectively.
In addition the crystallographic locations of
the sites obtained through molecular simu-
lations are within 0.2 Å from those obtained
though X-ray diffraction.

Using this set of parameters derived from
this high alumina LTA-type zeolite, we
performed simulations to obtain the aver-
age sodium-oxygen distances in FAU-type
zeolite. The typical sites for sodium in
adsorbate-free FAU-type zeolites are de-
picted schematically in Figure 1. Sites I, I’
and II’ are in the sodalite cages and hexag-
onal prisms while sites II, III, and III’ are in
the supercages. More specifically, site I is
the hexagonal prism, sites I’ and II’ inside
the sodalite cage, site II is located at the cen-
ter of the hexagonal prisms but displaced
from this point into the supercage and site
III is in the supercage on a twofold axis
opposing a four-ring between two twelve-
rings. Some studies report three additional
supercage III’ sites within 2.8 Å site III.
The resulting sodium-oxygen distances are
listed in Table 2. Although our results are
within 0.2 Å of the experiments, our dis-

tances are slightly larger than reported ex-
perimentally. The scatter in the experimen-
tal data makes it difficult to asses whether
this points to a systematic deviation.

The alkane-sodium, alkane-alkane, and
alkane-zeolite interaction parameters were
obtained by calibrating the force field
through explicitly fitting a full isotherm
over a wide range of pressures, tempera-
tures and sodium densities. We fit complete
adsorption isotherms, because experimen-
tal determination of the adsorption prop-
erties at very low and at very high cover-
age is fraught with difficulty resulting in a
large spread in experimentally determined
Henry coefficients and saturation loadings,
respectively [58, 59]. Experimental agree-
ment on data in the intermediate cover-
age regime is significantly better. We start
by obtaining a reduced set of reliable ex-
perimental data, of several independent re-
search groups, to calibrate the simulations
results. Next we fit, starting with the small-
est number of free parameters, and increase
the number of parameters incrementally.
Once a reasonable set of parameters has
been obtained, we re-examined the exper-
imentally available data and included the
data that are consistent with the original
data set. This extended data set was subse-
quently used for further refinement of the
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(a) methane in (left) NaY and (right) NaX
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(b) ethane in (left) NaY and (right) NaX
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(c) propane in (left) NaY and (right) NaX

Figure 2: Adsorption isotherms of (a) methane, (b) ethane, and (c) propane in (left) NaY and
(right) NaX-type faujasite. Comparison with experiment data [27, 60–70].
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(a) n-butane in NaX
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(b) n-pentane in NaX
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(c) n-decane in NaX

Figure 3: Adsorption isotherms in NaX zeolites with mobile cations (this work), fixed cations,
and without cations (a) n-butane in at 300K, (b) n-pentane at 333K, and (c) n-decane at 413K.
Comparison with experimental data [64, 71, 72].
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parameters. The procedure was repeated to
obtain a best fit with the majority of the ex-
perimental data. The resulting force field
parameters are listed in Table 1. Except for
NaX, aluminum atoms are asymmetrically
arranged in the simulation box. Thus, to
compute a reliable quantity in the thermo-
dynamic limit, we averaged over different
aluminum atom arrangements in the sim-
ulation cell. Figure B shows the excellent
agreement of our computed isotherms for
methane, ethane, and propane with avail-
able experimental data [29, 60–70]. Pre-
vious GCMC simulation data (only avail-
able for methane [29, 31]) were included
for comparison. The number of sodium
cations and the temperature used for each
isotherm were chosen to facilitate compar-
ison with the experimental data, in princi-
ple treated with equal weight, and simula-
tions were performed in all pressure range.
Hence, methane isotherms in Figure 2(a)
were obtained for structures with 60 and 86
Na+ at 298K and 330K, ethane isotherms,
Figure 2(b), were obtained for structures
with 56 and 86 Na+ at 300K, and propane
isotherms, Figure 2(c), were obtained for
structures with 58 and 86 at 300K and 293K,
respectively. Figure 2(c) shows the exper-
imental discrepancies of Dzhigit et al. [66]
and Hampson et al. [67] with Palmas et al.
[68]. These discrepancies are most likely
due to factors such as structural imperfec-
tions, adsorption at the crystal surface, and
pore-blocking that can render a large part of
the zeolite inactive. The additional advan-
tage of our simulations is to resolve these
experimental discrepancies since they use
”perfect” crystals and restrict the adsorp-
tion to the zeolite pores.

The resulting force field not only repro-
duces the experimental data from the cal-
ibration set, but also yields an extraor-
dinarily good description of data not in-
cluded in the calibration set. To validate
the reliability of our force field, we com-
pute adsorption isotherms of longer hydro-
carbons (from n-butane to n-decane) com-

pare them with those available from exper-
imental data [64, 68, 71, 72]. We compute
adsorption isotherms of alkanes at several
temperatures in FAU-type zeolites with dif-
ferent Na+ cation densities. It is notewor-
thy that our computed isotherms reproduce
the experimental isotherm shape and also
the experimental saturation capacity of the
validation data set. As an example, Figure
3(a) shows the excellent agreement of the
computed isotherm for n-butane compared
to Thamm et al. [71] at 300K in Na-FAU
with 82 sodium and aluminum atoms per
unit cell. The agreement with experimen-
tal data of Tarek et al. [64] in NaX with 86
sodium and aluminum per unit cell for n-
butane (300K) and n-pentane (333K) is also
remarkable (see Figure 3(a) and 3(b)) and it
becomes outstanding in Figure 3(c) for de-
cane in NaX with 83 sodium and aluminum
atoms per unit cell at 413K.

The adsorption of alkanes is strongly de-
termined by the sodium cations in fauja-
sites. The effect of cations is twofold; 1)
they create additional adsorption sites and
2) they occupy free volume. In cage-like
structures the first effect dominates at low
and intermediate loadings below the ex-
cluded volume effect. For a channel struc-
ture the excluded volume effect is compen-
sated for the adsorption effect at low load-
ing. The effect of cations on FAU-type struc-
tures is therefore much larger than for MFI
[50]. We would like to highlight that both,
sodium density and sodium mobility are es-
sential factors during adsorption of alkanes
in faujasites. Figure B compares the adsorp-
tion isotherms for n-butane, n-pentane, and
n-decane obtained using the new force field
with isotherms in a) FAU without cations
and b) FAU with a fixed cation distribution.
The comparison between isotherms in the
structures with and without cations shows
that the pressure needed to reach a certain
loading in the structure without cations is
up to 3 orders of magnitude higher than the
one needed in the structure with cations.
The second comparison shows that mobil-
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ity of cations is indispensable to reproduce
adsorption of alkanes in sodium faujasites.
Simulations using frozen cations overesti-
mate the adsorption of alkanes at low pres-
sures and underestimate the adsorption of
alkanes at high pressures.

Having established that the force field
reproduces the calibration and validation
data sets extremely well, we can now show
how this force field readily yields informa-
tion on a molecular level that would be ex-
tremely cumbersome to obtain through ex-
perimental studies.

III Applications

A Cation redistribution upon
alkane adsorption

Low occupancies of cations at specific crys-
tallographic locations tend to interfere with
a complete determination of the cation dis-
tribution by crystallographic methods such
as X-ray diffraction. Furthermore, very
small amounts of adsorbates (particularly
water) have a pronounced effect on the lo-
cation of sodium cations. As a first ap-
plication, our force field provides informa-
tion about the cation redistribution upon
alkane adsorption in the sodium forms of
FAU-type zeolites. We used FAU-type ze-
olites with 96 and 58 sodium and alu-
minum atoms per unit cell (FAU-96 and
FAU-58, respectively) at 300K. The study
was carried out in two steps. First we
performed simulations for the adsorbate-
free zeolites to compare the force field for
sodium with available experimental data,
and subsequently we performed simula-
tions with a loading up to 44 molecules
of n-butane per unit cell, i.e. up to ap-
proximately the n-butane saturation load-
ing (loading obtained at 1× 106 Pa).

The sodium cation occupancies obtained
from our simulations for the adsorbate-free
FAU-type zeolites are fully consistent with
the available experimental [11,19,56,73–80]

and simulation data [14,81] as shown in Ta-
ble B. For FAU-96 the simulation results
are in excellent agreement with experiment,
and cations occupy predominantly sites I’,
II, and III’a. For FAU-58 simulations lo-
cate the sodium cations at sites I’, I, and
II. Within experimental error, the match be-
tween simulations and experiments is again
remarkable. These results further corrobo-
rate our force field. Subsequently, n-butane
adsorption was simulated (Table B). The
adsorption of n-butane clearly redistributes
the sodium cations. In FAU-58, n-butane
adsorption enhances the population of sites
II’ and III, and delocalized sites in the su-
percage at the cost of sites I’ and II. In FAU-
96, n-butane adsorption induces a smaller
sodium migration from site I’ to sites I
and III’. Furthermore n-butane adsorption
counteracts the migration of sodium from
site I’ to the supercage as a result of an in-
crease in temperature.

B Adsorption in low-coverage
regime

Henry coefficients and heats of adsorption
of linear alkanes were computed for a wide
range of temperatures and the full range of
aluminum (and sodium) densities. The ob-
tained values were fitted to an empirical ex-
pression that describes the n-alkane Henry
coefficient KH [mol kg−1 Pa−1] as a function
of sodium density NS [cations per unit cell],
the temperature T [K], and the carbon num-
ber CN.

ln KH =
1
T2 [(144.1NS + 27438.4) CN− 49567.3]

+
1
T

[(4.37NS + 432.8) CN + 1111.13]

− (0.00135NS + 0.3716) CN− 17.634

(1)

The temperature derivative of this equation
provides an expression for the adsorption
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58 Na+/uc I I’ II III’a III’b III’c
This work 7.3 15.7 31.6 3.4

Marra et al. [76] 9.3 13.7 25.3 3.5
Grey et al. [75] 4.3 18.9 32

Lim and Grey [74] 3 17 30
Van Dun et al. [80] 7.04 13.76 29.44 3.76

Boutin et al. [81] 6 20 32
Fitch et al. [56] 7.1 18.6 32.2
Jirak et al. [79] 4 17.6 32 1.4

Newsam et al. [78] 10 12 32 4
Eulenberger et al. [79] 8 18.88 30.08 0.04

96 Na+/uc I I’ II III’a III’b III’c
This work 32 32 32

Cheetham et al. [11] 32 32 32
Auerbach et al. [14] 3 29 32 27 5

Boutin et al. [81] 32 32 31 1
Olson [19] 2.9 29.1 31 10.6 8.6 10.6

Zhu and Seff [73] 29.5 35.2 18 10

Table 3: Sodium cation distributions (sodium cations per site per unit cell) in bare sodium fauja-
sites at 10K. Previous simulation data used for comparison are shown in italics.

n-butane loading 58 Na+/uc I I’ II II’ III’a III’b III’c Other
0 5.3 13.7 25.7 2.0 4.2 3.6 1 2.5

0.6 5.0 5.8 17.8 5.1 13.3 4 1.7 5.3
3 5.0 6.0 17.2 5.0 13.3 4 1.6 6
27 5.0 6.0 17.4 5.0 12.5 4.8 1.8 5.5
37 5.0 5.8 19.5 5.1 11.6 5.8 1.9 3.3
42 5.0 6.0 18.3 5.0 12.2 4.8 2.7 4.0
46 5.0 5.6 19.9 5.4 10.7 6.0 2.5 3.0

n-butane loading 96 Na+/uc I I’ II II’ III’a III’b III’c Other
0 4.2 24.8 32 0 33.4 0.9 0.7 0

0.6 0.5 31.1 32 0 27 2.5 2.9 0
3 0.9 30.8 32 0 26.5 2.8 3.0 0
27 2.0 28.6 32 0 26.7 4.0 2.6 0
37 1.8 28.5 32 0 26.6 2.3 2.8 0
42 1.7 29.3 32 0 26.1 3.6 3.3 0
46 1.0 30.5 32 0.1 23.7 5.6 3.0 0.2

Table 4: Sodium cation distributions (sodium cations per site per unit cell) in n-butane loaded
sodium faujasites at 300K. The loading of n-butane is given in molecules per unit cell.
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methane ethane propane n-butane

Na+/uc This
work Others This

work Others This
work Others This

work Others

0 12.2 14.0 [89] 16.6 - 21.1 - 25.6 -
14 12.7 - 17.8 - 23.7 28.1 [66] 27.9 -

48 14.1 17 .8 [31]
15 .5 [32] 20.6 - 27.0 - 34.2 22.5 [40]

52 14.3 15.2 [82] 20.8 21.3 [82] 27.3 27.3 [82] 33.8 33.4 [82]
54 14.3 - 21.1 26.5 [69] 28.3 31.3 [66] 35.2 41.4 [71]
56 14.4 - 21.4 23.6 [90] 28.5 29.6 [90] 34.5 -
57 14.5 - 21.3 - 28.6 28.5 [66] 34.8 -
60 14.6 18.9 [62] 21.5 - 28.5 - 35.0 -
76 15.2 - 22.9 - 30.2 35.0 [66] 35.5 -
82 15.5 18.8 [61] 28.4 25.9 [61] 31.2 - 39.1 46.1 [71]

83 15.6 20.1 [70]
15.2 [28] 23.4 - 31.4 - 39.3 -

86 15.7 19.2 [60]
17.6 [91] 23.6 27.0 [60]

25.1 [91] 31.5 32.4 [64]
31.0 [66] 39.3 39.1 [64]

n-pentane n-hexane n-heptane n-octane

Na+/uc This
work Others This

work Others This
work Others This

work Others

48 41.0 28.9 [40] 47.8 34.8 [40] 54.6 40.4 [40] 61.4 45.2 [40]
52 40.3 39.4 [82] 46.8 45.5 [82] 53.0 51.9 [82] 59.8 57.5 [82]
57 41.9 - 50.1 56.0 [92] 55.6 - 62.4 -

86 47.2 46.6 [64] 55.1 54.1 [64]
56.0 [93] 63.0 61.6 [64]

63.5 [94] 72.0 -

n-nonane n-decane n-undecane n-dodecane

Na+/uc This
work Others This

work Others This
work Others This

work Others

32 60.0 - 67.1 74.0 [72] 71.6 - 77.5 -
48 68.1 56.1 [40] 72.4 - 78.9 - 85.4 -
52 66.3 63.4 [82] 72.8 70.8 [82] 79.3 77.4 [82] 85.8 81.7 [82]
57 69.3 - 78.4 81.6 [72] 83.0 - 89.8 -
83 78.9 - 89.3 91.9 [72] 94.7 - 102.7 -

Table 5: Heats of adsorption of n-alkanes in sodium faujasites. The heats of adsorption are ob-
tained using our empirical expression at the temperatures referred on the experimental works that
we use for comparison. When available, previous simulation data are also included in italics. For
the values without comparison the temperature used is 503K and in all cases heats of adsorption
are given in kJ/mol.
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Figure 4: Henry coefficients of linear alkanes in sodium faujasites at several temperatures obtained
from our empirical expression. In all cases the deviation between our empirical eq. 1 and the
computed results is smaller than the symbol size. Available experimental and simulation sets are
included for comparison [64–66, 68, 82, 90].

enthalpy ∆H0 [kJ/mol]:

− ∆H0 =
2
T

[(144.1NS + 27438.4) CN− 49567.3]

(4.37NS + 432.8) CN + 1111.13

(2)

Figure 4 compares the Henry coefficients
obtained for n-alkanes from this empiri-
cal expression with available experimental
data [64–68, 82]. The calculated heats of ad-
sorption of methane to n-dodecane in fauj-
asite structures are given in Table B. Com-
parison with the large experimental data set
available is also included in the table and
shown as a function of the carbon number
in Figures 5(a) and 5(b), respectively. It is
noteworthy that these data were not part of
the calibration of validation data. The re-
markable quantitative agreement and con-
sistency on low-coverage properties of sim-
ulated and experimental data thus further
corroborates and validates the new force
field.

C Adsorption in high-coverage
regime

The applicability of the force field is by
no means limited to low pressure for it
also reproduces accurately the adsorption
of alkanes at high pressures. The satu-
ration capacities of n-alkanes (methane to
n-hexadecane) were computed for several
Na-faujasites structures. From our sim-
ulations we can conclude that 1) satura-
tion capacities θsat [molecules per unit cell]
are roughly independent on the amount of
sodium non-framework cations and 2) they
can be fit to a second order exponential
decay as a function of the carbon number
(CN):

θsat[molecules/uc] =

144.9e−
CN
1.7 + 50.6e−

CN
9.3 + 2.6

(3)

θsat[molecules/uc] =
θsat[mol/kg]NAVρ[kg/m3]V[m3],

(4)

where NAV is Avogadro’s number, ρ the ze-
olite density, and V the volume of the unit
cell. The saturation capacity [mol kg−1]
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Figure 5: Heat of adsorption of linear alkanes in sodium faujasites obtained from our empirical
expression for (a) NaY zeolites, (b) NaX zeolites. In all cases the deviation between our empirical
eq. 2 and computed results is smaller than the symbol size. Available experimental and simulation
sets are included for comparison [66, 68, 70–72, 82, 90–92, 92–96].
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along with the expression for the Henry co-
efficients (eq. 1) allow the direct estimation
of the adsorption isotherms of linear alka-
nes in sodium faujasites. The above cor-
relations for the Henry coefficient and the
saturation capacity can be used to obtain
rough estimate of the complete adsorption
isotherm, by using the Langmuir isotherm
in the form:

θ =
KHp

1 +
(
KH/θsat

)
p

(5)

Where θ is the loading of alkane in the ze-
olite in mol per kilogram and p is is the
system pressure in Pa. Calculations us-
ing the above expression are in good agree-
ment with the adsorption isotherms ob-
tained from CBMC.

D Simultaneous Adsorption of
more than one component

Of particular interest for the catalytic use
of zeolites is the adsorption selectivity from
mixtures of alkanes. In zeolites with ex-
tremely large pores one would expect that
the alkane with the highest boiling point
adsorbs preferentially. Remarkably, LTA-
[83], FAU- [84], MFI- [85], and BEA-type ze-
olites [86] occasionally prefer absorbing the
n-alkane with the lower boiling point, be-
cause it has a higher packing efficiency (i.e.
a lower adsorption entropy) than the longer
n-alkane with a higher boiling point [9, 84].
Experimental reproduction of the initially
reported entropic preference of NaY for n-
octane instead of n-decane, n-dodecane or
n-tetradecane proved difficult [87] despite
indications that adequate measures were
taken to minimize intrusion from variations
in sample preparation [88]. Recent experi-
ments established that NaY does prefer ad-
sorbing the shorter, lower boiling alkane
from a mixture n-heptane and n-nonane at
high pressure. Simulations using the best
force field available at the time [50] cor-
roborate the experiments in that they show

a change in preference from n-nonane to
n-heptane at sufficiently high pressure [9].
However, the cross-over pressure is signif-
icantly higher than observed experimen-
tally. In marked contrast, repeating the sim-
ulations with the force field for sodium dis-
cussed in the current paper the cross-over
pressure yields nearly quantitative agree-
ment (Figure 6). This is notable, for it illus-
trates the successful application of the force
field to systems very different from the cal-
ibration data. In agreement with recent ex-
periments, the force field does not repro-
duce the preference of NaY for n-octane in-
stead of n-decane or n-dodecane reported
in the 1970-ies (Table B). It does qualita-
tively corroborate a preference for adsorb-
ing n-octane instead of n-tetradecane (Table
B). Without further experimental work it is
difficult to fathom why the first report on
adsorption entropy effects with FAU-type
zeolites is not fully consistent with present-
day research.

IV Conclusions

We have developed and validated a united
atom force field for alkanes in the sodium
form of FAU- type zeolites that explicitly
distinguishes Si and Al atoms through the
different type of framework oxygen atoms
and that accounts for the density, mobil-
ity, and interactions with the adsorbate
of the non-framework cation. The force
field reproduces accurately the sodium po-
sitions in dehydrated FAU-type zeolites
known from crystallography and the avail-
able experimental adsorption properties of
n-alkanes in faujasites over a wide range of
sodium cation densities, temperatures, and
pressures.

The applicability of this force field is
manifold since it has been fitted in such a
way that it is not limited to low pressure
and pure adsorbents, for it also successfully
reproduces the adsorption of binary mix-
tures at high pressure. Firstly the force field
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is suitable to predict sodium cation redis-
tribution when n-alkanes adsorb showing
that cations in the sodalite cages are signif-
icantly more sensitive to the n-alkane load-
ing than those in the supercages. Secondly,
the force field is also suitability to predict
adsorption properties in the low pressure
regime. From the resulting simulation data
we have obtained a simple empirical ex-
pression that describes the n-alkane Henry
coefficient and adsorption enthalpy as a
function of sodium density and tempera-
ture at low coverage affording an adequate
substitute for complex configurational-bias
Monte Carlo simulations.
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An extension to Transition State Theory is presented that is capable
of computing quantitatively the diffusivity of adsorbed molecules in
confined systems at non-zero loading. This extention to traditional
Transition State Theory yields a diffusivity in excellent agreement
with that obtained by conventional Molecular Dynamics simulations.
While Molecular Dynamics calculations are limited to relatively fast
diffusing molecules or small rigid molecules, our approach extends
the range of accessible times scales significantly beyond currently
available methods. It is applicable in any system containing free
energy barriers and for any type of guest molecule.

E. Beerdsen, B. Smit, and D. Dubbeldam 9
Molecular Simulation of Loading

Dependent Slow Diffusion in Confined
Systems

The adsorption and diffusion of
molecules in confined systems is of
great importance to many industrial pro-
cesses such as the separation of linear and
branched alkanes. The performance of
confinements in separation and catalytic
processes depends critically on the match
between the confinement and the shape and
size of the adsorbate [1]. Because diffusion
is the rate limiting factor in many catalytic
processes, diffusion in systems like zeolites
has been widely studied [2–9]. However, in
contrast to adsorption and separation, the
diffusion of molecules in tight confinement
is not yet well understood.

One of the difficulties encountered when
studying diffusion behavior is that many
processes occur outside the timescale acces-
sible to Molecular Dynamics (MD), which is
typically limited to diffusion rates in the or-
der of 10−12 m2/s. To overcome this, some
studies have used dynamically corrected
Transition State Theory (dcTST) methods
[10–13]. Hitherto, studies were limited to

the infinite dilution limit, whereas many of
the processes of practical importance occur
at non-zero loading. Coarse-grained kinetic
Monte Carlo (kMC) studies have pointed
at the difficulties in taking into account the
various correlations induced by particle-
particle interactions [11,14]. In this letter we
resolve this problem by extending dcTST to
include diffusion of molecules at non-zero
loading. We show that these correlations
can be taken into account by a proper defi-
nition of an effective hopping rate of a sin-
gle particle. This hopping rate can be com-
puted accurately using rare event simula-
tion techniques at the conditions of interest.

A suitable and well-studied system to
study diffusion in confinement is the LTA-
type zeolite shown in Fig. 1. The sys-
tem consists of cubically arranged cages of
about 10 Å in size, where each cage has
fifteen and twelve distinct adsorption sites
for methane and ethane, respectively. The
cages are connected by narrow windows
that form large free energy barriers. For

Page 163 of 256



Figure 1: (color online) (top) A unit cell of the LTA-type zeolite. The dimensions of the cubic unit
cell are 24.555 Å. It contains 8 cages connected in a cubic arrangement and each cage is connected
to six other cages, by windows of about 5 Å in diameter. (bottom) Typical snapshot of ethane
(CH3 − CH3) at an average loading of 4 molecules per cage at 750K, constraining one tagged
molecule at the dividing surface q∗. The hopping events are coarse-grained on a lattice spanned by
the cage-centers.

small molecules, the positions in the win-
dows regions are favorable adsorption sites,
and the windows form entropic, not energetic
barriers. An advantage of this system is
that studying diffusion of small molecules
with MD is still feasible, and this allows
a detailed comparison with our new ap-
proach. In this system, diffusion can be con-
sidered an activated process, in which the
particle hops from one cage to the next, and
the actual crossing time is negligible com-
pared to the time a particle spends inside
the cage. One can exploit the large sepa-
ration in time scales using rare-event sim-
ulation techniques. We consider a system
which can be in two stable states, A and
B with a dividing free energy barrier be-
tween them. We define a reaction coordi-
nate q, that indicates the progress of the dif-
fusion event from cage A to cage B, as the
Cartesian coordinate along the axis paral-
lel to the line connecting the center points
of A and B. The location of the dividing
barrier is denoted by q∗ (see Fig. 1). In

the Bennett-Chandler approach [15–17] one
computes the hopping rate over the bar-
rier in two steps. First, the relative prob-
ability P(q∗) is computed to find a parti-
cle on top of the barrier, given that it is in
state A, and subsequently the averaged ve-
locity at the top of the barrier

√
kBT/2πm

(assuming that the particle velocities follow
a Maxwell-Boltzmann distribution) and the
probability κ that the system ends up in
state B. The transmission rate kA→B from
cage A to cage B is then given by

kA→B = κ×
√

kBT
2πm

× P(q∗) (1)

with

P(q∗) =
e−βF(q∗)R

cage A
e−βF(q) dq

, (2)

where β = 1/ (kBT), kB is the Boltzmann
constant, T the temperature, m the mass in-
volved in the reaction coordinate, and F(q)
the free energy as a function of q. In first
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order approximation, TST assumes that all
particles that reach the barrier with a veloc-
ity towards B do end up in B, i.e. κ = 1.

In dynamically corrected TST (dcTST),
the transmission coefficient κ corrects for
recrossing events, i.e. it corrects for trajec-
tories which cross the transition state from
A but fail to end up in B. In general, the
reaction coordinate q is a function of the
configuration of the whole system, i.e. q =
q(r1, . . . , rN). However, we can choose q as
the position of one of the atoms of the dif-
fusing molecules [13]. This choice of order
parameter underestimates the free energy
of the true transition state, but the dynami-
cal correction κ is the exact correction com-
pensating our choice of reaction coordinate
[16]. The recrossings are fast events and can
be computed using MD as the fraction of
particles coming from the initial state A that
successfully reaches the final state B out of
those that cross the dividing surface at t = 0.
The transmission coefficient reaches a clear
plateau value as a function of time, indi-
cating all short time scale recrossings have
been eliminated.

In the limit of infinite dilution there are
no interparticle correlations and the parti-
cles perform a random walk on a lattice
spanned by the cage-centers. The transmis-
sion rates are then easily converted to self-
diffusion coefficients by:

DS = kA→Bλ
2 =

1
6

kλ2, (3)

with λ the center-to-center lattice distance
of the LTA cages (12.2775 Å). Because we
calculate the hopping rate from A to B in
one direction only, kA→B = 1/6 k.

The extension of dcTST to finite loading
is nontrivial. Conventional methods use a
hierarchical approach to compute elemen-
tary hopping rates for use in a subsequent
kMC scheme to obtain self and collective
diffusion coefficients [2, 3, 10, 14, 18]. Let
us consider the class of window/cage-type
systems (e.g. methane in LTA) where the
barriers are entropical in nature. At nonzero

loading a molecule hopping from A to B in-
duces a vacancy. The vacancy induces an
increased probability of particles to hop to
cage A. These correlated jumps may signif-
icantly influence the hopping process and
should be included in order to obtain a cor-
rect diffusion coefficient. In a kMC simu-
lation, the surrounding particles remain in
their fixed positions (no two jumps can oc-
cur at the same time) and thus these corre-
lations are suppressed. We are not aware of
a scheme that results in effective kMC hop-
ping rates that regain these correlations.

We take a different view-point on com-
puting diffusivities in such systems. The
correlations can be taken into account by
a proper definition of an effective hopping
rate of a single particle. We compute the
self-diffusion coefficient directly. This is
done by computing the hopping rate of a
molecule over a typical length-scale λ given
by the smallest repeating zeolite-structure
(i.e. from the center of cage A to the cen-
ter of cage B, implicitly integrating over
all adsorption sites in the cage, irrespec-
tive of whether these are well-defined or
not). The other particles are regarded as
a contribution to the external field exerted
on the tagged particle. Since we look at a
single tagged particle, the diffusion coeffi-
cient can still be computed from the hop-
ping rate by using Eq. 3 at any loading, ren-
dering it unnecessary to perform N-particle
kMC simulations. Now, kA→B is the effec-
tive hopping rate, including all jump corre-
lations and averaged over all orientations
and loading fluctuations. The external field
is maintained by an MC NVT simulation
(fixed total number of particles, volume,
and temperature) in the ’background’. By
using an MC approach that includes trans-
lational, orientational, and regrow moves,
we automatically average over cage dis-
tributions, positions, and orientations of
neighboring molecules. To speed up these
simulations for longer molecules by sev-
eral orders of magnitude, these techniques
can be combined with configurational bias
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Figure 2: (color online) (top left) Free energy
profiles of methane in LTA at 600K for vari-
ous loadings, obtained using the HS method,
(top right) Details from free energy profiles for
8 molecules per cage, using different environ-
ments (bottom) DHS

S , DWPI
S , and DS (left axis)

and transmission coefficients (right axis) as a
function of loading.

Monte Carlo (CBMC) [17].
The proposed method relies on the direct

inclusion of all interparticle correlations in
the effective hopping rate of a particle trav-
eling from cage A to cage B. In our cal-
culations, we have observed that to ob-
tain agreement with MD results, one can-
not limit the free energy calculation to the
two cages A and B for which the hop-
ping is computed. It is essential to average
over fluctuations in the number of particles
in the neighboring cages. By ’closing off’
cages, the system is intrusively changed.
Fig. 2(top right) compares the correct free

energy (very large simulation box with on
average 8 molecules per cage), with approx-
imations by simulating a fixed number of 8
particles in cage A only, A and B only and
simulations with a fixed number of exactly
8 particles in each cage. These small differ-
ences in the free energies result in diffusion
coefficients that deviate up to 60%. If we
surround cage A with one shell of neighbor-
ing cages, we obtain results that are identi-
cal to those obtained in the very large sys-
tem. Inclusion of a second ring of cages is
not necessary, as jump correlations over dis-
tances larger than two cages vanish. A sim-
ilar influence is observed in the calculation
of the transmission coefficient. Successful
hopping events may induce a chain of hops
of other particles, and this can influence the
transmission coefficient. Only at low load-
ings we obtain agreement with MD.

We now discuss the two steps in the com-
putation of the hopping rate using our ap-
proach in detail.

The probability P(q) During an NVT-
ensemble MC simulation at the required
loading we measure the free energy F(q)
by using either the Widom Particle Inser-
tion (WPI) method or Histogram Sampling
(HS). WPI uses a probe particle that is in-
serted at random positions, to measure the
energy required for or obtained by insertion
of the particle in the system. This energy is
mapped onto the reaction coordinate q, us-
ing βF(q) =− ln

〈
e−β∆U

〉
N, to produce a free

energy profile, where
〈
e−β∆U

〉
N is the aver-

age Boltzmann factor over all positions in
the slice perpendicular to the reaction co-
ordinate. A ”ghost particle” is used as the
measuring probe, but the other particles in
the system do not feel its presence. In the
HS method, a histogram is made of the par-
ticle positions, mapped on the reaction co-
ordinate. From the histogram a free en-
ergy profile is computed, by using βF(q) =
− ln 〈P(q)〉. If needed, statistics can be im-
proved by using importance sampling [17].
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At higher loadings, WPI is known to give
erroneous results [17]. In Fig. 2(top left)
we have plotted the free energy profiles as
obtained from the HS method, for various
loadings, and in Fig. 2(bottom) the DHS

S and
DWPI

S as a function of loading. At loadings
as low as 6 methane molecules per cage the
WPI method starts to deviate.

The transmission coefficient κ We com-
pute the fraction of particles starting on top
of the barrier with a velocity towards B that
successfully reach cage B. Starting config-
urations are generated using MC with one
particle constrained to the dividing surface
and N − 1 particles moving around freely
(see Fig. 1 (right)). These configurations
are then used to compute the ratio in un-
constrained NVT-MD simulations, starting
with velocities sampled from a Maxwell-
Boltzmann distribution at the desired tem-
perature. For this snapshot cage B con-
tains more molecules than cage A, and the
barrier-molecule has a high probability of
recrossing to cage A. In general, the trans-
mission coefficient is much lower than one
for chain molecules (even at infinite dilu-
tion). Note that during the computation
none of the windows are blocked and si-
multaneous jumps (e.g. from cage C to cage
A, and cage D to cage B) are allowed.

Fig. 2(bottom) shows the individual
components of the diffusion process,√

kBT/2πm × P(q∗) and κ as a function of
loading for methane in LTA. Although the
transmission coefficient shows a mono-
tonic decrease with density, the diffusion
coefficient goes through a maximum. The
driving force behind the initial increase in
diffusion is a loss of guest-host attraction
inside the cages. This interaction is being
replaced by less favorable inter-particle
interaction, causing an increase of the free
energy in the cage regions and thus a net
decrease of the free energy barrier (Fig.
2(bottom)). Eventually, the free energy
barrier increases again, due to packing and

free-volume effects, causing a decrease of
the diffusion coefficient. While the trans-
mission coefficient only slightly changes
the qualitative behavior of the diffusion
as a function of loading, it has a profound
quantitative influence (Fig. 2(bottom)).
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Figure 3: (color online) Diffusion of methane,
ethane and propane in LTA, as a function of
loading, at 600K, 750K and 600K respectively,
computed by extended dcTST (HS method) and
MD.

To validate our method, we show the
diffusion in LTA of methane at 600K and
ethane at 750K using both MD and ex-
tended dcTST. In addition we show the
diffusion of propane at 600K, using only
dcTST, for which the diffusion is too slow
to compute with MD. The LTA-type sys-
tem used here is a cation-free version of the
commonly used LTA 5A zeolite (4 Na+ and
4 Ca+ per cage). The system size was a cu-
bic box of 24.555 Å, containing 8 cages in
total. We used a united-atom model [19],
in which we consider CHx groups as sin-
gle interaction centers with their own ef-
fective Lennard-Jones potentials. We used
the position of the CH4-group, one of the
CH3-groups and the middle CH2-group as
the dcTST reaction coordinate for methane,
ethane and propane, respectively [13]. The
interactions between the rigid framework
and the guest molecules are assumed to be
dominated by the oxygen atoms [20]. The
potential parameters are optimized to re-
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produce adsorption properties in pure sil-
ica confinements [21, 22]. In the MD sim-
ulations we used a time step of 0.5 fs
with the velocity-verlet integration scheme.
The NVT ensemble was imposed using a
Nose-Hoover thermostat. The duration of
the computation was such that the error
bars are smaller than the symbol size. As
is shown in Fig. 3, our extended dcTST
method and MD agree quantitatively. The
presented methodology provides a general
framework for computing diffusivities of
molecules in systems where diffusion is suf-
ficiently slow, due to free energy barriers, ir-
respective of whether these are energetical
or entropical in nature. Longer molecules
are efficiently handled and likewise, diffu-
sion in mixtures can easily be computed;
any type of particle can be considered part
of the external field. A quantitative com-
parison with PGF-NMR experimental re-
sults requires including the ions in the sim-
ulations. Beerdsen et al. have extended
the united-atom model with cations [23],
and our dcTST method already includes the
necessary tools.

In summary, our method applies dcTST
at non-zero loadings without introducing
assumptions not already present in tradi-
tional TST methods. It can be used to ex-
plain diffusion behavior as a function of
loading in any system with enough energy
dissipation between hops, so that random
walk theory (the assumption of equilibra-
tion between two subsequent jumps) and
TST are valid, as we show here for alkanes
in LTA. The method gives results in excel-
lent agreement with MD, but is also appli-
cable in the regime of very slow diffusion
where MD can not be used. This extends
the range of accessible time scales signifi-
cantly beyond currently available methods.
Furthermore, the method enables us to ex-
press loading effects in terms of free energy
differences.
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A dynamically corrected Transition State Theory method is
presented that is capable of computing quantitatively the
self-diffusivity of adsorbed molecules in confined systems at
non-zero loading. This extention to traditional Transition State
Theory is free of additional assumptions and yields a diffusivity
identical to that obtained by conventional Molecular Dynamics
simulations. While Molecular Dynamics calculations are limited
to relatively fast diffusing molecules, our approach extends the
range of accessible times scales significantly beyond currently
available methods. We show results for methane, ethane, and
propane in LTL- and LTA-type zeolites over a wide range of
temperatures and loadings, and demonstrate the extensibility of
the method to mixtures.

D. Dubbeldam, E. Beerdsen, T. J. H. Vlugt, and B. Smit 10
Molecular Simulation of Loading

Dependent Diffusion in Nanoporous
Materials using Extended Dynamically

Corrected Transition State Theory

I Introduction

Molecular simulation [1, 2] has evolved
over the years as a powerful tool to study
equilibrium and transport properties of
molecules adsorbed in nanoporous materi-
als. It provides an understanding of the mi-
croscopic dynamics underlying the macro-
scopic properties of industrial interest such
as for instance the separation of mixtures
of molecules [3]. The use of zeolites as
a means for chemically clean separations
can be considered a prime example of how
nanomaterials are able to exploit the criti-
cal match between the confinement and the
shape and size of the adsorbate. One of the
difficulties encountered when studying dif-
fusion behavior in zeolites using simulation
is that many processes occur outside the

time scale accessible to MD, which is cur-
rently typically limited to diffusion rates in
the order of 10−12 m2/s.

New methods have been developed for
circumventing this time scale problem [4].
Systems characterized by a sequence of
rare events can be described by Transi-
tion State Theory (TST) methods like the
Bennett-Chandler approach [5, 6], the Ruiz-
Montero method [7], path sampling [8],
transition interface sampling [9, 10], hy-
perdynamics [11], parallel replica dynam-
ics [12], temperature-accelerated dynamics
[13], and on-the-fly kinetic Monte Carlo
[14]. In principle, all of these methods
have the potential to be orders of mag-
nitude more efficient while still retaining
full atomistic detail. In TST approxima-
tions one computes a rate constant between
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states A and B by computing the equilib-
rium particle flux through the dividing sur-
face. The dividing surface should uniquely
divide two connected states, and in general
the TST rate is an upper bound on the ex-
act rate. The exact rate can be recovered by
running short MD trajectories from the di-
viding surface to compute a dynamical cor-
rection (dc) [1].

Many groups have worked on the time
scale problem for diffusion in confinement.
The approach of June et al. [15] mod-
els self-diffusion of Xenon and SF6 in sil-
icalite at infinite dilution as a series of
uncorrelated jumps between potential en-
ergy minima (sites). The rate constants for
jumping between the sites are converted
to diffusivities by generating continuous-
time/discrete-space Monte-Carlo random
walks. The computed diffusivities were
reasonably close to the values computed us-
ing conventional MD. Snurr et al. [16] de-
veloped a hierarchical approach for predict-
ing isotherms of benzene in silicalite. The
method can be applied to other systems
when molecules adsorb at well-defined
sites. In a subsequent paper, Snurr et
al. [17] investigated the dynamical behav-
ior of benzene using TST. Diffusion paths
connecting pairs of potential energy min-
ima are constructed through saddle points
(transition states). Given the rate constants,
the self-diffusivity was computed with a ki-
netic Monte-Carlo simulation. Maginn et
al. [18] presented a hierarchical approach
for simulating the diffusion of n-alkanes up
to C20 in silicalite using modest computa-
tional resources. The simulation strategy
utilized concepts from Brownian motion
theory and transition state theory. Jousse
and Auerbach [19] used TST to compute
exact rate coefficients for benzene jumps
in Na-Y zeolite. Forester and Smith [20]
used constrained reaction coordinate dy-
namics (Bluemoon ensemble) to character-
ize the free energy profile of benzene in
silicalite-1 at 300K along the mean reaction
path for diffusion. The free energies, com-

bined with estimates of the transmission co-
efficient, were used to obtain rate constants
for diffusion between the main adsorption
sites. Subsequent diffusive Monte Carlo
simulations provided the self-diffusion co-
efficients. Mossel et al. [21, 22] studied
the diffusion of benzene and p-xylene in
zeolite NaY by means of constrained re-
action coordinate dynamics. MD simula-
tions were used to determine the potential
of mean force along the coordinate perpen-
dicular to the window connecting two su-
percages of the zeolite. Diffusion coeffi-
cients and activation energies were deter-
mined from a hopping model that consid-
ers dynamical corrections. Ghorai et al.
[23] estimated the rate of passage of CCl4

through the 8-ring window in a model of
zeolite A by combining a direct evaluation
of the free energy profile and an adaptation
of the rare events method. The system con-
tains on average one particle per cage, and
because particle-particle interactions rarely
occur under this condition the free energy
is evaluated from the one-particle partition
function. The self-diffusion of ethane in
cation-free LTA-type zeolite has been stud-
ied by Schüring et al. [24] using MD and
TST (without dynamical correction) for var-
ious temperatures. The bare TST jump rates
were similar to the MD jump rates (where
also the MD results were not corrected for
short-time recrossings). Dubbeldam et al.
[25,26] applied dynamically corrected Tran-
sition State Theory (dcTST) to study ab-
normal diffusion of linear alkane molecules
(C1-C20) in ERI-, CHA-, and LTA-type zeo-
lites at infinite dilution. The exceptionally
slow diffusion rates required the combina-
tion of rare-event TST techniques with the
configurational-bias Monte Carlo (CBMC)
algorithm [1, 27]. The diffusivities were
evaluated on a lattice spanned by the cage-
centers.

It is important to note that these works
have been performed at infinite dilution,
eventhough many of the processes of in-
dustrial importance occur at non-zero load-
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ing. A limited number of studies deal with
non-zero loading. Tunca and Ford [28]
used multidimensional TST to obtain the
hopping rate of adsorbates from an α-cage
in LTA-type zeolite as a function of load-
ing. Various approximations were applied
to make the simulations computationally
feasible. In a subsequent study [29] the lim-
itations of an empty receiving cage and the
use of the Widom insertion method were
avoided. Recently, Tunca and Ford pre-
sented a new hierarchical approach to the
molecular modeling of diffusion and ad-
sorption at nonzero loading in microporous
materials [30]. Although adsorption was
well represented, the coarse-grained self-
diffusivity data under-predicted the diffu-
sivity at low loading, while significantly
over-predicting the diffusivities at higher
loadings, in comparison to conventional
MD.

Coarse-grained kinetic Monte Carlo
(kMC) studies have pointed at the dif-
ficulties of computing an elementary
hopping rate taking into account the
various correlations induced by particle-
particle interactions [30, 31]. Very recently,
Beerdsen et al. [32] extended the dcTST
Bennett-Chandler approach to include
diffusion of molecules at non-zero loading.
It was shown that the particle-particle
correlations can be taken into account by a
proper definition of an effective hopping
rate of a single particle. The self-diffusivity
was computed directly by computing the
hopping rate of a molecule over a typical
length scale given by the smallest repeating
zeolite-structure, i.e. from the center of
cage A to the center of cage B. The use of
kinetic Monte Carlo and its underlying
assumptions are therefore avoided. Implic-
itly one integrates over all adsorption sites
in the cage, irrespective whether these are
well-defined or not. All other particles are
regarded as a contribution to the external
field exerted on this tagged particle. The
dcTST extension to finite loadings yielded
excellent agreement with that obtained

by conventional MD simulations and is
applicable in any system containing high
free energy barriers and for any type of
guest molecule. In this work, we elaborate
on the concepts introduced by Beerdsen et
al., and show results for methane, ethane,
and propane in LTL-, and LTA-type zeolites
over a wide range of temperatures and
loadings.

The remainder of the paper is organized
as follows. In section II we explain the
used methods and concepts. First the force
field is described, and we present shortly
the canonical MD algorithm focusing on
maintaining temperature control and ob-
taining diffusion coefficients. Next we dis-
cuss some concepts from random walk the-
ory, e.g. jump rates and memory effects.
We show that TST is fully compatible and
consistent with random walk theory and
present our dcTST at nonzero loading. Sec-
tion III starts with results on the infinite di-
lution case. Two different sets of parame-
ters from literature are used and the differ-
ence indicates that the physics of adsorp-
tion and diffusion in zeolites is often highly
parameter dependent. The main emphasis
of the paper lies on the diffusivity results of
methane, ethane, and propane in LTL- and
LTA-type zeolites using dcTST compared to
MD as a function of loading. For LTA-type
zeolite we present additional results of a
mixture of methane and ethane. We end
with a general discussion on lattices, corre-
lations, and dcTST in section IV, and con-
clusions in section V.

II Methodology

A Force field parameters for ad-
sorption and diffusion of alka-
nes in siliceous nanoporous
materials

Zeolites are confined systems with pore
sizes comparable to the molecular size.
Adsorption in cation-free zeolite structures
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usually takes place at specific sites with
little or no electric field. For this reason
the united-atom model [33] seems the most
straightforward choice. We consider the
CHx groups as single, chargeless interac-
tion centers with their own effective po-
tentials. The beads in the chain are con-
nected by harmonic bonding potentials. A
harmonic cosine bending potential mod-
els the bond bending between three neigh-
boring beads. The Lennard-Jones poten-
tials are shifted and cut at 12 Å. Analyti-
cal tail-corrections do not apply in zeolites
[34]. A truncated and shifted potential is
equally suitable to Monte Carlo and Molec-
ular Dynamics. Flexibility of the frame-
work is not an issue for adsorption of lin-
ear and branched alkanes [35]. For methane
in LTA-type zeolite it was found that self-
diffusion coefficients obtained with flexible
and with rigid lattices are practically the
same [36] (in the discussion section we will
further comment on this). The interactions
between the rigid framework and the guest
molecules are assumed to be dominated by
the oxygen atoms [37]. The interaction pa-
rameters of alkanes listed in Table 1 for use
in molecular simulations of confined sys-
tems are obtained uniquely and accurately
through fitting on experimental isotherms
with inflection points [38, 39]. Recently, it
was shown that these parameters also give
near-quantitative agreement for collective
and transport diffusivity for ethane in sil-
icalite compared to neutron scattering ex-
periments [40]. Details on the simulations
can be found in Refs. [38, 41].

The parameters listed in Table 2 are used
mainly for simulation comparison to the
work of Schüring et al. [24, 42], and be-
cause the very small size parameters en-
hance diffusion by two orders of magnitude
for ethane in LTA-type zeolite compared to
the parameters of Dubbeldam et al. Al-
though the parameters of Schüring et al. are
probably less realistic in our opinion, they
are convenient to compare the diffusion of
ethane from a simulation-method point of

O CH4 CH3 CH2

CH4
115.00

3.47
158.50

3.72
130.84

3.74
94.21

3.84

CH3
93.00

3.48
130.84

3.74
108.00

3.76
77.77

3.86

CH2
60.50

3.58
94.21

3.84
77.77

3.86
56.00

3.96
bond Ubond = 1

2 k1(r− r0)2

k1/kB = 96500 K/Å2, r0 = 1.54 Å
bend Ubend = 1

2 k2(cos θ− cos θ0)2

k2/kB = 62500 K, θ0 = 114◦

Table 1: Force field of Dubbeldam et al. [38,39]
for guest-host and guest-guest interactions of
hydrocarbons in cation-free nanoporous materi-
als. Lennard-Jones parameters, ε/kB [K] in top-
left corner, σ [Å] in bottom-right corner of each
field, bond and bend parameters

view by MD and dcTST in LTA-type zeolite.

O Si CH3

CH3
142

3.17
82
2.12

104
3.78

bond Ubond = 1
2 k1(r− r0)2

k1/kB = 96500 K/Å2, r0 = 1.54 Å

Table 2: Force field parameters used by
Schüring et al. for ethane in LTA-type zeolite
[24], for guest-host and guest-guest interactions
of hydrocarbons in cation-free nanoporous ma-
terials. Lennard-Jones parameters, ε/kB [K] in
top-left corner, σ [Å] in bottom-right corner of
each field, bond and bend parameters

B Molecular Dynamics (MD)

In MD simulations [1, 2, 43], successive
configurations of the system are generated
by integrating Newton’s laws of motion,
which then yields a trajectory that describes
the positions, velocities and accelerations of
the particles as they vary with time. The
self-diffusion coefficients Dα

S in the direc-
tion α = x, y, z are computed by taking the
slope of the mean-squared displacement

Page 174 of 256



(msd) at long times

Dα
S =

1
2N

lim
t→∞

d
d t

〈
N

∑
i=1

(riα (t)− riα (0))2

〉
(1)

where N is the number of molecules, t the
time, and riα the α-component of the center-
of-mass of molecule i. Equivalently, Dα is
given by the time integral of the velocity au-
tocorrelation function

Dα
S =

1
N

Z ∞

0

〈
N

∑
i=1

viα(t)viα(0)

〉
dt (2)

where viα is the α-component of the center-
of-mass-velocity of molecule i. A sepa-
ration of time scales occurs for interact-
ing particles roughly at the times between
particle-particle and particle-zeolite colli-
sions. The mean-squared displacement
thus bends over to attain a different slope,
and we are interested in the long-time dif-
fusion coefficient. The collective diffusion
coefficients Dα

C are given by

Dα
C =

1
2N

lim
t→∞

d
d t

〈(
N

∑
i=1

(riα (t)− riα (0))

)2〉
(3)

and

Dα
C =

1
N

Z ∞

0

〈(
N

∑
i=1

viα(t)

)(
N

∑
i=1

viα(0)

)〉
dt

(4)
Collective diffusivity measures the trans-
port of mass and the decay of density fluc-
tuations in the system, while self-diffusion
measures the diffusive motion of a single
particle. The directionally averaged diffu-
sion coefficient is given by

D =
Dx + Dy + Dz

3
(5)

Note that in simple fluids there is
only a time scale separation for the self-
motion, not for the collective motion. In
nanoporous materials, both the displace-
ments of the single particles as well as the

displacements of the total center of mass are
restricted by the confinement and the time
scale separation is also present in collective
diffusion. This is very much related to the
diffusion of polymers in melts where sim-
ilar time scale separations occur [44]. In
Fig. 1 we show the mean-squared displace-
ments of the self-and collective motions at
300K of methane in LTA-type zeolite at an
average loading of 8 molecules per cage.
Several regimes can be identified for this
system,

1. At very short time scales both the self
and collective motion are ballistic, and
the msd is proportional to t2.

2. While initially the same, the msd of
self-motion is lowered in comparison
to the collective motion due to back-
correlation mechanisms that also occur
in simple fluids. The onset of regime II
is signaling the average mean free time
before particles collide.

3. Regime three is dominated by a
confinement-effect and particles have
not yet been able, on average, to hop
to the next confinement. The msd of
single particles is restricted to approx-
imately the cage size squared, but re-
sults in cancellation for the collective
behavior. The msd of self-motion is
therefore higher than for collective mo-
tion.

4. With increasing times the particles are
increasingly able to leave the confine-
ment, and both self-and collective mo-
tion increase eventually to a linear dif-
fusive regime IV. Here, particles origi-
nating from different cages start to col-
lide, and self-motion is again lowered
in comparison with collective motion.
For collective motion the onset of this
hydrodynamical regime is a combined
effect of confinement and the time par-
ticles start to leave the cage (because
here, a change in the collective motion
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Figure 1: Mean-squared displacement of self-
diffusivity DS and collective diffusivity DC for
methane in LTA-type zeolite at 300K at an av-
erage loading of 8 molecules per cage. We can
identify four distinct regimes (see text). For
reference, we show

(
1
2λ
)2 and λ2, with λ =

12.2775 Å the cage-center to cage-center lattice
distance. The dotted lines are of slope unity and
indicate normal diffusive behavior.

can only be accomplished by cage-to-
cage hops of single particles). The on-
set for self-motion for cage/window-
type systems is the cage-size squared,
i.e. the average time for a particle to
leave a cage.

The calculation of the diffusion coeffi-
cients requires much memory and CPU
power, especially when fluctuations decay
slowly. The order-n algorithm to mea-
sure correlations allows us to measure fast
and slow dynamics simultaneously at mini-
mal computational cost by using adjustable
sampling frequencies [1]. The order-n
scheme is equally accurate as the conven-
tional scheme but the saving in memory
as well as CPU time is significant for com-
puting the mean-squared displacements at
long times.

In a conventional NVE Molecular Dy-
namics simulation, the total energy E, the
number of particles N, and the volume
V are constant. Hence, MD measures
(time) averages in the microcanonical en-
semble, while in a conventional Monte-

Carlo simulation the canonical ensemble
(NVT-ensemble) is probed. The extended
Lagrangian approach has become one of the
most important tricks for MD in the NVT
ensemble and is completely dynamic in ori-
gin. The Nosé-Hoover Chain (NHC) for-
mulation extends the Lagrangian with ad-
ditional coordinates and velocities contain-
ing the system to a constant temperature
NVT-ensemble. We use the NHC method
as implemented by Martyna et al. [45] in
which the dynamics is still reversible. The
instantaneous kinetic temperature fluctu-
ates, but the probability to find the system
in a given energy state follows the Maxwell-
Boltzmann distribution.

For the instantaneous temperature we
measure the total kinetic energy of the sys-
tem and divide this by the number of de-
grees of freedom N f (= 3N− 3 for a system
of N particles with fixed total momentum)

kBT (t) =
N

∑
i=1

miv2
i (t)

N f
(6)

The disadvantage of most methods for
working at constant temperature is that the
dynamics is changed in an artificial way.
Because in our simulations we do not have
photons or electrons, i.e. the system is me-
chanical, heat is transported at the speed of
sound or slower. However, most thermo-
stat methods have a coupling constant, i.e.
the mass of the NHC, and the effect of the
thermostat on the particle is instantaneous.
The NHC mass should therefore be chosen
as small possible to alter the dynamics as
little as possible. If this is taken care of, the
non-physical effects will be of order (1/N)
in general.

Fig. 2 shows the importance of adequate
temperature control. Ideally, a flexible ze-
olite would provide excellent thermostat-
ting of adsorbed molecules. However, for
computational reasons many authors keep
the framework rigid, and the thermostat-
ting issue arises. In the NVE-ensemble
the particles do not exchange energy with
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Figure 2: Self-diffusion of ethane at infinite
dilution in LTA-type silica using the parame-
ter sets of Schüring et al. The infinite dilution
case using MD is simulated by switching the
ethane intermolecular forces off, i.e. the particles
do not interact (except through the thermostat
in NHC-NVT simulations).

the heat bath and thermalization occurs
through mutual interactions between the
adsorbates. Moreover, rather unphysical
ballistic motion may occur, and particles
may be stuck in local free energy barriers.
The non-physical effects of the NHC ther-
mostat using a single molecule are clearly
present in both MD and dcTST. We note
that at high temperatures the thermostat ef-
fects are small, but they become significant
at very low temperatures. This implies that
single particle diffusion coefficients or cor-
relations should be computed in the NVE-
ensemble, unless a sufficient number of par-
ticles is used. At infinite dilution this can be
accomplished by switching the intermolec-
ular forces off, i.e. the particles do not inter-
act except through the thermostat in NVT
NHC simulations. However, even if this
taken care of, the NHC method is only ca-
pable of maintaining adequate temperature
control in equilibrium, and therefore breaks
down in the limit of high potential energy
barriers [46]. Entropical barriers (e.g. due to
constrictions and apertures in zeolite cages
and channels) represent no problem.

To prepare the system at the desired tem-
perature in an equilibrium configuration

we initialize the system by the following
procedure

• N molecules are inserted into the
framework at random positions as long
as no overlaps occur with the frame-
work or other particles, and as long
as the positions are accessible from the
main cages and channels.

• During the initializing period we per-
form an NVT MC simulation to rapidly
achieve an equilibrium molecular ar-
rangement.

• After the initialization step, we as-
sign all the atoms velocities from the
Maxwell-Boltzmann distribution at the
desired average temperature. The total
momentum of the system is set to zero.
Next, we equilibrate the system further
by performing a NVT MD simulation
using the NHC thermostat.

• The equilibration is completed and
during the production run we collect
statistics using either the NVE or NVT-
ensemble. Following this equilibra-
tion procedure, the average tempera-
ture using NVE over the entire pro-
duction period is usually within a few
Kelvin of the desired average temper-
ature, while NVT would give the ex-
act desired average temperature if sim-
ulated sufficiently long.

C Lattice random walk theory

Diffusive motion of particles occurs by a
series of discrete steps separated by elas-
tic collisions, localized vibrations, and short
shuffles. Diffusion is an irreversible macro-
scopic process, but is actually comprised
of reversible microscopic steps, and may
be well described by random walk theory.
A random walk is a simple mathematical
model for the movement of a particle on a
lattice under the influence of some random
or stochastic force affecting its direction of
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motion. It is particularly attractive because
in many instances analytical solutions can
be worked out for both static as well as dy-
namic properties. From the internal (crys-
tal) structure a lattice can be constructed
that determines the lattice topology and the
lattice distances. The dynamics of the ran-
dom walk is uniquely determined once the
jumping frequencies ki for a lattice direction
i are specified. The jump frequency is de-
fined as

k =
〈number of successful hops〉

unit of time
(7)

The total jumping frequency ktot is related
to the specific jumping frequencies ki for a
given structure by a summation over the
lattice connectivity Z:

ktot =
Z

∑
i=1

ki (8)

For a jump to be truly random, each of
the possible jump directions is chosen with
equal probability, the probability that the
new lattice site is empty does not enter into
any equation (the particles can overlap).
The expected value 〈r (t)〉= 0, and the driv-
ing force ∇µ = 0 for a simple regular ran-
dom walk (necessary for the measurement
of the self-diffusivity DS). However, in real
systems, jumps are usually correlated by
defined interactions between jumping par-
ticles.

Let ki be the average frequency that a ran-
dom walker (an atom or molecule) jumps
for lattice vector λi, and r (t) is the position
of a particular random walker. The position
of a particle (relative to the starting posi-
tion) after a time t (or n = k t hops) will be:

r (t) =
n

∑
i=1

λi (9)

where ni is the number of jumps in lat-
tice direction λi on a regular lattice with
connectivity Z. In primitive cubic crys-
tals there exists one lattice site per unit cell
surrounded by Z = 6 neighbors, the lattice

vectors are λi = {{1,0,0},{0,1,0},{0,0,1},
{1̄,0,0},{0, 1̄,0},{0,0, 1̄}}. The distance
between two particles should increase with
time, which is measured by the spread of
the distribution 〈r (t)〉

〈
r2 (t)

〉
=

〈
n

∑
i=1

λi ·λi + 2
n−1

∑
i=1

n

∑
j=i+1

λi ·λ j

〉
(10)

written as a sum of diagonal and off-
diagonal terms.

For the one-dimensional lattice, the two-
dimensional square lattice, and the three-
dimensional cubic lattice, all the jumping
frequencies ki and jump vectors are equiv-
alent. Using the relationship λi · λ j =
|λi| |λ j| cos ∆φi j, where ∆φi j is the angle be-
tween the ith and jth jump-vectors. There-
fore,

r2 (t) = n λ2 + 2

(
n−1

∑
i=1

n

∑
j=i+1

|λi| |λ j| cos ∆φi j

)
(11)

= n λ2 +
n

∑
i=1

n

∑
j=1
j 6=i

|λi| |λ j| cos ∆φi j (12)

= n λ2

(
1 +

1
n

〈
n

∑
i=1

n

∑
j=1

cos ∆φi j

〉)
(13)

because ∆φi j = −∆φ ji. We can write〈
r (t)2

〉
= n f λ2 = Zki f λ2t, (14)

and apply Einstein’s equation〈
r (t)2

〉
= 2dDt (15)

to yield

D =
Z
2d

f kiλ
2 = f kA→Bλ

2 (16)

=
1

2d
f ktotλ

2 (17)

This relates the macroscopic self-diffusivity
to the jump frequency k, lattice hop dis-
tance λ and correlation factor f . The basic
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Figure 3: Self-diffusivity DS and collective dif-
fusivity DC for methane in LTA-type zeolite at
300K as a function of loading.

assumption of the random walk model is
the quick loss of memory of the molecules
between consecutive jumps, i.e. a molecule
will proceed with a probability indepen-
dent of its history. The correlation factor f

f ≡ 1 +
1
n

〈
n

∑
i=1

n

∑
j=1

cos ∆φi j

〉
(18)

contains all memory-effects, arising from
ordering and interparticle interactions.

The regular random walk has no ”mem-
ory” of the previous step when determin-
ing the current one. This feature can be
applied to a wide range of physical prob-
lems, but there are a number of other in-
teresting problems for which this is not the
case. In a persistent walk, the transition (or
step) probability depends upon the previ-
ous transition, and a particle has a reten-
tion to the directional over a certain number
of trajectory steps. In order for a simplistic
regular lattice model to be valid, the loss of
memory is an important condition that has
to be satisfied.

D Correlations

The collective diffusivity contains all the
dynamical correlations. Here, the motion
results from the jumps of different parti-
cles at different times. In contrast, for
self-diffusivity the motion results from the

jumps of a tagged particle at different times.
Memory effects [47, 48] have a tendency to
decrease DS with respect to DC, indicating
it is somehow related to the well-known
back-correlation mechanism where a diffus-
ing particle has a higher probability to jump
backwards than in any other direction, sim-
ply because the originating site is guaran-
teed to be empty. Most of the memory ef-
fect arise from ordering and interparticle in-
teractions, the latter giving the leading con-
tribution. Fig. 3 shows the self- and col-
lective diffusivity of methane in LTA-type
zeolite at 300K as a function of loading.
In the low loading limit both diffusivities
converge, because particle-particle interac-
tions vanish. However, at a loading of 7
molecule per cage or higher the correlations
are clearly visible. Although in principle
conventional MD captures all relevant cor-
relations, the dcTST method by Beerdsen et
al. not only captures these correlations cor-
rectly but is also suitable for systems with
large free energy barriers [32]. These cor-
relations, originating from particle-particle
interactions, are significant at higher load-
ings as is evidenced by the large difference
between collective and self-diffusivity.

Memory effect are stronger on single par-
ticle motion than on the collective motion,
where most of the back-correlations cancel
out. For a Langmuir gas, where the only
interaction is the site exclusion, they cancel
out exactly. Correlations between succes-
sive jumps can be studied by considering
directional correlations between two jumps
separated by m previous jumps by a tagged
particle. For a Langmuir gas the factor f re-
duces in the high loading limit to [47]

f =
1 + 〈cosφ〉
1− 〈cosφ〉 (19)

as a correlation factor for vacancy diffu-
sion, where φ is the angle between two
consecutive single particle jumps. This
equation assumes that the predominant
memory contribution comes from the back-
correlation between two consecutive single-
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particle jumps (m = 1). Eq. 19 is very much
related to the end-to-end distance of an iso-
lated, infinitely long, hypothetical model
chain comprised of bonds of fixed lengths
joined with fixed bend angles [49]. Unlike
the freely joined case, the fixing of the an-
gles φ imposes correlations.

A particle residing in a lattice point once
in a while jumps to a neighboring site.
If thermalization occurs we call it a single
jump, otherwise we speak of a long jump
or a multi-jump. These kinetic correlations
become important at low loadings and in
channel-type structures with smooth walls,
e.g. carbon nanotubes. However, for en-
tropy dominated barriers (e.g. methane and
ethane in LTA-type zeolites) one can usu-
ally neglect kinetic correlations.

E Dynamically corrected transi-
tion state theory (dcTST) at in-
finite dilution

At infinite dilution and sufficient dissipa-
tion the correlation factor f = 1 (there are
no memory-effects), and Eq. 16 reduces to

D = kiλ
2 = kABλ

2 (20)

The lattice distance λ is fixed and a prop-
erty that can be obtained from crystal Xray-
scattering experiments. Therefore, Eq. 20
defines ki as the hopping rate from lattice
point A (in equilibrium) to a neighboring
lattice point B (in equilibrium). Note that an
attempt of a hop is always successful, and
that a particle cannot have a position in be-
tween the lattice points, i.e. the jump is in-
stantaneous and discrete. In principle, one
could use MD simulations to determine this
rate by computing the average residence
time that a particle is in a cage. However,
such a computation using MD proves cum-
bersome. Firstly, an A-to-B order parameter
has to be defined, secondly, a criteria should
be used to distinguish unsuccessful hops on
a very short time scale from the successful
AB-hop on a much longer time scale (the

equilibrium one), and thirdly, very few tra-
jectories will involve motion from exactly
point A to point B.

Dynamically corrected transition state
theory overcomes these problems by com-
puting precisely what we need: the hop-
ping rate from lattice point A (in equilib-
rium) to a neighboring lattice point B (in
equilibrium). In other words, dcTST is fully
compatible and complementary to lattice
random walk theory. We consider a system
which can be in two stable states, A and B.
The reaction coordinate, a parameter that
indicates the progress of the diffusion event
from region A to region B, is denoted by q.
Here, q is a function of the Cartesian coordi-
nates, q̇ denotes its time derivative, q∗ is the
location of the dividing surface, and qA, qB

are the minima of the free energy corre-
sponding to state A and B, respectively. In
general, the reaction coordinate q is a func-
tion of the configuration of the whole sys-
tem, i.e. q = q(r1, . . . , rN). However, we can
choose q as the position of one of the atoms
of the diffusing molecules [25]. We intro-
duce two characteristic functions nA and nB

that measure whether the system is in state
A or B. A possible and often used definition
is

nA = θ
(
q∗− q

)
, (21)

nB = θ
(
q− q∗

)
, (22)

where θ is the Heaviside function θ(x),
which has value zero for x < 0 and value of
unity for x ≥ 0. With these definitions the
transition rate kA→B is given by [7]

kA→B =
〈
δ
(
q∗− q

)〉〈
θ
(
q∗− q

)〉︸ ︷︷ ︸
P∈A(q∗)

×

〈
q̇(0)δ

(
q∗− q(0)

)
θ
(
q (t)− q∗

)〉〈
δ
(
q∗− q(0)

)〉︸ ︷︷ ︸
R(t)

,

(23)

where δ is the Dirac delta function, 〈nA〉
is the equilibrium mole fraction of parti-
cles in state A, P∈A

(
q∗
)

is the equilibrium
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probability density of finding the system at
the top of the barrier divided by the equi-
librium probability of finding it at state A,
and where R (t) is the averaged particle flux
at the top of the barrier multiplied by the
probability that the system ends up in state
B at time t. From detailed balance follows

kA→B

kB→A
=
〈nB〉
〈nA〉

(24)

where

〈nA〉 =
R

A e−βF(q) dqR
A+B e−βF(q) dq

(25)

〈nB〉 = 〈1− nA〉 (26)

The expression Eq. 23 is rigorously correct
for arbitrary crossings provided that

• the actual crossing time is negligible
compared to the time a particle spends
inside the cage, i.e. there is a large sep-
aration in time scales. This condition is
satisfied when the free energy barrier is
much larger than kBT.

• the velocity distribution at the dividing
surface is known (The order parameter
q is taken to be the position of a parti-
cle and therefore q̇ is simply the veloc-
ity of a particle. In TST is it assumed
that the top of the barrier is in equilib-
rium and hence these velocities follow
directly from the Maxwell-Boltzmann
distribution).

At infinite dilution the molecules perform
a random walk on a lattice spanned by the
cage-centers. The transmission rates are
easily converted to diffusion coefficients if
the jump distance and the number of equiv-
alent diffusion paths are known.

Eq. 23 is a product of a static and a dy-
namic term

• the probability P∈A
(
q∗
)

of finding the
system at the top of the barrier is a time-
independent equilibrium quantity and

can be computed explicitly

P∈A
(
q∗
)

=
〈
δ
(
q∗− q

)〉〈
θ
(
q∗− q

)〉
=

e−βF(q∗)R
cage A e−βF(q) dq

,

(27)

where F
(
q
)

is the free energy as a func-
tion of the diffusion path q.

• the flux R (t) through the dividing sur-
face is a conditional average, namely
the product q̇ (0) θ

(
q (t)− q∗

)
, given

that q (0) = q∗. Using the assump-
tion that the velocities of the atoms
follow the Maxwell-Boltzmann distri-
bution, we can estimate from kinetic
theory the long time value of R (t) by〈

1
2 |q̇(0)|

〉
=
√

kBT
2πm , where m is the mass

of the segments of the particle involved
in the reaction coordinate (the total
mass of the particle if the center of mass
is used or the mass of only one seg-
ment if the reaction coordinate is a sin-
gle segment like the middle bead in a
molecule). Transition state theory pre-
dicts a crossing rate kTST

A→B given by

kTST
A→B =

√
kBT
2πm

e−βF(q∗)R
cage A e−βF(q) dq

. (28)

Calculating TST rate constants is there-
fore equivalent to calculating free en-
ergy differences.

The TST particle flux estimation
√

kBT
2πm

contains spurious crossings, i.e. some
particles that cross the transition state
from A in reality would fail to equili-
brate in B. The correction κ(t) is de-
fined as the ratio between the real rate
and the TST expression.

κ (t) ≡ kA→B (t)
kTST

A→B
= (29)〈

q̇(0)δ
(
q (0)− q∗

)
θ
(
q (t)− q∗

)〉〈
1
2 |q̇(0)|δ

(
q (0)− q∗

)〉 .
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It is the probability that a particle that
starts with an initial velocity q̇ from the
dividing surface will, in fact, cross the
barrier, and therefore κ (t) corrects for
trajectories which cross the transition
state from A but fail to equilibrate in B.
The numerator in Eq. 18 counts trajec-
tories with a positive, but also with a
negative weight. It can be shown that
limt→0+ κ(t) = 1 and limt→0+ kA→B (t) =
kTST

A→B. There is a large separation of
time scales. The transmissions are com-
pleted in a time much less than the time
to react, and Eq. 18 will reach a plateau
value κ. For classical systems 0 < κ≤ 1
and Eq. 28 is corrected as

kA→B = κ kTST
A→B. (30)

Standard Molecular Dynamics (MD)
yields the transmission coefficients, a
separate MC simulation is used to gen-
erate the starting configurations. The
reaction coordinate is restricted to the
dividing surface q∗. The MC moves
involved are translations of the reac-
tion bead in the plane of the dividing
surface and complete regrowing of the
molecule starting from the restricted
bead. Subsequently, the transmission
coefficient is calculated by standard
MD in the NVE ensemble. The beads
are given independent velocities, cor-
responding on average to the desired
temperature, by sampling from the
Maxwell-Boltzmann distribution.

In the Bennett-Chandler approach it is
sufficient to assign the barrier position q∗

inside the barrier region. The result of the
scheme does not depend on the specific
location, although the statistical accuracy
does. If the dividing surface is not at the
top of the barrier the probability of finding
a particle will be higher than at the optimal
q∗, but the fraction of the particles that ac-
tually cross the barrier will be less than pre-
dicted by transition state theory.

F Importance-sampled MD at in-
finite dilution

The approach of κ (t) to its plateau value
can be quite slow [7]. Moreover, in the
case of diffusive barrier crossings the trans-
mission coefficient is quite small and as a
consequence many trajectories have to be
generated for an accurate value of κ. The
Bennett-Chandler approach becomes ineffi-
cient for systems with low transmission co-
efficients because the scheme employs the
noisy θ-function to detect what state the
system is in [50]. The scheme can be im-
proved by constructing a more continuous
detection function. More importantly, us-
ing the free energy we can compensate ap-
proximately for the effect of the free en-
ergy barrier. This leads to a more or less
uniform tagged-particle density distribu-
tion over the entire range of q. However,
only trajectories starting in the barrier re-
gion yield relevant information and there-
fore a weighting function w(q) is applied,
restricting the sampling to the barrier re-
gion.

A general expression from transition
state theory for the rate of hopping from re-
gion A to region B over a barrier is [7]:

kA→B = −
〈

q̇ (0) nA (t)
∂χ
(
q (0)

)
∂q

〉
(31)

where χ
(
q
)

is a dimensionless function de-
scribing the initial distribution function

ρ
(
q, t = 0

)
= ρeq

(
q
)
χ
(
q
)

(32)

The initial distribution χ
(
q
)

can be approx-
imated well by the steady-state distribution
determined from the Fokker-Planck equa-
tion

χ
(
q
)

=
1

〈nA〉

[
1−

R q
qA

eβF(q′) dq′R qB
qA

eβF(q′) dq′

]
(33)

and varies rapidly with q in the barrier re-
gion and slowly elsewhere, so that χ′ (q) se-
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lects initial configurations in the barrier re-
gion

∂χ
(
q
)

∂q
= − 1

〈nA〉
eβF(q)R qB

qA
eβF(q) dq

(34)

We choose

nA
(
q
)

= 1−
R q

qA
e(a−1)βF(q′) dq′R qB

qA
e(a−1)βF(q′) dq′

(35)

w(q) = eaβF(q) (36)

π
(
q
)
∝ e(a−1)βF(q) (37)

where a > 0 is a biasing parameter, leading
to

kA→B =
1

〈nA〉

〈R ∞
0 q̇ (t) q̇ (0)

w(q(t))
w(q(0))

e−βF(q(t))

e−βF(q(0)) dt
〉

πR qB
qA

eβF(q) dq
R ∞
−∞ e−βF(q) dq

(38)

Although Eq. 38 can be considered a
TST method using a more continuous ”de-
tector” function than the noisy θ-function,
it can also be viewed as an MD method
in a different, more convenient ensemble
π
(
q
)
∝ w(q)e−βF(q). Starting configurations

are sampled in the π-ensemble and sub-
sequently a weighted velocity autocorrela-
tion is computed. Note that the dynamics
is still generated using the microcanonical
ensemble (conventional MD). Importance-
sampled MD is especially applicable to sys-
tems with erratic free energy landscapes,
e.g. multiple barriers of possibly different
heights.

G Dynamically corrected transi-
tion state theory at nonzero
loading

The extension of dcTST to finite loading
is nontrivial. Conventional methods use
a hierarchical approach to compute ele-
mentary hopping rates kiso

A→B between iso-
lated cages A and B for use in a subse-
quent kMC scheme to obtain diffusion co-
efficients. However, the fundamental ques-
tion is whether it is possible to compute an

elementary hopping rate kiso
A→B, in which

the contributions of other cages are sep-
arated from the contribution of only the
cages A and B. Let us consider the class of
window/cage-type systems (e.g. methane
in LTA) where the barriers are entropical in
nature. At nonzero loading a molecule hop-
ping from A to B induces a vacancy. While
in principle a particle originating from any
of the surrounding cages could fill the va-
cancy, hierarchical approaches will allow
only a molecule from B to return to A (e.g.
by blocking all windows except the win-
dow between cages A and B). The funda-
mental assumption of kMC (no two jumps
can occur at the same time) artificially sup-
presses these correlated jumps, and we are
not aware of a scheme that result in effective
kMC hopping rates that regain those corre-
lations.

Beerdsen et al. [32] proposed a method to
compute diffusivity values directly in sys-
tems with high free energy barriers (e.g.
cage/window-type zeolites). Here, long
time, large distance memory effects are
negligible, because once a molecule jumps
thermal equilibration takes place and next-
nearest cage correlations are rare. It is there-
fore sufficient to include correlations during
the jump across the barrier. Hence, we com-
pute

D (c) =
1
6

keff
A→B (c)λ2 (39)

keff
A→B (c) = f (c) kA→B (c) (40)

where c denotes the loading in molecules
per unit cell, or mol/kg. But rather than
attempting to compute kA→B (c = 0) or kiso

A→B
from a molecular simulation and the corre-
lation factor f (c) from a coarse-grained ki-
netic Monte-Carlo method, Beerdsen et al.
compute keff

A→B (c) directly from a molecular
simulation.

keff
A→B (c) is the hopping rate of a

single tagged particle at an aver-
age loading c from cage A to cage
B under the influence of an ex-
ternal field exerted caused by the
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Figure 4: A typical snapshot of a tagged methane particle (green color) in LTL-type zeolite re-
strained to the barrier q∗ surface at an average loading of 3 methane molecules per unit cell (there
are two parallel channels per unit cell) at 300K. Four unit cells of 7.474 Å in length are shown.
The constrictions are caused by the 12-T-membered rings, which form free energy barriers imped-
ing diffusion. The free energy profile in dimensionless units at this average loading is plotted in
white, where the reaction coordinate is chosen parallel to the channel direction. If the free energy
barriers are high enough, diffusion can be considered a hopping process from minima to minima
(qA, qB, qC etc).

molecular sieve and the other N −
1 particles.

By including the nearest neighboring cages,
all relevant short-time correlations are
properly captured, including the dominant
short-time back-correlation effects due to
particle-particle interactions. Correlations
at much longer times than 1/k are negligible
in cage/window-type systems. The com-
putation once again consists of two parts

• The probability density P∈A(q∗) of find-
ing the system at the top can be com-
puted explicitly by computing free en-
ergy profiles making use of Eq. 27.
During an separate MC simulation in

the NVT-ensemble at the desired load-
ing we measure the free energy F(q) by
using Histogram Sampling (HS). In the
HS method, a histogram is made of the
particle positions, mapped on the reac-
tion coordinate. From the histogram a
free energy profile is computed, by us-
ing

βF(q) = − ln 〈P(q)〉 . (41)

At conditions where conventional MC
is still feasible, all particles can be con-
sidered equivalent and all contribu-
tions can be used.

When displacement of particles is im-
peded by high free energy barriers,
conventional HS becomes infeasible. A
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single tagged particle can be biased
to achieve improved statistics by us-
ing importance sampling. As a biasing
potential the Widom Particle Insertion
(WPI) profile can be used. WPI uses
a probe particle that is inserted at ran-
dom positions, to measure the energy
required for or obtained by insertion of
the particle in the system. This energy
is mapped onto the reaction coordinate
q, using

βF(q) = − ln
〈
e−β∆U〉

N , (42)

to produce a free energy profile, where〈
e−β∆U

〉
N is the average Boltzmann fac-

tor over all positions in the slice per-
pendicular to the reaction coordinate.
A ”ghost particle” is used as the mea-
suring probe, but the other particles in
the system do not feel its presence. At
higher loadings, WPI is known to give
erroneous results [1, 32] and therefore
the WPI method is not used to compute
F(q) directly, but rather to estimate the
biasing function when needed.

• The particle flux R(t) through the di-
viding surface can be computed from
the fraction of particles starting on top
of the barrier that successfully reach
cage B. The other particles present
in the system influence this fraction.
Starting configurations are generated
with one particle constrained to the
dividing surface and N − 1 particles
moving around (see Figs. 4 and 5).
These configurations are then used to
compute the particle flux in uncon-
strained NVE-MD simulations, start-
ing with velocities sampled from a
Maxwell-Boltzmann distribution at the
desired temperature.

In Fig. 4 an instructive snapshot of
methane in LTL-type zeolite at a loading of
3 molecules per unit cell at 300K is shown.
The free energy profile consists of maxima,
corresponding to geometric constrictions,

Figure 5: A typical snapshot of ethane (CH3 −
CH3) in LTA-type zeolite at an average loading
of 4 molecules per cage at 750K, constraining
one tagged molecule at the dividing surface q∗.
The hopping events are coarse-grained on a lat-
tice spanned by the cage-centers.

and minima, corresponding to the aper-
tures. A natural hopping lattice is formed
by the one-dimensional sequences of free
energy minima (qA, qB, qC, etc). As can be
seen from this snapshot, there are strong
adsorption-sites where the curvature of the
zeolite is the highest and commensurate
with the shape of the particle. Particles re-
side in these minima for a long time, before
a thermal excitation will eventually give the
particles enough mobility to cross the free
energy barrier and proceed to a neighbor-
ing lattice site. The latter process is a fast
process in comparison to the time a particle
spends near the lattice points.

Fig. 5 shows a snapshot of ethane at an
average loading of 4 molecules per cage
at 750 K in LTA-type zeolite. The lat-
tice, formed by the cage centers, is the
three-dimensional cubic lattice. For this
snapshot cage B contains more molecules
than cage A, and the barrier-molecule has
a high probability of recrossing to cage
A. The time-dependent transmission coeffi-
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cient will reach a plateau value κ. However,
because during a successful hop cage A do-
nated a particle, while cage B received an
additional particle, there is a slightly higher
probability for the particle to return to A on
a time scale larger than the thermalization
time. However, for our systems this effect
is negligible. Note that during the computa-
tion none of the windows is blocked and si-
multaneous jumps (e.g. from cage C to cage
A, and cage D to cage B) are allowed.

The extension of the importance-sampled
MD method Eq. 38 to non-zero loading is
similar. The method can be summarized as
follows.

• The free energy profiles at the desired
average loading are measured as de-
scribed above.

• The free energy minima qA and qB, and
the corresponding hopping lattice are
identified.

• A biasing profile w(q) is constructed
ranging from qA to qB using Eq. 36.

• Starting configurations are sampled in
the interval qA to qB with the bias po-
tential w(q) operating on the tagged
particle, leaving the others N − 1 free
to move (unbiased).

• These starting configurations of N par-
ticles are integrated using MD for short
times tmax, and Eq. 38 is evaluated. The
time tmax is chosen such that the inte-
gral appearing in Eq. 38 has converged.
The trajectories are stopped after tmax

time has elapsed or when q < qA or
when q > qB.

As mentioned, in general, the reaction co-
ordinate q is a function of the configuration
of the whole system. For dcTST simulations
at a certain loading, we choose the reac-
tion coordinate as the position of one of the
atoms of the tagged molecule [32]. Although
it can not be excluded that better reaction
coordinates exists, for physical reasons our

choice seems optimal. The diffusion mech-
anism is divided in two parts. The first is
a static term, corresponding to locations of
preferable adsorption sites and estimations
of free energy barriers in between, the lat-
ter (or actually the inverse of the transmis-
sion coefficient: the recrossing) corresponds
to collision frequencies, which generally in-
crease with loading. As such the dcTST
method is able to explain different diffusion
regimes over loading, and provides insight
into the mechanisms behind an increase or
decrease in diffusivity with loading [51].

H Zeolite descriptions and simu-
lation details

To test and explore the limits of our
dcTST method, we have selected two types
of zeolites: the one-dimensional chan-
nel LTL-type zeolite structure and three-
dimensional cage/window LTA-type zeo-
lite structure. The LTA-type zeolite is se-
lected because diffusion is slow, but just fast
enough for the smallest alkanes to allow
for a comparison of dcTST with MD. Here,
dcTST is expected to work flawlessly. In
LTL-type zeolite the diffusion is relatively
fast, the free energy barriers low, and the
system is close to the limits of TST, i.e. in
this system it is more difficult to envision a
clear separation of time scales. Moreover,
the system is one-dimensional and correla-
tions between diffusing particles are even
higher.

LTL-type zeolites are used industrially
for the aromatization of alkanes. The struc-
ture [52] has spacegroup P6/mmm with a =
1.84, b = 1.84, c = 0.752 nm, and α = β =
90, γ = 120. For computational efficiency
the unit cell is converted to a rectangular
cell. LTL-type zeolite provides a pore sys-
tem having cancrinite cages (11-hedra) al-
ternating with hexagonal prisms (8-hedra)
stacked in columns parallel to the c-axis.
The channels thus formed have nearly pla-
nar 12-membered rings with a free diameter
of approximately 0.71 nm and expansions
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LTL LTA
molec./uc unit cells N molec./cage unit cells N
1 1x2x128 256 1 2x2x2 64
2 1x2x64 256 2 2x2x2 128
3 1x2x64 384 3 2x2x2 192
4 1x2x32 256 4 2x2x2 256
5 1x2x32 320 5 2x2x2 320
6 1x2x32 384 6 2x2x2 384
7 1x2x16 224 7 2x2x2 448
8 1x2x16 256 8 1x1x1 64
9 1x2x16 288 9 1x1x1 72
10 1x2x16 320 10 1x1x1 80
11 1x2x16 352 11 1x1x1 88
12 1x2x16 384 12 1x1x1 96
13 1x2x16 416 13 1x1x1 104
14 1x2x16 448 14 1x1x1 112
15 1x2x16 480 15 1x1x1 120
16 1x2x16 512 16 1x1x1 128
density [kg/m3]
1626.94 1285.228
unit cell sizes [nm] unit cell angles [◦]
x y z α β γ
3.1984 1.8466 0.7476 90 90 90
2.4555 2.4555 2.4555 90 90 90

Table 3: Simulation details for the LTL- and LTA-type zeolite. Crystallographic positions are
taken from Refs. [52, 53]. A single unit cell of LTL-type zeolite contains 2 channels, a single unit
cell of LTA-type zeolite consists of 8 α-cages. Simulation of one-dimensional channels requires
special attention. Here, diffusion results are very much dependent on the length of the channel, and
surprisingly long channels are needed to reliably extrapolate to macroscopic diffusion coefficients
[54].

of approximately 0.126 nm (see Fig. 4).

The single largest use of zeolites is the use
of LTA-type zeolites for laundry detergents.
LTA-type zeolite is also used for separa-
tions of small molecules from air by exploit-
ing different polarities of molecules, and
for bulk separations of linear and branched
alkanes. The LTA-type structure [53] has a
cubic spacegroup Fm3̄c with a = b = c =
2.4555 nm, and α = β = γ = 90◦. The
crystallographic unit cell consists of 8 large
spherical cages (named α-cages) of approx-
imately 1.12 nm interconnected via win-
dows of about 0.41 nm diameter (see Fig.
5).

In addition to the relevant cages and
channels there are also topologically dis-
connected pockets. A methane molecule
does fit at that position, but it is not ac-
cessible from the main cages and channels.
Both LTA (sodalite-cages), as well as LTL,
have disconnected pockets. To obtain cor-
rect results in MC-simulations it is neces-
sary to ensure that molecules will not be in-
serted into inaccessible pockets for adsorb-
ing molecules.

We have summarized the details of our
periodic simulation boxes in Table 3. Simu-
lation of one-dimensional channels requires
special attention. Here, diffusion results
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are very much dependent on the length of
the channel, and surprisingly long channels
are needed to reliably extrapolate to macro-
scopic diffusion coefficients [54].

III Results

A Infinite dilution

methane, ethane, and propane in LTL-
zeolite

Fig. 6 shows the free energy profiles F(q) of
methane along the channel direction. Two
free energy minima are separated by a 12-
ring forming the free energy barrier at q∗.
For this system and the chosen reaction
coordinate, the transmission coefficient is
nearly equal to one, and the dcTST diffu-
sion can be directly computed using Eq. 20
and Eq. 28. The free energy barrier ranges
from about 10 kBT at 100K to less than 3 kBT
at 1000K.

The transmission coefficient can only be
assumed equal to one for a single, spher-
ical particle providing the exact barrier
is known, and only at infinite dilution.
Even for methane in LTL the barrier is
only known approximately because of the
atomic structure of the window, although
the value is very close to one using the
window as the dividing surface. In Fig. 7
the transmission coefficient κ(t) for propane
using the second/middle-bead as the reac-
tion coordinate is shown as a function of
time for various temperatures. The starting
configurations are sampled using a Monte-
Carlo scheme at the desired temperature
restricting the growing bead at the divid-
ing surface. This distribution of configu-
rations is temperature dependent, and also
the transmission coefficient is temperature
dependent. In general, the transmission
coefficient increases with temperature, be-
cause a higher fraction of configurations
has sufficient kinetic energy to overcome
the free energy part resulting from a non-
optimal reaction coordinate and dividing
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Figure 7: Transmission coefficient κ(t) for
propane in LTL-type zeolite at infinite dilution
using the second/middle-bead as a function of
time for various temperatures.

surface choice. The transmission coefficient
starts at one (by definition, because a par-
ticle cannot revert its velocity within a sin-
gle integration step), and slowly converges
to a limiting plateau value at about 15 ps.
It is this plateau value κ that is of interest,
signaling all short-time recrossing are elim-
inated. The intermediate oscillatory behav-
ior is caused by the bond-springs within the
molecule itself. From the point of view of
the reaction coordinate (the position of the
second/middle-bead), the other beads con-
nected to the middle-bead with springs are
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Figure 8: Diffusion of methane, ethane, and
propane in LTL-type zeolite at infinite dilution
computed by dcTST and MD.

just an external field in addition to the zeo-
lite.

The transmission rates can be computed
from the free energy profiles using Eq. 28,
30, and transmission coefficients, and then
converted to diffusion coefficients using Eq.
20. The methane, ethane, and propane dif-
fusivities computed from dcTST are com-
pared to reference MD simulations in Fig. 8.
The MD simulations were performed in the
NVE and NVT ensembles (NHC thermo-
stat) with 128 non-interacting particles. For
methane, up to 450K dcTST gives equiva-
lent results to MD, but at higher tempera-
tures the methods diverge. For ethane, the
methods diverge at 550K, while for propane
both methods overlap. Where the methods
diverge, the free energy barriers become too
low for TST to be valid, because there is no
longer a clear separation of time scales. The
methane molecules do not equilibrate prop-
erly leading to enhanced diffusion due to
kinetic correlations, i.e. the increased proba-
bility of particles to continue in their current
direction.

There are several ways to include kinetic
correlations, amongst them are the dynam-
ical corrections as formulated by Voter and
Doll [55] using multistate systems and the
recently proposed Ruiz-Montero method
(Eq. 38 with a = 2) [7]. The method of
Voter and Doll would extend the two-state
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Figure 9: Diffusion of methane at 1000K in
LTL-type zeolite at infinite dilution computed
by dcTST and MD compared to the Ruiz-
Montero method.

system A and B, to a multistate system
A, B, C, D, . . . by computing the hopping
rates ki j, dynamical corrections κi j, and lat-
tice distances λi j between state i and j. Note
that the dynamical correction in this formu-
lation is not restricted between 0 and 1, but
can potentially increase beyond unity when
kinetic correlations are abundant. How-
ever, at the highest temperatures reported
here, the time scales of thermalization and
k−1 become inseparable, so we pursue here
the alternative Ruiz-Montero route. Fig. 9
shows the Ruiz-Montero method (a = 2) at
1000K for methane in LTL-type zeolite. The
Eq. 38 is reaching a plateau value in time,
equal to the MD-results. These results dif-
fer from the dcTST value due to presence
of kinetic directional correlations, which
are included using (importance-sampled)
MD-methods. However, computing Eq.
38 is very time consuming and the dcTST
method is preferable for cage/window-
type systems with higher free energy bar-
riers.

methane in LTA-type zeolite

At infinite dilution, the barrier for diffu-
sion of methane in LTA-type zeolite at 300K
is much higher than in LTL-type zeolite.
The barrier is approximately 8.5 kBT and
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Figure 10: Diffusion of methane over a high free
energy barrier in LTA-type zeolite at 300K and
infinite dilution using various biasing functions
(Eq. 43).

sharply peaked). In Fig. 10 we compare var-
ious biasing functions for the importance-
sampled MD method. A biasing weighting
function of

w
(
q
)

=
eaβF(q)R
eaβF(q) dq

(43)

using a = 1 flattens the free energy land-
scape and the initial configurations are sam-
pled uniformly. However, for diffusion
only the configurations in the barrier re-
gion yield relevant information, and with
a � 1 as a biasing function the configura-
tions are indeed restricted to the barrier re-
gions, and all trajectories contribute signif-
icantly to the diffusion coefficient. The re-
sults show that for sharply peaked barriers
a high biasing function achieves fast con-
vergence. For these barriers the Bennett-
Chandler method works well, because dif-
fusive behavior is negligible and dynamic
corrections are easily evaluated. However,
the importance-sampled MD method is also
applicable in the diffusive regime where
κ� 1.

ethane in LTA-type zeolite

Ethane molecules in LTA perform jumps on
a simple cubic lattice. It was found that self-
diffusion decreases with increasing tempera-
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Figure 11: Self-diffusion of ethane at infinite
dilution in LTA-type silica using the parame-
ter set of Dubbeldam et al. The infinite dilution
case using MD is simulated by switching the
ethane intermolecular forces off, i.e. the particles
do not interact (except through the thermostat
in NHC-NVT simulations).

ture at low temperatures [24]. At low tem-
peratures the molecules become less con-
fined in the windows as temperature in-
creases. Heating the system, ethane moves
away from the windows, which increases
the entropic barrier for cage-to-cage mo-
tion. Fig. 11 shows that the behavior found
by Schüring et al. [24] is strongly depen-
dent on the parameter set (Tables 3 and 2).
The parameter set of Dubbeldam et al. [38]
does not show a decrease with increasing
temperature although for both parameters
sets the local activation energy depend on
temperature. The size-parameter used by
Schüring et al. is so small that ethane at
low temperature is found in the windows
itself, and heating shifts the adsorption sites
to just in front of the windows. In con-
trast, the set of Dubbeldam et al. has a larger
size-parameter for ethane and also at low
temperature the adsorption sites are always
in front of window, reducing the behavior
found by Schüring et al. However, the phe-
nomenom is likely to be generic and present
in cage/window-type systems and applica-
ble to small molecules. It shows how much
the actual adsorption sites can depend on
temperature and simulation parameters.
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B Non-zero loading

methane, ethane, propane in LTL-type ze-
olite

The free energy barriers for various load-
ings of methane in LTL-type zeolite are
plotted in Fig. 12. In comparison to the in-
finite dilution case, the free energy barrier
initially decreases. Adding particles to the
system induces an effectively ”smoother”
channel. For increasing loadings the top
of the barrier flattens and eventually trans-
forms into a barrier region with two local
free energy minima.

Fig. 13 shows the diffusion behavior as
a function of loading in LTL-type zeolite
for methane, ethane, and propane at 300K.
The TST diffusivities based on the free en-
ergy profiles (e.g. for methane shown in
Fig. 12) increase, while the dcTST values
decrease and are equal to the conventional
MD results. Clearly the transmission coeffi-
cient not only quantitatively, but also qual-
itatively, correct the TST results. The good
agreement between dcTST and MD for LTL-
type zeolites is encouraging. The diffusion
of alkanes in LTL-type zeolite is quite fast,
and the fact that our dcTST method also
works for such low free energy barriers as
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Figure 13: Diffusion of methane, ethane, and
propane at 300K as a function of loading in LTL-
type zeolite computed by TST, dcTST and MD.

in LTL-type zeolite is surprising.
Although this region of diffusion is fully

accessible to conventional MD, the dcTST
method has a very important advantage: it
enables us to explain the qualitative behav-
ior of diffusion in terms of free energy dif-
ference and transmission coefficients. For
example, initially the diffusion of methane
in LTL-type zeolite does not change much
with loading. The MD results would
suggest the fundamental reason could be
that particles hardly notice each other at
these lower loadings. However, the pic-
ture painted by the dcTST is quite differ-
ent. There are two effects: 1) the free en-
ergy barrier decreases over loading (which
means an increase in diffusion) rendering
the channel environment more ”uniform”,
and 2) as loading increases the transmission
coefficient decreases due to an increased
collision frequency. At low loading the two
effects almost counterbalance each other,
but at higher loadings the rapid increase in
collision frequency wins.

An important observation made by
Beerdsen et al. [51] is that the appearance
of the two local minima on top of the
free energy barrier at around 11 molecules
per unit cell for methane cause an inflec-
tion at the corresponding loading in the
diffusion curves. This inflection is sim-
ilarly found in the adsorption isotherms,
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and both are related to a change in pack-
ing. They show that the dcTST method can
generally be used to qualitatively explain
the self and collective diffusion behavior of
a molecule/zeolite-combination as a func-
tion of loading, by carefully analyzing the
change in free energy (packing effects).

The appearance of extra adsorption sites
over loading, and the change of packing,
shows that the choice of the random walk
lattice can not solely be based on a lat-
tice of adsorption sites at low loading.
The adsorption-site lattice needed to de-
scribe diffusion over adsorption sites de-
pends on the zeolite, the guest, the tem-
perature, and on the loading of the zeolite.
In fact, for every zeolite, guest, tempera-
ture, and loading the lattice should be re-
constructed. However, for very slow diffu-
sion in cage/window-type zeolites the rate
determining step is the cage-to-cage motion
and all the details of intra-cage diffusion
are present in the free energy profile. For
very fast diffusion the adsorption-site lat-
tice does not make sense either as there is
too much correlation present between the
hops at such a lattice, i.e. the separation of
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Figure 15: Free energy profiles of methane in
LTA-type zeolite at 600K for various loadings
(10, 8, 6, 4, 2 molecules per cage, and infinite
dilution).

time scales vanishes and the description as
”hopping” breaks down. The natural lattice
to use would be an effective lattice of cage-
center to cage-center.

For zeolites accessible to conventional
MD the free energy can be obtained using
either MC or MD, and we found no dif-
ferences between both methods. In con-
trast, the sampling of configurations with
a tagged particle restricted to the dividing
barrier surface requires more thought. In
Fig. 14 we show results for the transmission
coefficients using MC and MD. The MD re-
sults are splitted in two types: 1) both the
positions and velocities are stored, and 2)
only the positions are taken from MD tra-
jectories, the velocities are resampled from
a Maxwell-Boltzmann distribution. As can
be seen, reinitializing the velocities holds
equal results, and one can conclude from
the result that the velocities in this system
are indeed Maxwell-Boltzmann distributed,
even on top of the barrier. For systems with
higher free energy barriers configurations
are adequately sampled with biased MC,
while conventional MD would become im-
possible.
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Figure 16: dcTST and MD in LTA-type zeolite a) the TST, and dcTST diffusivities for methane at
600K as a function of loading using the left axis, and the tranmission coefficient κ using the right
axis, b) diffusion of methane and ethane in LTA-type zeolite, as a function of loading, at 600K and
750K, respectively.
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methane, ethane in LTA-type zeolite

Fig. 15 shows the free energy profiles at
600K for methane in LTA-type zeolite for
various loadings. Relative to the infinite di-
lution case, the addition of particles to the
cages leads to an increase of the free en-
ergy inside the cage, while the free energy
at the barrier remains unchanged up to in-
termediate loading. The inner-cage surface
of LTA-type zeolite is adsorbophylic (wet-
ting regime), and upon increased adsorp-
tion favorable adsorbate-adsorbent interac-
tions are being replaced by less favorable
interaction with other particles.

Fig. 16(a) shows the individual compo-
nents of the diffusion process, DTST and
κ as a function of loading for methane
in LTA. Although the transmission coeffi-
cient shows a monotonic decrease with den-
sity, the diffusion coefficient goes through
a maximum. The driving force behind the
initial increase in diffusion is a loss of guest-
host attraction inside the cages. Eventu-
ally, the free energy barrier increases again,
due to packing and free-volume effects,
causing a decrease of the diffusion coeffi-
cient. While the transmission coefficient
only slightly changes the qualitative behav-
ior of the diffusion as a function of loading,
it has a profound quantitative influence. We
show the diffusion in LTA of methane at
600K and ethane at 750K using both MD
and extended dcTST. Our extended dcTST
method and MD again agree quantitatively.

methane/ethane-mixture in LTA-type zeo-
lite

In Fig. 17 we plotted the results for a 50%-
50% mixture of methane and ethane in LTA-
type zeolite, as a function of loading at
300K. For each of the components the free
energy and transmission coefficients are
computed. For the κ-computation a single
molecule of the component is restricted to
the barrier, while the other molecules of the
same component, and all molecules of the
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Figure 17: Self-diffusion in a 50%-50% mix-
ture of methane and ethane in LTA-type zeolite,
as a function of loading at 300K.

other component are free to move. Again,
our extended dcTST method and MD agree
quantitatively.

IV Discussion

We have shown that our method is appli-
cable to simulating self-diffusion in any el-
ementary topology. The extension of Eq.
16 to more complex structures and lat-
tices is a geometric exercise to be pub-
lished elsewhere [56]. The connection be-
tween the random walk lattice and the ze-
olite structure is found by an analysis of
the free energy profiles. The diffusion of a
tagged molecule is computed over that typ-
ical length scale given by the smallest re-
peating zeolite-structure, i.e. from the cen-
ter of cage A to the center of cage B. One
automatically averages over all adsorption
sites in the cage, irrespective whether the
adsorption sites are strong or weak, or even
ill-defined, i.e. for purely entropic barriers.
For most lattices the equivalent of Eq. 16
has been worked out. Since the lattice is
not based on specific adsorption sites, often
the same lattice can be used for all temper-
atures and loadings, although sometimes at
high loadings new barriers may be formed.

Tunca and Ford [28–30] computed ele-
mentary hopping rates using multidimen-
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sional TST for use in a subsequent coarse-
grained kinetic Monte Carlo (kMC) scheme.
Besides the various approximation to make
the computation tractable, this approach re-
lies on the computation of an elementary
hopping rate. The fundamental question
about hierarchical approaches is “Is it pos-
sible to compute an elementary hopping
rate?”. In our calculations, we have ob-
served that to obtain agreement with MD
results, one cannot limit the free energy cal-
culation to the two cages A and B for which
the hopping is computed. It is essential to
average over fluctuations in the number of
particles in the neighboring cages [32]. By
’closing off’ cages, the system is intrusively
changed and we are not aware of any other
scheme that can separate the contributions
of other cages from the contribution of only
the cages A and B. The omitted correlations
are not the same as those regained by a
kMC simulation later and therefore further
corrections are needed to obtain results in
exact agreement with MD.

We explicitly avoid the use of kMC and
compute the self-diffusion coefficient di-
rectly. The diffusion constant we compute
is the self-diffusion of a tagged molecule
traveling from cage A to cage B consider-
ing all other particles as an external field.
The external field is maintained by an MC
NVT simulation (fixed total number of par-
ticles, volume, and temperature) of specta-
tor molecules in the ”background”. By us-
ing an MC approach that includes trans-
lational, orientational and regrow moves,
we average over cage distributions, po-
sitions and orientations of neighboring
molecules. This renders it unnecessary to
sample the complete phase space by inte-
grating over all particle positions and ori-
entations, weighed with the correct Boltz-
mann weight. In addition to being com-
putationally much cheaper, it also allows
for the use of advanced simulation tech-
niques such as CBMC, which speeds up
simulations of longer molecules by orders
of magnitude. Longer molecules are effi-

ciently handled and likewise, diffusion in
mixtures can easily be computed; all parti-
cles are considered part of the external field,
irrespective of the type of particle. The LTA-
type system used here is a cation-free ver-
sion of the commonly used LTA 5A zeolite
(4 Na+ and 4 Ca+ per cage). A quantitative
comparison with PFG-NMR experimental
results requires including the ions in the
simulations. Beerdsen et al. [57] and Calero
et al. [58] have extended the united-atom
model with cations, and our dcTST method
already includes the necessary tools.

The diffusion behavior of ethane in LTA
as a function of temperature has been well
studied. In contrast to a previous study
of Schüring et al. [24, 42], we found that
ethane molecules in LTA-type zeolite per-
form hops on a regular cubic lattice, even
when we used the smaller size-parameters
of Schüring et al. However, these authors
computed kAB from MD using the number
of cage visits divided by the MD-time. Such
an approach overestimates the actual self
diffusivity by nearly an order of magnitude
for ethane in LTA-type zeolite at 100K. Us-
ing the center-of-mass of ethane as the order
parameter, they overestimate the rate, be-
cause a molecule coming from A will show
diffusive behavior in the barrier region and
change cage many times before equilibrat-
ing in A (recrossing) or B (transmission).
Only the successful transmission should be
counted and Schüring et al. found that the
correlation factor f (Eq. 19) computed using
a molecular simulation approximately cor-
rects for this. Our results show that a proper
computation of the effective rate constant
including the transmission coefficient leads
to exact agreement between dcTST and MD.
We stress that κ and f are different con-
cepts. The similarity in behavior for this
specific system originates from the fact that
κ is dominated by back-correlations, and
for a cubic lattice Eq. 19 computes the same.
However, the computation of f using Eq. 19
is limited to the MD time scale.

We would like to comment on the use
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Figure 18: Self-diffusivity of ethane using the LJ-parameters of Table 2, comparing the results of a
rigid zeolite to the flexible model of Demontis et al. [59, 60]. Error-bars are smaller or comparable
to the symbol size. For comparison we have added the results of Schüring et al. [42] for the infinite
dilution case, and for 1 molecule per cage.

of flexible zeolites in regard to our dcTST
method. Although for computational rea-
sons we kept the zeolite rigid, our method
is fully applicable to flexible zeolites. In
Ref. [36] it was found that self-diffusion co-
efficients for methane in LTA-type zeolite
obtained with flexible and with rigid lat-
tices are practically the same. In Fig. 18
we show the self-diffusivity of ethane us-
ing the LJ-parameters of Table 2 and com-
pare the results of a rigid zeolite to the
flexible model of Demontis et al. [59, 60].
Error-bars are smaller or comparable to the
symbol size. We have added the results
of Schüring et al. [42] for the infinite dilu-
tion case, and for 1 molecule per cage. The
data of Schüring et al. compare well and
are consistent with our simulations. An im-
portant observation is that the differences
between flexible and rigid LTA-type zeolite
for ethane are significant and temperature
dependent. In the low temperature-region

the ethane molecule is tightly confined in
the window itself, while at higher temper-
ature the molecule is less tightly confined
and located just in front of the window. The
method proposed in this paper would al-
low a detailed investigation of the effect
of framework flexibility on slow-diffusing
molecules.

V Conclusions

Our method applies dcTST at non-zero
loadings without introducing assumptions
not already present in traditional TST meth-
ods. It can be used to explain diffusion
behavior as a function of loading in any
system with enough energy dissipation be-
tween hops, so that random walk theory
(the assumption of equilibration between
two subsequent jumps) and TST are valid,
as we showed here for small alkanes in
LTL- and LTA-type zeolites. The method
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gives results in exact agreement with MD,
but is also applicable in the regime of very
slow diffusion where MD can not be used.
This extends the range of accessible time
scales significantly beyond currently avail-
able methods. Furthermore, the method en-
ables us to express loading effects in terms
of free energy differences. It can be used in
any lattice and any adsorbate, and also for
mixtures.
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We report molecular simulations of diffusion in confinement
showing a phenomenon which we denote as Molecular Path
Control (MPC); depending on loading, molecules follow a
preferred pathway. MPC raises the important question to
which extent the loading may affect the molecular trajectories in
nanoporous materials. Through MPC one is able to manually
adjust the ratio of the diffusivities through different types of
pores, and as an application one can direct the flow of diffusing
particles in membranes forward or sideward by simply adjusting
the pressure, without the need for mechanical parts like valves.
We show that the key ingredient of MPC is the anisotropic nature
of the nanoporous material which results in a complex interplay
between different diffusion paths as a function of loading. These
paths may be controlled by changing the loading, either through
a change in pressure or temperature.

D. Dubbeldam, E. Beerdsen, S. Calero, and B. Smit 11
Molecular Path Control in Zeolite

Membranes

I Introduction

Among other emerging membrane tech-
nologies like polymer-inorganic compos-
ites, carbon films, and micro- and meso-
porous silica films, zeolite membranes offer
outstanding potential for molecular recog-
nition at the subnanometer level and the
ability to operate at high temperatures [1,
2]. Zeolites are crystalline structures made
up of ”T-atoms”, where T is an aluminum
or silicon atom, which are tetrahedrally
bonded to each other with oxygen bridges.
Because of the regularity of the crystalline
structure and the pores with Angstrom-size
dimensions, these crystals, when grown to-
gether to form a membrane, can operate as
separation devices for gas and liquid mix-
tures. From a scientific point of view ze-
olites are ideal systems to study the effect
of confinement on the properties of the ad-

sorbed molecules.

Transport of adsorbates in nanoporous
adsorbents such as zeolites is determined
by a complex interplay between adsorbent-
adsorbate and adsorbate-adsorbate interac-
tions. Molecules diffuse through the pores
via various diffusion mechanisms [3]. Al-
though interesting effects like single-file
diffusion [4], incommensurate diffusion [5,
6] and levitation effects [7] are well-known,
most of the effects of confinement on dif-
fusion remain poorly understood. This is
particularly true for loading effects in mate-
rials with different channels and/or cages
in the x, y, and z-direction. Anisotropic
single-component diffusion in silicalite has
been known for a long time [8–12]. In gen-
eral, the diffusion coefficients in the dif-
ferent directions can have different depen-
dencies on temperature and loading. A
limited number of studies deal with non-
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zero loading. Bussai et al. [13] found lit-
tle change in anisotropy for water in sil-
icalite as a function of loading. In this
work, we report a reversal of anisotropy,
i.e. at low loading the diffusivity in the
z-direction is two times faster than in the
xy-direction for both the self- and collec-
tive diffusivity, while for higher loadings
this changes into a z-diffusivity that is more
than two times slower. This behavior is due
to a complete change in the diffusion mech-
anism. Our results raise the new and unan-
swered question to which extent the load-
ing may affect the molecular trajectories in
nanoporous materials. Here, we focus on
what we have named Molecular Path Con-
trol (MPC) where one and the same molec-
ular species follows different pathways, de-
pending on the loading. As a specific MPC
example, we study the mechanism behind
tunable anisotropy of ethane in ERI-type ze-
olite membranes, but the concepts are by no
means limited to zeolite materials.

II Model and computa-
tional details

In our simulations, we neglect cations and
study rigid, all-silica versions of the ERI-
and CHA-type zeolites. Zeolites are desig-
nated by three capital letter codes derived
from the names of the type materials, e.g.
ERI (Erionite), and CHA (Chabazite). The
positions of the atoms are taken from Ref.
[14] and Ref. [15], respectively. Following
the work of Bezus et al. [18], the zeolites
are modeled as a rigid network of oxygen
atoms. This is a very common approxi-
mation because the large oxygen atoms es-
sentially shield the much smaller silicon
atoms and lattice flexibility is not impor-
tant for small alkanes in all-silica zeolites
[19]. The rectangular simulation box sizes
we used are 4.5906 × 3.9756 × 4.443 nm
for ERI-type zeolite, and 3.015 × 4.7814 ×
2.7606 nm for CHA-type zeolite. Tests on
larger systems did not show any signifi-

cant finite-size effects. Periodic boundary
conditions were employed. Adsorption in
cation-free structures takes place at sites
with little or no electric field. For these
reasons the united atom model [16] is a
straightforward choice. We consider the
CH3 groups as single, chargeless interac-
tion centers with their own effective poten-
tials. The beads of ethane are connected
by an harmonic bonding potential Ubond =
1
2 k1(r − r0)2, with k1/kB = 96500 K/Å2 and
r0 = 1.54 Å. The non-intramolecular energy
is described with a LJ-potential using pa-
rameters σO−CH3 = 3.17 Å, εO−CH3/kB = 142
K, σSi−CH3 = 2.12 Å, εSi−CH3/kB = 82 K, and
σCH3−CH3 = 3.78 Å, εCH3−CH3/kB = 104 K,
which were taken from Ref. [17]. The accu-
racy of the simulation techniques have been
verified in several publications [6, 20–23] in
which comparisons were made with experi-
mental data and can be considered state-of-
the-art for computing adsorption and diffu-
sivities in nanoporous materials.

The simulations were performed us-
ing two different methods: conventional
Molecular Dynamics (MD) and the recently
proposed dynamically corrected Transition
State Theory (dcTST) [24, 25]. In MD sim-
ulations [26–28], successive configurations
of the system are generated by integrat-
ing Newton’s laws of motion, which then
yields a trajectory that describes the po-
sitions, velocities and accelerations of the
particles as they vary with time. We used
the velocity Verlet integration scheme with
a timestep of 0.5 fs. The relative energy
drift was smaller than 10−4. For tempera-
ture control we employed the Nosé-Hoover
chain (NHC) method as formulated by
Martyna et al. [29]. Molecules were inserted
into the framework at random positions
as long as no overlaps occurred with the
framework or other particles. During the
initialization period we performed an NVT
Monte-Carlo simulation to rapidly achieve
an equilibrium molecular arrangement. Af-
ter the initialization period, we assigned ve-
locities from the Maxwell-Boltzmann dis-
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tribution at the desired average tempera-
ture to all the atoms. The total momen-
tum of the system was set to zero. Next,
we equilibrated the system further by per-
forming an NVT MD simulation using the
NHC thermostat. After the equilibration
was completed, during the production run
of more than 20 ns, we collected statistics
using the NVT-ensemble. Simulations us-
ing the NVE-ensemble gave equivalent re-
sults. More details can be found in Ref. [25].

Although MD and dcTST give equiva-
lent diffusivity results for these systems,
dcTST is also applicable in the regime of
very slow diffusion, where MD cannot be
used, and the behavior is better understood
by analyzing the free energy profiles and
lattice information provided by the dcTST
method. In the dcTST-formalism, the dif-
fusion mechanism is divided in two parts.
The first is a static term, corresponding to
locations of preferable adsorption sites and
the free energy barriers in between, the sec-
ond term generally decreases with loading
and corresponds to the inverse of the colli-
sion frequency. As such, the dcTST method
is able to explain different diffusion regimes
over loading, and provides insight into the
mechanisms behind an increase or decrease
in diffusivity with loading [24].

Using the dcTST method of Beerdsen et
al. [24, 25] the self-diffusivity is calculated
directly by computing the hopping rate of a
molecule over a typical length scale λ given
by the smallest repeating zeolite-structure.
The transmission rates are easily converted
to diffusion coefficients once the lattice dis-
tances and connectivities are known. In
ERI-type lattices, shown in Fig. 3, diffusion
in the xy-plane occurs isotropically on an
hexagonal lattice

Dxy =
1
4

kxyλ
2
xy (1)

with λxy the lattice displacement distance,
and kxy the corresponding hopping rate. In
ERI-type zeolite, each hop in the z direction
is preceded by a hop in xy-direction, and

diffusion is anisotropic:

Dz =
1
2

kxy kz

kxy + kz
λ2

z (2)

Using MD, the self-diffusion coefficients Dα
S

in the direction α = x, y, z are computed by
taking the slope of the mean-squared dis-
placement (msd) at long times

Dα
S =

1
2N

lim
t→∞

d
d t

〈
N

∑
i=1

(riα (t)− riα (0))2

〉
(3)

where N is the number of molecules, t the
time, and riα the α-component of the center-
of-mass of molecule i. The collective diffu-
sion coefficients Dα

C are calculated from

Dα
C =

1
2Nξ

lim
t→∞

d
d t

〈(
N

∑
i=1

(riα (t)− riα (0))

)2〉
(4)

where the term 1/ξ is the so-called thermo-
dynamic factor (related to the compressibil-
ity of the system), which can easily be eval-
uated from the adsorption isotherm [30].
Collective diffusivity measures the trans-
port of mass and the decay of density fluc-
tuations in the system, while self-diffusion
measures the diffusive motion of a single
particle [30]. The collective diffusivity DC is
also known as the transport diffusivity DT,
defined as the proportionality constant be-
tween the macroscopic flux and concentra-
tion gradient, and is the quantity of experi-
mental interest. In zeolite literature, some-
times the ”corrected” diffusivity is used.
This type of diffusivity is obtained from
the collective (or transport) diffusion by re-
moval of the thermodynamic factor. The
”corrected” diffusivity can directly be re-
lated to the mean-square displacement of
the collective coordinate R = ∑

N
i=1 ri (which

is N times the coordinate of the center of
mass), in analogy to the self-diffusivity. We
note that the thermodynamic factor has no
influence on ratio of diffusivities.
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Figure 1: Anisotropic self-diffusivity Dα
S of

ethane in ERI-type zeolite computed by dcTST
and conventional MD at 600K.
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of ethane in ERI-type zeolite computed by MD
at 600K for self and collective diffusion.

III Results

In Fig. 1 we have plotted the self-diffusivity
of ethane in ERI-type zeolite at 600K as
a function of loading. The ratios Dz/Dxy

of the self and collective diffusivities are
shown in Fig. 2. Very surprisingly, at low
loading the diffusivity in the z-direction is
two times faster than in the xy-direction
for both the self- and collective diffusiv-
ity, while for higher loadings this changes
into a z-diffusivity that is more than two
times slower. This behavior directly shows
that the molecules follow different path-
ways when the loading is changed.

The dcTST gives equivalent results to
conventional MD. Importantly, the method

allows for a more detailed analysis in terms
of free energy profiles and transmission co-
efficients. Eq. 2 shows that diffusion in
the z-direction is dependent on both the
hopping rate in the z-direction and in the
xy-direction. An investigation of these
hopping rates is made by analyzing the
free energy barriers for diffusion in the
xy-plane. For the diffusion in the xy-
plane we find ”normal” behavior, typical
for cage/window-type zeolites [24]: the dif-
fusivity increases with loading, because the
free energy barrier for diffusion decreases.
This is due to the finite volume of a cage,
where adding particles to the cage results
in more repulsive interactions. In the z-
direction, we find different behavior. Ini-
tially, at low loadings, there are no intra-
cage barriers, and therefore the barriers
to diffusion are formed by the xy-barriers,
i.e. the eight-ring windows between the
adjacent cages. At higher loadings, the
xy-barriers decrease and new barriers are
formed at the centers of the cages. Even-
tually the barriers at the centers of the cages
dominate the diffusion mechanism, thereby
reversing the anisotropy of the diffusion.

It is interesting to note that when the
elongation of the erionite-cages is removed,
i.e. in CHA-type zeolites (Fig. 4), no signif-
icant anisotropy is observed in our simula-
tions (Fig. 5). We note that the lattice is only
slightly distorted from a cubic lattice and
due to symmetry reasons the free energy
profiles are all equivalent, i.e. there is only
one hopping rate k from a cage to any of the
neighboring cages in CHA-type zeolites.
The orientationally averaged diffusion co-
efficient is not affected in CHA-type lattices
by the distortion effect, but the individ-
ual components are, although the effect for
94.07◦ compared to 90◦ is negligibly small
(less than 2%). Therefore, diffusion in CHA-
type zeolite can be considered isotropic in
practice. Also experimentally, tracer diffu-
sion measurements in natural chabazite by
Raman spectroscopy did not indicate any
substantial deviation from isotropic diffu-
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topology of the ERI-type lattice (left-top) in xy-direction the hopping takes place on an hexagonal
lattice, (left-bottom) in the z-direction a displacement has to be preceded first by an xy-hop. The
lattice is drawn in blue dots connected by blue lines of lattice distance λ ≈ 0.75 nm for x, y, and
z directions. Free energy profiles βF(q) at 600K of ethane in ERI at various loadings (infinite
dilution, 1, 2, 3, 4, 5, 6, and 7 molecules per ERI-type cage) (right-top) in the hexagonal xy-plane
with qA the center of a cage, and qB the center of a neighboring cage, (right-bottom) in the z-
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the cage, respectively.
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Figure 4: The CHA-type structure [15] has the
spacegroup R3̄m (a squashed cube) with a =
b = c = 0.9459 nm, and α = β = γ = 94.07◦.
The topology of the CHA-type lattice is shown,
where the lattice is drawn in blue dots connected
by blue lines.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  200  400  600  800  1000

M
ea

n−
sq

ua
re

d 
di

sp
la

ce
m

en
t  

[Å
2 ]

Time t [ps]

CHA x−axis
CHA y−axis
CHA z−axis
ERI x−axis
ERI y−axis
ERI z−axis

Figure 5: Mean-squared displacements of self-
diffusivity of ethane in CHA- and ERI-type ze-
olite at 600K. The diffusion coefficients in the
direction α = x, y, z are computed by taking the
slope of the mean-squared displacements at long
times.

sion [31]. However, using the pulsed field
gradient NMR technique, Bär et al. [32] re-
ported an orientation-dependent diffusiv-
ity with a ratio between the maximum and
minimum diffusivity of a factor of two, also
for water in natural chabazite.

IV Discussion

We stress that the concept of Molecular
Traffic Control [33] is different from our
Molecular Path Control. It is thought that
the origin of MTC lies in the mutual cor-
relation in the movement of a multicom-
ponent fluid through two types of pores
[34]. MTC has never been convincingly
established and has remained a controver-
sial subject for over two decades now, al-
though recently some theoretical progress
has been achieved [35–37]. The current
work demonstrates only how the diffusiv-
ity of one component may vary between
pore systems in the same zeolite. The con-
cept of MTC requires various molecules (re-
actants and products) to exhibit preferences
for different pore systems. However, our
results show that these preferences might
not only be due to shape-selectivity, but also
due to (local) differences in loading. More-
over, the fact that a single component can be
tuned to show a preference of one type of
pore over another and that this preference
can be manually adjusted, might be consid-
ered even more surprising. This implies the
ability of directing adsorbates at the molec-
ular level.

MPC originates from the anisotropic na-
ture of the nanoporous material, e.g. the
presence of different channel-types or elon-
gated cages. Our results suggest that it is
possible to actively design and screen for
zeolites with molecular path control prop-
erties. As an example, we reported the dif-
fusion of ethane in an erionite-type struc-
ture with different diffusion paths, which
may be controlled by changing the loading
or pressure and temperature. However, the
phenomenon is general and by no means
limited to zeolites. We have shown that the
crucial ingredient is the asymmetric nature
of a structure which can be exploited, even
for a single component fluid, by using ap-
propriate operating conditions.
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[36] Neugebauer, N, Bräuer, P, & Kärger, J.
(2000) J. of Catal. 194, 1–3.
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Illustration of Molecular Path Control

Molecular Path Control (MPC) in nanoporous materials. A periodic unitcell of erionite-type zeo-
lites is shown. At low loading molecules diffuse twice as fast in the c-direction compared to the
hexagonal ab-plane, while at higher loadings the opposite is observed due to a blockage formed
by molecules at the center of the elongated cages. MPC offers the ability of directing molecules at
the molecular level by simply adjusting the pressure.
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We apply the dynamically corrected Transition State Theory
to confinements with complex structures. This method is able
to compute self-diffusion coefficients for adsorbate-adsorbent
system far beyond the timescale accessible to Molecular Dy-
namics. Two exemplary cage/window-type confinements are
examined: ERI- and CHA-type zeolites. In ERI-type zeolite each
hop in the z direction is preceded by an hop in xy-direction,
and diffusion is anisotropic. We show that the crystallographic
symmetries (monoclinic and trigonal, respectively) can be
exploited to simplify the description of the hopping mechanism.
The free energy profiles are more easily evaluated in fractional,
dimensionless space. The lattice for CHA-type zeolite is a
rhombohedral Bravais lattice, and diffusion is anisotropic, albeit
only slightly, but the orientational averaged diffusion coefficient
is unaffected compared to a cubic lattice. The anisotropical
behavior of ERI-type cages reverse with loading, i.e. at low
loading the diffusion in the z-direction is two times faster than
in the xy-direction, while for higher loadings this changes to a
z-diffusivity that is more than two times slower. At low loading
the diffusion is impeded by the eight-ring windows, i.e. the exits
out of the cage to the next, but at higher loadings the barrier is
formed by the center of the cages.

D. Dubbeldam, E. Beerdsen, S. Calero, and B. Smit 12
Applying Dynamically Corrected

Transition State Theory in Complex
Lattices

I Introduction

Transport of adsorbates in nanoporous ad-
sorbents such as zeolites is determined by
a complex interplay between adsorbent-
adsorbate and adsorbate-adsorbate interac-
tions. From a scientific point of view ze-
olites are ideal systems to study the effect
of confinement on the properties of the ad-
sorbed molecules because of their regular-
ity and periodicity. Although interesting ef-
fects like single-file diffusion [1–3], incom-
mensurate diffusion [4–7], and levitation ef-

fects [8] are well-known, most of the effects
of confinement on diffusion remain poorly
understood. This is particularly true for
loading effects in materials with different
channels and/or cages in the x, y, and z-
direction.

Although Molecular Dynamics (MD) is
a very powerful technique to study these
effects, MD is typically limited to diffu-
sion rates in the order of 10−12 m2/s. To
overcome this, some studies have used dy-
namically corrected Transition State Theory
(dcTST) methods (see Ref. [9] and refer-
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ences therein). Hitherto, studies were lim-
ited to the infinite dilution limit, whereas
many of the processes of practical impor-
tance occur at non-zero loading. Beerd-
sen et al. [10] resolved this problem by ex-
tending the dcTST Bennett-Chandler ap-
proach to include diffusion of molecules
at non-zero loading using only assump-
tions already present in TST. It was shown
that the particle-particle correlations can be
taken into account by a proper definition of
an effective hopping rate of a single parti-
cle. The self-diffusivity was computed di-
rectly by computing the hopping rate of a
molecule over a typical length-scale given
by the smallest repeating zeolite-structure,
e.g. from the center of cage A to the center
of cage B. The use of kinetic Monte Carlo
is explicitly avoided. Implicitly one inte-
grates over all adsorption sites in the cage,
irrespective whether these are well-defined
or not. All other particles are regarded as a
contribution to the external field exerted on
this tagged particle. The dcTST extension
to finite loadings yielded excellent agree-
ment with that obtained by conventional
MD simulations and is applicable in any
system containing high free energy barriers
and for any type of guest molecule.

The method of Beerdsen et al. can be used
to explain diffusion behavior as a function
of loading in any system with enough en-
ergy dissipation between hops, so that ran-
dom walk theory (the assumption of equi-
libration between two subsequent jumps)
and TST are valid. The diffusion mecha-
nism is divided in two parts. The first is
a static term, corresponding to locations of
preferable adsorption sites and estimations
of free energy barriers in between, the lat-
ter (or actually the inverse of the transmis-
sion coefficient: the recrossing) corresponds
to collision frequencies, which generally in-
crease with loading. As such the dcTST
method is able to explain different diffusion
regimes over loading, and provides insight
into the mechanisms behind an increase or
decrease in diffusivity with loading.

In this work, we apply the dcTST method
to ERI- and CHA-type zeolite, where dif-
fusion is characterized by complex diffu-
sion paths. Each hop in the z direction is
preceded by an hop in xy-direction. Ex-
perimentally, there are contradictory results
whether or not diffusion in CHA-type ze-
olites is anisotropic. Bär et al. studied dif-
fusion of water in natural chabazite and
found an orientation-dependent diffusivity
(Dz/Dxy ≈ 0.4) [13]. However, tracer diffu-
sion measurements by Goryainov et al. of
water in natural chabazite by Raman spec-
troscopy did not indicate any significant
anisotropic diffusion [14].

Here, we study anisotropic diffusion in
ERI- and CHA-type zeolites using MD en
the dcTST method. The remainder of this
paper is organized as follows. In section II
we start with a detailed description of the
ERI- and CHA-type zeolites. Like most con-
finements, these zeolites can be described
using the concept of rare-event hopping
on a lattice. For CHA-type zeolite this is
a rhombohedral lattice, while for ERI-type
zeolite the lattice is non-Bravais. Next, we
describe the dcTST method to compute the
effective hopping rate for these lattices. We
then show how to use the inherent sym-
metry of the unit cells of ERI-and CHA-
type structures using non-rectangular unit
cells. The reaction coordinate onto which
the free energy is projected to compute the
free energy barriers is more conveniently
described in the fractional and dimension-
less orthonormal basis. In the results sec-
tion III we show results for ethane at 600K
in ERI- and CHA-type zeolites using dcTST
and MD. The free energy profiles, the trans-
mission coefficients, the hopping rate, and
self-diffusion coefficients for both zeolites
are evaluated. Here, we explain our choice
of the hopping lattice, being closely related
to the computed free energy profiles. We
end with some conclusions on anisotropic
behavior in zeolite as a function of load-
ing, and why the dcTST method is a suit-
able method to provide detailed insight into
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(a) (b)

Figure 1: A unit cell of (a) ERI-type zeolite, and (b) CHA-type zeolite. The ERI-type silica
structure [11] crystallizes in the hexagonal dipyramidal spacegroup P63/mmc with a = b = 1.327
nm, c = 1.505 nm, and α = β = 90◦, γ = 120◦. The CHA-type structure [12] has the spacegroup
R3̄m (a squashed cube) with a = b = c = 0.9459 nm, and α = β = γ = 94.07◦. A unit cell of
erionite contains two cages, while a unit cell of chabazite contains a single cage.

mechanisms behind it.

II Methods

A Zeolite descriptions

The ERI-type silica structure [11] crystal-
lizes in the hexagonal dipyramidal space-
group P63/mmc with a = b = 1.327 nm,
c = 1.505 nm, and α = β = 90◦, γ = 120◦.
The elongated erionite cages approximate
the shape of 1.3 × 0.63 nm cylinders con-
nected by 0.36 × 0.51 nm windows. Only
linear molecules are able to penetrate the
eight-membered ring windows. There are
three windows at the top of the cage ro-
tated 120◦ with respect to each other. At
the bottom of the cage there are also three
windows rotated 120◦ with respect to each
other. The top three windows are aligned
with the windows at the bottom. Each ERI-
type unit cell contains two erionite cages as
shown in Fig. 1(a). The connectivity of the

cages is shown in Fig. 2(a).
The CHA-type structure [12] has the

spacegroup R3̄m (a squashed cube) with
a = b = c = 0.9459 nm, and α = β =
γ = 94.07◦. The framework contains dou-
ble six-membered rings joined together
through four-membered rings. The result-
ing three-dimensional structure has large
ellipsoidal chabazite (CHA) cages. Small
guest molecules can enter the cages through
eight-membered 0.38 nm wide ring win-
dows. Only linear alkanes are able to pene-
trate the windows. Each CHA-type unit cell
contains a single chabazite cage as shown
in Fig. 1(b). The connectivity of the cages is
shown in Fig. 2(b).

B Lattices

A lattice is an infinite periodic array of
points. In principle the lattice is completely
described by three basis vectors a,b, c, and
the angles between these vectors α,β and
γ. The lattice can be mapped into itself by

Page 213 of 256



(a) (b)

Figure 2: The structure of a rectangular periodic unit cell of (a) ERI-type zeolite, (b) CHA-type
zeolite, showing the connectivity Each erionite cage has six exits: three windows at the top of the
cage rotated 120◦ with respect to each other, and three windows at the bottom of the cage. The top
three windows are aligned with the windows at the bottom. Also the chabazite cage has 6 exits:
three at the left, rotated approximately 120◦ with respect to each other, and three at the right part
of the cage. The right and left part are approximately rotated 60◦ with respect to each other.

translation operations and by other symme-
try operations. The Wigner-Seitz cell en-
closing a point is the region of space that
is closer to that lattice point than to any
other lattice point. There is only one lat-
tice point in the primitive unit cell thus
formed. The symmetry of the unit cell is
used to classify structures and how they fill
space. In two dimensions there are only
five lattices, called Bravais lattices, that fills
space and defined by how you rotate the
cell content and get the same cell back, and
if there are any mirror planes within the cell
(the square, hexagonal, rectangular, center
rectangular, and oblique lattices). In three
dimensions there are seven lattice systems
(triclinic, monoclinic, orthorhombic, tetrag-
onal, cubic, trigonal, hexagonal). The gen-
eral lattice is triclinic, all others are derived

by putting constraints on the triclinic lat-
tice. Note that we now have different lattice
types: primitive (one lattice point), body-
centered (two lattice points), face-centered
(four lattice points), side-centered (two lat-
tice points).

For use in the dcTST method, it turns out
that often lattices are needed of two or more
different types, i.e. a quasiperiodic nonran-
dom assembly of two or more types that fill
space. These lattice are not Bravais lattices.
In analogy to crystallographic lattices, one
may fill space by tessellation or tiling a fi-
nite number of proto-tiles to fill space with-
out gaps or overlap. These Wigner-Seitz cell
(or Voronoı̈ cell) cells form the lattice tiling.

A random walk is a simple mathemati-
cal model for the movement of a particle on
a lattice under the influence of some ran-
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dom or stochastic force affecting its direc-
tion of motion. Let ki be the average fre-
quency that a random walker (an atom or
molecule) jumps for lattice vector λi, and
r (t) is the position of a particular random
walker. The total jumping frequency k is re-
lated to the specific jumping frequencies ki

for a given structure by a summation over
the lattice connectivity Z:

k =
Z

∑
i=1

ki (1)

In the limit of infinite dilution there are
no interparticle correlations and the parti-
cles perform a random walk on a lattice
spanned by for example the cage-centers.
For Bravais lattices, the transmission rates
are then easily converted to self-diffusion
coefficients by for example

DS =
1

2d
kλ2 (2)

where d denotes the spatial dimensionality,
for the one dimensional lattice, two dimen-
sional square and hexagonal lattice, and for
the three dimensional simple cubic lattice,
respectively.

For non-Bravais lattices, the diffusion co-
efficient can be easily evaluated numeri-
cally for any nonrandom quasiperiodic tes-
sellation, but often it is possible to find ana-
lytical expressions. Consider an hop from A
to C with an intermediate state B. We have

PB→A

PB→C
=

kB→A

kB→C
(3)

PB→A + PB→C = 1 (4)

and therefore

PB→C = PB→A
kB→C

kB→A
(5)

= (1− PB→C)
kB→C

kB→A
(6)

(7)

from which PB→C can be solved

PB→C =
kB→C

kB→A + kB→C
(8)

The hopping rate from A to C is the hop-
ping rate from A to B times the probability
PB→C to go from B to C

kA→C = kA→BPB→C (9)

In general a serial combination of hops is
then described by

kA→C =
kA→BkB→C

kB→A + kB→C
(10)

Eq. 10 proves convenient for finding the re-
lation between hopping rates and diffusion
coefficient on non-Bravais lattices. De rela-
tion between kA→B and kB→A is given by

kA→B

kB→A
=
〈nB〉
〈nA〉

(11)

where 〈nA〉 = 1 − 〈nB〉 is the equilibrium
mole fraction of particles in state A. For a
symmetric barrier 〈nA〉= 〈nB〉 and therefore
kA→B = kB→A.

In ERI-type lattice the diffusion in the xy-
plane occurs isotropicly on an hexagonal
lattice

Dxy =
1
4

kxyλ
2
xy (12)

with λxy the lattice displacement distance,
and kxy the corresponding hopping rate.
The z-diffusion is dependent on the hop-
ping in the xy plane. The lattice displace-
ment vector λz is orthogonal to λr, and us-
ing Eq. 10 plus the symmetry of the lattice,
we find

Dz =
1
2

kxy kz

kxy + kz
λ2

z (13)

To convert the hopping rate in CHA-
type zeolites to a diffusion coefficient we
note that the lattice is slightly distorted
from a cubic lattice. The orientational aver-
aged diffusion coefficient is not affected in
CHA-type lattices but the individual com-
ponents are, albeit that the distortion ef-
fect for the CHA-type lattice is negligibly
small (smaller than 2%). Therefore diffu-
sion in CHA-type zeolite can be considered
isotropic in practice.
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Figure 3: The topology of the ERI-type lattice
in (a) xy-direction the hopping takes place on
a hexagonal lattice, in (b) the z-direction a dis-
placement has to be preceded first by a xy-hop.
The lattice is drawn in blue dots connected by
blue lines of lattice distance λ ≈ 0.75 nm for x,
y, and z directions.

C the dcTST method

Slow diffusion of molecules in zeolites
can be considered an activated process, in
which the particle hops from one free en-
ergy minimum to the next, and the ac-
tual crossing time is negligible compared
to the time a particle spends inside the
cage. One can exploit the large separa-
tion in time scales using rare-event sim-
ulation techniques, We consider a system
which can be in two stable states, A and
B with a dividing free energy barrier be-
tween them. The reaction coordinate q, in-
dicates the progress of the diffusion event

Figure 4: The topology of the CHA-type lattice.
The lattice is drawn in blue dots connected by
blue lines of lattice distance λ ≈ 0.9459 nm for
a, b, and c directions.

from cage A to cage B. The location of the
dividing barrier is denoted by q∗. We intro-
duce two characteristic functions nA and nB

that measure whether the system is in state
A or B. A possible and often used definition
is

nA = θ
(
q∗− q

)
, (14)

nB = θ
(
q− q∗

)
, (15)

where θ is the Heaviside function θ(x),
which has value zero for x < 0 and value
one for x ≥ 0.

In the Bennett-Chandler approach [9, 15,
16] one computes the hopping rate over the
barrier in two steps

kA→B =
〈
δ
(
q∗− q

)〉〈
θ
(
q∗− q

)〉︸ ︷︷ ︸
P(q∗)

×
〈
q̇(0)δ

(
q∗− q(0)

)
θ
(
q (t)− q∗

)〉〈
δ
(
q∗− q(0)

)〉︸ ︷︷ ︸
R(t)

,

(16)

where δ is the Dirac delta function.
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The probability P(q∗) P
(
q
)

is the equilib-
rium probability density of finding the sys-
tem at the top of the barrier divided by the
equilibrium probability of finding it at state
A. During an NVT-ensemble MC simula-
tion at the required loading we measure the
free energy F(q) by using Histogram Sam-
pling (HS). In the HS method, a histogram
is made of the particle positions, mapped
on the reaction coordinate. From the his-
togram a free energy profile is computed,
by using

βF(q) = − ln 〈P(q)〉 . (17)

The reaction coordinate is formed by a
curve from lattice point to a neighboring
lattice point, mapping the Wigner-Seitz vol-
umes of A and B onto the curve. Inclusion
of the full Wigner-Seitz volumes ensures
the correct inclusion of entropy. This is es-
pecially important if the Widom-particle-
insertion (WPI) method is used to compute
the free energy. WPI uses a probe particle
that is inserted at random positions, to mea-
sure the energy required for or obtained by
insertion of the particle in the system. This
energy is mapped onto the reaction coordi-
nate q, using

βF(q) = − ln
〈
e−β∆U〉

N (18)

to produce a free energy profile, where〈
e−β∆U

〉
N is the average Boltzmann factor

over all positions in the slice corresponding
to the reaction coordinate. A ”ghost par-
ticle” is used as the measuring probe, but
the other particles in the system do not feel
its presence. At higher loadings, WPI is
known to give erroneous results [17]. How-
ever, the WPI-profile can still be used as a
biasing profile for the importance sampling
techniques to improve statistics [17]. Note
that only one tagged particle is biased, the
other particle are free to move, and the free
energy of the tagged particle is computed.
If unbiased HS is feasible, then all particle
contributions can be used.

the flux R (t) through the dividing surface
R (t) is the averaged flux at the top of the
barrier multiplied by the probability that
the system ends up in state B at time t.
R (t) is a conditional average, namely the
product q̇ (0) θ

(
q (t)− q∗

)
, given that q (0) =

q∗. We compute the fraction κ of particles
starting on top of the barrier with a veloc-
ity towards B that successfully reach cage
B. Starting configurations are generated
using MC with one particle constrained to
the dividing surface and N − 1 particles
moving around freely. These configurations
are then used to compute the ratio in un-
constrained NVE-MD simulations, starting
with velocities sampled from a Maxwell-
Boltzmann distribution at the desired tem-
perature. If the chosen dividing surface is
the true dividing surface we can estimate
from kinetic theory the long time value of

R(t) by 1
2 |q̇(0)| =

√
kBT
2πm . The dimensionless

transmission coefficient κ corrects for par-
ticles that cross the transition state from A
but fail to equilibrate in B.

κ (t) ≡kA→B (t)
kTST

A→B
=〈

q̇(0)δ
(
q (0)− q∗

)
θ
(
q (t)− q∗

)〉〈
1
2 |q̇(0)|δ

(
q (0)− q∗

)〉 .

(19)

We can then write

kA→B =R (t) P
(
q∗
)

=κ

√
kBT
2πm

e−βF(q∗)R
cage A e−βF(q) dq

(20)

For systems with erratic free energy land-
scapes, e.g. multiple of barriers of different
heights, the dcTST method can be general-
ized using

kA→B =
1

〈nA〉

〈R ∞
0 q̇ (t) q̇ (0)

w(q(t))
w(q(0))

e−βF(q(t))

e−βF(q(0)) dt
〉

πR qB
qA

eβF(q) dq
R ∞
−∞ e−βF(q) dq

(21)
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with a biasing function w(q) operating on
the range qA to qB, i.e. on the λ region

w(q) = eaβF(q)

π
(
q
)
∝ e(a−1)βF(q)

(22)

where a > 0 is an integer to be freely cho-
sen. A value of a = 1 would flatten the free
energy landscape, a value of a = 2 would
reproduce the Ruiz-Montero method (if the
approximate free energy is taken to be the
true free energy), and in the limit of a →∞
and a single free energy barrier the method
reduces to the Bennet-Chandler method.
Although Eq. 21 can be considered a TST
method using a more continuous ”detec-
tor” function than the noisy θ-function, it
can also be viewed as a MD method in a dif-
ferent, more convenient ensemble π

(
q
)
∝

w(q)e−βF(q). Starting configurations at the
desired loading are sampled using NVT-
MC (with the biased, tagged particle in the
π-ensemble) and subsequently a weighted
velocity autocorrelation of the tagged par-
ticle is computed using conventional NVE-
MD.

D Non-rectangular unit cells

ERI-and CHA-type zeolite come in both
rectangular unit cells, as well as their crys-
tallographic non-rectangular definitions. In
crystallography, the crystal structure is de-
fined by the unit cell, and by the fractional
coordinates of the atoms within the unit
cell. These coordinates form an orthonor-
mal dimensionless S-space. S space is of-
ten more convenient for the computation of
the free energy profiles. The transformation
from S-space to real R -space can be carried
out by the matrix H :

H =

a b cos (γ) c cos (β)
0 b sin (γ) cζ
0 0 c

√
1− cos2 β − ζ2


(23)

with
ζ =

cosα− cosγ cosβ

sinγ
(24)

Conversely, H −1 transforms real coordi-
nates to fractional coordinates. With the
chosen H the scaled box has a length of
1. Our potential forcefield is defined in
real space, therefore it is convenient to store
position in R space, transform them to S
space, apply periodic boundary conditions
in S space, and transform back to R space
to compute distances within the simulation
box

s = H −1r
s′ = s− rint (s)
r′ = H s′

(25)

where the ”rint”-function returns the
rounded integer value of its argument. The
smallest perpendicular width of the unit
cell has to be larger than twice the spherical
cutoff in R space.

For computational reasons a rectangular
unit cell is preferred. Not only is the matrix
conversion more expensive, if the the unit
cell is severely distorted from cubic many
distances will be calculated that are out-
side the cutoff in R space reducing the ef-
ficiency. However, for computation of free
energy profiles in complex zeolite struc-
tures, the fractional space is often very con-
venient.

E Reaction coordinate

In general, the reaction coordinate q is a
function of the configuration of the whole
system, i.e. q = q(r1, . . . , rN). However, we
can choose q as the position of one of the
two beads of ethane [6,7]. This choice of or-
der parameter underestimates the free en-
ergy of the true transition state, but the dy-
namical correction κ is the exact correction
compensating our choice of reaction coor-
dinate [16]. In the Bennett-Chandler ap-
proach it is sufficient to chose a reaction co-
ordinate q and assign the barrier position
q∗ inside the barrier region. The result of
the scheme does not depend on the specifics
of the reaction coordinate and location, al-
though the statistical accuracy does.
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The monoclinic unit cell definition for an
ERI-type cage is shown in Fig. 1(a). Because
two cages are present in the unit cell defi-
nition it is convenient to be able to select a
single cage by using

q =

{
sx + (1− sy) < 1 for cage A
sx + (1− sy) > 1 for cage B

(26)

where s are the fractional coordinates of a
single ERI-type unit cell in S-space. For xy-
computations the barrier is located at sxy =
{1

2 ,
1
2}, and by symmetry all positions in the

unit cell can be mapped on the reaction co-
ordinate. For the z-computation we select
only cage A and use

q = sz (27)

The barrier at the center of the cage is lo-
cated at s = {1

3 ,
2
3 ,

3
4}, while the free energy

minima qA and qB are located at s = {1
3 ,

2
3 ,

1
2}

and s = {1
3 ,

2
3 ,1}, respectively. Using the

projection Eq. 27 and the positions of cage
A only, qA is located at sz = 1

2 , the barrier q∗

at sz = 3
4 , and qB at sz = 1.

The unit cell definition for a CHA-type
cage is shown in Fig. 1(b) (the rhom-
bohedral lattice can be though of as a
cube slightly pulled along its space di-
agonal). The reaction coordinate can
now be chosen from the center of the
cage (s0 = {0.5,0.5,0.5}) to any of the
six exits through the center of the win-
dows (s1 = {1,0.5,0.5}, s2 = {0.5,1,0.5},
s3 = {0.5,0.5,1}, s4 = {0,0.5,0.5}, s5 =
{0.5,0,0.5}, s6 = {0.5,0.5,0}), i.e. the space
is simply mapped onto the three orthonor-
mal axes in scaled space. The other half of
the profile, i.e. from q∗ to qB follows by sym-
metry. Due to symmetry reasons, the free
energy profiles are all equivalent, and there
is only one hopping rate k from a cage to
any of the neighboring cages in CHA-type
zeolites.

F Force field potentials and simu-
lation details

We neglect cations and study rigid, all-silica
versions of the ERI- and CHA-type zeolites.
The positions of the atoms are taken from
Ref. [11] and [12], respectively. Ref. [12],
respectively. Following the work of Bezus
et al. [18], the zeolites are modeled as a
rigid network of oxygen atoms. This is a
very common approximation because the
large oxygen atoms essentially shield the
much smaller silicon atoms and lattice flex-
ibility is not important for small alkanes in
all-silica zeolites [19]. The simulation box
sizes we used are 3× 3× 3 (perpendicular
widths are 3.447647× 3.447647× 4.515 nm)
for ERI-type zeolite, and 3× 3× 3 (perpen-
dicular widths are 2.809895 × 2.809895 ×
2.809895 nm) for CHA-type zeolite. Tests
on larger systems did not show any sig-
nificant finite-size effects. Periodic bound-
ary conditions were employed. Adsorption
in cation-free structures takes place at sites
with little or no electric field. For these rea-
sons the united atom model [20] seems the
most straightforward choice. We consider
the CH3 groups as single, chargeless inter-
action centers with their own effective po-
tentials. The beads of ethane are connected
by an harmonic bonding potential

Ubond =
1
2

k1(r− r0)2 (28)

with k1/kB = 96500 K/Å2 and r0 = 1.54 Å.
The non-intramolecular energy consists of
a guest-guest intermolecular energy Ugg, a
host-guest interaction Uhg,

Uext = Ugg
i j + Uhg

i j (29)

with

Ugg,hg
i j = ∑

LJ-pairs
4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
−Ecut,

(30)
where ri j is the distance between site i and
site j, rcut = 12.0 Å, the cutoff radius, Ecut the
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energy at the cut-off radius, and Ugg,hg
i j = 0

when ri j > rcut. The parameters σO−CH3 =
3.17 Å, εO−CH3/kB = 142 K, σSi−CH3 = 2.12
Å, εSi−CH3/kB = 82 K, and σCH3−CH3 = 3.78
Å, εCH3−CH3/kB = 104 K were taken from
Ref. [21]. Although the size parameters are
rather small, for this study we prefer to use
these parameters because then diffusion of
ethane in ERI- and CHA-type zeolite is still
feasible using conventional MD.

The simulations were performed us-
ing two different methods: conventional
Molecular Dynamics (MD) and the recently
proposed dynamically corrected Transition
State Theory (dcTST) [9, 10]. In MD sim-
ulations [17, 22, 23], successive configura-
tions of the system are generated by inte-
grating Newton’s laws of motion, which
then yields a trajectory that describes the
positions, velocities and accelerations of
the particles as they vary with time. We
used the velocity Verlet integration scheme
with a timestep of 0.5 fs. The relative en-
ergy drift was smaller than 10−4. For tem-
perature control we employed the Nosé-
Hoover chain (NHC) method as formu-
lated by Martyna et al. [24]. Molecules
were inserted into the framework at ran-
dom positions as long as no overlaps oc-
curred with the framework or other parti-
cles. During the initialization period we
performed an NVT Monte-Carlo (MC) sim-
ulation to rapidly achieve an equilibrium
molecular arrangement. After the initializa-
tion period, we assigned velocities from the
Maxwell-Boltzmann distribution at the de-
sired average temperature to all the atoms.
The total momentum of the system was set
to zero. Next, we equilibrated the system
further by performing an NVT MD sim-
ulation using the NHC thermostat. After
the equilibration was completed, during the
production run of more than 20 ns, we col-
lected statistics using the NVT-ensemble.
Simulations using the NVE-ensemble gave
equivalent results. More details can be
found in Ref. [9].

Transmission coefficients are computed
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Figure 5: Mean square displacement of ethane
in ERI-type zeolite at 600K and a loading of one
molecule per cage. The msd is equal for x- and y-
directions, and different in the z-direction. The
horizontal line is the cage-to-cage hopping dis-
tance λ (approximately 7.5 Å for both xy- and
z-direction). The different regimes of diffusion
are clearly visible, and only after a single cage-
crossing the msd has become linear (a straight
line of slope one in log-log scale). The slope over
the linear regime corresponds to the limit of long
times and can then be reliable measured. The
diffusion coefficient is the slope at long times di-
vided by two times the number of spatial dimen-
sions.

from at least 50000 independent configu-
rations. These configurations are obtained
from Monte-Carlo simulations, where ev-
ery 500 cycles a configurations is stored.
A cycle is defined as N steps, where N
is the amount of molecules, and a step is
one Monte-Carlo move (translation, rota-
tion, full regrow). On average there is one
Monte-Carlo move per particle in a single
cycle. The free-energy profiles are obtained
using MD and MC, and both gave equiva-
lent results.
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Figure 6: Free energy profiles F(q) at 600K of
ethane in ERI at various loadings (infinite dilu-
tion, 1, 2, 3, 4, 5, 6, and 7 molecules per erionite
cage) in the (a) hexagonal xy-plane with qA the
center of a cage, and qB the center of a neigh-
boring cage, (b) in the z-direction across a cage
with qA the top of the cage, qI the middle of the
cage, and qB the bottom of the cage, respectively.

III Results

A ethane in ERI-type zeolite
(anisotropic diffusion)

Diffusion in ERI-type is strongly
anisotropic. In Fig. 5 we show the mea-
sured mean square displacements for
ethane obtained using MD at 600K and a
loading of one molecule per cage. Msd are
equal for x- and y-directions, and different
in the z-direction. The units are convenient

for simulation purposes, because distances
are often defined in Ångstroms, and the
relevant time scale is in the picosecond
range. Slopes of msd are therefore in units
of 1 × 10−8 m2/s. The different regimes
of diffusion are clearly visible, and only
after a single cage-crossing the msd has
become linear (a straight line of slope one
in log-log scale). For interacting particles
there are timescale separations occurring
roughly at the times between particle-
particle and particle-zeolite collisions. The
mean-squared displacement thus bends
over to attain a different slope, and we
are interested in the long-time diffusion
coefficient. The self-diffusion coefficients
Dα in the direction α = x, y, z are computed
by taking the slope at long times

Dα =
1

2N
lim
t→∞

1
t

〈
N

∑
i=1

(riα (t)− riα (0))2

〉
(31)

where N is the number of molecules, t the
time, and riα the α-component of the center-
of-mass of molecule i. The diffusion coef-
ficients at one molecule per cage 600K are
Dxy = 2.1× 10−9 m2/s and Dz = 4.2× 10−9

m2/s. This indicates the diffusion is a rare
event and the windows form obstructions
to diffusion. Because Dz ≈ 2Dxy there are
apparently no significant free energy barri-
ers inside an erionite cage at low loading.

The hopping lattice for most
cage/window-type zeolites are formed
by the lattice spanned by their cage cen-
ters. However, for elongated cages like
erionite, intra-cage barriers are formed
at higher loadings. For an analysis we
measure the free energy profiles along the
cage-length (the z-direction), and along
the center-to-center line in the hexagonal
xy-plane. The profiles of ethane plotted in
Fig. 6 over various loadings indicate that
indeed there are inner cage barriers, and
for the xy plane the barrier is formed by
the dividing 8-ring window. The diffusion
coefficient in the z-direction depends on
both the hopping rate in z-direction as well
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as the xy-direction (Eq. 13), because each
hop in the z-direction has to be preceded
by a hop in the xy-plane.

The free energy barrier in the xy-plane
is a sharply peaked, and therefore the
tranmission coefficient is straightforward
to evaluate using the Bennet-Chandler ap-
proach. The transmission coefficients κ(t)
are shown in Fig. 7. The starting config-
urations constrained to the top of the bar-
rier q∗ were sampled using a Monte-Carlo
scheme. After approximately 10 picosec-
onds the time dependent transmission coef-
ficient κ(t) reached its plateau value κ. Us-
ing Eq. 16 and Eq. 12 the hopping rate and
diffusion coefficient in the xy-plane can be
computed.

The free energy in the z-direction across
an erionite cage is initially rather flat, and
with increasing loading a clear free energy
minimum is formed in the center of the
cage. There are two solutions to this prob-
lem. The first would be to use a differ-
ent hopping lattice and include the purple
points in Fig. 3 in the hopping lattice. An
hop in z-direction is now a sequential pro-
cess of two hops and the total hopping rate
can be obtained using Eq. 10. A second
method, and the method of our choice here,
is to use biased MD to compute the total
hopping rate from the top of the cage to the
bottom of the cage directly. The reasons are
twofold, firstly the method is applicable to
low free energy barriers and secondly, the
method is able to compute hopping rates
over complicated free energy landscapes
such as, in this case, two barriers. The re-
action coordinate is the projection on the
z-axes (Eq. 27), where qA denotes the top
of the cage, qB the bottom of the cage, and
qI the intermediate free energy minimum.
There are two barriers, one separating qA

and qI , and another one between qI and qB.
The biased MD method computes the total
hopping rate from qA to qB by computing an
effective diffusion coefficient over the entire
q domain (qA to qB), i.e. there is no separate
computation of the transmission coefficient.
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ethane at 600K in ERI-type zeolite as a function
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Figure 8: Intra-cage hopping rate in the z-
direction obtained using Biased MD for ethane
in elongated ERI-type cages at 600K.

The results are shown in Fig. 8. The plateau
value at long times is the hopping rate of
interest.

The self-diffusion coefficients of ethane in
ERI-type zeolite at 600K using dcTST and
conventional MD are shown in Fig. 9. Sur-
prisingly, the anisotropical behavior of ERI-
type cages reverse with loading, i.e. at low
loading the diffusion in the z-direction is
two times faster than in the xy-direction,
while for higher loadings this changes to a
diffusion that is more than two times slower.
Although MD and dcTST give equivalent
diffusivity results, the behavior is better un-
derstood by analyzing the free energy pro-
files (and transmission coefficients). At low
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Figure 9: Anisotropic diffusion of ethane in
ERI-type zeolite computed by dcTST and con-
ventional MD at 600K.

loading the diffusion is impeded by the
eight-ring windows, i.e. the exits out of the
cage to the next, but at higher loadings the
barrier is formed by the center of the cages.

B ethane in CHA-type zeolite

A similar free energy analysis as for ERI-
type zeolites can be performed for CHA-
type zeolites. However, here, the free en-
ergy profiles and transmission rates are
equal for a, b, and c directions. Hence,
there is only one hopping rate, and any
anisotropy is entirely due to the degree
of distortion from a cube. In Fig. 10 we
show the free energy profiles for CHA-
type zeolites. The barrier is formed by the
eight-membered ring for all loadings, and
at higher loadings some inner-cage reor-
ganization is observed as more and more
molecule has to be accommodate inside the
chabazite cage.

Our simulations indicate no significant
anisotropy (less than 2%) and therefore
we plot the orientational averaged self-
diffusivity only, for both MD and dcTST
in Fig. 11. A similar diffusivity behavior
to ERI-type zeolites is observed for CHA-
type cages. Indeed, the increase in diffusiv-
ity is a general feature present due to cage-
confinement. The maximum in the diffu-
sivity is shifted to lower loading, consistent
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Figure 10: Free energy profiles F(q) at 600K
of ethane in CHA at various loadings (infinite
dilution, 1, 2, 3, 4, 5, and 6 molecules per
chabazite cage). The reaction coordinate is the
position of the first bead along the centerline
connecting the center-points of two cages. (lines
from top to bottom in order of the legend).

with the smaller cage size of chabazite in
comparison to erionite.

As mentioned, the diffusion in CHA-type
zeolite can be considered isotropic in prac-
tice. Indeed, tracer diffusion measurements
of water in natural chabazite by Raman
spectroscopy did not indicate any substan-
tial deviation from diffusion isotropy [14].
However, using the pulsed field gradient
NMR technique Bär et al. [13] reported an
orientation-dependent diffusivity with a ra-
tio between the maximum and minimum
diffusivity of a factor of two, also for wa-
ter in natural chabazite. Such a significant
anisotropy can potentially originate from a
significant symmetry breaking in the zeo-
lite sample, caused by for instance a non-
random arrangement of cations and/or im-
perfections inside the crystal.

IV Conclusions

The dcTST gives equivalent results to con-
ventional MD, but is also applicable in the
regime of very slow diffusion where MD
can not be used. Moreover, the method al-
lows for a more detailed analysis in terms
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Figure 11: Orientationally averaged diffu-
sion of ethane in CHA-type zeolite computed
by dcTST and conventional MD at 300K and
600K.

of free energy profiles and transmission co-
efficients. The first is a static term, cor-
responding to locations of preferable ad-
sorption sites and estimations of free en-
ergy barriers in between, the latter (or ac-
tually the inverse of the transmission coef-
ficient: the recrossing) corresponds to col-
lision frequencies, which generally increase
with loading. Here, we have shown how
to apply the dcTST to nontrivial lattices: (a)
ERI-type lattices are non-Bravais, (b) CHA-
type lattices are rhombohedral. Both ze-
olites are cage/window-type zeolites, and
in both zeolites the diffusion increase with
loading and decrease only close to satura-
tion loading. The diffusion of CHA-type
zeolites is nearly isotropic, the diffusion
of ERI-type zeolites is strongly anisotropic.
Surprisingly, the anisotropical behavior of
ERI-type cages reverse with loading, i.e. at
low loading the diffusion in the z-direction
is two times faster than in the xy-direction,
while for higher loadings this changes to a
diffusion that is more than two times slower.
Although MD and dcTST give equivalent
diffusivity results, the behavior is better un-
derstood by analyzing the free energy pro-
files (and transmission coefficients). At low
loading the diffusion is impeded by the
eight-ring windows, i.e. the exits out of the
cage to the next, but at higher loadings the

barrier is formed by the center of the cages.
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[21] A. Schüring, S. M. Auerbach, S.
Fritzsche, and R. Haberlandt, J. Chem.
Phys 116, 10890 (2002).

[22] M. P. Allen and D. J. Tildesley, Com-
puter simulation of liquids (Clarendon
Press, Oxford, 1987).

[23] D. C. Rapaport, The art of molecular
dynamics simulation 2nd edition (Cam-
bridge University Press, Cambridge,
2004).

[24] G. J. Martyna, M. Tuckerman, D. J.
T. M. L., and Klein, Mol. Phys. 87, 1117
(1996).

Page 225 of 256



Page 226 of 256



13
Summary and conclusions

I The ”window”-effect (chapters 3, 4, and 5)

One of the most controversial and intriguing phenomena in the zeolite literature was the
window effect. Conventional zeolite-catalyzed (hydro)cracking yields a product distri-
bution with a single maximum, which is consistent with the currently accepted reaction
mechanisms. Chen et al. [1, 2] discovered in 1968 that ERI-type zeolites yield a bimodal
product distribution with maxima at n-C3−4 and n-C10−12, but no product in the C7−9 range
(the ”window”). This suggests the possibility of length selective hydrocracking, enabling
control over the length distribution of the product or reactant slate by selecting a zeolite
with the appropriate window.
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Figure 1: The window effect in ERI-type zeolites (a) a near-perfect correlation exists between the
product distribution by Chen et al. [1, 2] and the diffusion coefficient as a function of n-alkane
length by Gorring [3], (b) Gorring’s results are in disagreement with the results of Cavalcante et
al. [4] and Magalhães et al. [5].

For a long time the window effect had been related nearly exclusively to the diffusion
rate of n-alkanes in ERI-type zeolites. Gorring showed that a near perfect correlation
exists between the product distribution and the diffusion coefficient as a function of n-
alkane length (Fig. 1(a)) [3]. Recent diffusion measurements by Cavalcante et al. [4] and
Magalhães et al. [5] failed to reproduce the increase in diffusion rate for the appropriate
n-alkane lengths (Fig. 1(b)). This controversy motivated us to study the window-effect
using molecular simulations focussing on the following questions
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Does the window-effect exist? what is the
reason for the product distribution?

and constitute the first three chapters (3, 4, and 5).
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Figure 2: Diffusion coefficients as a function of chain length at 600 K for ERI-, CHA-, and LTA-
type zeolite; M ERI-type silica sim. results, N exp. results of Gorring [3], ∗ Cavalcante et al. [4],
•Magalhães et al. [5]; O CHA-type silica sim. results, H exp. results of Gorring [1]; ♦ LTA-type
silica sim. results, � exp. compiled in Ref. [6].

The molecular simulations of chapter 3 and 4, shown in Fig. 2, corroborated the exis-
tence of the disputed window effect, i.e. an increase in diffusion rate by orders of magni-
tude when the alkane chain length increases so that the shape of the alkane is no longer
commensurate with that of a zeolite cage. This window effect was shown to be character-
istic for molecular sieves with pore openings that approach the diameter of the adsorbate.
Our simulations reproduced the chain length dependence and are consistent with the ex-
perimental data of Gorring [3]; we not only confirmed the occurrence of a maximum for
both ERI- and CHA-type zeolite at the same carbon number as observed experimentally,
but also the shift of this maximum to lower carbon numbers for CHA-type silica. The
increase in the diffusion rate originating from the geometry-chain interaction is a remark-
able four orders of magnitude for both ERI- and CHA-type silicas !!! In the controversy
about the experimental results we side with Gorring, who was the first and only to report
experimental data indicating the ”window-effect”. This opens the possibility of length
selective cracking, where the length distribution is controlled by choosing structures with
the appropriate cage size.

Although our simulations confirmed the experimental observations of Gorring, the re-
sults nevertheless pointed to an alternative mechanism based on anomalously low ad-
sorption of long molecules. It is important to note that the window effect has become
associated only with a high n-C10−12 yield. However, a closer inspection of the raw data
of Chen et al. published for n-C36 reveals additional yield maxima at n-C24−26 and at n-
C15−17 in the complete chromatogram of the n-C36 cracking products (Fig. 3). From the
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Figure 3: The complete chromatogram of the n-C36 cracking products [1, 2].

calculated variation of Henry coefficients with chain length it is immediately apparent
that the complete n-C36 adsorption can be excluded, and yet ERI-type zeolites crack n-C36

shape selectively. The preferential yield of n-C24−26 and n-C15−17 is indicative of consec-
utive scissions of C10−12 fragments from n-C36. The maximum at n-C10−12 indicates that
the most rapidly diffusing cracking product can escape complete consumption into more
refractory alkanes with six or fewer carbon atoms. This selective cracking process leaves
minima at n-C18−23 and at n-C13−14. A reasonable explanation for persistence of shape-
selective cracking of very long alkanes by ERI-type zeolites is that these long molecules
adsorb partially in the surface pockets created by the ERI-type cages at the outer crystal
surface. Full adsorption by more than 12 carbon atoms is unlikely. The adsorbed n-C10−12

part is chopped off, and the non-adsorbed part is released. Released parts end up in the
product slate or undergo further scission reactions. This process becomes less selective
with an increasing number of cracking steps due to concomitant isomerization reactions.

The proposed mechanism is characteristic for cage/window-type zeolites with small
windows close to the diameter of the adsorbate. The newly gained understanding of
length-selective hydrocracking affords prediction of selectivity as a function of cage size.

II Development of methods to compute very slow diffu-
sion in confinement (chapters 3, 4)

The diffusion coefficients in ERI-type zeolites are extremely slow, as low as 10−17 m2/s.
The first difficulty we encountered when studying diffusion behavior in zeolites using
simulation is that many diffusional processes occur outside the time scale accessible to
MD, which is currently typically limited to diffusion rates in the order of 10−12 m2/s. The
first step in my PhD was
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the development of a novel simulation
Transition State Theory technique to study
diffusion of linear alkanes in nanoporous
materials with exceptionally slow diffusion
rates.

which required the combination of rare-event transition state theory techniques and the
configurational-bias Monte Carlo algorithm (CBMC).

The conventional simulation techniques are prohibitively expensive for long alkanes.
The CBMC technique greatly improves the conformational sampling of molecules and
increases the efficiency of chain insertions by many orders of magnitude. In a CBMC sim-
ulation chains are grown bead by bead biasing the growth process towards energetically
favorable configurations, and avoiding overlap with the zeolite. During the growth the
Rosenbluth factor is calculated. The average Rosenbluth factor is directly related to the
excess chemical potential, the free energy, and the Henry coefficient KH.

Diffusion can be considered an activated process, if the free energy barrier impeding
diffusion is much higher than kBT, where kB is the Boltzmann constant and T the temper-
ature. We define a reaction coordinate q, that indicates the progress of the diffusion event
from cage i to cage j. The location of the dividing barrier is denoted by q∗. Once in a
while a particle hops from one cage to the next, and the actual crossing time is negligible
compared to the time a particle spends inside the cage. One can exploit the large sepa-
ration in time scales using rare-event simulation techniques. In Transition State Theory
(TST) approximations one computes a rate constant between states A and B by computing
the equilibrium particle flux through the dividing surface. The dividing surface should
uniquely divide two connected states, and in general the TST rate is an upper bound on
the exact rate. The exact rate can be recovered by running short MD trajectories from
the dividing surface to compute a dynamical correction (dc) κi j. The rate coefficient for a
jump from site i to site j can be expressed as

ki→ j = κi jkTST
i→ j (1)

where κi j is the classical transmission coefficient and

kTST
i→ j =

√
kBT
2πm

ZS

Zi
(2)

where m is the reduced mass associated with the reaction coordinate, ZS is the config-
urational partition function on the dividing surface, Zi is the configurational partition
function in the reactant state i. The ratio of the partition function can be expressed in
terms of the free energy surface F(q)

ZS

Zi
=

e−βF(q∗)R
i e−βF(q) dq

(3)

Our novel method combined the two algorithms. Calculating the equilibrium particle
flux through the dividing surface is equivalent to a free energy computation as function
of a ”reaction coordinate”, which monitors the progress of the diffusion event. At infinite
dilution, free energy can be probed by the Widom particle insertion method, where chains
are grown at random positions and the resulting contribution mapped onto the reaction
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Figure 4: Force fields (a) diffusion coefficients of methane in LTA-type silica at 173K as a function
of loading by MD simulations of Fritzsche et al. [7,8]. Set A uses σ = 3.14 Å and ε = 180 K for the
O-CH4 interaction, while set B uses σ = 3.46 Å and ε = 97.5 K, (b) Isotherms of 2-methylpropane
at 308 K in MFI compared to various computational models. The experimental data are taken from
Ref. [9], the simulation data from June et al. [10], Vlugt et al. [11], Smit et al. [12], AUA from
Pascual et al. [13], and CVFF from Macedonia et al. [14].

coordinate. The crucial link was to take the position of one of the beads as the reaction
coordinates. This renders it unnecessary to sample the complete phase space by inte-
grating over all internal particle coordinates and orientations, weighed with the correct
Boltzmann weight. The resulting computational algorithm is 6-10 orders of magnitude
more efficient compared to the conventional simulation techniques.

III Force field development (chapter 6, 7, and 8)

Different parameter sets yield different values of diffusivities. In Fig. 4, the MD-data
of Fritzsche et al. at 173K for methane in LTA-type zeolite are shown [7, 8], using two
different parameters sets A and B. The diffusivities differ quantitatively by an order in
magnitude, but also the qualitative behavior is different: set B increases with loading,
while set A decreases. The critical unresolved question was:

which of the different potential parame-
ter sets circulating in literature is the most
physically realistic one? Is it possible to
design a consistent and high-quality force
field in a systematic way?

Potential parameter sets can be checked only via comparison with experiment. For dif-
fusion the comparison is complicated by large discrepancies between microscopic and
macroscopic experimental measurement methods, and even within the same measure-
ment technique there are many disagreements between various studies. However, ad-
sorption results seem to be well established and provide a more solid basis for a detailed
comparison between experiment and simulation. Moreover, a large amount of data exists
on adsorption of hydrocarbons in siliceous zeolites.

Page 231 of 256



 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

Lo
ad

in
g 

q/
[m

ol
/k

g]

Fugacity of the bulk fluid phase f/[Pa]

4 molecules per unit cell
Zhu 303K
Sun 308K
this work 308K
σ=3.36 Å    ε/kB=106 K
σ=3.36 Å    ε/kB=102 K
σ=3.36 Å    ε/kB=98 K
σ=3.36 Å    ε/kB=94 K

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106

Lo
ad

in
g 

q/
[m

ol
/k

g]

Fugacity of the bulk fluid phase f/[Pa]

4 molecules per unit cell
Zhu 303K
Sun 308K
this work 308K
σ=3.60 Å    ε/kB=90 K
σ=3.60 Å    ε/kB=86 K
σ=3.60 Å    ε/kB=82 K
σ=3.60 Å    ε/kB=78 K

(b)

Figure 5: Isotherms of 2-methylpropane at 308 K in MFI. The O-CH parameters remain fixed
at σ = 3.92 Å and ε/kB = 40 K, while εO-CH3 is examined over a range of reasonable values for
two fixed values of σO-CH3 a) a rather too small of σO-CH3 = 3.36 Å and b) a too high value of
σO-CH3 = 3.60 Å. Only a single parameter pair, εO-CH3/kB = 93 and σO-CH3 = 3.48 combined with
the CH parameters (Table 2), is able to describe the experimental data of Sun et al. [9] and Zhu et
al. [15].

It is instructive to discuss the role of the size-parameter σO-CHx . In Fig. 5 we show
the influence of the σ parameters on the inflection of 2-methylpropane in MFI. The O-
CH parameters remain fixed at σ = 3.92 Å and ε/kB = 40 K, while εO-CH3 is examined
over a range of reasonable values for two values of σO-CH3 : one significantly too small
and one significantly too large. A crucial observation is that only a single strength/size
parameter pair is able to describe the inflection and the entire isotherm properly. This
is in contrast with the common belief that for each value of σ there is a corresponding ε
that can describe the isotherm correctly [16]. The shape of the isotherm and the inflection
points are the most sensitive to the size-parameter of the interactions, whereas the loading
at a given pressure is most sensitive to the strength-parameter of the interaction. A higher
strength parameter ε induces an increased loading, and a lower strength parameter results
in a decrease in loading (for a fixed pressure). The amount of inflection is controlled by
the size parameter σ. These properties can be exploited to obtain unique parameters.

We refer to Fig. 4 to discuss the comparison with various united atom approaches pre-
viously proposed in literature. The figure showed the inflection in the isotherm of 2-
methylpropane at 308 K in MFI. The models of Smit et al. and Vlugt et al. exaggerated
the inflections because their size-parameters were too large. The models of Pascual et al.,
June et al., and the all-atom CVFF force field did not show a clear inflection at all because
their size-parameters were too small. The question was ”Which of the different potential
parameter sets circulating in literature is the most physically realistic one?” We can state
that for alkanes in siliceous zeolites our new force field is a big improvement over pre-
vious force fields. For further improvement and refinement more experimental data is
needed.

The fitting to well-established inflection points in the isotherms has many advantages
and overcame problems that had impeded the development of more accurate force fields.
We obtained a unique set of parameters that all directly related to well-defined physical
properties. Therefore, the parameters were much better transferable to other systems than
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Figure 6: Diffusion coefficient of (a) methane in LTA-type silica as a function of loading. The
coarse-grained results of Tunca et al. using dynamically corrected and noncorrected TST are
shown. The MD results were taken from Fritzsche et al. on an identical system, (b) methane
and ethane in LTA-type zeolite, as a function of loading, at 600K and 750K, respectively, using
our dcTST method.

parameters from previous attempts. By explicitly fitting to entire adsorption isotherms
we guarantee the proper reproduction of properties such as Henry coefficients, heats of
adsorption, adsorption entropies, and saturation loadings.

Because this methodology can be applied to the important practical problem of force
field development for zeolites including cations and also beyond the field of zeolites, it
justified publication in Journal of the American Chemical Society and Physical Review
Letters, respectively.

IV Development of methods to compute very slow diffu-
sion in confinement as a function of loading (chapters 9,
10, and 12)

Many of the processes of industrial importance occur at non-zero loading. A limited
number of studies deal with non-zero loading. Tunca and Ford [22] used multidimen-
sional TST to obtain the hopping rate of adsorbates from an α-cage in LTA-type zeolite
as a function of loading. Various approximations were applied to make the simulations
computationally feasible. In a subsequent study [23] the limitations of an empty receiv-
ing cage and the use of the Widom insertion method were avoided. Recently, Tunca and
Ford presented a new hierarchical approach to the molecular modeling of diffusion and
adsorption at nonzero loading in microporous materials [24]. Statistical mechanical parti-
tions functions are calculated on molecular level models and used as an input to a coarse-
grained model. Tunca and Ford advocate separate calculations of ZS and Zi, as opposed
to the conventional approach of calculating ratios of partitions functions viz. free ener-
gies (Eq. 3). They developed a recursive algorithm for building up (N + 1)-body partition
functions from N-body partitions functions

Fig. 6 shows the diffusion coefficients of methane in LTA-type zeolite as a function of
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loading using the TST and dcTST method of Tunca et al. and the MD results of Fritzsche
et al. on an identical system. Although adsorption was well represented by the method
of Tunca et al., the coarse-grained self-diffusivity data under-predicted the diffusivity at
low loading, while significantly over-predicting the diffusivities at higher loadings, in
comparison to conventional MD. The discrepancies might steem from various sources:

• only one pair of isolated cage is treated.

• multi-jumps, involving three ore more cages, are neglected.

• the intra cage dynamics is always fast in comparison to the rate of escape from the
cage.

• for the purpose of calculating the partition function the molecules are restricted to a
set of distinguishable cages.

• a ”pore-pairwise” additivity of the excess Helmholtz free energy is assumed.

• the use of a kinetic Monte Carlo scheme on a lattice level where the equilibrium and
dynamical properties are evaluated.

The obvious question to be answered was:

Could we do better? Could we develop
a method that is capable of computing
quantitatively the diffusivity of adsorbed
molecules in confined systems at non-zero
loading?

In chapter 9, published as a letter in Physical Review Letters, an extension to Transition
State Theory was presented that is capable of computing quantitatively the diffusivity
of adsorbed molecules in confined systems at non-zero loading. It was shown that
the particle-particle correlations can be taken into account by a proper definition of an
effective hopping rate of a single particle. The self-diffusivity was computed directly
by computing the hopping rate of a molecule over a typical length scale given by the
smallest repeating zeolite-structure, i.e. from the center of cage A to the center of cage B.
The use of kinetic Monte Carlo and its underlying assumptions are therefore avoided.
Implicitly one integrates over all adsorption sites in the cage, irrespective whether these
are well-defined or not. All other particles are regarded as a contribution to the external
field exerted on this tagged particle. The dcTST extension to finite loadings yielded ex-
cellent agreement with that obtained by conventional MD simulations and is applicable
in any system containing high free energy barriers and for any type of guest molecule.
While Molecular Dynamics calculations are limited to relatively fast diffusing molecules
or small rigid molecules, our approach extends the range of accessible times scales
significantly beyond currently available methods. In Chapter 10, results were shown
for methane, ethane, and propane in LTL- and LTA-type zeolites over a wide range of
temperatures and loadings, and demonstrated the extensibility of the method to mixtures.
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V Flexibility influence on diffusion (chapter 10)

The flexibility issue had long been an open one, and was thought to be closed: ”In cation-
free zeolites, diffusivities remain virtually unchanged for for small molecules when in-
cluding lattice vibrations”. Fritzsche et al. studied methane in cation-free LTA-type ze-
olite, and their data is summarized in Fig. 7. By comparing with a model rigid LTA
minimized using the same force field, they found almost no influence on the diffusion
coefficient.
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Figure 7: MD data of Fritzsche et al. [17] on methane in LTA-type silica (a) comparing a rigid
and flexible model varying the LJ size parameter σ at a loading of 1 and 7 molecules per cage, (b)
comparing a rigid and flexible model as a function of temperature at a loading of 1 molecule per
cage. The flexible lattice model of Demontis et al. was used [18].

The force fields developed in chapter 6 and 7 have one extremely important conse-
quence: they allow a detailed investigation of the importance of lattice vibrations. The
reason is that the found parameters are unique and hence the only parameters to describe
adsorption properly. Because flexibility of the framework is not an issue for adsorption
of linear and branched alkanes [21], a mismatch between experimental and computated
diffusivities can only mean two things:

• the united-atom model is inadequate to properly describe diffusion,

• the framework flexibility should be properly modeled.

Since the first conclusion can only be drawn after considering the second, the flexibility
issue for diffusion had to be resolved for our systems and simulation conditions

Does flexibility influences diffusion? At
what conditions and for what systems does
flexibility matter, and when can it be ne-
glected?

In Ref. [17] it was found that self-diffusion coefficients for methane in LTA-type zeolite
obtained with flexible and with rigid lattices are practically the same. In Fig. 8 the self-
diffusivity of ethane was shown using the LJ-parameters of Schüring et al. [19] and the
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results of a rigid zeolite to the flexible model of Demontis et al. [18, 20] were compared.
The error-bars on our simulations are smaller or comparable to the symbol size, and can
be considered highly accurate. The data was obtained by averaging over 20 independent
simulations and the error bars were computed from twice the standard deviation for that
set (95 percent confidence interval). We have added the results of Schüring et al. [19] for
the infinite dilution case, and for 1 molecule per cage. The data of Schüring et al. com-
pare well and are consistent with our simulations. An important observation is that the
differences between flexible and rigid LTA-type zeolite for a small alkane like ethane in
a cation-free zeolite are significant and temperature dependent. We note that Fritzsche’s
conclusions were drawn from data only above 300K. In the low temperature-region the
ethane molecule is tightly confined in the window itself, while at higher temperature
the molecule is less tightly confined and located just in front of the window. The dcTST
method of chapter 9 and 10 would allow a detailed investigation of the effect of frame-
work flexibility on slow-diffusing molecules.
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Figure 8: Self-diffusivity of ethane using the LJ-parameters of Schüring et al. [19] comparing the
results of a rigid zeolite to the flexible model of Demontis et al. [18, 20]. Error-bars are smaller or
comparable to the symbol size. For comparison we have added the results of Schüring et al. [19]
for the infinite dilution case, and for 1 molecule per cage.

VI Understanding diffusion in confinement: Molecular
Path Control (chapters 11 and 12)

In contrast to adsorption, which is relatively well understood, diffusion in confinement
was somewhat of a mystery. Previous knowledge was so limited that one could not pre-
dict whether for a given molecule and adsorbate the diffusion coefficient will go up, go
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Figure 9: Anisotropic self-diffusivity Dα (α = x, y, z) of ethane in ERI-type zeolite computed by
dcTST and conventional MD at 600K.

down, or remain constant as a function of loading. Therefore, our main objective to study
diffusion in zeolite was

Predicting diffusion behavior for arbitrary
topologies, adsorbates and loadings.

The dcTST method can be used to explain diffusion behavior as a function of loading in
any system with enough energy dissipation between hops, so that random walk theory
(the assumption of equilibration between two subsequent jumps) and TST are valid. The
diffusion mechanism is divided in two parts. The first is a static term, corresponding to
locations of preferable adsorption sites and estimations of free energy barriers in between,
the second corresponds to collision frequencies, which generally increase with loading.
As such, the dcTST method is able to explain different diffusion regimes over loading, and
provides insight into the mechanisms behind an increase or decrease in diffusivity with
loading. The method is a significant breakthrough in the field of diffusion in confinement,
and provides a full understanding of the molecular factors involved.

The last two chapters (11 and 12) dealed with applying the dynamically corrected Tran-
sition State Theory to confinements with complex structures and a new phenomenon in
ERI-type zeolites was found: the anisotropical behavior of ERI-type cages reverses with
loading, i.e. at low loading the diffusion in the z-direction is two times faster than in the
xy-direction, while for higher loadings this changes into a z-diffusivity that is more than
two times slower (Fig. 9). To our knowledge, this is the first time a form of molecular path
control has been found for an one-component system.

The simulations were performed using two different methods: conventional Molecular
Dynamics (MD) and the dynamically corrected Transition State Theory (dcTST) of chap-
ter 9. Although MD and dcTST give equivalent diffusivity results, the behavior is better
understood by analyzing the free energy profiles and lattice information provided by the
dcTST method. Diffusion in the z-direction is dependent on both the hopping rate in the
z-direction and in the xy-direction. An investigation of these hopping rates was made by
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analyzing the free energy barriers for diffusion in the xy-plane. For the diffusion in the
xy-plane we found ”normal” behavior, typical for cage/window-type zeolite [25]. The
diffusivity increases with loading, because the free energy barrier for diffusion decreases.
This is due to the finite volume of a cage, where adding particles to the cage results in
more repulsive interactions. In the z-direction, we found that, although initially the bar-
riers are much smaller than in the xy-direction at low loading, the barriers for z-diffusion
start to dominate the diffusion mechanism. At low loading the diffusion is impeded by
the eight-ring windows, i.e. the exits out of the cage to the next, but at higher loadings the
barrier is formed by the center of the cages.

When the elongation of the erionite-cages is removed, i.e. in CHA-type zeolites, no sig-
nificant anisotropy, nor molecular path control is observed. These results suggest that is
possible to actively design and screen for zeolites with molecular path control properties.
The key ingredient we report here is the elongation of the cages underlying tortuous diffu-
sion paths which results in a complex interplay between different diffusion paths. These
paths may then be controlled by changing the loading or pressure, and temperature.
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14
Samenvatting (Summary in Dutch)

Zeolieten zijn drie dimensionale micro poreuze vaste materialen met de eigenschap dat
het moleculen van vergelijkbare grootte als de poriën kan adsorberen. Bekende toepas-
singen zijn waspoeder en kattebakkorrels. Voor petrochemische toepassingen, zoals bij-
voorbeeld het verhogen van het octaan gehalte van benzine, worden zeolieten gebruikt
met goede scheidingseigenschappen tussen lineaire en vertakte alkanen. Sommige zeo-
lieten bestaan uit kanalen, anderen bestaan uit kooien die verbonden zijn door nauwe
windows. Het is met name deze laatste klasse van zeolieten waar het proefschrift zich
op richt. Hoewel het proefschrift een studie van adsorptie en diffusie van alkanen in
zeolieten is, draagt het ook bij aan het verbeteren van de huidige simulatie methoden.
Het probleem is dat de benodigde rekentijd voor simulaties van diffusie in kooi/window
zeolieten te groot is om met conventionele methoden te kunnen doen. Dit is inherent
aan de structuur van kooi/window zeolieten, omdat de diffusie snelheid van moleculen
erg traag is in vergelijking met kanaal zeolieten. Ter illustratie, kanaal-vormige zeolieten
vertonen diffusie-snelheden in de orde grootte van 10−8 m2/s, conventionele methoden
gebaseerd op het oplossen van de bewegingsvergelijkingen van Newton kunnen tot on-
geveer 10−11 m2/s aan, maar de diffusie in kooi/window structuren is in de orde grootte
van 10−14 m2/s of lager.

Hoofdstuk 1 is een generieke introductie tot zeolieten en beschrijft de structuur en con-
text van het proefschrift. Daarna worden in hoofdstuk 2 de details gegeven van de simu-
latie methoden. De daarop volgende hoofdstukken zijn geordend per onderwerp.

Hoofdstuk 3, 4 en 5 gaan over het ”window-effect”, een oud, en al 35 jaar lang onop-
gelost probleem. In 1968 deed Chen ”kraak”-experimenten in ERI-type zeolieten. Begin-
nend met lange alkanen breken de moleculen in de aanwezigheid van deze zeolieten in
steeds kleinere stukken. Opmerkelijk genoeg waren er echter geen lengtes terug te vin-
den van 7/8/9 C-atomen, maar wel veel moleculen van lengtes 3/4 en 10/11/12. Drie
jaar later deed Gorring diffusie metingen aan hetzelfde systeem en ontdekte dat precies
bij lengtes 3/4 en 10/11/12 de diffusie het snelst ging. Een mogelijke verklaring van
de lengte verdeling kon dus zijn dat lange moleculen het zeoliet binnengaan, in stukken
kraken, en dat de snelst bewegende moleculen er ook het eerst weer uit komen. Aan de
buitenkant van het zeoliet zul je dan voornamelijk lengtes van 3/4 en 10/11/12 vinden.

Recentelijk zijn de metingen van Gorring overgedaan door Cavalcante en Magalhães.
Zij hadden veel kritiek op de wijze van uitvoering van de experimenten door Gorring, en
meenden dat Gorring met zijn methode en experimentele set-up nooit de juiste diffusie
had kunnen meten. De resultaten van Cavalcante en Magelhães waren niet in overeen-
stemming met Gorring: zij vonden dat diffusie over keten lengte bleef dalen en er was
dus geen relatief hogere diffusie bij lengte 10/11/12. Deze bevindingen motiveerden ons
om naar dit systeem te gaan kijken met behulp van computer simulaties.
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De lange-tijd beweging van moleculen in ERI-type zeolieten is zo traag dat de norma-
le methode van het oplossen de bewegingsvergelijkingen van Newton niet meer binnen
redelijke tijd te doen is. Moleculen spenderen veel tijd in een kooi en slechts heel af en
toe springt er een naar een andere kooi. Voor het berekenen van een gemiddelde diffusie
snelheid zouden we over heel veel sprongen moeten middelen, iets wat dus ondoenlijk
is. Er zijn echter methoden ontwikkeld die hier anders tegen aan kijken, de zogenaam-
de ”rare-event methoden”. Hier wordt eerst gekeken wat de kans is dat je precies op het
scheidingsvlak van twee buur kooien zit (in een window), en daarna wordt voor dit mole-
cuul berekend wat de kans is dat als het molecuul uit een kooi kwam, ook daadwerkelijk
naar de andere kooi gaat (en niet terugkeert naar de originele kooi). In principe geeft deze
methode dezelfde uitkomsten, indien er een voldoende grote scheiding van tijd schalen is
(de tijd die een molecuul spendeert in de kooi is veel groter dan in het window). Onze bij-
drage bestond uit het feit dat we de rare-event methode toegepast hebben op dit systeem
en hebben aangepast voor het gebruik op moleculen die uit meerdere atomen bestaan.

Nu we een betrouwbare simulatie methode hadden ontwikkeld konden we gaan kij-
ken met welke experimenten onze simulaties zouden overeenstemmen. Het verrassende
antwoord was: ”met Gorring”. Het window-effect in de simulaties was zelfs groter dan
gevonden in het experiment: een lineair alkaan met een lengte van 12 C-atomen beweegt
meer dan 100.000 keer sneller dan een lineair alkane met een lengte van 8 C-atomen. Dit
terwijl normaal gesproken in een vloeistof een langer molecuul trager beweegt dan een
kortere door de toegenomen massa. Aangezien we in een simulatie volledige kennis van
het systeem hebben konden we precies de oorzaak van dit verschijnsel vinden. ERI-type
zeolieten bestaan uit langwerpige kooien aangesloten door nauwere windows. Kleine
moleculen zitten vast in deze kooien en hebben moeite er uit komen. Maar zodra mo-
leculen langer beginnen te worden, beginnen ze de imitatie van de kooi te voelen en
uiteindelijk willen nog langere moleculen liever over twee kooien verspreid zitten. Het
blijkt dat het grootste molecuul wat nog in een kooi past, de snelste diffusie vertoont. Het
ondervindt nauwelijks hinder van de structuur, en hoe je het molecuul ook verplaatst, het
zit altijd wel even (on)gunstig. We hebben dat eenvoudig kunnen vaststellen door de gro-
te en type van de zeoliet kooien te variëren. Hoewel we het dus in principe eens waren
met Gorring moesten we ook vaststellen dat de lange moleculen waar Chen zijn kraak
experimenten mee deed, helemaal niet in het zeoliet willen! Er was dus een alternatie-
ve verklaring nodig, waarom er geen ketens van een bepaalde lengte worden gevonden.
Als de moleculen er niet helemaal in gaan, blijft er nog een andere mogelijkheid over: ze
gaan er maar gedeeltelijk in. Moleculen adsorberen aan de buitenkant van het zeoliet, en
kraken aldaar in stukken.

In hoofdstuk 6, 7 en 8 besteden we aandacht aan het te gebruiken krachtenveld en
methoden. Om realistische simulaties te kunnen doen moeten de krachten tussen atomen
in het systeem goed en nauwkeurig beschreven worden. Een te nauwkeurige quantum-
mechanische beschrijving resulteert echter weer in onmogelijk lange rekentijden. In deze
hoofdstukken ontwikkelen en stellen we zo’n krachtenveld af om zo goed mogelijk ons
systeem te beschrijven. De in de literatuur aanwezige krachtenvelden geven kwalitatief
andere uitkomsten, bij sommige krachtenvelden stijgt de diffusie als functie van belading,
bij andere daalt de diffusie juist voor een molecuul in een gegeven systeem. Het is dus
van belang om een krachtenveld te maken dat uniek gedefinieerd is, en de experimentele
data goed reproduceert. Experimenteel blijkt het echter moeilijk te zijn om diffusie goed
te meten, verschillende experimentele methoden geven ordes van groottes verschil. Het
krachtenveld wat wij geı̈ntroduceerd hebben, en beschreven staat in hoofdstuk 6, 7 en 8
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is geparameteriseerd met experimentele data van complete isothermen (de belading van
een zeoliet als functie van druk). Hierbij blijkt het mogelijk te zijn unieke parameters
te vinden door gebruik te maken van isothermen met buigpunten. Buigpunten in een
isotherm geven aan dat er verschillende type adsorptie plekken zijn die als functie van
druk verschillend opgevuld worden. De fijngevoeligheid van de methode zorgt er voor
dat de parameters heel precies bepaald kunnen worden. Het resulterend krachtenveld is
superieur aan andere krachtenvelden in de literatuur voor dit soort systemen.

Tot nu toe waren de berekeningen gedaan in de limiet van oneindige verdunning, dus
één molecuul in een oneindig groot zeoliet. In de praktijk is de belading meestal veel ho-
ger. De volgende vier hoofdstukken 9, 10, 11 en 12 breiden de methode van hoofdstukken
3, 4 en 5 uit naar belading. Met deze nieuwe methode kan de diffusie van moleculen op
een specifieke belading worden berekenend in systemen waar diffusie voldoende traag
is. Belangrijker dan dat, in tegenstelling tot conventionele methodes die alleen diffusie-
getallen kunnen geven, is deze methode in staat ook diffusie-verklaringen te geven. Zo
geeft deze methode informatie over de kans dat een molecuul op een bepaalde plaats in
een zeoliet zit, alsmede informatie over de grote van diffusie barrières. In hoofdstuk 11
en 12 wordt met deze methode het verschijnsel van ”molecular path control” verklaard.
Het blijkt dat in ERI-type zeoliet de diffusie niet in alle richtingen gelijk is. Opzienbarend
is dat die mate van ”anisotropie” aangepast kan worden door de belading te veranderen.
Zo diffunderen moleculen op lage belading twee keer sneller zijwaarts dan voorwaarts
door het zeoliet, maar op hogere belading is dit juist omgedraaid. Het blijkt dus mogelijk
te zijn de beweging van deeltjes op moleculair niveau te controleren, vandaar de term
”molecular path control”. Hoewel dit resultaat ook met conventionele methodes is ge-
verifieerd, geeft de methode beschreven in hoofdstuk 9, 10 en 12 de verklaring voor dit
gedrag. De kooien van ERI-type zeoliet zijn niet rond, maar langwerpig, met adsorptie si-
tes aan beide kanten van de kooi, op lage beladingen. Aan de ene kant van de kooi zitten
drie uitgangen, en ook aan de andere kant zitten er drie, met onderlinge hoeken van 120
graden tussen ieder drie uitgangen. Op lage belading wordt de grootste weerstand te-
gen beweging gevormd door de uitgangen (windows). Als de belading wordt opgevoerd
verschuift dat naar het midden van de kooi. Op hogere belading kunnen moleculen dus
vrij makkelijk in het vlak gevormd door de drie uitgangen bewegen, maar heel moeilijk
van het ene deel van de kooi naar het andere deel van de kooi. De belangrijkste conclusie
van het proefschrift is dat de ontwikkelde methode inzicht geeft in waarom diffusie kan
stijgen, dalen, of gelijk kan blijven met een verandering in belading. Iets wat tot nu toe
voor mensen werkend in dit onderzoeksgebied volslagen duister was.
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Abstract The transport properties of the Grosfils, Boon, and Lallemand model, a

two-dimensional isotropic thermal lattice-gas, are evaluated in the Boltz-
mann approximation. This includes the (self)-diffusion, for which we have
introduced an additional and passive color label to the otherwise identi-
cal particles in the system. Independently, those results are confirmed by
the use of the decay of the velocity autocorrelation function. The theoret-
ical predictions of the dynamical structure factors and results obtained by
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gases
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Abstract We have constructed a regular binary thermal lattice gas model in which

the thermal diffusion and mass diffusion are coupled and form two non-
propagating diffusive modes. The power spectrum is shown to be similar
in structure as for the one in real fluids, in which the central peak becomes
a combination of coupled entropy and concentration contributions. Our
theoretical findings for the power spectra are confirmed by computer sim-
ulations performed on this model.
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oretical results are compared with simulations performed on this model
and show a perfect agreement. The power spectrums are found to be simi-
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contributions, due to the coupling of the fluctuations in these quantities.
Spectra based on the relative difference between both components have in
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failure.
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effect, i.e., an increase in diffusion rate by orders of magnitude when the
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commensurate with that of a zeolite cage. This window effect is shown
to be characteristic for molecular sieves with pore openings that approach
the diameter of the adsorbate. Furthermore, the physical compatibility
between the adsorbate and the adsorbent has a direct effect on the heat
of adsorption, the Henry coefficients, the activation energy, and the fre-
quency factors.
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Abstract
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When adsorbates are similar in size to zeolite channels then the surface
pores of zeolites only adsorb part of the adsorbate molecule. The not ad-
sorbed section can be cleaved to react further or adsorb elsewhere. The
window effect can be examined with the aid of Monte Carlo simulations.
For more information see the following communication by D. Dubbeldam
et al.
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standing window effects

Author(s) D. Dubbeldam and B. Smit
Source Journal of Physical Chemistry B 107 (44): 12138-12152 Nov 6 2003
Abstract Dedicated molecular simulation techniques afford the study of the abnor-

mal adsorption and diffusion of linear alkanes in ERI-, CHA-, and LTA-
type zeolites. The exceptionally slow diffusion rates required the devel-
opment of a combination of rare-event transition-state theory techniques
and the configurational-bias Monte Carlo algorithm. The diffusion coef-
ficients computed by this novel method agree well with the nondisputed
rates determined experimentally for LTA-type sieves. The computed rates
corroborate the nonmonotonic variation of the diffusion rate with alkane
chain length published by Gorring, that is, the rate increases by orders of
magnitude when the molecular and cage shape are no longer commensu-
rate, so a molecule ends up stretched across a cage tethered at opposite
windows. The simulations corroborate this ”window effect” for both ERI-
and CHA-type sieves and suggest that it is characteristic for all sieves with
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Author(s) E. Beerdsen, D. Dubbeldam, B. Smit, T. J. H. Vlugt, and S. Calero
Source Journal of Physical Chemistry B 107 (44): 12088-12096 Nov 6 2003
Abstract We performed configurational-bias Monte Carlo (CBMC) simulations for

the adsorption of methane, ethane, propane, butane, and isobutane in
MFI-type zeolites with different concentration and nature of nonframe-
work cations. Additional molecular simulations for a mixture of bu-
tane/isobutane in these MFI-type zeolites were carried out. The effect of
the content-density and nature-of nonframework cations was systemati-
cally analyzed, and our results show that even though all of the MFI-type
zeolites are structurally similar, differences in the size and concentration
of the nonframework cations lead to differences in their adsorptive prop-
erties and selectivity performance. For a given cation, the adsorption of
alkanes in MFI increases with decreasing the nonframework cation con-
centration, and for a given Si/Al ratio, the adsorption of alkanes in MFI
increases with decreasing atomic weight of the nonframework cation.
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Abstract A novel united atom force field affords accurate and quantitative repro-

duction of the adsorption properties of linear and branched alkanes in
nanoporous framework structures. The force field was generated by ad-
justing the parameters so as to faithfully reproduce the experimentally de-
termined isotherms (particularly the inflection points) on MFI-type zeo-
lite over a wide range of pressures and temperatures. It reproduces ex-
tremely well the Henry coefficients, heats of adsorption, preexponential
factors, entropies of adsorption, and maximum loading. It is shown that
the extension of the force field from MFI to other nanoporous framework
topologies is successful, that it affords the prediction of topology-specific
adsorption properties, and that it can be an effective tool to resolve the
many discrepancies among experimental data sets.

Title Force Field Parameterization through Fitting on Inflection Points in
Isotherms

Author(s) D. Dubbeldam, S. Calero, T. J. H. Vlugt, R. Krishna, T. L. M. Maesen, E.
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Source Physical Review Letters 93 (8): Art. No. 088302 Aug 20 2004
Abstract We present a method to determine potential parameters in molecular sim-

ulations of confined systems through fitting on experimental isotherms
with inflection points. The procedure uniquely determines the adsorbent-
adsorbate interaction parameters and is very sensitive to the size parame-
ter. The inflection points in the isotherms are often related to a subtle in-
terplay between different adsorption sites. If a force field can predict this
interplay, it also reproduces the remaining part of the isotherm correctly,
i.e., the Henry coefficients and saturation loadings.
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2004

Abstract We have developed a united atom force field able to accurately describe
the adsorption properties of linear alkanes in the sodium form of FAU-
type zeolites. This force field successfully reproduces experimental ad-
sorption properties of n-alkanes over a wide range of sodium cation den-
sities, temperatures, and pressures. The force field reproduces the sodium
positions in dehydrated FAU-type zeolites known from crystallography,
and it predicts how the sodium cations redistribute when n-alkanes ad-
sorb. The cations in the sodalite cages are significantly more sensitive to
the n-alkane loading than those in the supercages. We provide a simple
expression that adequately describes the n-alkane Henry coefficient and
adsorption enthalpy as a function of sodium density and temperature at
low coverage. This expression affords an adequate substitute for com-
plex configurational-bias Monte Carlo simulations. The applicability of
the force field is by no means limited to low pressure and pure adsorbates,
for it also successfully reproduces the adsorption from binary mixtures at
high pressure.

Title Reply to the Comment on ”Computer Simulation of Incommensurate Dif-
fusion in Zeolites: Understanding Window Effects”

Author(s) D. Dubbeldam, T. L. M. Maesen, and B. Smit
Source Journal of Physical Chemistry B 108 (41): 16330-16330 Oct 14 2004

Title On the Inflection in the Concentration Dependence of the Maxwell-Stefan
Diffusivity of CF4 in MFI Zeolite

Author(s) R. Krishna, J. M. van Baten, and D. Dubbeldam
Source Journal of Physical Chemistry B 108 (39): 14820-14822 Sep 30 2004
Abstract The recently published data on the Maxwell-Stefan diffusivity D of CF4

in MFI zeolite (J. Phys. Chem. B 2004, 108, 10613) shows an inflection
at a loading Θ = 12 molecules per unit cell, corresponding to the inflec-
tion in the adsorption isotherm. We investigate the underlying reasons by
performing kinetic Monte Carlo simulations and show that at Θ = 12, the
molecular traffic along the zigzag channels comes to a virtual stand-still
and further transport occurs only along the straight channels of MFI. The
inflection behavior of D is likely to be a generic characteristic of transport
in nanoporous materials in which the adsorption of the diffusant occurs
on multiple sites with widely different strengths.
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Title Molecular Simulation of Loading Dependent Slow Diffusion in Confined
Systems

Author(s) E. Beerdsen, B. Smit, and D. Dubbeldam
Source Physical Review Letters 93 (24): Art. No. 248301 Dec 10 2004
Abstract A Transition State Theory method is presented that is capable of comput-

ing quantitatively the diffusivity of adsorbed molecules in confined sys-
tems at non-zero loading. This extention to traditional Transition State
Theory is free of additional assumptions and yields a diffusivity identical
to that obtained by conventional Molecular Dynamics simulations. While
Molecular Dynamics calculations are limited to relatively fast diffusing
molecules or small rigid molecules, our approach extends the range of ac-
cessible times scales significantly beyond currently available methods. It
is applicable in any system containing free energy barriers and for any
type of guest molecule.

Title The selectivity of n-hexane hydroconversion on MOR-, MAZ-, and FAU-
type zeolites

Author(s) S. Calero, M. Schenk, D. Dubbeldam, T. L. M. Maesen, and B. Smit
Source Journal of Catalysis 228(1): 121-129 15 Nov 2004
Abstract Analyses of a series of published n-hexane hydroisomerization product

slates suggest that MAZ-type zeolites yield more dimethylbutane and less
methylpentane than either FAU- or MOR-type zeolites. Molecular simu-
lations do not corroborate the traditional view that these selectivity dif-
ferences are specifically related to the MAZ-, FAU-, or MOR- type zeolite
topology. A scrutiny of the literature indicates that reported variation in
selectivity relates to a variation in the efficiency of the (de)hydrogenation
function relative to the acid function. The FAU-type zeolite catalyst had
the most efficient hydrogenation function. The efficiency of the hydro-
genation function on the MAZ-type zeolite was low enough to signifi-
cantly enhance the 2,3-dimethylbutane yield relative to the methylpentane
yield, but not low enough to decrease the 2,2-dimethylbutane yield. The
efficiency of the hydrogenation function on the MOR-type zeolite was low
enough to do both. Only at a sufficiently high n-hexane hydroconversion
does the catalyst with the most efficient hydrogenation function exhibit
the highest dimethylbutane yield. This new perspective on the reported
hexane hydroconversion selectivities suggests that a FAU-type zeolite cat-
alyst with a highly efficient hydrogenation function is best suited for n-
hexane hydroisomerization. The FAU topology has the highest porosity
which should afford the highest activity without impairing selectivity.
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ular simulations to empirical equations
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M. Maesen, B. Smit, R. Krishna, and S. Calero

Source Applied Surface Science (accepted)
Abstract Configurational-Bias Monte Carlo (CBMC) simulations provide adsorp-

tion isotherms, Henry coefficients and heats of adsorption of linear alka-
nes in sodium exchanged MFI- and FAU-type zeolites. These simulations
were carried out using our newly developed force field that reproduces ex-
perimental sodium positions in the dehydrated zeolites, and successfully
predicts alkane adsorption properties over a wide range of sodium cation
densities, temperatures, and pressures. We derived empirical expressions
from the simulation data to describe the adsorption of linear alkanes in
MFI- and FAU-type zeolites. These expressions afford a suitable substitute
for complex CBMC simulations. In the low coverage regime we provide
simple expressions that adequately describe the Henry coefficient and ad-
sorption enthalpy of n-alkanes as a function of sodium density and tem-
perature. The predicted Henry coefficients and and heats of adsorption
compare extremely well to available experimental data. In the high cov-
erage regime we provide an expression for saturation capacities of linear
alkanes in the zeolite. This expression, combined with the expression for
the Henry coefficients, gives a direct estimation of the complete adsorp-
tion isotherms of pure adsorbents and mixtures, in good agreement with
the adsorption isotherms obtained from CBMC.

Title Molecular Simulation of Loading Dependent Diffusion in Nanoporous
Materials using Extended Dynamically Corrected Transition State Theory

Authors(s) D. Dubbeldam, E. Beerdsen, T. J. H. Vlugt, and B. Smit
Source Journal of Chemical Physics 122: 224712 2005
Abstract A dynamically corrected Transition State Theory method is presented that

is capable of computing quantitatively the self-diffusivity of adsorbed
molecules in confined systems at non-zero loading. This extention to tradi-
tional Transition State Theory is free of additional assumptions and yields
a diffusivity identical to that obtained by conventional Molecular Dynam-
ics simulations. While Molecular Dynamics calculations are limited to rel-
atively fast diffusing molecules, our approach extends the range of acces-
sible times scales significantly beyond currently available methods. We
show results for methane, ethane, and propane in LTL- and LTA-type ze-
olites over a wide range of temperatures and loadings, and demonstrate
the extensibility of the method to mixtures.
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Title Molecular Path Control in Zeolite Membranes
Authors(s) D. Dubbeldam, E. Beerdsen, S. Calero, and B. Smit
Source Proc. Natl. Acad. Sci. U.S.A. 102 (35): 12317-12320, Aug 2005
Abstract We report molecular simulations of diffusion in confinement showing a

phenomenon which we denote as Molecular Path Control (MPC); depend-
ing on loading, molecules follow a preferred pathway. MPC raises the
important question to which extent the loading may affect the molecular
trajectories in nanoporous materials. Through MPC one is able to man-
ually adjust the ratio of the diffusivities through different types of pores,
and as an application one can direct the flow of diffusing particles in mem-
branes forward or sideward by simply adjusting the pressure, without the
need for mechanical parts like valves. We show that the key ingredient of
MPC is the anisotropic nature of the nanoporous material which results
in a complex interplay between different diffusion paths as a function of
loading. These paths may be controlled by changing the loading, either
through a change in pressure or temperature.

Title Applying Dynamically Corrected Transition State Theory in Complex ge-
ometries

Authors(s) D. Dubbeldam, E. Beerdsen, S. Calero, and B. Smit
Source Submitted
Abstract We apply the dynamically corrected Transition State Theory to con-

finements with complex structures. This method is able to com-
pute self-diffusion coefficients for adsorbate-adsorbent system far be-
yond the timescale accessible to Molecular Dynamics. Two exemplary
cage/window-type confinements are examined: ERI- and CHA-type ze-
olites. In ERI-type zeolite each hop in the z direction is preceded by
an hop in xy-direction, and diffusion is anisotropic. We show that the
crystallographic symmetries (monoclinic and trigonal, respectively) can
be exploited to simplify the description of the hopping mechanism. The
free energy profiles are more easily evaluated in fractional, dimensionless
space. The lattice for CHA-type zeolite is a rhombohedral Bravais lattice,
and diffusion is anisotropic, albeit only slightly, but the orientational av-
eraged diffusion coefficient is unaffected compared to a cubic lattice. The
anisotropical behavior of ERI-type cages reverse with loading, i.e. at low
loading the diffusion in the z-direction is two times faster than in the xy-
direction, while for higher loadings this changes to a z-diffusivity that is
more than two times slower. At low loading the diffusion is impeded by
the eight-ring windows, i.e. the exits out of the cage to the next, but at
higher loadings the barrier is formed by the center of the cages.
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When adsorbates are similar in size to zeolite channels then the surface
pores of zeolites only adsorb part of the adsorbate molecule. The not
adsorbed section can be cleaved to react further or adsorb elsewhere.
This window effect can be examined with the aid of Monte Carlo
simulations. For more information see the following Communication
by D. Dubbeldam et al.

3623Angew. Chem. Int. Ed. 2003, 42, 3623 DOI: 10.1002/anie.200351110 � 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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