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Ernesto P. Borges, Constantino Tsallis, Andrea Giansanti, Daniele Moroni
in Tendéncias da F́ısica Estat́ıstica no Brasil,
Editoria Livraria da F́ısica, São Paulo (2003)

Canonical solution of classical magnetic models with long-range couplings
Alessandro Campa, Andrea Giansanti, and Daniele Moroni
J. Phys. A 36, 6897 (2003)

Metastable states in a class of long-range Hamiltonian systems
Alessandro Campa, Andrea Giansanti, and Daniele Moroni
Physica A 305, 137 (2002)

Universal behaviour in the static and dynamic properties of the α-XY model
Andrea Giansanti, Daniele Moroni and Alessandro Campa
Chaos, Solitons and Fractals 13, 407 (2002)

Classical spin systems with long-range interactions: universal reduction of mixing
Alessandro Campa, Andrea Giansanti, Daniele Moroni, and Constantino Tsallis
Phys. Lett. A 286, 251 (2001)

Canonical solution of a system of long-range interacting rotators on a lattice
Alessandro Campa, Andrea Giansanti, and Daniele Moroni
Phys. Rev. E 62, 303 (2000)



Contents

List of Symbols viii

Introduction 1

1 Rare Events 3
1.1 The study of rare events . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Random telegraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Transition State Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 TST rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 TST rate expression . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Notes to the TST rate expression . . . . . . . . . . . . . . . . . . 12

1.5 Bennett-Chandler procedure . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 Implementation of TST-BC procedure . . . . . . . . . . . . . . . 14
1.5.2 Transmission coefficient . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.3 Alternative expressions for κ . . . . . . . . . . . . . . . . . . . . 19
1.5.4 Variational TST-BC . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.1 Open-ended methods . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6.2 Two-ended methods . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Transition Path Sampling 26
2.1 The transition path ensemble . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Path probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 Order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Sampling the path ensemble . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Shooting move . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Shifting move . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Path reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



iv Contents

2.2.4 Joining the algorithms . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Computing Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Umbrella sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Path ensemble average . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 The (LJ)7 cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Potential Energy Surfaces . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Choice of the order parameter . . . . . . . . . . . . . . . . . . . 43
2.4.3 Rate constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Finding the right reaction coordinate . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Commitment probabilities . . . . . . . . . . . . . . . . . . . . . . 49
2.5.2 Committor distributions . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Transition Interface Sampling 54
3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Interfaces and overall states . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 Rate constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 Effective positive flux . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.4 TIS rate expression . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 TIS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.1 The flux calculation . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 The path sampling . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.3 System with High Energy Barrier . . . . . . . . . . . . . . . . . . 69
3.3.4 System with Low Energy Barrier . . . . . . . . . . . . . . . . . . 73

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Partial Path TIS 80
4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Illustration of the PPTIS concept . . . . . . . . . . . . . . . . . . 81
4.1.2 PPTIS formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 PPTIS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Memory loss assumption . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 The Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Contents v

4.3.3 Comparing TIS and PPTIS . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 Validity of the memory loss assumption . . . . . . . . . . . . . . 91

4.4 Simple PPTIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Parallel path swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Interface Sampling and Free Energies 102
5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Free energy as function of another order parameter . . . . . . . . . . . . 109
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Efficiency of Interface Sampling 111
6.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 TPS and TIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.3 TIS - Exponential barrier . . . . . . . . . . . . . . . . . . . . . . 114
6.1.4 TIS - Diffusive barrier . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.5 PPTIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Transmission coefficients revisited . . . . . . . . . . . . . . . . . . . . . 119
6.2.1 Transmission coefficient based on effective positive flux . . . . . . 119
6.2.2 Comparison with other methods . . . . . . . . . . . . . . . . . . 121

6.3 The acceptance ratio for TIS on flat diffusive barriers . . . . . . . . . . . 123
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Crystal Nucleation of LJ particles 125
7.1 The problem of nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1 Rare event simulations of nucleation . . . . . . . . . . . . . . . . 127
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.2 LJ phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.3 Choice of the order parameter . . . . . . . . . . . . . . . . . . . 130

7.3 Rate constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4.1 Path analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



vi Contents

7.4.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4.3 Committor analysis . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4.4 Transition state ensemble . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Conclusion 150

A Rates as first passage times 152
A.1 Eigenvalue problem for the Fokker-Planck operator . . . . . . . . . . . . 153
A.2 Mean first passage time . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.3 Correlation function for reactive flux . . . . . . . . . . . . . . . . . . . . 158
A.4 A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B Alternative TST rate expression 161

C RRKM theory 163

D Flux relation 167

E Recursive relations for PPTIS 169
E.1 Recursive relations for the illustrative example . . . . . . . . . . . . . . . 169
E.2 Recursive relations for a general barrier . . . . . . . . . . . . . . . . . . . 170
E.3 Recursive relations for simple PPTIS . . . . . . . . . . . . . . . . . . . . 171
E.4 Probability relation for symmetrical hopping model . . . . . . . . . . . . 172

F Biased and reweighted averages 174

G Classical Nucleation Theory 177
G.1 Nucleation barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
G.2 Equilibrium distribution of cluster sizes . . . . . . . . . . . . . . . . . . . 180
G.3 Nucleation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

H NPH dynamics 183

I Bond order parameters 187
I.1 Use in the analysis of cluster structures . . . . . . . . . . . . . . . . . . . 188
I.2 Use in the determination of the biggest cluster . . . . . . . . . . . . . . . 190



Contents vii

J Generalized committors 192

K Algorithms 194
K.1 TIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
K.2 PPTIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Bibliography 203

Samenvatting 208

Acknowledgements 211

To my friends 212

Index 214



List of Symbols

We refer to pages where the symbols are used. The order is alphabetical, lower case
first, and ignoring typeface. There are three parts to the index: Latin, Greek, and
Mathematical.

Latin symbols
b barrier length 17, 114-123
C(t) TST-BC correlation function 13
C equilibrium constant 84
d system dimension 7
D path differential 27
ft(x0) time-propagator 27
hΩ(x) characteristic function of state Ω 8
hb

i,j(x) backward characteristic function 55
hf

i,j(x) forward characteristic function 55
H Hamiltonian 174
H Enthalpy 130
I moment of inertia tensor 43
I1 ≤ I2 ≤ I3 moments of inertia 43
k(t) reactive flux (= Ċ(t)) 13
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Introduction

Alice opened the door and found
that it led into a small passage. . .

Lewis Carroll

This thesis is concerned with computer simulations of rare events: physical or chemical
transitions of a system from one stable state to another that occur with a frequency
too low to be observed on a computer timescale. Rare events are not the passage
of the Halley comet, but, for example, protein folding, conformational changes of
molecules, chemical reactions (in solution), ion dissociation, cluster isomerizations,
enzymatic reactions, diffusion in solids, complex surface reactions, and (crystal) nu-
cleation during phase transitions (see Fig. 1). Popular computer simulation tools such
as Molecular Dynamics (MD) generate dynamical trajectories by integration of the
equations of motion for all the atoms in the system. However, since the fundamental
molecular timestep is on the order of fs, there is a time gap between computers and
reality, which even with current computers is of the order 1 of O(1014): 100 s of com-
puter time can only simulate 1 ps of reality. To observe an event that occurs once a
µs would then mean to wait for about 3 years. Thus, straightforward MD cannot be
used and special methods must be devised.

The presence of stable states and rare transitions can be understood in terms of
free-energy landscapes, where the stable states correspond to the free-energy minima
and transitions to crossings of the barrier separating these minima. The traditional
approach in the study of these processes, as in Transition State Theory (TST), is
based on the calculation of the free energy as function of an intuitively chosen vari-
able, the reaction coordinate, that describes the advance of the reaction. In chapter 1
of this thesis we define the problem of rare events and review TST together with its
corrected version, the Bennett-Chandler procedure. The choice of a reaction coordi-
nate is far from trivial in complex systems, and these methods might give bad results.
Moreover, the static equilibrium free-energy calculation might disregard important
kinetic aspects. All these factors lead to a wrong descripton of the transition. In
order to avoid these effects, Chandler and coworkers created Transition Path Sam-
pling (TPS), to which we dedicate chapter 2. The method gathers a collection of true
dynamical trajectories connecting the stable states without any priori assumption of

1 Assuming conventional MD and not ab initio MD, and a system of O(104) particles, which at
unity density corresponds to a volume of O(106)Å3.
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Figure 1: The concept of homogeneous
liquid-solid nucleation. Small solid clusters
are present in the undercooled liquid (top
left). The nuclei grow to different struc-
tures (top right and bottom right) and fi-
nally a large solid cluster eventually grows
to full solidification of the system. Exper-
imental rates on liquid mercury at -120◦C
are around 103 nucleation drops per cubic
meter per second [1]. Transposed in com-
puter time this would take more than 1027

years. For comparison, the age of the uni-
verse is about 1010 years [2].

the reaction coordinate. From the ensemble of pathways rate constants can be de-
duced and the reaction mechanism can be extracted. A recent TPS study [3, 4] on a
16-residue peptide was able to elucidate the folding mechanism of a β-hairpin [5] in
water, showing the importance of the solvent as a lubricant in the folding process.

In this thesis we show how to improve the efficiency of path sampling. The resulting
new method, which we called Transition Interface Sampling (TIS), is the subject
of chapter 3. It takes the name from the use of phase space surfaces between the
states, the interfaces. By computing fluxes through the interfaces with paths of
variable duration, TIS speeds up the rate constant calculation. For diffusive systems
we devised a variation of TIS, called Partial Path TIS (PPTIS), which effectively
exploits the loss of long time correlation and is described in chapter 4. In chapter 5
we show how the interface sampling methods, which are based on the generation of
dynamical trajectories, can at the same time produce the free-energy profile of the
rare event, which is an equilibrium property. Chapter 6 concludes the discussion of
interface sampling methods with theoretical derivations for the scaling of the efficiency.
The last part of this thesis, chapter 7, is an application of TIS and PPTIS to one of the
real cases mentioned above: crystal nucleation. We study a system of Lennard-Jones
particles, generating paths from an undercooled liquid to the solid. We compute the
rate constant, the free-energy profile, and give an explanation of the mechanism, fully
exploiting the power of the path sampling methodology. Finally, in the appendices
we treat several theoretical details.



1 Rare Events

Blue Moon
You saw me standing alone

Frank Sinatra

We present an introduction to rare events in complex systems of physical importance.
We give a heuristical definition of the problem, and gradually refine it to a more
rigorous picture. We review the historical Transition State Theory and its corrected
improvement known as Bennett-Chandler procedure. They form the basis of Transi-
tion Path Sampling and Interface Sampling methods, which will be discussed in the
following chapters. We conclude mentioning some other methods that have appeared
in literature.

1.1 The study of rare events

Consider the situation depicted in Fig. 1.1. Two subsets A and B of the phase space
exist such that if a dynamical trajectory is started in one of them, it stays there for
a long time τstable until it finds its way to escape. It then undergoes a transition to
the other state B in a time

τtrans � τstable. (1.1)

This separation of timescales is the effect of energy barriers or entropic bottlenecks
that partition the system into stable states of lifetime ∼ τstable.

The states can be considered as two valleys separated by a mountain ridge with high
and narrow passages. A blind and slow walker in one valley will wander considerably
before finding a way to escape. When it does, it will relax comparably fast into the
other basin. An example is a Lennard-Jones cluster and the isomerization transition
between two conformational minima, which we will study in section 2.4. Another
example is a supercooled liquid, which is stable until solid clusters of a critical size
are formed. Then they grow indefinitely to full solidification. This is called liquid-solid
nucleation and will be considered in chapter 7. More examples can be conformational
changes of molecules including protein folding, or chemical reactions in general.

The object of research is the transition itself, that is, we are interested in

3



4 1. Rare Events

A

B

Figure 1.1: Representation of a trajectory in the phase space. It starts in A and spends
there a time long compared to the time to switch to B. The separation of timescales is due
to an energy barrier separating the states.

• the mechanism: understanding the relevant features of the process, and the
identification of a (set of) coordinates, called the reaction coordinate, that ex-
plains how the reaction proceeds.

• the transition states: what are the dividing passages, what is the relevant
change that the system must undergo to switch state

• the rate constants: the transition probabilities per unit time. For the process
A→ B we call it kAB . It can be considered as the frequency of the event, so that
k−1

AB is the lifetime of state A. Corresponding concepts hold for the reversed
process and kBA. We make these definitions more rigorous in the following
sections.

In computer simulations the application of straighforward Molecular Dynamics
(MD) would in principle yield all this kinetical information we are looking for. How-
ever the state lifetime τstable depends exponentially on barrier heights, and can become
very large. We have not attempted to quantify the ratio τtrans/τstable in Eq. (1.1).
Indeed, the practical cases show quite a range of values, as it will become evident in
the rest of the thesis. A common feature is the fact that the expectation time for a
transition can easily exceed current computer capabilities by many orders of magni-
tude. In this case the transition becomes a rare event and special methods must be
employed.

1.2 Random telegraph

Since we are interested in transitions between two stable regions, a basic and widely
used way to model it, is a two-state system. Though a simplified scheme it can
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Figure 1.2: A schematic representation of a dynamical trajectory of a random telegraph.
Residence periods tAi ,tBi in the states are separated by istantaneous switches between them,
with a transition probability per unit time given by WAB for the process A→ B and WBA

for the reversed process.

highlight much of the essence of the problem. Indeed it has proved very useful in
modelling many other physical systems as well.

Consider a Markov random process X(t) which can only assume the values x =
A,B. Let the jump probabilities be

W (x|x′) =

{
WAB if x = B, x′ = A,

WBA if x = A, x′ = B,
(1.2)

and W (A|A) = 1−W (B|A), W (B|B) = 1−W (A|B) follow from normalization. Here
W (x|x′) is the transition probability per unit time of jumping to x provided that you
were in x′. The process is usually known as random telegraph [6] and its behavior is
schematically represented in Fig. 1.2.

The basic quantity in the study of Markov processes is the probability

p(x, t|x′, 0) = Probability of being in x at time t
provided that you were in x′ at time 0 (1.3)

For a random telegraph the corresponding Master Equation for (1.3) is

d

dt
p(A, t|x′, 0) = −WAB p(A, t|x′, 0) +WBA p(B, t|x′, 0) (1.4a)

d

dt
p(B, t|x′, 0) = WAB p(A, t|x′, 0)−WBA p(B, t|x′, 0) (1.4b)

subject to the initial condition

p(x, 0|x′, 0) = δx,x′ . (1.5)

Summing equations (1.4) we get the conserved quantity

p(A, t|x′, 0) + p(B, t|x′, 0) = 1 (1.6)
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where the constant value of 1 comes from normalization. The solution is easily written

p(A, t|x′, 0) = pst(A) + e−(WAB+WBA)t [p(A, 0|x′, 0)− pst(A)] (1.7a)
p(B, t|x′, 0) = pst(B) + e−(WAB+WBA)t [p(B, 0|x′, 0)− pst(B)] (1.7b)

where the stationary probabilities pst(x) = p(x,+∞|x′, 0)) are independent of the
initial point x′ and given by

pst(A) = WBA/(WAB +WBA) (1.8a)
pst(B) = WAB/(WAB +WBA) (1.8b)

as can be seen directly from (1.4).
Now imagine to observe realizations of a random telegraph, without knowing the

underlying jump matrix W . We want to measure the transition probabilities. One
way could be to use the definition

W (x|x′) = lim
dt→0

p(x, dt|x′, 0))/dt (1.9)

For example, one can consider an ensemble of processes starting in A, and check if
there is a transition to B in a time dt. Averaging the number of transitions over the
total number of samples (times dt) converges to WAB . Alternatively one can make
use of ergodicity. If a trajectory visits all the possible states of the system given
enough time, the averages on initial conditions can be replaced by time averages, see
also sec. 1.3. With reference to Fig. 1.2, one could observe a single realization for a
long time. Dividing the trajectory into time slices of length dt, each slice beginning
in A is part of the ensemble. Calling NA→B(T ) the number of transitions A → B
during time T , it follows

WAB = lim
T→∞

NA→B(T )
tAtot(T )

(1.10)

where tAtot(T ) =
∑

i t
A
i is the total time spent in A during T . Note that tAtot(T ) and

not T appears in (1.10). Since to each transition corresponds a reversed one, using
just T would mean WAB = WBA. But the importance of a state is characterized by
the time spent in the state. Indeed Eq. (1.10) can be rewritten as

W−1
AB = lim

T→∞

1
NA→B(T )

NA→B(T )∑
i=1

tAi ≡ tmr
A (1.11)

where tmr
A is the mean residence time in state A.

There is a third quantity of importance in this model. Consider the problem of
starting in A and computing the time after which the system first enters B. This is
usually called the first passage time from A to B, and it is a standard and important
topic in the theory of stochastic processes [6,7]. Mathematically it is treated putting
an absorbing boundary condition at B and solving an equation for tmfp

A , the mean
first passage time (see also appendix A). For the random telegraph the result is [6]:

tmfp
A = W−1

AB (1.12)
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It is equal to the mean residence time tmr
A , because transitions between A and B are

istantaneous. This is not the case in real systems and we will come back to this in
section 1.5.

Summarizing, in this model we have three equivalent ways of defining the rate
constant kAB for the process A→ B:

1. transition probability per unit time

kAB = WAB (1.13)

2. inverse mean residence time in A

kAB = (tmr
A )−1 (1.14)

3. inverse mean first passage time to B

kAB = (tmfp
A )−1 (1.15)

With this in mind, we now turn to consider real systems in the full phase space and
see how these ideas can be applied. In particular, we will show which of the above
definitions still holds, and which one is the most sensible.

1.3 Definitions

Before we tackle the transition problem for real systems, we have to prepend some
definitions. Consider a system of N particles in dimension d, and let n = dN . We
denote with r ∈ Rn the vector of Cartesian coordinates and with v ∈ Rn the corre-
sponding velocities. Suppose the system admits an equilibrium distribution such as
the Gibbs distribution

ρ(r, v) = ρ(r) · ρ(v) = Z−1
r e−βU(r) · Z−1

v e−
β
2 vT Mv (1.16)

Z = Zr · Zv =
∫

Rn

e−βU(r)dr ·
∫

Rn

e−
β
2 vT Mvdv (1.17)

where U(r) is some given potential, β = 1/kBT is the inverse temperature, kB the
Boltzmann constant, and M is the diagonal mass matrix

M = diag(
d︷ ︸︸ ︷

m1 . . .m1, . . . ,

d︷ ︸︸ ︷
mN . . .mN ). (1.18)

The ensemble average of an observable f(r, v) is defined by

〈f(r, v)〉 ≡
∫

Rn×Rn

f(r, v)ρ(r, v)drdv (1.19)

Define for a set Ω ⊆ Rn ∫
Ω

ρ(r)dr = 〈hΩ(r)〉 (1.20)
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where hΩ is the set characteristic function, i.e. hΩ(r) = 1 if r ∈ Ω and 0 elsewhere.
We could in principle consider subsets of the full phase space (r, v) but we will limit
us to the configuration space only. We will come back to this in section 2.1 and when
dealing with Interface Sampling methods, in chapter 3. The regions A,B are stable if

〈hA〉+ 〈hB〉 ' 1 (1.21)

and they are separated by a region of low probability, called the buffer or transition
region. In other words the system at equilibrium is found in one of the states with
high probability, but is difficult to go from one to the other.

In this thesis we will consider deterministic (e.g. Hamiltonian) and stochastic
dynamics. To be general, we include both in the Langevin dynamics

ṙ = v (1.22a)

Mv̇ = −∇U(r)− γv +
√

2γβ−1η̇ (1.22b)

where γ is the friction coefficient, and η̇ a white noise [6]. This dynamics is consistent
with the distribution (1.16), see appendix A. Assuming ergodicity we can replace
time averages with ensemble average as

lim
T→∞

1
T

∫ T

0

f(r(t), v(t))dt =
∫

Rn×Rn

ρ(r, v)f(r, v)drdv (1.23)

and definition (1.20) can be also regarded as the fraction of time spent in region Ω.
When working in the phase space, we use coordinates and momenta p = Mv, and

we denote the system phase point x = (r, p). If the initial condition of (1.22) is x0 we
denote the evolution at time t with xt. For γ = 0 we recover Hamiltonian dynamics
and xt is the evolution of x0 through the Liouville operator.

For non-zero γ, the dynamics (1.22) mimics a system in contact with a thermal
bath, and the evolution of the system is a stochastic process. This picture is not
restrictive. Even when considering deterministic dynamics, statistical mechanics re-
quires considering time averages, or by ergodicity, ensemble averages. A deterministic
evolution becomes a stochastic process because of the initial conditions extracted from
the ensemble distribution ρ(r, v). In this chapter we will therefore treat our systems
as stochastic processes, in order to use the powerful theoretical methods, and we do
not address the limit of our findings as γ → 0, whose mathematics is far beyond this
thesis.

1.4 Transition State Theory

Let us go back to the situation depicted in Fig. 1.1 and apply the rate constant
definitions at the end of previous section 1.2. Since the transition takes place in a
non-vanishing time, the direct definition (1.13) of jump probability loses its meaning,
because the limit (1.9) is always zero. However we can recover (1.13) if the two phase-
space subsets A and B are adjacent, i.e. if B = Ac, the complement of A. When
this is the case, leaving A means entering B, the transition is istantaneuous, and
definitions (1.13) and (1.14) coincide again.
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Transition State Theory (TST) is the oldest attempt to describe bistability in
ergodic systems [8, 9]. TST exactly computes the mean residence time in the states,
but is only an approximation of the transition event. We proceed following [10].

1.4.1 TST rates

Transition State Theory assumes B = Ac, i.e. expands the sets A,B of Fig. 1.1 until
they touch, see Fig. 1.3(a). Obviously (1.21) becomes

〈hA〉+ 〈hB=Ac〉 = 1. (1.24)

Define the mean residence time in A as (see Fig.1.4)

tmr
A = lim

T→∞

2
N(T )

∫ T

0

hA(r(t))dt (1.25)

actual B

c

λ (x)< λ*

λ (x)> λ*
λ (x)= *λ

B=Ac
∆

hA

A
A

actual A

(b)(a)

A
A

actual A

actual B

B=A

Figure 1.3: (a) the TST assumption: the two actual states are substituted with two adjacent
states separated by ∂A. The vector ∇hA normal to the dividing surface ∂A is also shown.
(b) failure of the assumption: some trajectories might exist that are wrongly considered
transitions (upper curve), or are overcounted (lower curve).

A

A

B=Ac
t3

t1

t2

Figure 1.4: Computation of mean
residence time. With reference to
Eq. (1.25), here N(T ) = 6, so that
tmr
A = 2/6 ·

P
i ti = (t1 + t2 + t3)/3.
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where N(T ) is the number of times that, within a time T , the trajectory crosses ∂A,
the boundary of A, named the dividing surface. The factor 2 accounts for ingoing
and outgoing crossings. Similar definition holds for tmr

Ac . We can rewrite the mean
residence time definitions as

tmr
A = 〈hA〉/νTST tmr

Ac = 〈hAc〉/νTST (1.26)

where

〈hA〉 = lim
T→∞

1
T

∫ T

0

hA(r(t))dt =
∫

A

ρ(r)dr (1.27)

is the fraction of time that the trajectory spends in A, (1.24) holds, and

νTST = lim
T→∞

N(T )
2T

(1.28)

is the half mean frequency of crossing the boundary ∂A. As a result, using definition
(1.14), we get for the rate constants

kAB = (tmr
A )−1 =

νTST

〈hA〉
kBA = (tmr

Ac )−1 =
νTST

〈hAc〉
. (1.29)

There are problems with this expression. Since a trajectory that has just crossed
the boundary ∂A may have a high probability of re-crossing it right away, the suc-
cessive transitions between A and Ac are in general correlated. A random telegraph
model derived from the transition probabilities (1.29) completely disregards those cor-
relations and the model will only be a poor approximation. The situation is depicted
in Fig 1.3(b): when we try to extend the actual states A,B to A,Ac there might appear
false and overcounted trajectories. Transition State Theory will be valid only if the
dividing surface is perfectly chosen such that each crossing of the surface corresponds
to a real transition and each transition has only one crossing with this surface. When
the dynamics is reversible, each crossing point corresponding to a true trajectory from
actual A to actual B, will result in a trajectory from actual B to actual A when re-
versing the momenta. As a result, on the TST dividing surface each point has equal
probability of ending in the actual stable state A or B.

Finding the best dividing surface is very much the essence of the problem of rare
events. We will come back to this very important point several times, but for the
moment we just assume we have one and let us see what this implies.

1.4.2 TST rate expression

Let us express (1.28) in a different way. As pictured in Fig. 1.5, |ḣA(r(t))| is a sum
of positive delta functions concentrated at the times when r(t) crosses ∂A. Therefore
we can write

νTST = lim
T→∞

1
2T

∫ T

0

|ḣA(r(t))|dt (1.30)

= lim
T→∞

1
2T

∫ T

0

|∇hA(r) · v(t)|dt

=
1
2

∫
Rn×Rn

drdvρ(r, v)|∇hA(r) · v|
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λ

hA

hA

.

λ*

1

0

0

t

Figure 1.5: Behavior of hA(r(t)),
ḣA(r(t)), λ(r(t)) along a trajectory r(t).

where we used Eq. (1.22a) and ergodicity. We now parametrize the set A using a
continuous function λ(r) : Rn → R such that (see again Fig.1.5)

A = {r ∈ Rn : λ(r) < λ∗} (1.31)
∂A = {r ∈ Rn : λ(r) = λ∗}

As a consequence we can write hA(r) = θ(−λ(r) + λ∗), where θ(·) is the Heaviside
step function. Then ∇hA(r) = −δ(λ(r)−λ∗)∇λ is a vector on the surface ∂A, normal
to the surface and pointing inward, see Fig. 1.3(a), and thus (1.30) becomes

νTST =
1
2

∫
Rn×Rn

drdvρ(r, v)δ(λ(r)− λ∗)|∇λ · v| (1.32)

=
1
2

∫
Rn×Rn

drdvρ(r, v)δ(λ(r)− λ∗)|λ̇|

≡ 1
2
〈δ(λ(r)− λ∗)|λ̇|〉

= 〈δ(λ(r)− λ∗)λ̇θ(λ̇)〉

where the last equality follows from ρ(r, v) = ρ(r,−v). This is the usual TST rate
expression [11].

Putting together (1.29) and (1.32),(1.20) the final expression for the rate constant
is written as

kTST
AB =

〈δ(λ(r)− λ∗)λ̇θ(λ̇)〉
〈θ(λ∗ − λ(r))〉

(1.33)

Then, if we introduce the free energy

e−βF (λ∗) ≡ 〈δ(λ(r)− λ∗)〉 =
∫

Rn

drρ(r)δ(λ(r)− λ∗) (1.34)
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we can rewrite it as

kTST
AB =

〈δ(λ(r)− λ∗)λ̇θ(λ̇)〉
〈δ(λ(r)− λ∗)〉

〈δ(λ(r)− λ∗)〉
〈θ(λ∗ − λ(r)〉

(1.35)

= 〈λ̇θ(λ̇)〉λ=λ∗
e−βF (λ∗)∫ λ∗

−∞ e−βF (λ′)dλ′

where we have introduced the notation 〈·〉λ=λ∗ for the constrained average.

1.4.3 Notes to the TST rate expression

Formula (1.35) is the basis for an implementation in practical cases. This will be
discussed in the context of the Bennett-Chandler procedure, in sec. 1.5. For now let
us discuss some qualitative aspects.

Given a parametrization λ(r) we still have to choose a value for λ∗. We make use of
the free energy F , Eq. (1.34), which is essentially the probability of being at λ(r) = λ∗.
Since the TST adjacent states A,Ac are supposed to contain the actual stable states
A,B, see Fig. 1.3, the free energy as function of λ will display two minima left and
right of λ∗, separated by a maximum, see Fig. 1.6. We remarked in sec. 1.4.1 that
the dividing surface should be chosen so as to avoid false and multiple recrossings.
It seems natural to choose for λ∗ the maximum separating the stable states. Then
we can make an estimate for the second term in (1.35). Since the free energy has
the form of a double well we can approximate the integral with a Gaussian integral
around the minimum λA to the left of λ∗. The result is

kTST
AB ∝ e−β(F (λ∗)−F (λA)) ≡ e−β∆F (1.36)

where we have highlighted the exponential dependence on the energy difference, which
is the cause of the rarity of the event. This expression shows that the second term
in (1.35) involves essentially a free energy computation from A up to a region of
minimum probability. TST has turned the dynamical problem of the computation
of the rate constant into the equilibrium static problem of computing a free energy
difference. We will come back to this in sec. 1.5.4.

Before concluding let us remark that in formula (1.35) the free energy is not the

λ

λ*

Aλ

F (λ)

Figure 1.6: Typical free energy,
Eq. (1.34) for a parametrization λ(r)
such that the TST states A,Ac con-
tain the actual stable states A,B.
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whole story. We still miss the first term

〈λ̇θ(λ̇)〉λ=λ∗ =
1
2
〈|λ̇|〉λ=λ∗ . (1.37)

If we choose λ(r) = r1 equal to a coordinate, then λ̇ = v1 and the average reduces
to a one-dimensional integral which is easy to evaluate (see also sec. B) and gives√
kBT/2πm where m is the mass attached to coordinate 1. In general, however, the

term must be fully calculated. We will address this expression (1.37) again as well,
in sec. 1.5.2.

1.5 Bennett-Chandler procedure

TST assumes a dividing surface between the stable states A,B and defines them as
adjacent sets separated by this surface. However in order to approximate a system
with a random telegraph one has to assume quasi-Markov transitions, i.e. successive
transitions must be sufficiently decorrelated. To ensure this decorrelation between the
surface crossings, it is more practical to define sets A,B that are sufficiently separated,
i.e. there exists a buffer region between them that has a large volume but negligible
probability.

The situation is shown in Fig. 1.1 and (1.21) holds. We mentioned already that
the rate constant definition (1.13) is meaningless, because the transition takes place
in a finite time. Definition (1.14) still makes sense, but is not related to a transition
probability, because now leaving A does not mean entering B. The sensible definition
is based on (1.15).

We show in the appendix A that a real system can be approximated with a random
telegraph if one takes for the jump probabilities the inverse mean first passage times.
The demonstration is based on the spectral properties of the Fokker-Planck operator
associated to the conditional probability (1.3). The assumption (1.1) of separation of
timescales is equivalent to the assumption of a gap in the spectrum of the operator,
and the equations (1.4) can be derived from basic principles.

The Bennett-Chandler (BC) procedure [12,13] can be derived using the correlation
function

C(t) ≡ 〈hA(0)hB(t)〉
〈hA〉

(1.38)

where hA(t) = hA(r(t)). It is also shown in the appendix A.3 that as a consequence
of the separation of timescales (or equivalently of the spectral gap), for times t such
that τtrans � t� τstable, it can be approximated as

C(t) ' (tmfp
A )−1t = kAB t (1.39)

The result implies that the first derivative k(t) ≡ Ċ(t), called the reactive flux , has a
constant value equal to the rate constant.

Next we apply this correlation function in the context of TST, where the states are
adjacent, and separated by the surface λ(r) = λ∗. Then, as in section 1.4.2

hA(r) = θ(λ∗ − λ(r)) hB(r) = θ(λ(r)− λ∗) (1.40)
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To express Ċ(t) in a more convenient way, we make use of time translation invariance.
Since 〈hA(0)hB(t)〉 = 〈hA(−t)hB(0)〉,

d

dt
〈hA(0)hB(t)〉 =

d

dt
〈hA(−t)hB(0)〉 (1.41)

= −〈ḣA(−t)hB(0)〉
= −〈ḣA(0)hB(t)〉

Using then (1.40), we get

Ċ(t) =
〈δ(λ∗ − λ0)λ̇0θ(λt − λ∗)〉

〈θ(λ∗ − λ0)〉
(1.42)

where λt = λ(r(t)). This expression is the basis for a computational implementation,
sec. 1.5.1. For t = 0 exactly, Ċ(0) = 0 because it becomes an odd function of velocities
(here sets are defined in coordinate space only, remember sec. 1.3). However for small
ε we can write λt = λ∗ + λ̇0ε because of the presence of the δ-function. Then

Ċ(ε) ' 〈δ(λ∗ − λ0)λ̇0θ(λ̇0ε)〉
〈θ(λ∗ − λ0)〉

(1.43)

=
〈δ(λ∗ − λ0)λ̇0θ(λ̇0 sign(ε))〉

〈θ(λ∗ − λ0)〉

which in the limit ε→ 0, remembering (1.33), implies

Ċ(0+) = kTST
AB (1.44)

Ċ(0−) = −Ċ(0+) (1.45)

where in the second we used θ(−x) = 1− θ(x) and 〈λ̇0δ(λ∗ − λ0)〉 = 0. Indeed since
the sets are defined in coordinate space, C(t) only contains variables even under time
inversion [6], and it is immediately seen that C(t) is an even function of time, and
Ċ(t) an odd one. Finally C(0) = 0 directly from the definition (1.38). The behavior
of C(t) and Ċ(t) is summarized in Fig. 1.7.

1.5.1 Implementation of TST-BC procedure

Formula (1.42) is easily rewritten as

Ċ(t) =
〈δ(λ∗ − λ0)λ̇0θ(λt − λ∗)〉

〈δ(λ∗ − λ0)〉
〈δ(λ∗ − λ0)〉
〈θ(λ∗ − λ0)〉

(1.46)

= 〈λ̇0θ(λt − λ∗)〉λ0=λ∗
e−βF (λ∗)

〈θ(λ∗ − λ0)〉

≡ R(t)
e−βF (λ∗)

〈θ(λ∗ − λ0)〉

where we have introduced the unnormalized transmission coefficient R(t).
The actual implementation in a computer simulation consists of three steps:
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Figure 1.7: Correlation function
for the Bennett-Chandler procedure,
and its time derivative. Note the
difference with the TPS correlation
function Ċ(t), see Fig. 2.7, for which
in place of the jump at t = 0 there is
a continuous behavior from the value
Ċ(0) = 0 due to the existence of a
buffer region and a finite minimum
transition time.

1. Choice of a reaction coordinate. We must choose a parametrization (1.31),
i.e. the function λ(r) and the value λ∗, so that A = {r : λ(r) < λ∗} and
B = Ac = {r : λ(r) > λ∗}. This function must be able to detect a transition,
because A and Ac are supposed to contain the actual stable states. A reasonable
behavior for the function would be to maintain two different range of values
when in A,B and continuously and monotonously change from one to the other
under the transition, and only under the true transition, see Fig. 1.5. It is
then usually called a reaction coordinate, and it is supposed to describe the
advancement of the transition event. The actual choice in practical cases is
derived from chemical and physical intuition for the specific transition under
investigation. Common reaction coordinates in chemical reactions are dihedral
angles, or interatomic distances, that can track the approaching of reactants
or the detaching of products. For crystal nucleation it could be the size of the
growing solid cluster.

We must stress that the TST-BC procedure does not give any information on
how to choose a reaction coordinate. It just assumes there is one. Then when a
λ(r) is chosen, we noticed already in sec.1.4.3 that a reasonable choice for λ∗ is
the maximum in the free energy F (λ). We will come back to this in sec. 1.5.4.

2. Free energy calculation. Because of the definition (1.34) the free energy
could be computed in a normal MD or MC simulation directly through the
probability histogram of λ, see Eq. (1.34). However if λ∗ is at the free energy
maximum, the system will rarely visit up to the minimum-probability region of
λ∗ (that was the whole problem after all!). Fortunately this step can be solved
flawlessly. There exist powerful methods like Umbrella Sampling [14] and Blue
Moon Sampling [15, 16] that, based on biasing techniques, can overcome this
problem.
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3. Transmission coefficient. The last step is the calculation of R(t). This
implies computing a constrained average, on the surface λ(r) = λ∗ and can
be achieved using constrained dynamics [17] or umbrella sampling. However in
numerical simulation it is important to distinguish between expressions that are
correct in principle, and those that are correct and computationally efficient.
There are indeed computational problems with the transmission coefficient, and
we dedicate to it the next section.

1.5.2 Transmission coefficient

Let us rewrite (1.46) by normalizing R(t) to its value at t = 0+. With the same
reasoning used in Eq. (1.43) we have

R(0+) = 〈λ̇0θ(λ̇0)〉λ0=λ∗ (1.47)

and we can rewrite (1.46) as

Ċ(t) =
R(t)
R(0+)

R(0+)
e−βF (λ∗)

〈θ(λ∗ − λ0)〉
(1.48)

=
〈λ̇0θ(λt − λ∗)〉λ0=λ∗

〈λ̇0θ(λ̇0)〉λ0=λ∗
〈λ̇0θ(λ̇0)〉λ0=λ∗

e−βF (λ∗)

〈θ(λ∗ − λ0)〉

= kTST
AB

〈λ̇0θ(λt − λ∗)〉λ0=λ∗

〈λ̇0θ(λ̇0)〉λ0=λ∗

≡ kTST
AB κ(t)

where we used (1.35). The time dependence of the correlation function C(t) is now
in κ(t), which because of the properties of Ċ(t), Fig. 1.7, will plateau to a value

κ = kAB/k
TST
AB , (1.49)

called the transmission coefficient. There is a simple meaning attached to this quan-
tity. The TST rate constant is basically a flux through the surface ∂A defined by
λ(r) = λ∗, which can be seen using kAB = νTST /〈hA〉, Eq. (1.29), and rewriting
(1.30) as

νTST =
1
2

∫
Rn

dv

∫
∂A

dσ(r)ρ(r, v)|n̂ · v| (1.50)

where n̂ = ∇hA(r)/|∇hA(r)| is the normal to the surface, and dσ(r) = δ(λ(r) −
λ∗)|∇λ|dr the surface element. As shown in Fig. 1.3b, the problem with this ex-
pression is the over-counting of trajectories. The correct rate can be expressed us-
ing [18,19]

ν =
1
2

∫
Rn

dv

∫
∂A

dσ(r)ρ(r, v)|n̂ · v|χ(r, v) (1.51)

where χ(r, v) is non-zero only for true reactive trajectories, i.e. paths from actual
state A to actual state B or viceversa. If NR(r, v) is the number of crossing of ∂A
between the times outside A and B, one has [10]

χ(r, v) =
1
2

(
1− (−1)NR(r,v)

)
/NR(r, v) (1.52)
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The first factor is 1 only if NR is odd, i.e. the trajectory connects the states, and zero
otherwise. The second factor N−1

R accounts for the over-counting, since a reactive
trajectory just counts once, regardless of the recrossings back and forth the surface
∂A. Hence, the ratio ν/νTST = kAB/k

TST
AB = κ is inversely proportional to the

number of recrossings. As a result 0 ≤ κ ≤ 1, which implies the general inequality

kAB ≤ kTST
AB . (1.53)

This inequality is at the basis of variational principles to improve TST, as we will see
in sec.1.5.4.

Diffusive motion

The numerical implementation of (1.48) suffers from efficiency problems. As shown
in [17], running Ntr independent trajectories from λ∗ results in a relative error in the
transmission coefficient that scales as

σκ

κ
∼ 1
κ
√
Ntr

(1.54)

which becomes problematic for small κ.
For diffusive barrier crossings, κ is typically small when the barrier separating the

states is flat or the number of recrossings is high. Consider the model of sec. A.4.
From Eq. (A.47) we see that the relation γ ∝ κ−1 holds for the friction coefficient γ,
which means γ proportional to the number of recrossings. And when γ is high, or
|U ′′(s)| small, i.e. flatter barrier, κ decreases. We can even adapt the model assuming
a complete flat barrier. Let the potential U(r) as in Fig. 1.8, with h the barrier height
and b the barrier width. We can apply formula (A.43) for the mean first passage time,
including γ and with no approximation

(βγ)−1tmfp(r → B) =
∫ b

r

dyeβU(y)

∫ y

−∞
dze−βU(z) (1.55)

=
∫ b

r

dyeβU(y)

∫ y

−L

dze−βU(z)

=
∫ b

r

dyeβU(y)
[
θ(y)(L+ e−βhy) + θ(−y)(L+ y)

]
= θ(−r)

[
L(eβhb− r) +

b2 − r2

2

]
+θ(r)

[
Leβh(b− r) +

b2 − r2

2

]
which for expβh� 1 has the behavior shown in Fig. 1.9. Again there is a plateau,
which allows us to identify

kAB =
kBT

Lγ

e−βh

b
=
D

b

e−βh

L
(1.56)
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Figure 1.8: Onedimensional diffu-
sive potential. The barrier height
and width are h and b respectively.
The dashed line indicates the absorb-
ing boundary used for the calcula-
tion of the mean first passage time
in Eq. (1.55).

Figure 1.9: Mean first passage time
for the model of Fig. 1.8, formula
(1.55). We use here βh = 5, b = 2,
and L = 1, which is just a unit of
length. The plateau at 2e5 ' 300 is
the inverse rate constant.
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In the first passage we have used (1.55) at r = 0− and neglected b2/2 with respect to
L exp(βh)b. In the second expression we have used the Einstein relation kBT/γ = D
to express the diffusion coefficient D. If we take L as unit of length, the rate constant
is basically given by the exponential factor related to the initial barrier step, and the
factor 1/b to reach the other end of the flat potential.

If we compute the TST rate with λ = r and λ∗ = 0, from (1.35) we get

kTST
AB = R(0+)

e−βh

L
=

√
kBT

2πm
e−βh

L
(1.57)

so that

κ =
kAB

kTST
AB

=
1

R(0+)
D

b
=
√

2πmkBT

bγ
(1.58)

Eq. (1.58) shows that κ is inversely proportional to the length of the barrier and the
number of recrossings. For diffusive systems κ becomes small and according to (1.54)
the relative error becomes large. For instance for a transmission coefficient of 0.1 we
would need to generate about 104 trajectories in order to get a 10% relative error.
Finally, in Eq. (1.58) we also note that the unnormalized transmission coefficient
κR(0+) = kAB ∗ L/ exp(−βh) (see Eq. (1.48)) is equal to D/b, the ratio of the
diffusion constant to the barrier length.
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Figure 1.10: Illustration of the difference in counting in the transmission coefficient
Eqs. (1.48), (1.59), and (1.65). For simplicity, assume that the system consists of three
kinds of possible trajectories, as shown by this figure, that cross the dividing surface with
the same speed λ̇ orthogonal to the surface. To the seven phase points on the surface (from
top to bottom) the numerator of Eq. (1.48) with t greater than the transition time τtrans

will assign the values [−λ̇, λ̇, λ̇,−λ̇, λ̇, 0, 0], while these are [0, 0, λ̇,−λ̇, λ̇, 0, 0] for Eq. (1.59)
and [0, 0, λ̇, 0, 0, 0, 0] for Eq. (1.65). The sum of these give the same result λ̇. Evaluation
of Eq. (1.65) in an actual computer algorithm requires the fewest MD steps as only phase
points similar to the 3rd and 7th phase points would need the integration until reaching
stable state regions. For instance, the fifth crossing point can be assigned zero already as
soon as one detects that its backward trajectory recrosses the surface.

1.5.3 Alternative expressions for κ

Improving the BC expression

Because of the bad scaling of the relative error there have been proposed several ways
to improve the computation of κ [20]. The problem with expression (1.48) is that the
numerator counts trajectories with a positive but also with a negative weight. The
latter trajectories leave the surface at t = 0 with a negative velocity λ̇(x0), but are
eventually found at the B side of the surface after a (few) recrossing(s). However,
untrue B → B trajectories do not contribute to the rate because the positive and
negative terms cancel 1 (See Fig. 1.10). Similarly, the A → B trajectories with
multiple λ∗ crossings are effectively counted only once [21]. Although Eq. (1.42)
gives the correct rate constant, it is rather unsatisfactory to sample only trajectories
forward in time not knowing which contribute to the rate and which do not. Therefore,
alternative expressions for the rate constant have been proposed taking the past into
account. Here, they are referred to as the BC2 [13,12] expression

κBC2(t) =
〈λ̇0θ(λ∗ − λ−t)θ(λt − λ∗)〉λ0=λ∗

〈λ̇0θ(λ̇0)〉λ∗
(1.59)

1This cancellation might seem to be not apparent if a trajectory recrosses the same surface but
with a different velocity. Still, this is the case. The absolute value of the flux of a trajectory is at each
intersecting surface the same. A lower crossing velocity λ̇ is compensated by a higher probability to
measure the crossing point as the trajectory spends more time at the surface.
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and the positive flux PF [22] expression

κpf (t) =
〈λ̇0θ(λ̇0)θ(λt − λ∗)〉λ0=λ∗

〈λ̇0θ(λ̇0)〉λ0=λ∗
− 〈λ̇0θ(λ̇0)θ(λ−t − λ∗)〉λ0=λ∗

〈λ̇0θ(λ̇0)〉λ0=λ∗

(1.60)

In Eq. (1.59) the Heaviside functions guarantee that only true A → B events are
counted. Still, the numerator in Eq. (1.59) contains negative terms: those phase
points x0 with a negative velocity λ̇(x0) and with corresponding backward and for-
ward trajectory that ends up in A and B, respectively. Eq. (1.60) counts only positive
crossings, but cancellation with a negative term can occur when the backward tra-
jectory also ends up at the B side of the dividing surface. At first sight, Eq. (1.60)
seems to overcount A → B trajectories with multiple λ∗ crossings. However, if one
realizes that each A→ B trajectory has an equivalent trajectory B → A by reversing
the time, an overall cancellation of positive and negative terms ensures a proper final
outcome.

There are also similar expressions by Berne [23,24] and a relation by Hummer [25]
that counts both positive and negative crossings with a positive weight, but only if
the corresponding trajectory ends at opposite sides of the surface and with a weight
lower than |λ̇| if its trajectory has more than just one crossing.

Ruiz-Montero method

Another way to improve the BC expression (1.48) was devised by Ruiz-Montero et
al. [17].Consider again the BC correlation function C(t), Eq. (1.38). As shown in
appendix A, the convergence of Ċ(t) to the rate kAB does not rely on the TST defini-
tion of the stable states, Eqs. (1.40). Using two general complementary characteristic
functions hA, hB such that hA + hB = 1 also in the transition region, and applying
the general relation (1.41), we can rewrite

Ċ(t) =
〈λ̇0h

′
B(λ0)hB(λt)〉
〈hA〉

(1.61)

where h′B(0) = ∂hB/∂λ and we used the chain rule to differentiate hB(λ). In the TST-
BC procedure hB(λ) = θ(λ− λ∗) and the expression (1.42) for Ċ(t) is derived. How-
ever, one can take different forms for the function hB in order to improve the relative
error (1.54). Ruiz-Montero et al. decided to use a function that is linearly increasing
in the transition region between A and B. This choice was based on the following
consideration. As mentioned in appendix A, Eq. (1.38) can also be derived applying
linear response theory on the phenomelogical random telegraph equations (1.4). A
perturbation proportional to hA is taken, which changes equilibrium in favor of state
A, and the response hB is derived. Consider then the onedimensional example of the
previous subsection: a flat square barrier of length b separating state A for r < 0 and
state B for r > b (see Fig. 1.8). We showed that the mean first passage time decreases
linearly as the starting point varies on the barrier from A to B (see Fig. 1.9). It can
be shown that the steady state distribution function pst(r) obeying the stationary
Fokker-Planck equation associated to this problem, also follows a linear decreasing
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Figure 1.11: Different forms for the
characteristic function hB(λ) (solid line)
in the case of a potential given by a
square barrier of length b (dotted line).
The complementary characteristic func-
tion hA(λ) = 1 − hB(λ) is also shown as
a dashed line. (a) BC choice, hB(λ) is
a step function. (b) the choice of Ruiz-
Montero et al., hB(λ) is a linear increas-
ing function. As a result it is less noisy
than the Heaviside function and allows a
faster approach to the steady state.

behavior. The idea of Ruiz-Montero et al. was then to use an initial perturbation
hA(λ) of the same form as the steady state distribution, in order to help the slow
diffusive approach to the stationary regime. The difference with the BC approach
is pictured in Fig. 1.11. As a result, Eq. (1.61) can be rewritten as (compare also
Eq. (1.56))

kAB =
D

b

〈δ(λ− λ∗)〉
〈hA〉

(1.62)

where D is defined from the velocity autocorrelation function as

D =
∫ ∞

0

〈λ̇(0)λ̇(t′)〉λ0=λ∗dt
′ (1.63)

and because of the Green-Kubo relation, can be identified with the diffusion coeffi-
cient. The integral in Eq. (1.63) extends to t = ∞, but is in practice limited to the
decay time of the correlation function, which for a flat barrier is a constant, indepen-
dent of the barrier length, and shorter than the time to leave the top of the barrier.
One can show then [17, 11] that the relative error on the transmission coefficient
κ = kAB/k

TST
AB reduces to

σκ

κ
∼ 1√

Ntr

(1.64)

and gains a factor κ with respect to Eq. (1.54).
This analysis however could be restrictive to the case of a truly flat barrier. The

calculation of κ is equivalent to the calculation of a diffusion coefficient and assumes
that κ(t) shows a plateau for times while trajectories are still on the barrier. In the
case of a general barrier, the same principle can be applied of choosing a perturbation
function hA(λ) that is as close as possible to the steady state distribution. It turns
out that the best choice is such that h′A(λ) is proportional to the factor exp(βF (λ),
where F (λ) is the free energy profile. The final expression to be used in practice
resembles Eq. (1.62), but the velocity autocorrelation function is computed weighing
the velocities with such exponential factor. However, if the barrier is not completely
flat, Eqs. (1.61) and (1.63) might converge at a time t when the system has left the
barrier, and then hB(λ) is the same as normal TST-BC (see Fig. 1.11). This affects
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the error analysis in such a way that the scaling of Eq. (1.64) might turn back into
that of Eq. (1.54). A more careful analysis, with tests on real systems, should be
performed to check this possibility.

Effective positive flux

To this list of alternative ways to compute transmission coefficients, we add our ex-
pression, that uses the effective positive flux formalism, the idea at the basis of the
interface sampling methods of chapters 3 and 4. The formula for the transmission
coefficient reads

κTIS(t) =
〈λ̇0θ(λ̇0)χ

epf
AB(x0)〉λ0=λ∗

〈λ̇0θ(λ̇0)〉λ0=λ∗
, (1.65)

where the function χepf
AB counts only reactive trajectories by following the evolution

forward in time until the trajectory reaches stable states A, and backward in time
until it reaches stable state B, or recrosses the surface λ∗. The definition of χepf

AB(x0)
is

χepf
AB(x0) =


1 if integrating backward xt hits actual A before λ∗

and integrating forward hits actual B before actual A,
0 otherwise,

(1.66)

where x0 is a phase space point on the surface λ∗, and xt is the evolution of the
trajectory at time t. Since χepf

AB(x0) is independent of time and can only assume
two values, it is easy to estimate the relative error on κ. For a boolean variable
σ2

κ = κ(1− κ) ' κ, since κ is small for diffusive cases. Then we obtain

σκ

κ
∼ 1
√
κ
√
Ntr

. (1.67)

Surprisingly, the effective positive flux counting strategy is not so common. To our
knowledge only another slightly different expressions of a transmission coefficient
based on the effective positive flux has been proposed in Ref. [26]. In all other ex-
pressions found in the literature the counting of recrossings is not avoided, but the
final rate constant follows through cancellation of many negative and positive terms.

In sec. 6.2 we will give an expression for χepf
AB(x0) and address again the problem of

computing the transmission coefficient. We will try to compare on qualitative grounds
some of the expressions encountered in this section, adding the contribution of the
Interface Sampling methods to be presented in the following chapters.

1.5.4 Variational TST-BC

The variational inequality (1.53) tells us that the best reaction coordinate is the one
that minimizes kTST

AB . This is also a definition for the best dividing surface [9, 27].
Truhlar and coworkers have formulated many different versions of variational TST,
where the full calculation of the rate constant is repeated for different choices of
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the transition state [28]. Since any recrossing of the dividing surface leads to an
overestimate in the rate constant, one might assume that minimizing the number of
recrossings will give the lowest rate estimate. Makarov and Metiu have showed that
this may not be the case [29]. A more rigorous formulation is in terms of the free
energy, as first pointed out by Chandler [12], who making use of expression (1.35),
transposed (1.53) into: the best reaction coordinate is the one that maximizes the
free energy F . This reasoning however neglects the first term (1.37). 2

It is shown in appendix B that an alternative expression for the TST rate is

kTST
AB =

1
〈hA〉

√
kBT

2πm

∫
λ(q)=λ∗

dσ(r)ρ(r) ≡
√
kBT

2πm
e−βG(λ∗)

〈hA〉
(1.68)

where the integral is on the surface ∂A, and dσ(r) is the surface element. We assume
all particle masses equal to m. The free energy G so defined has the important
property of being geometrically invariant. Under reparametrization of A and its
surface, it does not change. This is not the case for F . The two are related by

e−βG(λ∗) = 〈|∇λ|〉λ=λ∗e
−βF (λ∗) (1.69)

This expression is the most appropriate free energy definition in the context of TST.
Now the variational principle can be applied to (1.68), and it reads: the best reaction
coordinate is the one that maximizes the free energy G. In principle, variational
equations can be written for λ(r) [10], but they are too formidable a task to be
solved. Attempts have been made restricting the class of functions λ(r) to simple
ones, such as hyperplanes [30]. For a given parametrization λ(r), the best value for
λ∗ is the maximum of G(λ∗). This recovers and precises the qualitative reasoning of
sec. 1.4.3 and sec. 1.5.1, where we suggested that the best choice of λ∗ is the maximum
of F . However, only when |λ(r)| is constant (e.g. linear parametrization), will F and
G be the same. In general, a λ∗ that maximizes G could, for example, be a bit to the
right of the maximum of F . Even though in practice the difference will not be much,
it is in principle wrong to work only in terms of the free energy F .

1.6 Other methods

Before switching to transition path sampling, we review some alternative approaches
to rare events that can be found in literature.

An important distinction is between methods that focus on the study of the po-
tential energy surface and those that do not. The first approach has its natural
development in the context of TST. Transition pathways are defined as minimum en-
ergy paths (MEP), and a theorem by Murrell and Laidler identifies transition states
as saddles of index one [31]. Therefore the proper reaction coordinates are along the
direction of the unstable modes of relevant saddles down to the minima, which iden-
tify the stable states. At each saddle point the TST dividing surface is taken to be
the hyperplane going through the saddle point with the normal given by the displace-
ment vector of the unstable mode. TST is then often applied within the harmonic

2and the denominator in (1.35), which can however be considered roughly constant and equal to
the measure of stable state A.
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approximation, where the partition function of the system in the dividing surface and
in the initial state is approximated by a harmonic partition function [32] (see also
sec. 2.4.1).

The MEP approach has been used several times and refined up to recent publica-
tions. However, in complex systems at finite temperature, concepts like the minimum
energy path or the lowest saddle point are not very useful. The potential energy
surface is not just a smooth landscape of two valleys separated by a passage, but
is exponentially populated with saddles and local minima [33, 34]. The reaction is
rather described by an ensemble of paths. Similarly, one cannot speak of a particular
transition state but only of an ensemble of transition states [35].

With this distinction in mind we give a (naturally incomplete) list of methods,
distinguishing them by their implementation approach.

1.6.1 Open-ended methods

This class of methods focuses on escaping the initial state without making assump-
tions on the final state. This can be achieved by, for instance, artificially increasing
the frequency of the rare event in a controlled way. The methods of Voter and col-
laborators follow this approach: hyperdynamics [36, 37] aims at lowering the energy
difference between the top of the barrier and the initial basin, the parallel replica
method [38] exploits the power of parallel processing to extend the molecular sim-
ulation time, and temperature-accelerated dynamics [39, 40] speeds up the event by
raising the temperature. The idea of driving energy into the system to escape the
basin of the energy minimum in which the system is initially prepared is also at the
basis of conformational flooding [41], the Laio-Parrinello method [42, 43], and the
enhanced sampling of a given reaction coordinate [44]. Another possible route is to
coarse-grain the molecular dynamics on the fly and explore the resulting free-energy
landscape [45]. Several methods are devoted to the exploration of the full potential
energy surface through all its minima and saddle points. Examples are eigenvector
following [46,47], the activation-relaxation technique of Barkema and Mousseau, [48],
the dimer method of Henkelmann and Jónsson [49], the kinetic Monte Carlo (MC)
approach [50,51,52], and the discrete path sampling of Wales [53,34].

Finally we also add to this class the clustering algorithms of Schütte et al. [54,55].
In sec. A.1 we gave a glimpse of the significance and capabilities of the spectral analysis
of the Fokker-Planck operator. Based on its rigorous mathematical theory, Schütte et
al. derived algorithms that regroup sets of configurations according to the eigenvalues
and eigenfunctions of a properly constructed operator, called the proximity matrix.

1.6.2 Two-ended methods

When the initial and final state are known it is possible to generate paths connecting
the two in the form of a discretized chain of states. This is the basis of a second
class, the so-called two point boundary methods. One option is to find the minimal
energy path on the potential energy surface, as in the Nudged Elastic Band method of
Jónsson and collaborators [56,57,58,59] and in the zero-temperature string method of
E et al. [60]. When the system is too complex the latter replaces the concept of MEP
with that of minimum free energy path. the finite-temperature string method [61,62]
exploits the fact that in some thermally averaged potential the small features of the
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energy below the thermal scale can be smoothed out. Another possibility is to find a
true dynamical path by minimizing a suitably chosen action [63], or to use modified
stochastic equations of motion that guide the system from the initial to the final
state [64]. Similar techniques by Elber and Olender [65,66,67] and Doniach et al [68]
sample discretized stochastic pathways based on the Onsager-Machlup action. We
also mention the topological method of Tănase-Nicola and Kurchan [69,70] in which
they suggest to use TPS in combination with saddle point searching vector walkers.

Usually these two-ended methods require an initial path to initiate the algorithm.
Some simple interpolation schemes are used or it is often taken from a path created by
an open-ended method. The milestoning [71] method of Faradjian and Elber assumes
the existence of a suitable path and builds a chain of states to overcome diffusive
problems. Milestoning is quite similar to Partial Path Transition Path Sampling,
which is the subject of chapter 4. We defer to then a comparative discussion of the
two methods.

1.7 Summary

We pointed out the problem of rare events in sec. 1.1. After reading the intermediate
sections, one might be inclined to identify it with the calculation of the rate constant.
All in all, the quest for this number has inspired most of the numerical and theoretical
framework that we have tried to outline in this chapter. However, in real systems,
no method computes a rate constant, simply because such a definition does not exist.
Methods can compute a mean residence time (TST), a correlation function (BC),
or, as we will show in the following chapter, a mean first passage time (TIS). When
computing a rate constant, one is in fact trying to construct the best random telegraph
approximation (i.e. the best jump probability WAB) that describes the transition
process.

In sec. 1.1 we also said that the study of rare events is the study of the transition
mechanism: finding out how the process actually takes place, including the identifi-
cation of the transition states. At the basis of the whole TST-BC procedure lies the
first step in sec. 1.5.1: the choice of a reaction coordinate. The traditional belief is
just that a proper choice of λ(r), based on physical and/or chemical intuition, will do
fine. The reaction coordinate is supposed to describe the advance of the transition
from A to B. For TST, the dynamical information is retrieved from the free energy F
or G (see sec. 1.5.4) as function of this reaction coordinate. In the BC procedure, the
dynamical calculation of the transmission coefficient corrects TST and converges to
the correct rate. We might have the final rate constant, but the mechanistic picture
of the transition event is biased by the a priori choice of the reaction coordinate.
Even if the RC intuitively looks fine, we could be wrong, or simply not just right
enough. We might be disregarding some important aspects of the event. In the study
of nucleation in chapter 7 this is the case. We need therefore a procedure that tells
us which RC to use. We cannot expect such information from the Bennett-Chandler
procedure, which simply assumes we are looking at the correct reaction way. Driven
by this need new methods have been created such as Transition Path Sampling, and
its improvement Interface Sampling. We will see in the following chapters how they
address this problem.
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omnes viae Romam ducunt
(all the paths lead to Rome)

Ancient saying

Transition Path Sampling is essentially a Monte Carlo random walk in the path space
of the transition trajectories. From the ensemble of these paths one can get all the
information requested in sec 1.1. The method inspired the development of Interface
Sampling, which will be discussed in the following chapters. Interface Sampling uses
a different approach to the computation of the rate constant, but the study of mech-
anism and transition states as well as the computational tools follow directly from
TPS. We review TPS here following [35], and in sec 2.4 we add an application to the
rearrangement of a seven particle Lennard-Jones cluster in 3 dimensions.

2.1 The transition path ensemble

Again, the framework is that of Fig. 1.1: two states A and B are stable on a timescale
much longer than the duration of the transitions between them. In order to define
an ensemble of paths, we would like to associate to every trajectory of particular
duration a probability density functional. In this way, we restrict it then only to the
paths of importance, the transitions.

Let us reconsider the definitions of sec. 1.3. Denote with x the set of variables
describing the state of the system. The actual definition depends on the choice of the
dynamics. For Hamiltonian or Langevin dynamics x = {r, p} is the set of coordinates
and momenta, for stochastic dynamics in the high friction limit it might consist of
configurations only, for a lattice system and Monte Carlo dynamics x denotes the
state of each lattice site. We will present a formalism that is valid for all kinds of
dynamics, but for most applications, in the rest of this thesis, we will mainly consider
deterministic motion. Instead of the Langevin dynamics (1.22) we assume that the
evolution is described by a set of ordinary homogeneous differential equations

ẋ = Γ(x). (2.1)

26
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The solution xt at time t is uniquely determined by the initial condition x0 at time 0
and can be written as

xt = ft(x0) (2.2)

which defines the propagator ft . In the standard Hamiltonian picture (2.1) is derived
from a Hamiltonian H(x) = H(r, p) according to Γ(r, p) = {∂H/∂p,−∂H/∂r}. In the
general form, Eq. (2.1) includes also dynamics based on the extended Lagrangian of
Car and Parrinello [72], or various thermostatted systems [73].

We remind that deterministic motion does not mean a deterministic system, be-
cause of the ensemble of initial conditions. We assume the system admits an equilib-
rium distribution ρ(x), which does not necessarily have to be canonical. The other
definitions of sec. 1.3 still hold in the proper phase space x. In particular, the char-
acteristic function hΩ is now defined on a general subset of the full phase space.

2.1.1 Path probability

We denote a trajectory of length T by a discretized sequence of states

x(T ) ≡ {x0, x∆t, x2∆t, . . . , xT } (2.3)

where consecutive states are separated by a small time increment ∆t. The sequence is
called a path and is made up of L = T /∆t+1 states, called time slices. The pathlength
T is a fixed time and chosen a priori. Even though the time evolution of the system
is continuous, such a discretization is convenient for numerical implementation and
allows us to use probabilities.

The statistical weight or probability P[x(T )], of a path x(T ) depends on the distri-
bution of initial conditions and on the propagation rules of the dynamics. We assume
the dynamics is a Markov process to which is attached the probability (see Eq. A.2)

p(xt → xt+∆t) ≡ p(xt+∆t, t+ ∆t|xt, t) (2.4)
= Probability of being in xt+∆t at time t+ ∆t

provided that you were in xt at time t

The dynamical path probability is expressed as a product of short-time probabilities

P[x(T )] = ρ(x0)
T /∆t−1∏

i=0

p(xi∆t → x(i+1)∆t) (2.5)

where ρ(x0) is the distribution of initial conditions, mostly an equilibrium distribution
but can also be a non-equilibrium one. The transition path ensemble is then defined
as the subset of trajectories that connect states A and B:

PAB [x(T )] ≡ Z−1
AB(T )hA(x0)P[x(T )]hB(xT ) (2.6a)

ZAB(T ) ≡
∫
Dx(T )hA(x0)P[x(T )]hB(xT ) (2.6b)

where in the normalizing factor the path-integral notation
∫
Dx(T ) indicates a sum-

mation over all pathways x(T ). In our discretized case it corresponds to an integration
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over states at each time slice of the path. The constraint hA(x0)hB(xT ) ensures that
paths that do not connect A and B have zero weight in this ensemble. We remark
that the definition (2.6) only contains true dynamical trajectories, without any bias
of unphysical forces or constraints.

In the case of deterministic dynamics

p(xt → xt+∆t) = δ[xt+∆t − f∆t(xt)] (2.7)

and using (2.5), Eq. (2.6) becomes

PAB [x(T )] = Z−1
AB(T )ρ(x0)hA(x0)hB(xT ) (2.8a)
T /∆t−1∏

i=0

δ[x(i+1)∆t − ft(xi∆t)]

ZAB(T ) =
∫
dx0ρ(x0)hA(x0)hB(xT ) (2.8b)

where integrations over the states along the path have been carried out at all times
except zero.

2.1.2 Order parameters

The definition of a state by hA(x) or hB(x) relies in practice on a parametrization such
as (1.31). A high-dimensional set in the full phase space is reduced to a onedimensional
range of a real-valued function λ(x), called the order parameter.

At variance with the definition of reaction coordinate, sec. 1.5.1, the order param-
eter does not have to characterize the progress of the transition, but we only require
that it properly characterizes the stable states A and B. The phase space regions
defined by the order parameter should encompass the basins of attraction, but also
distinguish them, see Fig. 2.1. Basins of attraction are the distinct sets of points from
which trajectories relax to the corresponding stable state. In practice, definitions
are based on physical intuition, similar to the choice of the reaction coordinate, and
adjusted by trial and error. Nevertheless, the situation depicted in Fig. 2.1 can be
difficult to detect.

x’
A B

λ

basin A

basin B

Figure 2.1: Phase space projected
along an order parameter λ and or-
thogonal coordinates, here called x′.
Basins of attraction of the stable states
are portraited, and the two λ intervals
defining the A and B are showed in
gray. Even though they accomodate
most of the fluctuations, there is over-
lap of the definition of A with the basin
of attraction of B that might lead to
wrongly identify as transitions paths
like the one in figure.
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2.2 Sampling the path ensemble

We want to generate trajectories x(T ) with a frequency proportional to their weight
(2.6). We apply the Monte Carlo idea of constructing a random walk stochastic
process corresponding to the desired equilibrium distribution.

Assume we have a path x(o)(T ) belonging to the path ensemble, i.e. a tran-
sition. Suppose we generate from this another path x(n)(T ) 1 with probability
Pgen[x(o)(T ) → x(n)(T )]. We next accept the newly generated path with proba-
bility Pacc[x(o)(T ) → x(n)(T )]. A simple way to construct an appropriate acceptance
probability is based on detailed balance of moves in trajectory space. Since the over-
all conditional probability for this Markov process is PgenPacc, we impose (see also
Eq. (A.10))

PAB [x(o)(T )]Pgen[x(o)(T ) → x(n)(T )]Pacc[x(o)(T ) → x(n)(T )] = (2.9)

PAB [x(n)(T )]Pgen[x(n)(T ) → x(o)(T )]Pacc[x(n)(T ) → x(o)(T )]

Since x(o)(T ) belongs to the ensemble, hA(x(o)
0 ) = hB(x(o)

T ) = 1. Using (2.6) we get
for the ratio of the acceptance probabilities

Pacc[x(o)(T ) → x(n)(T )]
Pacc[x(n)(T ) → x(o)(T )]

= hA(x(n)
0 )hB(x(n)

T ) (2.10)

P[x(n)(T )]
P[x(o)(T )]

Pgen[x(n)(T ) → x(o)(T )]
Pgen[x(o)(T ) → x(n)(T )]

The P probabilities come from (2.5), Pgen depend on the algorithm that generates a
new path from an old one, see following sections. The condition (2.10) can be satisfied
using the Metropolis rule [74]

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) (2.11)

min
[
1,
P[x(n)(T )]
P[x(o)(T )]

Pgen[x(n)(T ) → x(o)(T )]
Pgen[x(o)(T ) → x(n)(T )]

]
Accordingly only paths that connect A and B are accepted.

Resuming, a path sampling simulation is the realization of two Markov processes.
One is the dynamics, and takes place in the phase space x of the system. On top of
that the path sampling is built, a Markov process in the transition path space x(T ).
We now move to see how this MC walk in path space is implemented in practice.

2.2.1 Shooting move

This powerful and efficient algorithm [75] is the main tool for the realization of the
path sampling and is essential in Interface Sampling methods, see sec. 3.2.2.

The algorithm is as follows. A time slice x(o)
t′ , 0 ≤ t′ ≤ T , of the old path x(o)(T )

is selected at random. The state is modified in some way, for example by simply
changing the momenta. Then a new path is created evolving (shooting) backward

1Here superscripts stand for ’old’ and ’new’.
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and forward in time from the modified state x(n)
t′ until t = 0 and t = T respectively.

The new path x(n)
t′ is accepted with a probability (2.11), which implies that the path

is rejected if it does not connect A and B. The procedure is schematically depicted
in Fig. 2.2 (a).

We can now expand (2.11). The generation probability Pgen is written as

Pgen[x(o)(T ) → x(n)(T )] = pgen[x(o)
t′ → x

(n)
t′ ]

T /∆t−1∏
i=t′/∆t

p
(
x

(n)
i∆t → x

(n)
(i+1)∆t

)
t′/∆t∏
i=1

p̄
(
x

(n)
i∆t → x

(n)
(i−1)∆t

)
(2.12)

where p, p̄ are the small time step probabilities describing the evolution forward and
backward in time, and pgen[x(o)

t′ → x
(n)
t′ ] is the probability to obtain state x(n)

t′ by
modification of state x(o)

t′ . Here pgen contains the probability of selecting timeslice t′,
equal to ∆t/T in the case of uniform choice. The backward small time step probability
p̄ also deserves some explanation. Given definition (2.4) for the forward small time
step probability, p̄ is defined as

p̄(x→ y) = p(x̄→ ȳ) (2.13)

where x̄ denotes the transformation of x under time-reversal. Namely, if x = {r, p},
then x̄ = {r,−p}. We remark that in practice not all integration schemes have a
simple way of reversing the evolution, such as inversion of the momenta and forward
integration in time. For this reason time-reversible algorithms as the Verlet algorithm
and in general those based on the Trotter factorization of the Liouville propagator [76],
are definitively preferable.

Substituting (2.12) into (2.11) we get

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) (2.14)

min

1,
ρ
(
x

(n)
0

)
ρ
(
x

(o)
0

) pgen

(
x

(n)
t′ → x

(o)
t′

)
pgen

(
x

(o)
t′ → x

(n)
t′

)
t′/∆t−1∏

i=0

p
(
x

(n)
i∆t → x

(n)
(i+1)∆t

)
p̄
(
x

(n)
(i+1)∆t → x

(n)
i∆t

) p̄
(
x

(o)
(i+1)∆t → x

(o)
i∆t

)
p
(
x

(o)
i∆t → x

(o)
(i+1)∆t

)


where factors have cancelled out because the trial trajectory was generated using the
same propagation rules of the underlying dynamics.

This formula is a general expression for the shooting algorithm. In the following
we will make assumptions in order to simplify it further and eventually concentrate
on deterministic dynamics. For a more general implementation in various cases, e.g.
stochastic dynamics, we refer to [35].
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dynamics x H′(x)
NVE r, p H(r, p)
NVT† r, p, η, pη H(r, p) + p2

η/2Q+ dNkBTη

NPT∗ r, p, η, pη, V, pε H(r, p) +
∑M

k=1 p
2
ηk
/2Qk + (dN + 1)kBTη1

+
∑M

k=2 ηk + PextV + p2
ε/2W

NPH‡ ρ,π, V, pV H(ρ,π) + PextV + p2
V /2W

Table 2.1: Some generalized dynamics, corresponding phase space x and conserved gener-
alized Hamiltonian H′. Here H is the standard Hamiltonian, kinetic plus potential energy.
† Nosé-Hoover algorithm, look at [73]. ∗ Martyna-Tobias-Klein algorithm, look at [73].
‡ NPH-Andersen algorithm, look at [77], ρ,π are the scaled coordinates and momenta, see
also sec. H.

Assumption I: microscopic reversibility

It is a very general consequence of microscopic reversibility that the dynamics conserve
a stationary distribution ρst(x), i.e. the small time step probabilities satisfy

p(x→ y)
p̄(y → x)

=
ρst(y)
ρst(x)

(2.15)

In case of deterministic generalized hamiltonian dynamics the stationary distribu-
tion is ρst(x) = δ(H′(x) − E), with H′ the generalized conserved energy. In table
2.1 we summarize the conserved variable for some well known deterministic MD al-
gorithms. Other possible conserved quantities Λk(x), k = 1 . . . nc, such as the total
linear or angular momentum, can also enter the stationary distribution, which takes
the form

ρst(x) = δ(H′(x)− E)
nc∏
1

δ(Λk(x)− Ck). (2.16)

where E and Ck are constants.
Another case of interest is the Andersen thermostat [77] for constant temperature

MD, which also conserves a canonical stationary distribution, but is not related to a
conserved generalized Hamiltonian.

Assumption II: symmetric slice modification

If one assumes, besides microscopic reversibility, a symmetric generation probability

pgen

(
x

(o)
t′ → x

(n)
t′

)
= pgen

(
x

(n)
t′ → x

(o)
t′

)
(2.17)

the acceptance rule (2.14) simplifies further into

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) (2.18)

min

1,
ρ
(
x

(n)
0

)
ρ
(
x

(o)
0

) ρst

(
x

(o)
0

)
ρst

(
x

(n)
0

) ρst

(
x

(n)
t′

)
ρst

(
x

(o)
t′

)
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where the fraction in the min term depends only on time 0 and t′. Before considering
two specific cases of interest we make some general remarks.

Devising a symmetrical algorithm that modifies a state x(o)
t′ into x(n)

t′ requires some
care. In particular, the modification has to be consistent with the initial conditions
distribution ρ(x), which might contain additional constraints. In the case of linear
constraints, such as null total momentum and angular momentum, a common proce-
dure is the following. In this procedure we assume that only momenta are changed.
Consider the phase space point x(o)

t′ = {r(o)
t′ , p

(o)
t′ , ξ

(o)
t′ }, where ξ(o)

t′ represents the ad-
ditional variables of generalized dynamics, see table 2.1

1. Select n = dN momentum displacements δp from a onedimensional Gaussian
distribution and add them to p(o)

t′ , so that p′ = p
(o)
t′ + δp.

2. Impose the linear constraints using the procedure of [78]. The m constraint
equations define a n − m linear manifold in Rn through its m dimensional
normal bundle. In order to project the new momenta p′ onto this manifold,
first construct an orthonormal basis for the normal bundle through a Gram-
Schmidt procedure, and then subtract the components along this basis set. If
considering only vanishing total linear momentum, this step is equivalent to
subtract

∑
i p

′
i/N from all single particle momenta.

3. When necessary, rescale the momenta by a constant factor to obtain the total
desired energy E. If the constraints are of vanishing total momentum and the
center of mass is in the origin, this step leaves the constraints unchanged.

For further details we refer again to [35].

Two cases of interest

First, suppose that the distribution of initial points is the same as the stationary
distribution, i.e. ρ(x) = ρst(x), then Eq. (2.18) simply reduces to

Pacc[x(o)(T ) → x(n)(T )] = hA[x(n)
0 ]hB [x(n)

T ]min

1,
ρ
(
x

(n)
t′

)
ρ
(
x

(o)
t′

)
 . (2.19)

In the case the stationary distribution is as in (2.16), and if the generating algorithm
is consistent with this distribution, the acceptance criterion becomes

Pacc[x(o)(T ) → x(n)(T )] = hA[x(n)
0 ]hB [x(n)

T ] (2.20)

The path sampling procedure is now as follows. Choose a slice, change the phase
point, rescale the momenta to meet the conditions in (2.16) and integrate the evolution
backward and forward in time. If the new path is reactive (connects A and B) accept,
otherwise reject it. Note that in practice the generalized energy E in (2.16) is not
perfectly conserved by the integration algorithm, and to satisfy detailed balance,
one should rescale to the energy of the shooting time slice t′. This, however, can
lead to a drift in the energy and in practice it can be better to rescale to a fixed
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quantity. The error is assumed negligible. Most important, (2.20) holds even when
the dynamics is not Hamiltonian. We will use it for NVE simulations, where both
the dynamics and the distribution of initial conditions are microcanonical, but also
for the simulation of a nucleation process at constant pressure-constant enthalpy. In
the case of NVT-Andersen algorithm, where (2.16) does not hold, the path sampling
procedure is similar. The difference is that momenta are not rescaled, but accepted
or rejected on the basis of the Metropolis rule, as given by Eq. (2.19).

Second, suppose that the distribution of initial conditions is not equal to the sta-
tionary distribution, i.e. ρ(x) 6= ρst(x). Consider again (2.18). To the dynamical
Eq. (2.2) is associated the transformation of a volume element

dxt = J(xt;x0)dx0, (2.21)

where J(xt;x0) ≡ |∂ft(x0)/∂x0| = |∂xt/∂x0| is the Jacobian of the transformation.
The dynamical system (2.1), even if not preserving the probability measure (2.21),
nor the distribution ρst(x), does preserve the probability itself:

ρst(xt)dxt = ρst(x0)dx0 (2.22)

and as a consequence

ρst(xt) = ρst(x0)J(xt;x0)−1 (2.23)

Inserting (2.23) into (2.18) gives

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) (2.24)

min

1,
ρ
(
x

(n)
0

)
ρ
(
x

(o)
0

) |∂x(o)
t′ /∂x

(o)
0 |

|∂x(n)
t′ /∂x

(n)
0 |


In the case ρ(x) = ρst(x) this equation is equivalent to (2.19), but if we express the
dependence on the slices at time 0, the Jacobian appears. In Eq. (2.20), however,
which is most convenient in practice, there is no Jacobian is involved.

Suppose now that the dynamics is area-preserving, i.e. J = 1, such as in Hamilto-
nian systems. Then, Eq. (2.24) becomes

Pacc[x(o)(T ) → x(n)(T )] = hA[x(n)
0 ]hB [x(n)

T ]min

1,
ρ
(
x

(n)
0

)
ρ
(
x

(o)
0

)
 (2.25)

which depends only on the relative weights of initial conditions. This means that in
principle the Metropolis acceptance rule should be applied to the initial slice x0 and
not to the shooting timeslice, cf (2.19). One has to integrate first all the way to time 0.
However, simplification may occur, for example in the typical case of NV E dynamics
with a canonical distribution ρ(x0). When ρ(x0) ∝ exp(−βE) and the energy E is
constant on the path, the criterion can be applied to any slice, in particular the one at
time t′. In reality this is slightly wrong, because the energy is not perfectly conserved
along the path by the integration scheme, but in practice it is usually assumed that
the error is negligible.
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Efficiency

The shooting move creates new paths for the random walk by a perturbation of the
old path. The acceptance of the move can be controlled by changing the magnitude
of the phase point displacement δx (δp in the case of the algorithms proposed above).
If δx = 0 one simply reproduces the old path 2 and the acceptance is automatically 1.
A low δx then basically results in sampling the same path again. On the other hand
if δx is very large one samples very different paths, but most of these paths will be
rejected because the reactive trajectories A→ B are unstable, in the sense that they
can easily change into trajectories of type A → A or B → B. An efficient sampling
produces decorrelated paths in the smallest number of Monte Carlo cycles. It was
shown in [79] that, just as in conventional Monte Carlo simulation, the most efficient
sampling is given by an acceptance around 40%.

This holds for reactive trajectories of fixed length, but we can expect it to be
valid also for TIS trajectories of fluctuating length. When the system is diffusive,
however, the shooting move runs into trouble. Because of the Lyapunov instability of
the underlying dynamics even the smallest δx might lead to completely different and
unreactive trajectories. In this case the acceptance plateaus to a fixed value and the
algorithm becomes intrisicaly inefficient. For this reason we developed PPTIS, which
will be discussed in chapter 4.

2.2.2 Shifting move

In TPS paths start in A and end in B with fixed length T . Part of the path is in the
stable states, and part is in the transition region. Therefore translating the path in
time might create a new path that still connects the states. This leads to the idea
of the shifting move, depicted in Fig. 2.2 (b). A segment of length ∆T is deleted
from the beginning (end) of the path and a corresponding segment is grown at the
end (beginning) by applying the rules of the dynamics. If δT > 0 the result is a
forward translation in time and if ∆T < 0 it is backward in time. The generation
probabilities for a forward and backward shift are written, by considering the newly
created portions of path,

P f
gen[x(o)(T ) → x(n)(T )] =

T /∆t−1∏
i=(T −∆T )/∆t

p
(
x

(n)
i∆t → x

(n)
(i+1)∆t

)
(2.26a)

P b
gen[x(o)(T ) → x(n)(T )] =

∆T /∆t∏
i=1

p̄
(
x

(n)
i∆t → x

(n)
(i+1)∆t

)
(2.26b)

while the common portions of the old and the new path are identical. We im-
pose the detailed balance condition (2.9) with the forward probabilities for the move
x(o)(T ) → x(n)(T ) and the backward ones for the reversed move x(n)(T ) → x(o)(T ).
Assuming a symmetrical generation of ∆T for forward and backward shift, and assum-
ing microscopic reversibility (2.15), after cancellation of common terms the acceptance

2because of round-off errors a different path might be created even if δx = 0
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criterion for shifting is

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) (2.27)

min

1,
ρ
(
x

(n)
0

)
ρ
(
x

(o)
0

) ρst

(
x

(o)
0

)
ρst

(
x

(n)
0

)


As in the case of the shooting move two cases are of interest. First, suppose
ρ(x) = ρst(x), then (2.27) simplifies to

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) (2.28)

which is valid even for a generalized Hamiltonian dynamics. Second, suppose ρ(x) 6=
ρst(x) but the Jacobian of the transformation (2.23) is 1. Then (2.27) becomes

Pacc[x(o)(T ) → x(n)(T )] = hA(x(n)
0 )hB(x(n)

T ) min

1,
ρ
(
x

(n)
0

)
ρ
(
x

(o)
0

)
 (2.29)

which depends on the slice at time 0. In the case of a canonical distribution and NVE
Hamiltonian dynamics, however, ρ(x) depends only on the energy, which is conserved
by the dynamics. Thus, the Metropolis acceptance criterion can be applied before
the expensive integration of the dynamics.

The shifting algorithm is as follows. Given a path, choose a time displacement ∆T
from a symmetrical distribution around 0. If necessary check the Metropolis criterion
in the last term of (2.29). Then integrate the proper new part of the path at the
beginning (if ∆T < 0) or at the end (if ∆T > 0). If the new path still connects A
and B accept, otherwise reject it.

The shifting move is a basic ingredient of path sampling, because considerably im-
proves the sampling of the transition ensemble [75]. The move is also computationally
cheap, because it requires integration of the dynamics only over a short time ∆T . If
all the slices are saved in memory, then reversing a shift move is costless. The shoot-
ing move on the contrary is very expensive, requiring the creation of a new path with
each attempt.

The shifting move is called a diffusion move when ∆T = ±∆t with probability
1/2. In fact if this short shift is applied frequently, it results in a sort of diffusion of
the path, which smoothes the computed time-observables, e.g. C(t), see sec. 2.3.

2.2.3 Path reversal

The transition path ensemble (2.6) can be modified to include trajectories that start
in A, visit B, but not necessarily stay in B until t = T . This modification becomes
useful when computing rates, see sec. 2.3. Define

HB [x(T )] ≡ max
0≤t≤T

hB(xt) (2.30)
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which is 0 only if the path never visited B and 1 otherwise. Replacing hB with HB

in (2.6) we have the new transiton path ensemble

P∗AB [x(T )] ≡ [Z∗AB(T )]−1hA(x0)P[x(T )]HB [x(T )] (2.31a)

Z∗AB(T ) ≡
∫
Dx(T )hA(x0)P[x(T )]HB [x(T )] (2.31b)

The shooting and shifting algorithm are still able to sample this ensemble. In
addition, if a path starts in A, visits B and goes back to A, we can get a new path by
just applying time-reversal. Inverting all the velocities of the slices and reading the
path backwards we have another path of the ensemble. This move is computationally
inexpensive because it requires no integration of the dynamics. One simply checks if
the path ends in A, and if it does reverse the momenta and accept, otherwise reject.

q(o)
t’

δp

x(o)
0

x(n)
0

(o)x

(n)x

BA

(b)

x(n)
0

x(o)
0

BA

(a)

(c)

A

p

B

(n)
t’ p(o)

t’

Figure 2.2: TPS algorithms: (a) shooting (b) shifting (c) path reversal

2.2.4 Joining the algorithms

In a transition path sampling simulation we use all the above mentioned algorithms.
Assigning a probability αi to each of them, with

∑
i αi = 1, the complete TPS

algorithm reads
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1. take an initial path belonging to the transition path ensemble

2. draw a random number y ∈ [0, 1] and see in which range falls

1

4α 3α 2α 1

diffuse reverseshoot shift0

α

If
∑i−1

j=1 αj < y <
∑i

j=1 αj choose generating algorithm i

3. generate a new path using the chosen algorithm. Accept or reject according to
the rules of the algorithm

4. if the new path is accepted, it becomes the current one. Otherwise the old path
is retained as the current one again.

5. sample observables on the path

6. repeat from step 2

Note that step 2 involves a random number to satisfy overall detailed balance. One
cannot fix a sequence of algorithms, e.g. a shoot and a shift, but one can specify
αshoot = αshift = 0.5.

We remark that in the above algorithm the first step requires an initial path already
belonging to the ensemble. In conventional MC, for example when simulating a liquid,
one starts from a lattice configuration which, even if not equilibrated, belongs to the
ensemble, i.e. its weight is low but not 0. Eventually an equilibration run will
generate configurations with higher weight. In TPS even the very first configuration
requires special care, because a path is needed with weight different from 0, i.e. a
transition. Producing it from an MD run is usually difficult because the event is rare.
The trajectory does not have to be a dynamical one, so you could use interpolation
schemes between initial and final states, in order to approximate a transition state.
Shooting from it one can hope to end in both A and B. Biased MD simulations are
another option, including running at high-temperature and subsequent cooling down.
However, all in all there is no general rule to create a first path [35]. This is a lack
in a very important step of the procedure. We will see in chap. 3 how the problem is
naturally overcome in TIS.

Finally, we mention some other algorithms to sample the path ensemble that have
appeared in literature [80]: the local algorithm for stochastic dynamics, which sam-
ples slices individually; the dynamical algorithm, based on the path action; and an
algorithm based on Configurational Biased Monte Carlo, which exploits the analogy
between polymers and stochastic paths.

TPS has also been used in connection with parallel tempering [81]. Different path
sampling simulations are carried at different temperatures and in addition to the
moves of step 2 a move is present that exchanges paths between the various simula-
tions. Ideal for implementation on parallel computers, the idea enhances considerably
the sampling at low temperatures [35].
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2.3 Computing Rates

In sec. 1.5 we showed that in a system with separation of timescales the time derivative
of the correlation function C(t), Eq. (1.38), displays a plateau equal to the rate
constant kAB . The fact was then used in the context of TST-BC where the states are
adjacent, but the proof Eq. (1.39) we give in appendix A.3 does not use a reaction
coordinate and holds for the general situation of Fig. 1.1. TPS is a method that
computes the correlation function C(t), and hence the rate constant.

2.3.1 Umbrella sampling

Because of the definition of the path ensemble (2.5), an ensemble average 〈A(t)〉 can
be recast into an average over all the trajectories

〈A(t)〉AB =
∫
Dx(t)P[x(t)]A(t)∫
Dx(t)P[x(t)]

(2.32)

The correlation function C(t) can then be rewritten as

C(t) =
〈hA(0)hB(t)〉

〈hA〉
(2.33)

=
∫
Dx(t)P[x(t)]hA(x0)hB(xt)∫

Dx(t)P[x(t)]hA(x0)

where the denominator is in fact t independent and equal to the equilibrium average
〈hA〉. Having defined an order parameter λ(x) (sec. 2.1.2) we can choose the set B
as

B = {x : λB
min < λ(x) < λB

max} (2.34)

As a consequence, we can insert the characteristic function hB(x) in Eq. (2.33) and
obtain (2.33) as

C(t) =
1

〈hA〉

∫
Dx(t)P[x(t)]hA(x0)

∫ λB
max

λB
min

dλδ[λ− λ(xt)] (2.35)

=
∫ λB

max

λB
min

dλ

∫
Dx(t)P[x(t)]hA(x0)δ[λ− λ(xt)]∫

Dx(t)P[x(t)]hA(x0)

=
∫ λB

max

λB
min

dλ〈δ[λ− λ(xt)]〉A

≡
∫ λB

max

λB
min

dλPA(λ, t)

where 〈·〉A denotes an average on paths beginning in A. The function PA(λ, t) is the
probability that a trajectory started in A reaches λ at time t. Since we are interested
in the function up to values of λ in the range (2.34) and t� τstable, the computation
of PA(λ, t) involves overcoming a low probability region.
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The same problem is found in regular free energy calculations, and a solution is the
introduction of an artificial bias, by e.g. the umbrella sampling method [14]. Let us
review the method in the case of a bias in the form of hard windows. Given a system
state x, an equilibrium distribution ρ(x) and an order parameter λ(x), we want to
compute

P (λ) =
∫
dxρ(x)δ[λ− λ(x)]∫

dxρ(x)
= 〈δ[λ− λ(x)]〉 (2.36)

We therefore partition the phase space, dividing the total range of λ, into slightly
overlapping hard windows

Wi = {x : λ(i)
L < λ(x) < λ

(i)
R } (2.37)

such that ∪iWi is the total phase space, but the sets are not disjoint. Next, we
consider

PWi(λ) =
∫
dxρ(x)hWi

(x)δ[λ− λ(x)]∫
dxρ(x)hWi

(x)
= 〈δ[λ− λ(x)]〉Wi

(2.38)

The probability (2.38) is proportional to (2.36) when λ ∈Wi and zero otherwise. The
proportionality factor is the measure of the set 〈hWi〉, which is difficult to compute
because there are regions Wi of low probability. Even if we start a simulation with
a configuration belonging to such a low probability region, there will be a tendency
to move away from this region. However, we can constrain the simulation to remain
in the region Wi and compute (2.38). In case of MC trial move we simply reject a
trial moves when it leaves the region. This is equivalent to biasing with a square well
potential equal to 0 if x ∈Wi and ∞ otherwise. As a consequence, if we compute the
window average (2.38) for a couple of slightly overlapping regions, the two probability
histograms (2.38) must be the same in the common region. We can rescale one to the
other using the probability in the common areas. Repeating this for all subsequent
windows we can reconstruct the whole probability histogram (2.36), and normalize it
to one. This procedure is successful if the windows are chosen narrow enough for the
sampling (2.38) to gather enough statistics in each window.

The principle can be straightforwardly applied to the sampling of the path prob-
ability PA(λ, t), which corresponds to average (2.36). The path sampling analog of
(2.38) is

PAWi(λ, t) =
∫
Dx(t)P[x(t)]hA(x0)hWi

(xt)δ[λ− λ(xt)]∫
Dx(t)P[x(t)]hA(x0)hWi

(xt)
= 〈δ[λ− λ(xt)]〉AWi

(2.39)

which is a probability histogram in λ computed in the ensemble of paths starting
in A and ending in Wi. Computing (2.39) in all the windows Wi and rematching
as described above, PA(λ, t) can be obtained, and from it C(t) using (2.35). The
procedure is illustrated in Fig. 2.3 for the isomerization of a 7-particle Lennard-Jones
cluster.

2.3.2 Path ensemble average

In principle, the umbrella sampling procedure could be repeated for every t to get the
full correlation function C(t). In practice, this is too expensive and is not necessary
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Figure 2.3: Calculation of PA(λ, t),
the probability of a trajectory being
in λ at time t provided that it started
in A at time 0. The illustrated pro-
cess is the isomerization of 7-particle
LJ cluster at E/N = −2.072 (see
sec. 2.4). The calculation employs
the umbrella sampling window tech-
nique. Top: calculation of the dis-
tribution in the windows. Bottom:
rematching all curves. The states A
and B are indicated by bold curves.

as the computation can be simplified using a convenient factorization [80,79].
Let t′ < t and rewrite C(t) as

C(t) ≡ 〈hA(0)hB(t)〉
〈hA〉

(2.40)

=
〈hA(0)hB(t)〉
〈hA(0)hB(t′)〉

〈hA(0)hB(t′)〉
〈hA〉

=
〈hA(0)hB(t)〉
〈hA(0)hB(t′)〉

C(t′)

This expression shows that if one knows C(t′) at time t′, one can calculate C(t) at
all other times t by multiplying by the factor 〈hA(0)hB(t)〉/〈hA(0)hB(t′)〉. Since the
function HB [x(T )], eq. (2.30), is zero only if hB(xt) vanishes for all xt of the path,
we can insert it into the ensemble averages. We obtain then for the first factor

〈hA(0)hB(t)〉
〈hA(0)hB(t′)〉

=
〈hA(0)hB(t)〉
〈hA(0)〉

〈hA(0)〉
〈hA(0)hB(t′)〉

(2.41)

=
〈hA(0)hB(t)HB [x(T )]〉
〈hA(0)HB [x(T )]〉

〈hA(0)HB [x(T )]〉
〈hA(0)hB(t′)HB [x(T )]〉

=
〈hB(xt)〉∗AB

〈hB(xt′)〉∗AB

where the notation specifies a path average in the path ensemble (2.31). Substituting
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(2.41) into (2.40) we finally obtain

C(t) =
〈hB(xt)〉∗AB

〈hB(xt′)〉∗AB

C(t′) (2.42)

k(t) ≡ Ċ(t) =
〈ḣB(t)〉∗AB

〈hB(t′)〉∗AB

C(t′) (2.43)

We can now summarize the TPS procedure for the calculation of the rate constant.

1. Calculate the average 〈hB(t)〉∗AB in the path ensemble (2.31), i.e. paths that
start in A and visit B at least once

2. If the time derivative d〈hB(t)〉∗AB/dt displays a plateau go to next step, otherwise
repeat step 1 with a longer time t

3. Calculate the correlation function C(t′) for fixed t′ ∈ [0, t] using umbrella sam-
pling

4. Determine C(t) = C(t′)〈hB(t)〉∗AB/〈hB(t′)〉∗AB in the entire interval [0, t].

5. Compute the derivative Ċ(t). The rate constant kAB is the value of the plateau

Finally, we derive the correspondence with the reactive flux formalism (BC proce-
dure) of sec. 1.5. Suppose the states A and B are adjacent. We have then

C(t′) ' C(0) + Ċ(0+)t′ = kTST
AB t′ (2.44)

〈hB(t′)〉∗AB ' 〈hB(0)〉∗AB + 〈ḣB(0)〉∗ABt
′ = 〈ḣB(0)〉∗ABt

′ (2.45)

where we used (1.44) and 〈hB(0)〉∗AB = 0 because by definition of the ensemble the
paths begin in A 6= B. Then (2.43) for small t′ > 0 becomes

k(t) =
〈ḣB(t)〉∗AB

〈ḣB(0)〉∗AB

kTST
AB (2.46)

and by comparison with (1.48) we have

κ(t) =
〈ḣB(t)〉∗AB

〈ḣB(0)〉∗AB

(2.47)

i.e. the transmission coefficient is 〈ḣB(t)〉∗AB normalized to its value at t = 0+ [79].

2.4 The (LJ)7 cluster

In this section we present an application of TPS to the rearrangement of a cluster
of seven particles interacting through a pairwise Lennard-Jones potential. We study
the transition from the global minimum to the second lowest energy minimum. For
such a simple system it makes sense to explore the potential energy surface (PES).
We dedicate the next section to this, but when applying TPS we will show that the
method does not rely on any knowledge of the PES. We conclude with a connection
between the two approaches.
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2.4.1 Potential Energy Surfaces

We describe N particles in dimension d = 3 using the potential energy function
U(r1 . . . rN ), with Cartesian positions ri ∈ Rd. For a cluster of N particles in vacuum
with no additional conditions, we require the function to have the following properties

1. Invariance under space translation, if all particle positions are displaced by a
common vector

2. Invariance under space rotation, if all particle positions are rotated with the
same transformation

3. Invariance under space inversion, if all coordinates are inverted through a space-
fixed origin

4. Invariance under equivalent particle permutation, if two particles of the same
kind are exchanged

Properties 1, 2 imply in three dimensions that the number of degrees of freedom is
reduced to s = 3N − 6, due to conservation of total linear and angular momemtum.
An exception are systems composed of linear molecules for which s = 3N −5 because
we do not need to conserve the component of angular momentum along the linear
axis. If a bulk system is considered and periodic boundary conditions are applied, we
lose property 2 and consequently s = 3N − 3. For a system composed of NA atoms
of type A, NB atoms of type B, etc., it follows from properties 3, 4 that the number
of permutation-inversion isomers of any given configuration is

2×NA!×NB !× . . . (2.48)

but this number is actually reduced by a factor equal to the order of the prevailing
point group [33].

The important features of potential energy surfaces are the stationary points, for
which ∇U = 0. A number of studies of PES for specific systems has resulted in gen-
eral methods to locate stationary points [34]. Usually stationary points are classified
through their index, that is the number of negative eigenvalues of the corresponding
Hessian matrix ∂2U/∂ri∂rj . With this definition points of index 0 correspond to
minima. Points of index 1 are the highest energy points of minimum energy paths
between minima and they are therefore taken as definition of transition states [31].
Higher index points are not important as far as transitions between minima are con-
cerned. For completeness, a study on Lennard-Jones clusters showed that the number
of stationary points of index I has a gaussian shape with a maximum for I ' N − 2
and a cut-off at I = 2N − 4, beyond which there are no stationary points [82]. There
is no strict rule for the growth in the number of stationary points corresponding to
different structures, i.e. excluding inversions and permutations (2.48). The evolution
in the number of stationary points is system dependent, but empirical observations
and theoretical arguments suggest that the number of structurally distint minima is
likely to increase as [33]

Nmin = eaNb

a > 0, b = O(1) (2.49)
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which shows that in these finite cluster systems, the PES landscape becomes rapidly
complex. Great effort has been spent for decades to locate the minima of clusters
bound by specific potentials modelling real interactions [83]. In the competitive quest
for the global minimum extensive databases have been created of cluster stationary
points, in some cases up to N = 1000 [84].

Here we are interested in potential energy functions given by pairwise interactions,
U =

∑
ij U(ri, rj). Because of the above requirements 1 and 2, it takes the form

U(r1 . . . rN ) =
1
2

N∑
ij=1

U(rij) =
∑
i<j

U(rij) (2.50)

where rij = |ri − rj | is the interparticle distance. We take the pairwise interaction
U(r) in the form of a Lennard-Jones (LJ) potential [85]

ULJ(r) = 4ε
[(σ

r

)12

−
(σ
r

)6
]

(2.51)

Besides its long history of didactical application as the typical pair interaction, the
LJ potential is extensively used to model parts of more complicated potentials, and it
is a reasonably good model for noble gases, such as Argon. Here, and in the following
we consider all the particles with equal mass m and we use reduced units, so that ε,
σ and m are unity. The LJ unit of time (mσ2/ε)1/2 is therefore also unity.

The system consists of N = 7 particles in dimension d = 3, called (LJ)7. Its PES
has been completely determined. As far as transitions are concerned, it consists of 4
minima and 12 saddle points of index one, the full exploration being first completed
by Tsai and Jordan [86]. The PES is shown in Fig. 2.4 In this study we are interested
in the transition from state A, the basin of the global minimum pentagonal bipyramid,
to state B, the basin of the second lowest one, a capped octahedron. We could have
chosen other transitions but we preferred this because it shows no intermediates. We
now turn to see how TPS can compute the rate constant of this process.

2.4.2 Choice of the order parameter

Denoting with (p1 . . .pN ) the momenta of the particles, we write the full Hamiltonian

H =
N∑

i=1

p2
i

2
+
∑
i<j

4
[
r−12
ij − r−6

ij

]
(2.52)

To identify an order parameter able to distinguish the pentagonal bipyramid from
the capped octahedron we inspected both the potential energy and the moments of
inertia. The latter are defined as the eigenvalues of the inertia tensor [88]

I =
N∑

i=1

r2i 1− riri (2.53)

where 1 is the 3 × 3 identity matrix and the second term uses the dyadic product.
We also assume that the center of mass of the cluster is in the origin. Eigenvalues
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Figure 2.4: The PES of (LJ)7. The high-energy 12th saddle point is omitted. Minima are
represented and saddles labeled in square brackets. The first saddle point is also represented
as the transition state for the transition we are analyzing, from the pentagonal bipyramid
to the capped octahedron. Some saddles connect different minima, and the connections are
showed. Other saddles (dashed lines) connect permutational isomers of the same structure,
are termed degenerate and display symmetrical features. The figure is adapted from [86,87].

are usually identified in ascending order I1 ≤ I2 ≤ I3. We report in table 2.2 their
values for the four (LJ)7 minima together with the values of the potential energy.
Note that this is at variance with the usual custom in chemical reactions of using as
shape indicators the eigenvalues of the radius of gyration tensor, see sec. 7.4.1.

We simulate the system at constant total energy E by integrating the equations of
motion corresponding to (2.52) using a Verlet integrator with time step ∆t = 0.005.
The total linear and angular momentum were set to 0. We report in Fig. 2.5 an MD
run at the total energy E/N = −2.0, started from a configuration equilibrated from
the global minimum. The energy is high enough to observe several transitions in
the total simulation time. We note that even if the potential energy slightly changes
during the transitions, it is not able to distinguish them. The moments of inertia, on
the other hand, are much better indicators. We report in the same figure our guesses
for the basin of attraction of the configurations, based on the zero-temperature values
of table 2.2. These guesses proved to be correct in a later quenching analysis. For
the transition we are interested in (BP → CO in figure 2.5) we observe that I2 can
distinguish the initial and final states. We have run distinct NVE simulations in the
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Minimum U/N I1 I2 I3
Pentagonal Bipyramid -2.358 2.94 2.94 4.57
Capped Octahedron -2.276 2.50 4.09 4.09
Tricapped Octahedron -2.228 3.24 3.24 4.69
Bicapped Trigonal Bipyramid -2.219 2.31 4.53 4.75

Table 2.2: Potential energy per particle and moments of inertia for the four minima of
(LJ)7. Note the first three all have two degenerate eigenvalues of the inertia tensor, corre-
sponding to cylindrical symmetry.
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initial and final states at four different total energies (see table 2.3), we histogrammed
the values of I2, and we report them in Fig. 2.6. The highest energy was chosen in
order to compare with previous results in literature [89], the lowest one was just above
the transition state, to test the limits of TPS. For all energies the I2 histograms are
indeed well separated.

2.4.3 Rate constants

We define stable states A and B using gaussian fits on the histograms of I2 (see
Fig. 2.6). A configuration is identified as a stable state if its I2 value is around 3σ of
the mean value of the stable state. See table 2.3 for details.

E/N -2.072 -2.100 -2.200 -2.205
A 3.20±0.32 3.17±0.29 3.12±0.25 3.08±0.21
B 4.12±0.37 4.11±0.33 4.10±0.25 4.09±0.23

Table 2.3: Ranges of I2 defining states A and B for the four energies considered.

Following the procedure of sec. 2.3.2 we computed 〈hB(t)〉∗AB with a path ensemble
simulation. The trajectory length was T = 5.0 and we used the shooting, shifting,
and diffuse move with probabilities 20%, 40%, 40% respectively (see sec. 2.2.4). In
the shooting algorithm we took care of constraining zero total linear and angular
momentum (sec. 2.2.1). The momentum displacement in the shooting move and the
time origin displacement in the shifting move were chosen such that the acceptance
ratio was of 40%. To save memory time, slices of paths were stored every ten MD
steps. The total number of harvested paths was 106. We report the results in Fig. 2.7,
〈hB(t)〉∗AB and its time derivative. Clearly, the length T was long enough for all the
curves to display a plateau.

Subsequently, we applied the umbrella sampling technique (see sec.2.3.1) to com-
pute C(t′) at time t′ = T . We could have chosen a shorter t′ to save CPU time, but
in such a small system (7 particles) it does not really matter. The whole calculation
took only one hour per energy choice on a 1GHz AMD Athlon. We report in Fig. 2.8
the reconstructed probability function PA(λ = I2, t

′ = T ). After integration over
the range defining B, we get the value of C(t′ = T ). Finally, using the last point of
〈ḣB(t)〉∗AB as the plateau value, we get the rate constant kAB from the formula

kAB =
〈ḣB(T )〉∗AB

〈hB(T )〉∗AB

C(T ) (2.54)

All these results are summarized in table 2.4.
Since we have a detailed knowledge of the PES, we can also apply TST using

as order parameter the direction provided by the eigenvector of the unstable mode
of the transition state, the saddle at UTS/N = −2.206. The quantities in (1.33)
can be evaluated in the microcanonical ensemble using an harmonic approximation.
This harmonic approach is common in the theory of unimolecular reactions, and is
usually known as RRKM theory, see appendix C. The resulting formula for the
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Figure 2.7: Path sampling simulations.
Top: 〈hB(t)〉∗AB . Bottom: the time
derivative. Solid: E/N = −2.072, Dot-
ted: E/N = −2.100, Dashed: E/N =
−2.200, Dot-dashed: E/N = −2.205.

Figure 2.8: Probability distribution
PA(λ, t) of order parameter λ = I2 at
time t = T for paths starting in A,
Eq. (2.35). The factor C(t′ = T ) is
given by the integral over the thicker
regions. Line styles are defined as in
Fig. 2.7.
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E/N 〈ḣB(T )〉∗AB 〈hB(T )〉∗AB C(T ) kAB k−1
AB

-2.072 0.09 0.44 8.99 · 10−4 1.85 · 10−4 11.6 ns
-2.100 0.18 0.78 8.70 · 10−5 2.04 · 10−5 106 ns
-2.200 0.32 1.00 2.69 · 10−16 8.62 · 10−17 6.95 h
-2.205 0.39 1.00 1.40 · 10−23 5.54 · 10−24 12.3 ky

Table 2.4: Resume of rate constant calculations for different energies. The last columns
gives the inverse rates in real units for Argon.
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Figure 2.9: Comparison between TPS and the microcanonical TST called RRKM.

microcanonical rate constant is

kAB(E) =
(
E − UTS

E − UA

)s−1 ∏s
i=1 ν

A
i∏s−1

i=1 ν
TS
i

(2.55)

where in our case UA is the potential energy of the pentagonal bipyramid, and the
number of degrees of freedom is s = 3 · 7 − 6 = 15. The νi’s are the vibrational
frequencies calculated from νi =

√
µi/2π, where µi are the positive eigenvalues of

the Hessian matrix at the stationary points. Accordingly the saddle has one positive
eigenvalue less. We report in Fig. 2.9 the comparison between TPS and RRKM. It
appears that TPS values are better fitted using a different value for s, namely an
effective s = 12.3 instead of the full 15. The result is consistent with another study
of (LJ)7 in two dimensions [90].

Concluding, we have successfully tested TPS on an isomerization reaction in a
simple 7-particle LJ system. Without the knowledge of the PES, we have been able
to compute accurate transition rates, even to very large timescales.

2.5 Finding the right reaction coordinate

At the end of the previous chapter, sec. 1.7, we remarked that the efficiency of the
TST-BC procedure strongly depends on the choice of a reaction coordinate. It is
implicitly assumed that one can guess a proper parametrization λ(r) such that the
advance and the features of the transition are well described. This is certainly not
obvious in complex systems, and for this reason Transition Path Sampling was cre-
ated, which does not rely on a reaction coordinate, but on an order parameter (see
sec. 2.1.2). The primary requirement of an order parameter is to be able to distinguish
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between the stable regions, but not more. This requirement is enough to implement
algorithms able to sample the path ensemble (2.6), and hence compute dynamical
properties, such as the rate constant.

The next question is what we can learn from all the sampled paths. Can we
use them to find the reaction coordinate and describe the transition? Preconceived
reaction coordinates might be wrong. One could use the PES to find out a RC, but
in complex systems this becomes too complicated. Also, in general it is not possible
to recognize the reaction coordinate by simply visualizing trajectories, e.g. using
computer graphics. Indeed, we need some more statistically reliable analysis of the
generated path ensemble.

This section is dedicated to this goal. Although we do not have the final answer
to the problem of finding the right reaction coordinate, we review several ways of
extracting from the path ensemble some interesting information.

2.5.1 Commitment probabilities

Given the path ensemble (2.5), define the commitment probability or committor 3, as

pB(r) ≡
∫
Dx(t̄)P[x(t̄)]δ(r0 − r)hB(xt̄)∫

Dx(t̄)P[x(t̄)]δ(r0 − r)
(2.56)

where t̄ is the first hitting time to A or B. The committor pB(r) is the probability that
a trajectory started from configuration r ends in state B. It indicates the commitment
of r to the basin of attraction of B. The probabilistic feature is retained also for
deterministic dynamics because of the random choice of momenta. The same quantity
can be defined for state A, and if there are no other attractive basins

pA(r) + pB(r) = 1, (2.57)

since the system will not stay in the buffer region forever.
Although the committor can be calculated for every phasepoint, the procedure

to compute committors is implemented here by restricting (2.56) to the interesting
paths, the transition path ensemble (2.6). For each slice of every path we generated,
we draw random initial momenta and start a trajectory. We follow the trajectory xt

until it reaches A or B, and repeat for Ntr trajectories. The estimator

1
Ntr

Ntr∑
i=1

hB(xt̄) (2.58)

converges to pB(r) as Ntr → ∞. Note that the momentum generation must satisfy
the constraints of the distribution, as in the case of the shooting move (sec. 2.2.1).
The procedure is summarized in Fig. 2.10. Since hB is either 0 or 1, the error on the
estimation is given by

σ =

√
pB(1− pB)

Ntr
(2.59)

3The word ’committor’ was conceived as a practical replacement for commitment probability.
It becomes more easy then to speak of committor probability distributions instead of ’probability
distributions of commitment probability’.
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Figure 2.10: Computation of com-
mittors along a path. For each slice
trajectories are shooted and the pB

computed from the fraction of those
that reach B. So for the point a close
to A, it is almost 0, while for c close
to B it is almost 1. Points for which
pB = 1/2 define the separatrix.

where we assume independent, uncorrelated trajectories. Given a certain level of
accuracy we can stop shooting off trajectories when σ is below that level. However,
we must sample at least Nmin trajectories to ensure the estimation (2.58) of pB we
use in (2.59) is reliable. Usually Nmin ∼ 10 is considered sufficient [35]. The error
(2.59) vanishes for pB = 0, 1 and reaches a maximum 1/2

√
Ntr at pB = 1/2. Given a

path we can apply the committor procedure on the part of the path outside the stable
states, the rest of the states being committed already. The end and the beginning
of the path are close to the stable states, so pB is close to 0 or 1, and only a few
trajectories are needed. For the slices in the middle with pB = 0.5, up to Ntr = 100
trajectories are needed to reach an error of 5%.

The committor can be used to regroup points in configuration space. Defining the
sets

Sα = {r : pB(r) = α} (2.60)

we know that S0 is the start of the reaction, and S1 is the end. The committor
describes the true advancement of the reaction, and in this sense it is the perfect
reaction coordinate. Particularly interesting is the set S1/2, called the Transition
State Ensemble (TSE) or separatrix, consisting of configurations on the paths that
have equal probability of ending in A or B. It is usually thought of as a surface,
having in mind the TST best dividing surface of sec. 1.4.1. However, no proof exists
that S1/2 is an n− 1 manifold immersed in Rn. It could be a closed disconnected set.

We remark that the committor computation is a very CPU time-expensive proce-
dure. Consider the portion of a path of lenght T close to the separatrix. Suppose it
is made of aT slices. If tc is the mean commitment time, the committor computation
for one of these slices requires the generation of a complete set of trajectories Ntr

of length tc. Then for a path the committors require an effort aT Ntrtc This is on
top of the transition path sampling, which requires itself an effort T Npath. Assuming
tc ∝ T we can say the total computation time is proportional to T 3NtrNpath. This
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is the price we have to pay to obtain the information (2.60).

2.5.2 Committor distributions

Unfortunately, there is no way to know committors a priori, in order to use them as
reaction coordinate in TST for example. They give a posteriori a partition of the
configuration space according to the advance of the reaction. However, the problem
remains of how to characterize these sets, i.e. the large amount of configurations
corresponding to a value of pB . There is no answer to this problem. What we can do
is to guess from the committor partitioning a probable good descriptive variable, and
test its validity using the committor itself.

Given a parametrization λ(r), suppose to compute the free energy F (λ), Eq. (1.34).
Then, for a fixed λ∗ define the committor distribution

Pλ∗(pB) =
〈δ[pB − pB(r)]δ(λ(r)− λ∗〉)

〈δ(λ(r)− λ∗〉)
(2.61)

If λ(r) were the right reaction coordinate one would expect the configurations r for
which λ(r) = λ∗, with λ∗ the maximum of F , to coincide with the separatrix. As a
consequence Pλ∗(pB) would be sharply peaked at pB = 1/2. If this is not the case
then we know there is a problem with our choice of λ(r). Three possible situations are
depicted in Fig. 2.11. Expression (2.61) can be used for the Geissler test, a powerful
means to ascertain the validity of a chosen reaction coordinate. The test consists of
two steps. First, configurations must be generated from the constrained ensemble λ =
λ∗, using methods such as blue-moon sampling [16] or umbrella sampling [14]. Second,
trajectories must be started for each configuration, and the committor computed, as
explained in the previous section. Finally, the histogram of pB is constructed. From
the result one can judge the quality of a RC.

If committors from the path ensemble have been computed already, we can define
a restricted path committor probability

P̄λ∗(pB) ≡
∫
Dx(T )PAB [x(T )]

∫
dtδ[λ∗ − λ(rt)]δ[pB − pB(rt)]∫

Dx(T )PAB [x(T )]
∫
dtδ[λ∗ − λ(rt)]

(2.62)

In practice, this is an histogram of pB for all the slices of all the paths we have, for
which λ = λ∗. It is just a way of rearranging the information we already have, no
further computation is needed. However if P̄ (pB) is sharply peaked at 1/2 it does not
imply that P (pB) also is, as is clear from Fig. 2.11. But it is a necessary condition, a
good reaction parameter should at least have a sharped P̄ (pB). If this is not the case,
then one can conclude that λ(r) is not a good RC, even before doing the Geissler test.

2.6 Summary

TPS was developed by Chandler and collaborators [80,75,90,79,91]. The idea of a sta-
tistical description of pathways has its origins in a work by Pratt [92], where the idea
of committors and separatrix was also pioneered. The TPS method has been com-
bined with parallel tempering [81], and stochastic dynamics has been used for the case
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Figure 2.11: Committor distribution and Geissler test. We show a free energy contour
plot in the chosen order parameter λ and an additional coordinate λ′. And we show the
committor distributions Eq. (2.61) and (2.62). (a) Order parameter λ describes the reaction
well, and the committor distribution P (pB) computed at the maximum λ∗ in the free energy
F (λ) is sharply peaked at pB = 1/2. The same for P̄ (pB). (b) The additional λ′ plays a
role, and P (pB) is bimodal. The restricted path P̄ (pB) cannot detect this. (c) Now P (pB)
is flat, suggesting diffusive behavior. As a result also P̄ (pB) is flat.
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of diffusive barriers [93,94]. Successful applications of TPS have been hydrogen-bond
breaking in water [95], ion pair dissociation in water [96, 97, 98], alanine dipeptide in
vacuum and in aqueous solution [99], neutral [100] and protonated [78,101] water clus-
ters, also in combination with ab-initio simulations [102], autoionization and solvation
in water [103,104], the folding of a polypeptide [3,4], a study on cavitation [105], and
zeolites [106]. For a more detailed review on TPS see Refs. [107,35,108].

However, some space has been left for improvements. We have seen throughout
the chapter that potential problems arise with TPS

1. Rates are computed using C(t). We showed in sec. 1.5.2 that this correlation
function converges to the correct result because of a cancellation of positive and
negative fluxes. It can be improved using the effective positive flux.

2. Paths have a fixed length. As a result they might spend time in the stable
states. This time is wasted as far as the rate constant is concerned, because
only the first passage time counts.

3. An initial path must be generated before you start the path sampling, see
sec. 2.2.4.

All these issues lead us to develop an improvement, which we called Interface Sam-
pling. This is the subject of the following chapters.



3 Transition Interface Sampling

eh. . . Sorry, . . .maybe I missed it,
. . . but what does this contribute to
the unification theory?

Titus S. van Erp

We derive an efficient scheme for the computation of rate constants, using the frame-
work of TPS and the definition of a rate as inverse mean first passage time, see
appendix A. The method is based on directly and simultaneously measuring the
fluxes through many phase space interfaces. As a result the efficiency increases of
at least a factor two with respect to existing transition path sampling rate constant
algorithms. We introduce the theory, and present the algorithm implementation. We
illustrate then the method on a diatomic molecule in a fluid of repulsive particles and
make a quantitative comparison to the original TPS rate constant calculation.

3.1 Theory

The formalism of Interface Sampling has appeared in [21, 109, 20]. We try to unify
it here in a compact form adapting to the line and conventions of this thesis. The
definitions of sec 1.3 and 2.1 hold.

3.1.1 Interfaces and overall states

Given an order parameter λ(x), see sec. 2.1.2, we define the interfaces i = 0 . . . nI as
the hypersurfaces {x : λ(x) = λi}, where λi ∈ R. We assume that the interfaces do not
intersect, that λi−1 < λi, and we describe the boundaries of state A and B by λ0 ≡ λA

and λnI
≡ λB respectively, see Fig. 3.1. Usually the function λ(x) is defined in

configuration space only, but sometimes momenta might be involved, see sec. 3.3.4. It
could be a simple interparticle distance, but also a quite complicated function, defined
only operatively, such as the nucleation order parameter, see sec. 7.2.3. Generally
defined, interfaces are 2n−1 manifolds immersed in Rn×Rn and labeled in ascending
ordered according to their distance from A.

54
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Figure 3.1: Representation of the
phase space, with interfaces and over-
all states. A and B are the two stable
states. The dots on the shown trajec-
tory indicate the positions of the sys-
tem at successive time steps. The over-
all state A and B are indicated by black
and white dots respectively. The system
changes from state A into B when it en-
ters region B for the first time. It can
leave stable region B shortly thereafter,
but never go back to A in a short time.
The stable regions have to be chosen to
fulfill that condition.

For each phase point x and each interface i, we define a backward time tbi (x) and
a forward time tfi (x):

tbi (x0) ≡ −max [{t|λ(xt) = λi ∧ t < 0}]
tfi (x0) ≡ +min [{t|λ(xt) = λi ∧ t > 0}] , (3.1)

which mark the points of first crossing with interface i on a backward (forward)
trajectory starting in x0. Note that tbi and tfi defined in this way always have posi-
tive values. We introduce then two-fold characteristic functions that depend on two
interfaces i 6= j,

hb
i,j(x) =

{
1 if tbi (x) < tbj(x)
0 otherwise

hf
i,j(x) =

{
1 if tfi (x) < tfj (x)
0 otherwise

(3.2)

which measure whether the backward (forward) time evolution of x will reach interface
i before j or not. However, as the interfaces do not intersect, the time evolution has
to be evaluated only for those phase points x that are in between the two interfaces
i and j. In case i < j, we know in advance that tb,f

i (x) < tb,f
j (x) if λ(x) < λi and

tb,f
i (x) > tb,f

j (x) if λ(x) > λj . When the system is ergodic, both interfaces i and j

will be crossed in finite time and thus hb
i,j(x) + hb

j,i(x) = hf
i,j(x) + hf

j,i(x) = 1.
The two backward characteristic functions define the TIS overall states A and B:

hA(x) = hb
0,nI

(x) hB(x) = hb
nI ,0(x). (3.3)

Overall state A contains not only the points defining A but also the points of the
region between A and B from which a trajectory evolves backward in time to A. The
states (3.3) together span the complete phase space, as the system can never stay in
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the intermediate region between A and B forever. Both overall states are illustrated
in Fig. 3.1. The overall states A and B do not sensitively depend on the definition of
stable state A and B as long as it is reasonable. Of course, the stable regions should
not overlap, each trajectory between the stable states must be a true rare event for
the reaction we are interested in. In addition, the probability that after this event
the reverse reaction occurs shortly thereafter must be as unlikely as an entirely new
event. In other words, the system must be committed to the stable states. Therefore,
a reasonable definition of A and B requires that they should lie completely inside
the basin of attraction of the respective two states, just as in case of TPS. Special
care has to be taken with this condition for processes which show many recrossings
between state A and B before settling down. Such processes can occur in solution
or in dilute gasses. For instance, for organic reactions in aqueous solution, a rare
specific hydrogen bonded network can lower the bond-breaking barrier and initiate
the reaction. If the lifetime of those rare solvation structures is high, a sudden reverse
reaction can occur as the barrier for the backward reaction is also lowered by the
same amount [110,111]. A similar phenomenon can happen in dilute gasses for which
rare spontaneous fluctuations in the kinetic energy are the main driving force. A
particle moving from one state to another due to a very high kinetic energy as result
of sequence of collisions can cross the potential energy barrier several times before it
will dissipate its energy by a new collision and relax into one of the stable states (see
e.g. Refs. [112,113]). These problems can in principle be solved by an adequate choice
of the stable state definitions. For instance, the definition can depend explicitly on
the presence of certain hydrogen bonds or on kinetic energy terms.

3.1.2 Rate constant

In sec. 1.4 we showed how TST can be used to compute the mean residence time in
a state. However, a better definition of the rate constant is based on the mean first
passage time (see appendix chapter A). The introduction of overall states allows the
transformation of the TST computation of the former into the TIS computation of
the latter definition.

The basic idea is depicted in Fig. 3.2. Combining expression (1.29) with Eq. (1.30)
and (1.27), we can write for the mean residence time in A

tmr
A =

limT→∞
1
T
∫ T
0
hA(t)dt

limT→∞
1

2T
∫ T
0
|ḣA(t)|dt

=
limT→∞

1
T
∫ T
0
hA(t)dt

limT→∞
1
T
∫ T
0

[−ḣA(t)θ(−ḣA(t))]dt
(3.4)

The second expression counts only the times when the trajectory leaves A, producing
a negative delta-function in ḣA(t) (see Fig. 1.5). We could have chosen the positive
contributions, but in this way it is easier to generalize. Next, we substitute hA with
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Figure 3.2: Representation of phase space and a long trajectory with 2 transitions A→ B
and two B → A. In the bottom we show the time behavior of hA, hB , hA, hB. Note
that hA(t) + hB(t) ' 1, because it misses the transition parts in the buffer region, while
hA(t) + hB(t) = 1 for all t.

hA in the last expression , thus replacing state A with overall state A.

tmfp
A =

limT→∞
1
T
∫ T
0
hA(t)dt

limT→∞
1
T
∫ T
0

[−ḣA(t)θ(−ḣA(t))]dt

=
limT→∞

1
T
∫ T
0
hA(t)dt

limT→∞
1
T
∫ T
0

[δ(λnI
− λt)(+λ̇t)hb

0,nI
(xt)]dt

(3.5)

The derivative of ḣA(t) produces a delta-function weighted with the velocity, cf
Eqs. (1.30),(1.32). The negative delta appears, however, only at the moments when
the trajectory hits for the first time B, i.e. reaches B coming directly from A, thus giv-
ing rise to the term hb

0,nI
(xt). As a result the mean residence time becomes the mean
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first passage time. Using ergodicity and the definition (1.15) for the rate constant,
we obtain the TIS rate expression

kAB = (tmfp
A )−1 =

〈hb
0,nI

(x)λ̇(x)δ(λ(x)− λnI
)〉

〈hA〉
(3.6)

In principle, this formula is an operational way to compute the rate: start an infinite
long trajectory and count the number of effective positive crossings, i.e. the crossings
of ∂B when coming directly from A. Naturally, this is not doable in practice because
the transition is a rare event and we need a way to enhance the probability of this
event. We will deal with this in the next section.

Let us conclude showing the similarity of Eq. (3.6) with other expressions from
traditional TST-BC. First, noting that hb

0,nI
(x) = 0 if λ̇(x) < 0, we can insert θ(λ̇(x))

in Eq. (3.6), and using (3.3), write

kAB =
〈hA(x)λ̇(x)θ(λ̇(x))δ(λ(x)− λnI

)〉
〈hA〉

(3.7)

which resembles the TST expression Eq. (1.33). Then, noting that the negative delta’s
in (3.5) appear at points when just after hB = 1, we can write −ḣA(x)θ(−ḣA(x)) =
−ḣA(x)hB(0+). Using time translation invariance to bring the time derivative on the
second term, see Eq. (1.41), we can write

kAB =
〈hA(0)ḣB(0+)

〈hA〉

=
d

dt

〈hA(0)hB(t)
〈hA〉

∣∣∣∣
0+

≡ Ċ(0+) (3.8)

where in the last line we define the TIS correlation function

C(t) =
〈hA(0)hB(t)〉

〈hA〉
(3.9)

which resembles the BC expression Eq. (1.38). However, this function shows a linear
regime for 0 < t < τstable, instead of only for τtrans < t < τstable like in BC theory.
Eventually C(t) will converge to 〈hB〉 ' 〈hB〉 as in the traditional case. But to
compute the rate we can take the derivative immediately at time t = 0+ and obtain
the value of the plateau.

3.1.3 Effective positive flux

In order to make (3.6) computationally manageable, we have to introduce two fun-
damental quantities. The first is the effective positive flux. Given two interfaces i, j
define

φij(x) ≡ hb
j,i(x)|λ̇(x)|δ(λ(x)− λi) (3.10)
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Figure 3.3: Effective positive flux.
For each trajectory only one point (full
circle) contributes to the flux across
i, the first one coming directly from
j. Directly means with no recross-
ing of i. The other two recrossings
(open circles) we show would cancel
each other in the flux and we do not
count them at all. Case j < i, φij(x) =
+hb

j,i(x)λ̇(x)δ(λ(x) − λi). Case i < j

φij(x) = −hb
j,i(x)λ̇(x)δ(λ(x) − λi). By

definition, in any case the flux is posi-
tive.

With reference to Fig. 3.3, it can be explicitly written

φij(x) = +hb
j,i(x)λ̇(x)δ(λ(x)− λi) if j < i

= −hb
j,i(x)λ̇(x)δ(λ(x)− λi) if i < j

= hb
j,i(x) lim

∆t→0

1
∆t

θ
(
∆t− tfi (x)

)
(3.11)

The last equality is an operational definition. An MD trajectory might cross interface
λi, but consists of discrete time slices that are never exactly on the surface. However,
φij(x) can still be defined for the discrete MD set of time-slices by taking ∆t equal
to the molecular time-step. In words, φij(x) equals 1/∆t if the forward trajectory
crosses λi in one single ∆t time-step and the backward trajectory crosses λj before λi.
Otherwise φij(x) vanishes. Note that independently of the relative position of i and
j, the flux is always positive. With this definition Eq. (3.6) is immediately rewritten
as

kAB = 〈φnI ,0〉/〈hA〉 (3.12)

The second step is to define a conditional crossing probability that depends on the
location of any four interfaces i, j, l,m:

P (l
m|ij) ≡ 〈φij(x)h

f
l,m(x)〉/〈φij(x)〉 = 〈hf

l,m(x)〉
φij

(3.13)

where we introduced the weighted average 〈f(x)〉w = 〈f(x)w(x)〉/〈w(x)〉. In words,
this is the probability for the system to reach interface l before m under the condition
that it crosses at t = 0 interface i, while coming directly from interface j in the past.
See Fig. 3.4 for an illustration. Alternatively stated, in the ensemble φij of trajectories
crossing i and coming directly from j, P (l

m|ij) is the probability of reaching l before
m.

The link between the flux (3.10) and the probability (3.13) is a fundamental relation
between fluxes at different interfaces. For three interfaces i < j < k it holds

〈φki〉 = P (k
i |

j
i )〈φji〉 (3.14)
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In words, the direct flux from i through k is given by the direct flux from i through
j < k times the conditional probability of reaching k before i after crossing j while
coming directly from i (see Fig. 3.5 (a)). A proof of this relation is given in appendix
D. Consequently, we can derive the following probabilistic relation for four interfaces
i < j < k < l (see Fig. 3.5 (b) for a graphical explanation):

P (l
i|

j
i ) = P (l

i|ki )P (k
i |

j
i ) (3.15)

Using this notation the left hand-side can be seen as a matrix contraction of the
right-hand side. We stress that both Eq. (3.14) and (3.15) are exact and there is no
underlying Markovian assumption. The probabilities retain the dependence on the
past through the index i.

Now we have all the ingredients to write the TIS rate constant in terms that can
be determined in a computer simulation.

λm λj λi λl

Figure 3.4: The conditional crossing probability P (l
m|ij) for a certain configuration of inter-

faces λi, λj , λl, and λm. The condition |ij) is depicted by the arrow and the solid line for two
phase points (the dots): from this phase point one should cross λi in one single ∆t time-step
in the forward direction, and, besides, its backward trajectory should cross λj before λi.
Two possible forward trajectories are given by the dashed line. The upper crosses λm before
λl, the lower crosses λl as first. The fraction whose forward trajectories behave like the last
case equals P (l

m|ij).

i j k

(a)

lkji

(b)

Figure 3.5: (a) Flux theorem. The flux through k can be written as the flux through j < k
times the probability j → k. This is true if the trajectory is coming directly from i, i.e. it
must not recross j in the meantime. (b) Probability theorem. The probability j → l can
be factorized as Prob. j → k times Prob. k → l. This is true if the trajectory is coming
directly from i, i.e. it must not recross j in the meantime.
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3.1.4 TIS rate expression

Given the probabilities in Eq. (3.13), the cases m = j = 0 and m = j = nI are of
special interest for TIS and will be annotated as follows

PA(j|i) ≡ P (j
0|i0), PB(j|i) ≡ P (j

nI
|inI

) (3.16)

Making use of (3.14) we can write

〈φnI ,0〉 = 〈φ1,0〉PA(nI |1), (3.17)

thus relating the flux through ∂B to the flux through an interface closer to A. Using
then (3.15) we can write

PA(nI |1) =
nI−1∏
i=1

PA(i+ 1|i) (3.18)

which factorizes the global (very small) probability PA(nI |1) into local (bigger) prob-
abilities between neighboring interfaces. As a result we can rewrite (3.12) as

kAB =
〈φ1,0〉
〈hA〉

PA(nI |1) =
〈φ1,0〉
〈hA〉

nI−1∏
i=1

PA(i+ 1|i) (3.19a)

kBA =
〈φnI−1,nI

〉
〈hB〉

PB(0|nI − 1) =
〈φnI−1,nI

〉
〈hB〉

nI−1∏
i=1

PB(i− 1|i) (3.19b)

where for completeness we have shown the expression for the reversed rate kBA as
well. In (3.19a) the first factor 〈φ1,0〉

〈hA〉 is a flux and can be calculated by straightforward
MD if interface 1 is close enough to A. The second factor is the crossing probability
and is calculated with an algorithm based on the TPS shooting move, sec. 2.2.1.
Just as in the previous section, we remark that even though the notation might
appear Markovian, Eqs. (3.19a), (3.19b) do not involve a Markovian assumption.
The subscript A is there to indicate that the probabilities are also dependent on the
past history of the path, all the way from where it left A.

3.2 TIS algorithm

We describe here how to implement formula (3.19a) in a computer simulation, follow-
ing [20].

3.2.1 The flux calculation

The flux factor 〈φ1,0〉
〈hA〉 is the effective flux through λ1 of the trajectories coming from

λ0, i.e. from A. If λ1 is chosen close enough to A the flux factor can be obtained by
straightforward MD initialized in A and counting the positive crossings through λ1

during the simulation run

〈φ1,0〉
〈hA〉

=
1

∆t
N+

c

NMD
(3.20)
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Figure 3.6: Flux calculation. (a)
λ1 6= λ0. The number of effective in-
out crossings (full circles) is N+

c =
2, not all the in-out crossings with 1
must be counted. (b) λ1 = λ0 + ε.
All the in-out crossings are effective
crossings.

with ∆t the MD time step and NMD the number of MD steps, so that the denominator
is the total length of the MD trajectory. Then N+

c the number of counted effective
positive crossings, which means that one only has to count the crossings when coming
directly from A. An illustration is given in Fig. 3.6 (a). Actually, the flux factor is
most conveniently computed with the first two interfaces identical. Although 〈φ1,0〉

〈hA〉 is
not well defined for λ1 = λ0, we can think that λ1 = λ0 + ε in the limit ε→ 0. In this
way, the effective positive flux will be equal to the simple positive flux through λ1.
Trajectories cannot recross without re-entering A, hence, all crossings are counted.
See also Fig. 3.6 (b). Similarly, for the reverse rate kBA we can set λnI−1 = λnI

− ε.
To calculate the rate at constant temperature instead of constant energy, one can

apply a Nosé-Hoover [114, 115, 116, 76] or Andersen [77] thermostat. However, one
should be aware that these thermostats do give the correct canonical distribution at
a given temperature, but modify the dynamics in an unphysical way. Hence, static
averages 〈A(x)〉 will be correct, but time correlation functions 〈A(x0)B(xt)〉 most
likely not. As N+

c ∼
〈
θ
(
λ1 − λ(x0)

)
θ
(
λ(x∆t)− λ1

)〉
is actually a correlation function

over a very short time, this effect will be small. However, if necessary one can easily
correct for this by explicitly counting only phase points x that in absence of the ther-
mostat will cross λ1 in one ∆t time-step. Applying this correction is computationally
cheap as it does not require any additional force calculations. Alternatively, one can
perform an NVT simulation in the same way as TPS does an NVT path sampling,
see 2.2.1. Generate initial conditions from a canonical distribution using MC and
compute the flux for an NVE run for each configuration. The canonical average of
microcanonical flux results in the canonical flux.

3.2.2 The path sampling

To calculate the conditional probabilities in TIS we use a path sampling algorithm,
see sec. 2.2.

For the MC sampling of trajectory space, we borrow from TPS the shooting move
and the time-reversal move. Since in TIS the path length is variable, the acceptance
criterion for the shooting move has to be slightly modified. The applicability of the
path-reversal move is quite limited in TPS because B acts as an attractor and even
if the paths leave B, it is most likely that they stay in the neighborhood of B. In
TIS it is a very useful tool. The probability of reaching B is computed as the ratio
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of the paths A→ B to the total of the paths starting in A which also includes paths
A → A. In the sampling of the latter ones time-reversal leaves the A → A property
unchanged, and at no computational cost we get another path. Shifting moves that
enhanced statistics in TPS are not needed and even useless in TIS. Paths never spend
time in the stable states, but go from the surface ∂A to the surface ∂B, with their
length consequently tuned. The shifting move cannot be applied. Once the paths
reach the boundaries they are supposed to relax into the stable basin. There is no
need to check their relaxed behavior as far as the transition is concerned. The portions
of TPS paths spent in the stable states are hence a waste of computational time.

The quantity of interest in TIS is the crossing probability PA(i+1|i), or PB(i−1|i)
for the reverse rate constant kBA. Define the λi ensemble as all paths that starts
in A (at λ0), cross the interface λi at least once, and finally end by either crossing
λ0 or λi+1. Suppose to have an initial path belonging to the ensemble. The phase
space point x0 is then defined as the first crossing point of this path with interface
λi. Since it is uniquely defined, time shifting of the path is pointless. It is convenient
to use a discrete time index τ = int(t/∆t), and let τ b ≡ int(tb0(x0)/∆t) and τf ≡
int(min[tf0 (x0), t

f
i+1(x0)]/∆t) be the backward and forward terminal time slice indices,

respectively. Including x0, the initial path then consists of N (o) = τ b + τf + 1 time
slices.

Similar to in sec. 2.2.4 we use a probability 0 < α < 1 to choose between the two
possible sampling algorithms. In addition we fix a Gaussian width σw to be used
in the momentum displacement in the shooting move. Then the TIS path sampling
algorithm reads:

Main loop

1. Take a uniform random number y1 in the interval [0 : 1]. If y1 < α perform a
time-reversal move. Otherwise, perform a shooting move.

2. If the trial path generated by either the time-reversal or shooting move is a
proper path in the λi ensemble accept the move and replace the old path by the
new one, otherwise keep the old path.

3. Update averages on the path

4. Repeat from step 1.

Time-reversal move

1. If the current path ends at λi+1 reject the time-reversal move and return to the
main loop.

2. If the current path starts and ends at λ0, reverse the momenta and the reading
order of time-slices. On this reverse path, x0 is the new first crossing point with
λi. Return to the main loop.
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Shooting move

1. On the current path with length N (o) choose a random time slice τ ′, with
−τ b ≤ τ ′ ≤ τf .

2. Change all momenta of the particles at time-slice τ by adding small randomized
displacements δp = δw

√
m with δw taken from a Gaussian distribution with

width σw and m the mass of the particle.

3. In case of constant temperature (NVT) path sampling simulations accept the
new momenta with a probability

min

[
1, exp

(
β
(
E(x(o)

τ ′∆t)− E(x(n)
τ ′∆t)

))]
.

Here, E(x) is the total energy of the system at phase space point x. In case
of constant energy (NVE) simulations, in which possibly also total linear- or
angular momentum should be conserved, rescale all the momenta of the system
according to the procedure described in sec 2.2.1 and accept or reject the new
rescaled momenta.

If the new momenta are accepted continue with step 4, else reject the whole
shooting move and return to the main loop.

4. Take a uniform random number y2 in the interval [0 : 1] and determine a
maximum allowed path length for the trial move by:

N (n)
max = int(N (o)/y2).

5. Integrate equations of motion backward in time by reversing the momenta at
time slice τ ′, until reaching either λ0, λi+1 or exceeding the maximum path
length N

(n)
max. If the backward trajectory did not reach λ0 reject and go back

the main loop. Otherwise continue with step 6.

6. Integrate from time slice τ ′ forward until reaching either λ0, λi+1 or exceeding
the maximum path length N

(n)
max. Reject and go back to the main loop if the

maximum path length is exceeded or if the entire trial path has no crossing with
interface λi. Otherwise continue with the next step.

7. Accept the new path, reassign x0 to be the first crossing point with λi and
return to the main loop.

3.2.3 Considerations

Here, we make some remarks that help to better understand and apply the algorithm,
and also give tips we found useful from personal experience. An algorithm in pseudo
C, based on this section, can be found in appendix K.
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Zone system

For a λi ensemble, the probability PA(i+1|i) follows from the ratio of sampled paths
that connect λ0 with λi+1 to the total number of sampled paths. In analogy to um-
brella sampling (see sec. 2.3.1), to enhance statistics we would like to assign to each λi

ensemble a corresponding TIS window. In each window, between the interface posi-
tions λi, λi+1, we define a finer grid of sub-interfaces to obtain the crossing probability
function PA(λ|i), as a function of a continuous 1 parameter λ. Because of the proba-
bility definition, the function starts from PA(i|i) = 1 and is monotonically decreasing
to the value PA(i+1|i). The rematching to PA(λ|1) is done by simply multiplying the
functions in each window by constant factors. Naturally, techniques commonly ap-
plied in umbrella sampling such as polynomial fits and overlapping windows between
two successive ensemble averages can also be employed here.

A practical way to do this is to use a zone system. Starting with zone 0 identical
to state A, label the phase space region between subsequent sub-interfaces with con-
secutive integers. Given a window λi, λi+1, there will be a first zone zf for λ(x) < λi

and a last zone zl for λ(x) > λi+1. Each path is a set of discretized time-slices and
each time-slice belongs to a zone. Paths must start in zone 0 and show a crossing
zf → zf + 1. Then they evolve either to zl or back to 0. If λmax is the highest value
of the zone number, then it must be zf +1 ≤ λmax ≤ zl. To construct PA(λ|i) fill the
bins of a histogram from zf up to λmax − 1. For instance, if a path goes all the way
to zl, you fill up to zl − 1. When going to the next window the old zl − 1 zone will
be the new zf zone. Keeping the consecutive numeration one builds up histograms
that can be easily rematched afterwards. The procedure is graphically explained in
Fig. 3.7. Note that the built histograms are cumulative histograms. In resemblance
with a calculation of an integral they are expected to be less noisy. The zone system
is particular useful when interfaces are defined using more than one order parameter
λ, as they make the bookkeeping in the programming more manageable.

Path representation

Paths can be stored in memory as arrays of timeslices. Each timeslice contains the
positions, velocities, zone number, and whatever one thinks necessary to save for later
use. Since for a large system this can require lot of memory, it is more convenient
to save not every time step but only a subset of the whole trajectory. More care
must be taken in case of very large memory requirements, typical of Car-Parrinello
simulations [35].

The shooting move can be accomplished with the use of temporary scratch space
where the new path is created while keeping the old one in another part of memory.
If the new path is rejected you keep the old path as the current path. If the new path
is accepted, you can swap the current and scratch path spaces. In the case of a time
reversal move, the scratch space is not needed. After inverting all the velocities one
can just read the path in a reversed way, starting from the end. All these memory
operations are performed better using of pointers. Since in TIS paths have variable

1 We will use in the following both the continuous notation PA(λ|i) and the discrete one PA(j|i)
to identify an interface. We will be more explicit in case of confusion.
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Figure 3.7: TIS path sampling and zone system. 4 Interfaces, 8 zones, two windows (a),(b).
The function PA(λ|1) is obtained by rematching.

length, the required memory can be dynamically reallocated. However, there is no
way of predicting the maximum amount of memory needed and trial runs might have
to be used to avoid memory overflow.

Choice of parameters

Time reversal moves do not require any force calculations. On the other hand, two
subsequent time reversals will just result in the same path. Therefore, we usually take
α = 0.5 giving shooting and time reversal move an equal probability. However, for
windows close to B the number of paths returning to A decreases and the rejection
rate of the time reversal move increases. As paths get also longer, the path sampling
becomes more computationally demanding.

Similar reasoning is applied to the choice of σw. If σw is large, many trial moves will
fail to create a proper path. On the other hand, a too small value of σw will result in
slow decorrelation between accepted paths. Practice has shown that an optimal value
of σw is established when approximately 40% of the paths is accepted, see sec 2.2.1.
This will usually imply that σw will be larger for the interfaces λi close to A than the
ones closer to B.

Notes on the TIS shooting move

In principle, NVT path simulations do not require rescaling of the momenta. The
integration of the equations of motion at step 5 and 6 of the shooting move is per-
formed by constant energy MD simulations without using a thermostat, to describe
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the actual dynamics as realistic as possible. The temperature only appears at the
acceptance criterion at step 3. Momentum rescaling is not needed and δp can be
taken from any symmetric distribution. In the TIS algorithm we go from one phase
point x(o)

0 to a new one x(n)
0 by means of many MD steps. Therefore, it has a strong

similarity with hybrid MC [117].
In general however, generalized Hamiltonian dynamics can also be used, and proper

rescaling must be applied, according to the detailed balance rules explained in sec. 2.2.1.
The mass weighted momenta change at step 2 of the shooting algorithm is also chosen
such that the velocity rescaling at step 3 maintains detailed balance.

The maximum allowed path length N
(n)
max in step 4 is introduced to maintain de-

tailed balance when sampling paths of different length and to avoid having to reject
very long trial paths afterward.

Initial path

To start a simulation in window i one needs an initial path that starts in A (at λ0),
crosses the interface λi at least once, and finally ends by either crossing λ0 or λi+1. In
TIS we can take simply a successful path from the previous λi−1 interface ensemble
that reached λi, and we can complete its evolution until reaching either A or λi+1.
For the first window, just use the flux calculation and extract the part of the MD
trajectory that showed a crossing with λ1.

Note that in contrast to TPS, TIS is an iterative procedure that slowly builds up all
pathways starting from A. Since you expect to find a transition there should always,
sooner or later, be a path that reaches the next interface.

Defining the interfaces

As in TPS, the order parameter λ does not have to correspond to a reaction coordinate
that captures the essence of the reaction mechanism. The only requirement is that λ
can distinguish between the two basins of attraction.

In TIS this occurs via the two outer interfaces λ0 and λnI
that define state A and

B. The definitions of A and B are more strict than in TPS and we outlined them in
sec. 3.1.1. The boundaries λ0 and λnI

should be defined such that

• each trajectory between the stable states is a rare event for the reaction we are
interested in

• the probability that after this event the reverse reaction occurs shortly thereafter
must be as unlikely as an entirely new event. In other words, a trajectory that
starts in A and ends in B is allowed to leave region B shortly thereafter, but
the chance that it re-enters region A in a short time must be highly unlikely

Sometimes it is not sufficient for a proper definition of the boundaries λ0 and λnI

to only use configuration space, and an additional kinetic energy constraint must
be introduced to ensure the stability of state A and B, see sec. 3.3.4. After the
rematching the overall function PA(λ|1) is expected to show a plateau, expressing the
commitment to stable state B. Paths that cross a certain interface always end up in
B. The beginning of this plateau could be chosen a posteriori as the last interface
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defining B. However, it is good to actually compute the plateau in order to check the
consistency of the calculations.

The intermediate interfaces can be chosen freely and should be placed to optimize
the efficiency. This is, of course, system dependent, but reasonable estimates can be
made a priori. We defer the calculations to sec. 6.1, and we give here the rule of
thumb that the interface separation should be chosen so that PA(i+ 1|i) ≈ 0.2 for all
i. In the case of diffusive systems it becomes ' 0.47 (see also sec. 6.1).

3.3 Numerical results

We test here the TIS theory and algorithm and we compare it with TPS. The system
is a simple diatomic bistable molecule immersed in a fluid of purely repulsive particles.
It has previously been used in illustrating TPS rate constant calculations [79] and is
therefore a good example for a comparison between the two methods. This section is
based on [21].

3.3.1 The model

The system consists of N particles in 2 dimensions with interactions given by a pair-
wise Lennard-Jones (LJ) potential truncated and shifted at the minimum, often re-
ferred to as the Weeks-Chandler-Andersen (WCA) potential [118]

UWCA(r) =

{
4ε[(r/σ)−12 − (r/σ)−6] + ε if r ≤ r0

0 if r > r0,
(3.21)

where r is the interatomic distance, and r0 ≡ 21/6σ. Throughout this section reduced
units are used so that ε and σ, respectively the LJ energy and length parameters, as
well as the mass of the particles are equal to unity. The LJ unit of time (mσ2/ε)1/2

is therefore also unity. In addition, two of the N particles are interacting through a
double well potential

Udw(rd) = h

[
1− (rd − r0 − w)2

w2

]2
. (3.22)

where rd is now the interdimer distance. This function has two minima separated
by a barrier of height h corresponding to the two stable states of the molecule: a
compact state for rd = r0 and extended state for rd = r0 + 2w. For a high enough
barrier, transitions between the states become rare and the rate constant is well
defined. Hence, this system provides a useful test case for the TIS algorithm and also
to compare it with TPS.

The system is simulated at a constant energy E in a simulation square box with
periodic boundary conditions. The total linear momentum is conserved and is set
zero for all trajectories. The equations of motion are integrated using the velocity
Verlet algorithm with a time step ∆t = 0.002. As in Ref. [79] we focus here on the
computation of the rate constant for the isomerization reaction of the dimer from
the compact state to the extended state. In the following section we describe general
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simulation details. In Section 3.3.3 we discuss the results for a system with a high
enough barrier to avoid recrossings. Subsequently, we present results for a system
with a low energy barrier, which shows recrossings, and we discuss the consequences
for TPS and TIS.

3.3.2 Methodology

The TPS rate constant calculation evaluates the two factors in Eq. (2.43) separately
as explained in sec. 2.3.2. In all our simulations we set the percentages for shooting,
shifting and diffusion to 5%,10% and 85%, respectively. The parameters involved are
always gaged such that the acceptance ratio is around 40% for shooting and shifting
moves, ensuring an optimum efficiency of the sampling [79]. The TIS method involves
a direct determination of the flux, as explained in sec. 3.2.1, and the calculation of the
crossing probability functions P (i|i − 1) between a series of successive interfaces as
given by Eq. (3.19a), sec. 3.2.2. As in the TPS calculation we adjusted the momentum
displacement for the shooting move to give an acceptance of about 40%.

Many parameters are involved in the two methods and to compare the relative
efficiency we measured the CPU-time required for an arbitrary fixed error of 2.5%
for each step in both the TPS and TIS calculations under the same computational
conditions (1Ghz AMD Athlon). In both methods the final rate constant consists
of a product of factors which have to be calculated independently. For TIS it is
evident from (3.19a). Instead Eq. (2.43) for TPS requires a bit of explanation. The
umbrella-sampling factor C(t′) comes from a rematch of windows. It can be shown
that the outcome can be rewritten as a product of probabilities in each window, and
that this window probability is just the ratio of the value of the histogram at the
left window boundary to the value of the histogram at the right window boundary.
So both TIS and TPS rate constants are effectively a product of factors. For each
factor we performed Nbl simulation blocks of Ncy Monte Carlo cycles and adjusted
Ncy such that after Nbl block averages the relative standard deviation of each term
in Eq. (2.43) and (3.19a) was 2.5%. The total CPU-time is given by summing the
individual 2.5% error CPU-times for each factor. The final error in the rate constants
is obtained by the standard propagation rules using all simulation results (i.e. not
only the ones for the 2.5% error CPU time calculation).

3.3.3 System with High Energy Barrier

This system consists of total number of particles N = 25, with a total energy E =
25. The square simulation box was adjusted to give a number density of 0.7. The
barrier height was h = 15 and the width-parameter w = 0.5, so that the minima of
Vdw(rd) were located at rd ' 1.12 and rd ' 2.12 while the top of the barrier was at
rd ' 1.62 (see also Fig. 3.10). In the TPS rate calculation we defined stable states
A and B as rd < rA

d = 1.5 and rd > rB
d = 1.74, respectively. We computed the

correlation function 〈hB(t)〉∗AB using TPS with a fixed path length T = 2.0. The
correlation function is shown in Fig. 3.8 together with its time derivative, the reactive
flux. The latter function clearly displays a plateau. Next, we chose four different
t′ = 0.1, 0.3, 1.0, 2.0 and performed umbrella sampling simulations using 8 windows to
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Figure 3.8: TPS correlation function
〈hB(t)〉∗AB (top) and its time derivative
(bottom) for the system with high energy
barrier. The error is comparable to line
thickness.
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rier. The probability PA(rd, t

′) is the
chance that a path of length t′ and
starting in A will have the end point
conformation with a diatomic distance
rd. The graph is the result of the match-
ing of eight window calculations. These
eight windows are defined as rd < 1.19,
1.18 < rd < 1.28, 1.27 < rd < 1.35,
1.34 < rd < 1.40, 1.39 < rd < 1.47,
1.46 < rd < 1.54, 1.53 < rd < 1.75,
r > 1.74. The errors on the histogram
points are within the symbol size.

calculate C(t′). In each window we measured the probability to find the path’s end
point rd(x(t′)) at a certain value of rd. These probability histograms were rematched
and normalized. The final probability functions are shown in Fig. 3.9. Integration
of the area under the histogram belonging to region B leads to C(t′) and finally to
the rate constant. In Table 3.1 we give the values of the different contributions to
the rate constant given by Eq. (2.43), together with the rate constant. We report the
average relative computation time needed to reach the 2.5% error (see Sec. 3.3.2) in
Table 3.2.

For the TIS calculations we use the same order parameter rd and the same definition
for region B, i.e. interface λB is set at rd = 1.74. Stable state A was defined by setting
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TPS

t′
〈ḣB(T )〉∗AB

〈hB(t′)〉∗AB
C(t′)/10−13 kAB/10−13

0.1 3300±100 0.0018±0.0001 6.0±0.5
0.3 7.54±0.03 0.76±0.02 5.8±0.1
1.0 1.236±0.005 4.8±0.3 5.9±0.4
2.0 0.553±0.002 11.4±0.9 6.3±0.5

TIS
〈φ0,1〉/〈hA〉 PA(B|1)/10−13 kAB/10−13

0.1196±0.0005 49±1 5.9±0.2

Table 3.1: Comparison of rate constants for the high energy barrier, computed with TPS
at different t′ and TIS. Contributing factors from Eq. (2.43) and Eq. (3.19a) are also given.
The forward rate constant for the isomerization corresponds to an average transition time
k−1

AB = (3.6±0.1)s in real units for argon, which is indeed many orders of magnitude beyond
the MD time-step ∼ 4fs.

TPS

t′
〈ḣB(T )〉∗AB

〈hB(t′)〉∗AB
W1 W2 W3 W4 W5 W6 W7 W8 Total

0.1 11.0 0.01 0.05 0.1 0.04 0.23 0.27 1.3 0.01 13.01
0.3 0.2 0.01 0.14 0.28 0.13 0.58 0.43 0.19 0.02 1.98
1.0 0.1 1.7 1.7 0.9 0.6 3.0 2.6 6.4 0.2 17.2
2.0 0.1 0.03 1.8 4.5 4.4 15.3 8.0 20.3 0.6 55.03

TIS
〈φ0,1〉/〈hA〉 Int λ1 Int λ2 Int λ3 Int λ4 Int λ5 Total time

0.07 0.265 0.09 0.15 0.21 0.215 1

Table 3.2: Comparison of CPU-times required for the 2.5% error at each stage for the
system with high energy barrier. The times are renormalized to the TIS total computation
time. W1 to W8 denote the different windows used in the calculation, Int λ1 to Int λ5 denote
the interface ensemble calculations.

λA = λ1 at rd = 1.24. This interface is closer to the basin of attraction than the
TPS stable state definition but yields a higher flux term 〈φ0,1〉/〈hA〉 and gives better
statistics. Note that the different definition of stable state A does not change the final
rate constant, as the overall state A does not sensitively depends on this definition.
The flux term is calculated by straightforward NVE MD. As λA is equal to λ1 every
positive crossing of this interface is counted in the flux because all trajectories must
by default come directly from A. The conditional crossing probabilities PA(i + 1|i)
in Eq. (3.19a) are calculated for nI = 5 interfaces between the stable states (see
fig. 3.10). Between these interfaces we imposed a finer grid to obtain the entire
crossing probability function. The results for each stage and the final rate constant
are shown in Table 3.1. The rate constants of both methods agree within the statistical
accuracy, showing that the TIS method is correct. In Table 3.2 we give the relative
computation time to reach the 2.5% error for each term.
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Figure 3.10: System with high energy barrier: the dimer inter-particle potential (dashed
line) and the TIS crossing probability PA(λ|1) (solid line) as function of the order parameter
λ = rd, the dimer inter-particle separation. State A at the first minimum of the double-
well corresponds to a compact state of the molecule and state B at second minimum to
an extended state. The crossing probability function is computed by matching five interface
ensemble calculations. These interfaces were chosen at: λ1 = 1.24, λ2 = 1.34, λ3 = 1.40, λ4 =
1.46 and λ5 = 1.52, and are indicated by vertical lines. The error on the points is within
symbol size. The smooth line joining the points was created using a finer grid of interfaces.
The horizontal plateau when approaching state B at λn=6 = 1.74 is an expression of the
commitment of the trajectories to the final stable state. Paths that cross rd ' 1.7 always
reach eventually the final interface without going back to A. The value of the plateau equals
PA(nI |1).

In comparing both methods we have to realize that the efficiency of TPS depends
strongly on the choice of t′. On the one hand the umbrella calculation of C(t′) is
much faster for low values of t′. But on the other hand the error in the correction
term 〈hB(t′)〉∗AB increases for lower t′. As a result there is an optimum t′ for the
error/CPU-time ratio, in this case approximately at t′ = 0.3. Even for this optimized
situation the TIS calculation is about two times faster. One could object that the
correlation function in Fig. 3.8 has reached a plateau for t = 1.5 already, reducing
the TPS computation time by a factor 3/4. But the choice for a path length T = 1.5
can not be taken without a-priori knowledge. The first term in Eq. (2.43) implicitly
depends on the path length T . Changing T would alter the ensemble and might result
in a different shape of the flux correlation function. We did not check this in detail,
but we believe that T cannot be chosen much smaller without introducing systematic
errors. Furthermore, we emphasize here that we put much more effort in optimizing
the TPS algorithm by tuning t′, the windows, the ratio between shooting, shifting
and diffusion moves than we did for TIS.

Figure 3.11 shows the histograms of path lengths for each TIS ensemble calculation
and shows why TIS is faster. Sampling paths of fixed length with TPS results in
spending unnecessary computation time inside the initial and final stable regions A
and B. In the TIS algorithm instead every path is adapted to its minimum length.
Bringing the interface in closer to A reduces these transition times. TIS optimizes
itself during the simulation.
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Figure 3.11: Histograms P (L) of path length L for each ensemble, computed for the
system with the high energy barrier. Inset (a) is an enlargement of the bottom left area,
where windows 2,3,4 display a second peak. They represent that small fraction of paths that
are able to cross all the interfaces up to the rightmost interface and do not have to return
to A (cf. the trajectories with the white circle in Fig.3). Inset (b): average path length
in each window. At variance with TPS the TIS algorithm adapts the path length to the
ensemble. In going from interface 5 to interface 1 one gets closer to state A and the path
length shortens accordingly.

3.3.4 System with Low Energy Barrier

In order to compare with previous results, we adopted the parameters from Ref. [79].
The total number of particles was N = 9, the total energy was E = 9 and the square
simulation box was adjusted for a number density of 0.6. The barrier height is h = 6
and the width-parameter is w = 0.25. Minima are at rd ' 1.12 and rd ' 1.62, while
the top of the barrier is at rd ' 1.37. This barrier is much lower than in the previous
section resulting in more frequent transitions. An approximate rate constant could
even be achieved by straightforward MD simulations.

For the TPS calculations we defined the stable states A and B by rd < rA
d =

1.30 and rd > rB
d = 1.45, respectively [79]. Using standard TPS simulations we

computed the correlation function 〈hB(t)〉∗AB with a total path length T = 2 (shown
in Fig. 3.12). Next, we measured the probability histograms to find the paths end
point at a certain order parameter value rd for four different times t′ = 0.1, 0.4, 0.8, 2.0,
using five windows [79], see Fig. 3.13. As described in the previous section, matching
the probability histograms and subsequent integration leads to C(t′). The resulting
final rate constants, shown in Table 3.3, are comparable with the results of Ref. [79],
but more accurate. We will discuss these values after giving the results of TIS.

Figure 3.14 shows that fast recrossings can occur for a low barrier, implying that
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Figure 3.12: TPS correlation function
〈hB(t)〉∗AB (top) and its time derivative
(bottom) for the system with low energy
barrier. The error is comparable to line
thickness.
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Figure 3.13: TPS probability dis-
tributions PA(rd, t

′) for four t′ =
0.1, 0.4, 0.8, 2.0 for the system with low
energy barrier. P (rd, t

′) is defined as in
Fig. 3.9. The graph is the result of the
matching of five window calculations.
These five window calculations are de-
fined as rd < 1.22, 1.21 < rd < 1.26,
1.25 < rd < 1.30, 1.29 < rd < 1.46,
r > 1.45 The errors on the histogram
points are within the symbol size.

rd alone is not sufficient as an order parameter to define the stable states in the
simulations. Apparently, this does not effect the TPS results much, but it is very
important for TIS because of the assumption that stable region B is really stable and
recrossings do not take place. To ensure the stability of the TIS stable states we chose
a new order parameter that not only depends on the inter-atomic distance rd in the
dimer but also on a kinetic term, given by ṙd. The stable states can then be defined
by

Ed(rd, ṙd) ≡
ṙd
4

+ Udw(rd)

x ∈ A if rd < 1.37 and Ed(rd, ṙd) ≤ 1.5
x ∈ B if rd > 1.37 and Ed(rd, ṙd) ≤ 1.5, (3.23)

where Ed is the sum of the kinetic and potential energy of the dimer that has a
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Figure 3.14: Intra-molecular distance of the dimer as function of time from a straight-
forward MD simulation for the system with the low energy barrier. Horizontal dashed line
at 1.37 corresponds to the top of the potential barrier. Horizontal dashed lines at 1.3 and
1.45 correspond to the TPS state definitions of Ref. [79]. Insets are enlargements of four
typical events on a scale of 10. 1) and 4) correspond to true reactive events, A → B and
B → A respectively while 2) and 3) are non-true, fast recrossing events. In particular, event
3) shows capricious behavior with many crossings of the barrier. The figure shows a clear
separation of timescales, τtrans ∼ 1 and τstable ∼ 1000.
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Figure 3.15: One calculated path of
the low energy barrier system shown in
the {rd, ṙd} plane. The vertical solid
lines are the interface λ1,λ2 and λ3. The
curves λA and λB are the boundaries of
the TIS stable states. The dashed lines
are the sub-interfaces. The path starts
at the dot on λA and crosses the barrier
three times before dissipating its energy
and relaxing into state B.

reduced mass of 1/2. In the {rd, ṙd} plane these stable states form a D-shape and an
inverse D-shape regions for A and B respectively, see Fig. 3.15. Crossing the interface
λA or λB implies that the vibrational energy is decreased below the threshold, Ed =
1.5. This threshold is made low enough to make fast recrossings to the other state
unlikely. However, if we would have chosen it too low the paths would have become
very long. We evaluated the crossing probability function in Eq. (3.19a) for nI = 3
interfaces. The entire crossing probability function was obtained by partitioning the
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Figure 3.16: The crossing probabil-
ity PA(λ|1) for the system with the low
energy barrier. The function is com-
puted by matching ensemble calcula-
tions with interfaces λ1 at rd = 1.20,
λ2 at rd = 1.26 and λ3 at rd = 1.32.
The inset is an enlargement of the final
part. The function is converging to a
plateau but has not yet reached it. The
different values of the last points are due
to the presence of fast recrossings. The
error is inside the symbol size.

phase space in sub-interfaces of the form rd = const and Ed(rd, ṙd) = const as shown
in Fig. 3.15. Note that in TIS multidimensional or multiple order parameters can
be used in one simulation without a problem. This is more difficult in TPS, where
a proper mapping of the complete phase space is required. Figure 3.16 shows the
final rematched crossing probability. The monotonically decreasing function tends to
reach a plateau on approaching the last interface. The last two values are not exactly
equal but differ by 0.03%, indicating that a small fraction of the paths crossing the
last but one sub-interface still succeed to return to A without crossing λB . This
difference is comparable with the chance of a new independent transition (given by
the rate constant). Note that without the kinetic energy definition for the stable
states Eq. (3.23), the final crossing probability and thus the rate constant would have
been overestimated by a factor 5/4.

For the effective flux 〈φ0,1〉/〈hA〉 calculation we performed MD simulations as de-
scribed in Sec 3.3.2. In contrast to the high barrier case, λ1 is not equal λA, and not
all positive crossings with λ1 are effective crossings. We counted only the first crossing
when the system left region A and waited until the system fell back to region A before
counting a new crossing. As the MD trajectory sometimes displayed a spontaneous
transition to region B, we stopped the simulation and started again by replacing the
system in a randomized configuration of A. Table 3.3 shows the final values and the
corresponding errors of these calculations. The relative computation time for each
term is detailed in table 3.4.

If we compare the final results of table 3.3 we see that the efficiency of TIS is more
than nine times better than the TPS efficiency for t′ = 2, and more than two times
better than TPS value for t′ = 0.8. But the TPS t′ = 0.1 and t′ = 0.4 efficiencies are
about 20% better than TIS. When we compare the rate constants, however, we notice
that the TPS results for different t′ do not agree. Among the TPS rate constants only
the t′ = 2 case is consistent with the TIS result. We believe that the t′ = 0.1 and
t′ = 0.4 results suffer from systematic errors. For instance, for the shorter paths the
TPS simulations might not be completely ergodic. Another explanation might be that
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TPS

t′
〈ḣB(T )〉∗AB

〈hB(t′)〉∗AB
C(t′)/10−5 kAB/10−5

0.1 47.3±0.2 1.408±0.007 6.67±0.04
0.4 2.505±0.007 2.67±0.01 6.68±0.03
0.8 1.240±0.003 5.42±0.05 6.72±0.07
2.0 0.507±0.001 13.9±0.2 7.03±0.09

TIS
〈φ0,1〉/〈hA〉 PA(B|1)/10−5 kAB/10−5

0.2334±0.0003 29.6±0.2 6.90±0.06

Table 3.3: Comparison of rate constants for the low energy barrier computed with TPS at
different t′ and with TIS, including the contributing factors from Eq. (2.43) and Eq. (3.19a),
respectively. Computation times are reported in units of the TIS CPU-time.

TPS

t′
〈ḣB(T )〉∗AB

〈hB(t′)〉∗AB
W1 W2 W3 W4 W5 Total

0.1 0.68 0.03 0.009 0.01 0.1 0.001 0.83
0.4 0.4 0.09 0.03 0.04 0.25 0.01 0.82
0.8 0.28 0.21 0.07 0.11 1.5 0.04 2.21
2.0 0.35 0.28 0.38 0.93 7.27 0.14 9.35

TIS
〈φ0,1〉/〈hA〉 Int λ1 Int λ2 Int λ3 Total

0.015 0.085 0.45 0.45 1

Table 3.4: Comparison of CPU-times required for the 2.5% error at each stage for the system
with the low energy barrier. The times are renormalized to the TIS total computation time.
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Figure 3.17: Path length distribution
P (L) for each interface ensemble in the
low energy barrier system. The inset
shows the average path length in each
ensemble.
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a path length of T = 2 is too short to allow convergence of the reactive flux. In the
TIS calculation the average path length in the three interface simulations, from the
closest to B to the closest to A, is, respectively, 7.4, 4.3, and 0.63; much longer than
the TPS path length, see Fig.3.17. It is therefore surprising that the TPS approach
with the simple stable state definition and very short paths still gives approximately
the right rate constant. And indeed, when we computed the TPS correlation function
with the TIS state definitions Eq. (3.23), we found that the path length had to be at
least T = 20 to see a plateau. We think that TPS works even with the simple state
definitions and the short paths because both positive flux and negative flux terms
contribute to Eq. (2.43). The TPS algorithm collects many paths of which some are
not real transitions, but fast recrossings. The cancellation of positive and negative
terms of these fast recrossing paths ensure the (almost) correct final outcome. In TIS
each path must be true a transition event and contributes as a positive term in the
rate equation (3.19a), enhancing the convergence. This explains that the CPU time
for the TIS calculation despite the much longer paths is still comparable with TPS
one for low t′. We note that the path ensemble using the more strict stable state
definition is, of course, more useful in the analysis of the reaction mechanism.

For a more accurate comparison of the computation time we must keep the system-
atic errors lower than the statistical errors. In other words, we have to make sure that
the results are converged. To test the convergence of the flux correlation function in
TPS we can derive the following equality from Eq. (3.19a):

〈hB(t′)〉A,HB(T )

〈hB(t′′)〉A,HB(T )
=
C(t′)
C(t′′)

. (3.24)

This equation is valid for any t′, t′′ < T if T is large enough. We found that the
equality does not hold for the system with the low barrier, indicating that T is too
low in the TPS calculation. Further examination of the flux correlation function
〈hB(t′)〉A,HB(T ) reveals that the apparent plateau has in fact a small positive slope.
Calculations for higher values of T suggest that one has to increase the path length
at least to T = 8 to convergence to a plateau. With this in mind we think that the
TIS computation is about a factor five more efficient than the TPS algorithm for the
model system with the low barrier.

3.4 Summary

Driven by the desire to improve the rate constant calculation in TPS, we have de-
veloped a novel method, named transition interface sampling. By retaining the path
sampling idea, and adapting the computational algorithms, TIS achieves the following
improvements with respect to TPS:

1. TPS computes the rate using the correlation function C(t), Eq. (2.40). The
time derivative Ċ(t) converges to a plateau equal to the rate kAB because is
equivalent to a flux calculation. However when recrossings appear in the buffer
region, the convergence is due to cancellation of positive and negative terms.
In contrast TIS computes the rate using the idea of effective positive flux (see
Sec. 1.5.2 and 3.1.3), and only positive terms contribute.
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2. At the basis of TIS is the definition of a rate as inverse mean first passage time.
As a consequence the TIS algorithm stops the integration when the stable state
B is reached. In TPS, umbrella-sampling windows are used to compute C(t′)
at a fixed t′ variable parameter. In TIS windows are also used, but the TIS
algorithm stops integration when the window boundaries are reached. In this
way the TIS algorithm adapts itself to the optimal path length. One does not
have to optimize the new method as much as TPS, where one has to find the
optimal t′ value and a proper balance between shooting and shifting. Indeed in
TIS the shifting move, sec. 2.2.2, is not needed.

3. In TPS the generation of an initial path requires a separate set of simulations,
see sec. 2.2.4. In TIS it is naturally self-implemented. Paths for the next TIS
window are generated in a recursive way from the previous one.

The concept of calculating a flux comes natural with the rate constant definition,
and implementation of the algorithm is hence simpler. Simple theoretical reasoning
can show that TIS is at least a factor 2 faster than TPS (see sec. 6.1), but in the
illustrative example we showed here that we can obtain an increase in efficiency of at
least a factor of two to five with respect to the TPS method used in Ref. [79].

The analysis of reaction mechanism is the same in TIS and TPS. The generation of
full transitions takes place in TIS when we reach the last interface, and at that point
is basically equal to the path sampling part of TPS. The analysis proceeds using the
committor distribution methods of sec. 2.5. We will show an application of this in
the study of nucleation, chap. 7.

The TIS method has been successfully applied to two realistic cases, the folding of
a polypeptide [3] and hydration of ethylene [119]. In this last case the method was
combined with quantum ab-initio MD simulations.

In the next chapter, we present a variation of the TIS method for diffusive systems
that exploits very efficiently the loss of long time scale correlation by using a recursive
reformulation of the crossing probability and the sampling of much shorter paths. This
is the subject of the following chapter.
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All those moments will be lost
in time, like tears in rain

Roy Batty

In chapter 3 we introduced the theory and algorithms of the Transition Interface Sam-
pling method for the computation of rate constants in complex systems. In the case
of highly diffusive systems, the efficiency of TIS can be improved by exploiting the
loss of memory along the paths and thus sampling only parts of complete transition
trajectories confined within a certain region. This Partial Path TIS (PPTIS) method
is the subject of this chapter. We present the theory of PPTIS using the Interface
Sampling framework developed in sec. 3.1, and explain the computational implemen-
tation. We compare then PPTIS and TIS for the diatomic system introduced in the
previous chapter and we discuss the validity of the memory loss assumption. We also
present a variation of PPTIS that, together with the rate constant, allows a compu-
tation of the free energy profile along the order parameter. Finally, we discuss an
algorithm that can alleviate problems of bad path sampling. This chapter is based
on [109,20].

4.1 Theory

In this chapter we focus on transitions with a highly diffusive character, or in the
regime of high solvent friction. Examples are the folding and unfolding of a protein
in water, charge transfer, fragmentation reactions, diffusion of a molecule through a
membrane, and nucleation processes. These types of processes have to overcome a
relatively flat and wide, but still rough free energy barrier. When applying the TPS
or TIS shooting algorithm, sec.2.2.1 and 3.2.2, to such a transition, the Lyapunov
instability causes the paths to diverge before the basins of attraction have the chance
to guide the paths to the proper stable state. Pathways will then become very long
and, moreover, the acceptance ratio of shooting will be low. Hence, the shooting
algorithm will be very inefficient, resulting in bad sampling.

Here, we will introduce an efficient method to calculate the rate constant for such

80
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barriers. To do so, we make use of the TIS effective flux relation, see sec 3.1.3 and
assume that the diffusivity eliminates any memory effects over a distance more than
the separation between two interfaces. The rate constant can then be recast in a
recursive relation for the hopping transition rates between interfaces. These hopping
transition rates can be computed by sampling short trajectories connecting just three
successive interfaces. If the assumption of memory loss is valid, this partial path
transition interface sampling (PPTIS) procedure correctly collects the contributions
of all possible paths to the rate constant, in principle, even those with infinite lengths.

We first illustrate the PPTIS concept for a simple one dimensional array of well
defined metastable states. We generalize then the idea using the theory of Interface
Sampling.

4.1.1 Illustration of the PPTIS concept

Before embarking on the general case of diffusive barriers, we will first consider a
simple one dimensional system that serves as an illustrative example. This system ex-
hibits a barrier consisting of a series of metastable states as is illustrated in Fig. 4.1.

The overall barrier is high com-

M

A

MMM1 2 3 s−1

B

Figure 4.1: Illustration of a barrier consisting of
a series of metastable states. One possible trajec-
tory connecting A and B is shown.

pared to those between metastable
states. We therefore assume that the
time to relax from the barrier into a
stable state is much shorter than the
total reaction time. This separation
of timescales gives rise to two state
kinetics and well-defined overall rate
constant kAB . Furthermore, we as-
sume that the system can hop from
one metastable state to a neighbor-
ing one after which it will fully relax.
Consequently, the probability to hop to left or right does not depend on the history
of the path, and hence the system is Markovian. For this type of system, we might
write down a master equation and solve for all the population densities in each state
on the barrier as a function of time [7]. However, if we assume steady state behavior,
and take into account the fact that the population on the barrier is low, the overall
rate constant is only determined by the hopping probabilities. We will denote the
probabilities to transfer from site i to the right or left metastable state by τi,i+1 and
τi,i−1, respectively, which are related by τi,i+1 + τi,i−1 = 1. For a system with s − 1
metastable states M1,M2, . . .Ms−1 and the stable states M0 = A and Ms = B, the
reaction rate kAB and its reverse kBA can be expressed as:

kAB = k0,1T [1 →s
0],

kBA = ks,s−1T [s− 1 →0
s], (4.1)

with T [i→j
m] the probability to go via an arbitrary number of hops from metastable

state i to metastable state j before visiting metastable state m. The computation of
the rate constants only requires the determination of the nearest neighbor hopping
probabilities τi,i+1 and the first hopping rates k0,1 and ks,s−1. The long distance
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hopping probabilities {T [1 →j
0], T [j − 1 →0

j ]} can be obtained via following recursive
relations (see Appendix E.1):

T [1 →j
0] =

τj−1,jT [1 →j−1
0 ]

τj−1,j + τj−1,j−2T [j − 2 →0
j−1]

(4.2a)

T [j − 1 →0
j ] =

τj−1,j−2T [j − 2 →0
j−1]

τj−1,j + τj−1,j−2T [j − 2 →0
j−1]

(4.2b)

Starting with T [1 →1
0] = T [0 →0

1] = 1, we can iteratively solve Eqs. (4.2) for j =
2, 3 . . . s. In this way we collect analytically the statistics of all possible pathways.
This procedure accounts for the straightforward barrier crossings, but also accounts
for the contributions to the rate of an infinite number of different pathways that lead
from A to B in an infinite number of hops. Although the probability of a single
pathway decreases with its length, the total contribution of the very long pathways
becomes more important when s is increased. In fact, the average path length scales
as ∼ s2. In case of uniform symmetric hopping (τi,i+1 = τi,i−1 = 1

2 for all i), it is
shown in appendix E.4 that kAB = 1

sk0,1, whereas if we would only account the
fastest pathway (M0 →M1 →M2 . . .→Ms) it would be much lower, ( 1

2 )sk0,1.
At first sight, it seems a bit surprising that the residence time in each metastable

state and the absolute intra-barrier rates ki,i±1 have no influence on the final total
rate expression. Only the relative rates are important as they determine the nearest
neighbor hopping probabilities by τi,i±1 = ki,i±1/(ki,i+1 +ki,i−1). We can understand
this by again invoking the separation of timescales argument. The time τtrans the
system spends on the barrier (∼ s2) must be much smaller than the state lifetime
τstable = 1/(kAB+kBA) ∼ 1/(k0,1+ks,s−1). This will be true when k0,1, ks,s−1 � k/s2

with k ∼ ¯ki,i±1 the average hopping rate on the barrier for i = 1 . . . s− 1. Of course,
when we start with a system out of equilibrium and calculate the relaxation time from
A to B for a system that is initially completely in A, the intrabarrier rates ki,i±1 will
be dominant factors.

Our treatment of the model in this section can be related to the solution of the
onedimensional model of sec. 1.5.2, a flat high barrier of length b. Eq. (1.56) gives
for the rate constant kAB = (D/b) exp(−βh) where h is the barrier height and D
the diffusion constant. The connection becomes clear when one realizes k0,1/k1,0 =
exp(−βh) and D/b = k/s, with k ∼ k1,0 the hopping rate, and s the number of hops
on the barrier. Hence, kAB = 1

sk0,1, just as found above for the symmetric uniform
hopping model. A more formal treatment of general diffusive Markov processes can
be found in e.g. Ref. [7].

The model described above is of limited importance due to its highly symmetric and
onedimensional character. Some processes, however, such as the diffusion of particles
through a onedimensional crystal (e.g alkanes through zeolites) can be described by
this uniform symmetric hopping model. More complex behavior such as diffusion
on surfaces, through multidimensional crystals, or in (biological) networks usually
has to be studied by means of Monte Carlo (MC) algorithms to solve the master
equation, often called kinetic MC methods [120, 121, 52]. Still, the example given
here is illustrative for the more complex PPTIS method advocated in this paper.
The PPTIS method combines the iterative solution of Eq. (4.2) for the overall rate
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constant with the TIS algorithm (see sec.3.2). This approach will enable treatment of
a much wider variety of systems with a diffusive character, but not with such a rigid
structure as the onedimensional Markov chain.

4.1.2 PPTIS formalism

As in sec. 3.1 we define a set of nI non-intersecting multidimensional interfaces
{0, 1 . . . nI} described by an order parameter λ(x) which is a function of the phase
space point x. We choose λi, i = 0 . . . nI such that λi−1 < λi, and that the boundaries
of state A and B are described by λ0 and λnI

, respectively.
The starting point to develop PPTIS is the 4-interface probability P (l

m|ij), Eq. (3.13).
We remind that this is the probability for the system to reach interface l before m
under the condition that it crosses at t = 0 interface i, while coming directly from
interface j in the past (see Fig. 3.4). In sec.3.1.4, the derivation of Eqs. (3.19a),
(3.19b), showed that the rate constants can be written in terms of the probabilities
PA(nI |1) = P (n

0 |10) and PB(0|nI − 1) = P (0nI
|nI−1
nI

). Here, we want to find an approx-
imate relation for these probabilities in the spirit of the onedimensional model of the
previous section. For this purpose we define the one-interface crossing probabilities

p±i ≡ P (i+1
i−1|

i
i−1), p∓i ≡ P (i−1

i+1|
i
i+1), i = 1 . . . nI − 1

p=
i ≡ P (i−1

i+1|
i
i−1), p‡i ≡ P (i+1

i−1|
i
i+1), (4.3)

which fulfill the following relations:

p±i + p=
i = p∓i + p‡i = 1. (4.4)

A schematic visualization of these probabilities is given in Fig. 4.2. We define then
long-distance crossing probabilities P+

i and P−i , similar to those in Sec. 4.1.1

P+
i ≡ P (i

0|10), P−i ≡ P (0i |i−1
i ). (4.5)

The main assumption in PPTIS is that trajectories lose their memory, over a short
time, and hence over a short “distance”, as measured by λ. We require that the

i+1

i
p−
+

p
i

−+

−−p
i

++p
i

i−1 i−1i i+1 i

Figure 4.2: Visualization of the
one-interface crossing probabilities
(p±i , p

=
i , p

∓
i , p

‡
i ). Possible trajectories

that correspond to a positive con-
tribution of these probabilities are
shown.
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interfaces are set such that no memory effects are present over more than the distance
between two interfaces or, equivalently, that the following relation is obeyed:

〈g(x)〉φi,i±q
≈ 〈g(x)〉φi,i±1

, (4.6)

with q an integer larger than one and g(x) any observable corresponding to the actual
state x or any future state. With this assumption we can derive recursive relations
for the long-distance crossing probabilities using the PPTIS concept introduced in
Sec. 4.1.1 (see Appendix E.2):

P+
j =

p±j−1P
+
j−1

p±j−1 + p=
j−1P

−
j−1

j = 2 . . . nI

P−j =
p∓j−1P

−
j−1

p±j−1 + p=
j−1P

−
j−1

(4.7)

To solve these recursive expressions we start with P+
1 = P−1 = 1, after which we

iteratively determine (P+
j , P

−
j ) for j = 2, . . . until j = nI . Substitution of the long

distance crossing probabilities into Eqs. (3.19) results in

kAB =
〈φ1,0〉
〈hA〉

P+
nI
, kBA =

〈φnI−1,nI
〉

〈hB〉
P−nI

. (4.8)

The factor 〈φ1,0〉/〈hA〉 is identical to the TIS flux factor, whereas to obtain the reverse
rate kBA only a single extra factor 〈φn−1,n〉/〈hB〉 is needed. As a result we obtain
the reverse rate and the equilibrium constant C = kAB/kBA without any significant
extra costs, while in TPS or TIS, as we saw in previous chapters, the calculation of
the reverse rate would require another comparable computational effort. The PPTIS
formalism basically transforms the process of interest into a Markovian sequence of
hopping events. Yet, if the dynamics is diffusive and the interfaces are sufficiently far
apart the rate formalism (4.7), (4.8) will be a good approximation.

Before describing the implementation of PPTIS, we should stress that the long-
interface probabilities in PPTIS, Eq. (4.5), and in TIS, Eq. (3.16), coincide for the
full transition

PA(nI |1) = P (n
0 |10) = P+

nI
, PB(0|nI − 1) = P (0nI

|nI−1
nI

) = P−nI
(4.9)

so that relations (4.8) are completely equivalent to (3.19) and exact. The PPTIS
approximation arises from the calculation of P+

nI
,P−nI

through the recursive relations
(4.7). Furthermore, by definition P+

i = PA(i|1) for all i = 1 . . . nI . On the contrary,
P−i is not directly comparable with PB(i|nI−1). However, because of theorem (3.15),
the exact relation PB(0|nI − 1) = PB(i|nI − 1)PB(0|i) holds and we can write

P−i+1 ' PB(0|i) = PB(0|nI − 1)/PB(i|nI − 1) (4.10)

where we used the approximate relation P−i+1 ' PB(0|i) with i = 0 . . . nI − 1. The
term PB(0|i) considers paths coming from B that cross λi and reach A, while the term
Pi+1 takes into account paths that do the same but come from λi+1. The difference
is given by those paths that, integrating backwards in time, after crossing λi+1 do
not go to B. However, they become less abundant as we shift interfaces towards B,
so that the relation becomes more accurate as i→ nI − 1 and is exact for i = nI − 1.
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4.2 PPTIS algorithm

The PPTIS method requires the determination of the p±i , p
=
i , p

∓
i , and p‡i probabilities.

However, p±i and p=
i are defined in a different ensemble than p∓i and p‡i . In most cases,

it will be convenient to calculate the four probabilities simultaneously. To do so, we
define an ensemble that includes both ensembles via the weight function φi±(x):

φi±(x) ≡ φi,i−1(x) + φi,i+1(x) (4.11)

In this ensemble, p±i and p∓i equal

p±i =
〈φi,i−1h

f
i+1,i−1〉φi±

〈φi,i−1〉φi±

(4.12)

p∓i =
〈φi,i+1h

f
i−1,i+1〉φi±

〈φi,i+1〉φi±

(4.13)

and p=
i and p‡i follow from Eq. (4.4).

For a correct sampling of this ensemble, we generate all possible paths starting from
interface i− 1 or i+ 1 and ending either at i− 1 or i+ 1 with at least one crossing
with i. The sampling is performed using the shooting move along the same lines of
sec. 3.2.2. Suppose you have an initial path belonging to the ensemble. Define the
phase space point x0 as the first crossing point of this path with interface λi. We use
a discrete time index τ = int(t/∆t), and let τ b ≡ int(min[tbi−1(x0), tbi+1(x0)]/∆t) and
τf ≡ int(min[tfi−1(x0), t

f
i+1(x0)]/∆t), where we used the definitions (3.1). In words

τ b is the number of slices from x0 to the beginning of the path, and τf is the number
of slices from x0 to the end of the path. Including x0, the initial path then consists
of N (o) = τ b + τf + 1 time slices. The path sampling loop is then identical to the
TIS one, on page 63 except that λi−1 is used instead of λ0, time reversal moves are
always accepted and the backward integrating at step 5 of the shooting move is not
rejected when reaching λi+1 as paths may start from both sides.

The one-interface crossing probabilities are then given by

p±i =
Np(i− 1 → i+ 1)

Np(i− 1 → i+ 1) +Np(i− 1 → i− 1)

p∓i =
Np(i+ 1 → i− 1)

Np(i+ 1 → i− 1) +Np(i+ 1 → i+ 1)

p=
i = 1− p±i , p‡i = 1− p∓i (4.14)

where Np(i→ j is the number of paths going from interface i to interface j.
An algorithm based on the considerations of this section can be found in appendix

K. The zone system of sec. 3.2.3 can be used also for PPTIS. It is convenient to
classify paths according to their begin and endpoints as paths of type (−+), (+−),
(−−), (++) (see Fig. 4.2). Here − denotes i− 1 and + denotes i+ 1, so that a path
of type (−+) goes from i − 1 to i + 1. Then separate counters Np can be used to
compute (4.14). Similar to the TIS case one can compute for each path the values
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λmax, λmin to check that the ensemble is being sampled correctly. For example (−+)
paths should have λmax < λi+1.

In the PPTIS algorithm, we usually applied shooting and path reversal moves with
equal probability. The choice of momentum displacement depends on which part of
the transition one is sampling. If the window i− 1, i, i+1 is in a position where there
is an uphill free energy barrier, PPTIS is quite similar to TIS and the 40% acceptance
rule of sec. 3.2.3 can be applied. In the diffusive regime, where there is supposed to
be a flat free energy barrier, the shooting move in PPTIS is rejected only if the paths
do not cross interface i or get too long. The acceptance can be much higher, 70 or
80% and the 40% rule does not need to be satisfied.

At variance with TIS, we have no strict theoretical rules for the position of the
interfaces, even though some qualitative remarks will be given in sec. 6.1. Since TIS
is quite similar to PPTIS the same setting can be applied for the uphill energy part.
For the diffusive part, instead, the separation of interfaces has a lower bound dictated
by the memory loss requirement, as will be discussed in the next section.

4.2.1 Memory loss assumption

Contrary to the TIS technique, where the interfaces should be close to obtain good
statistics, the interfaces should be sufficiently apart in the PPTIS method to ensure
complete loss of memory. A simple test for Eq. (4.6) would be to measure 〈g(x)〉φi,i−1

for different separations between λi and λi−1. The velocity λ̇ at the crossing point
through λi could be a good candidate for the function g 1. Substituting λ̇(x) into
Eq. (4.6) gives 〈

λ̇(x0)
〉

φi+1,i

≈
〈
λ̇(x0))

〉
φi+1,i−1

(4.15)

This relation can be rewritten in the ensemble of φi±:〈
λ̇(xF )hf

i+1,i−1(x0)
〉

φi±〈
hf

i+1,i−1(x0)
〉

φi±

≈

〈
λ̇(xF )φi,i−1(x0)h

f
i+1,i−1(x0)

〉
φi±〈

φi,i−1(x0)h
f
i+1,i−1(x0)

〉
φi±

(4.16)

where xF ≡ f
(
x0,min[tfi−1(x0), t

f
i+1(x0)]

)
is the path endpoint and λ̇(xF ) its velocity.

Only paths of type (−+) contribute to the right-hand side of Eq. (4.16), while the left-
hand side also includes the (++) paths from i+ 1 to i− 1 via i. A similar expression
can be derived for the reverse direction. The endpoint velocity λ̇(xF ) is indicatory
for the path’s likelihood to progress along the order parameter λ. Therefore, we can
reasonably expect that if Eq. (4.16) is true for all interfaces λi, the systematic error
in the overall crossing probability P+

n due to the memory loss assumption will be
small. Criterion (4.16) is obeyed if the endpoint velocities of the (−+) and (++)
paths are the same, which is the case on a relatively flat part of the barrier, provided

1As not only the average velocity should be the same
D
λ̇(x)

E
φi,i−q

=
D
λ̇(x)

E
φi,i−1

, but the whole

distribution of velocities at λi, we used in Sec. 4.3 the velocity distribution overlap as measure of
the memory loss.
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the interfaces are sufficiently far apart. Eq.(4.16) also holds if there are no (++) paths
present at all, which is the case for the uphill part of the free energy barrier. The
memory loss requirement will be most difficult to fulfill for a system with a rough,
descending free energy profile, and a dynamics without sufficient collisions to dissipate
the high kinetic energy of the (−+) paths. In that case, the slower (++) paths might
get trapped more easily in some local minimum than the (−+) paths, thus requiring
a careful examination of both the order parameter and the interface positions. On the
downhill part of the free energy barrier inside the basin of attraction of state B any
difference between the endpoint velocities of the (++) and (−+) paths is of minor
importance, as almost all paths will reach B. As a result, the crossing probability
shows a plateau after which we can neglect condition (4.16).

A quantitative indication of the fulfillment of

λ i
−∆

λ

λ i
−δ

λ
λ i λ i

+δ
λ

λ i
+∆

λ

3

2

1

Figure 4.3: Calculation of the
MLF on the grid of sub-interfaces.
One possible path is shown confined
between λi−1 and λi+1.

the memory loss criterion can be obtained by defin-
ing a memory loss function (MLF), for instance
the ratio of the two terms at both sides of the
equality in Eq. (4.16). However, evaluation of
this function is time consuming if it has to be
applied for all possible interface separations. For-
tunately, one can estimate the MLF for interface
separations smaller than the chosen one during
the rate constant calculation. If we use a fine grid
of nsub sub-interfaces between λi−1 and λi+1 (See
Fig. 4.3), we can measure the MLF with a reso-
lution of δλ = ∆λ/nsub with ∆λ ≡ λi − λi−1 =
λi+1 − λi

2. The function MLFi(jδλ) with j =
1 . . . nsub can be calculated in the φi± ensemble
during a PPTIS simulation. To do this, some care
is required in case the path has multiple recross-
ings with interface i. Take for example the situ-
ation depicted in Fig. 4.3. Only one phase point
(1) on the path between λi−1 and λi+1 belongs
to the ensemble φλi±∆λ ≡ φi±. However, in the
ensemble defined by the two most inner sub-interfaces φλi±δλ three points belong to
the ensemble (1,2 and 3). All three of them can be used to measure MLF(jδλ) for
jδλ < ∆λ. For every path in the φi± ensemble, loop over all sub-interfaces j. For
each j,

1. collect all the phase points that belong to the ensemble of φλi±jδλ.

2. sample the MLF function consecutively for all the n points {x(1)
0 , x

(2)
0 , . . ., x(n)

0 }
for which φλi±jδλ(x0) 6= 0.

3. continue the loop over j until j = nsub.

Finally, generate a new path, and repeat the whole procedure.

2To simplify notation we assume here an equidistant interface separation for all interfaces. One
is, however, by no means restricted to do so and one can place each interface at an optimum position
concerning efficiency, memory loss and ergodic sampling.
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The above algorithm does not obey complete detailed balance between phasepoints,
which in principle can be achieved with the use of an additional MC move [109]. This
however does not influence the result, and of course, detailed balance between the
paths remains. Similar procedure of simultaneously sampling phasepoints of a path
has also been applied in the free energy calculations of chapter 5.

4.3 Numerical Results

In sec. 3.3, the TPS and TIS methods were tested on a bistable diatomic molecule
immersed in a fluid of purely repulsive particles. Here, we use the same system but
with a longer barrier, to test the PPTIS method and the memory loss assumption,
and to compare PPTIS and TIS.

4.3.1 The model

The system consists ofN two-dimensional particles interacting via the Weeks-Chandler-
Andersen (WCA) potential, Eq. (3.21), which we rewrite here

UWCA(r) =

{
4ε[(r/σ)−12 − (r/σ)−6] + ε if r ≤ r0

0 if r > r0,
(4.17)

where r is the interatomic distance, and r0 ≡ 21/6σ. In the following we will use
reduced units so that the energy and length parameters ε and σ, the mass of the
particles and the unit of time (mσ2/ε)1/2 are all equal to unity. In addition, two of
the N particles are interacting through a diffusive double well potential

Uddw(rd) =


Udw(rd) if rd < r0 + w

h if r0 + w < rd < r0 + w + b

Udw(rd − b) if rd > r0 + w + b

, (4.18)

where
Udw(rd) = h[1− (rd − r0 − w)2/w2]2. (4.19)

and rd specifies the dimer interparticle separation. This potential and its first deriva-
tive are continuous and the forces are therefore well defined. It has two minima at
rd = r0, the compact state or state A, and at rd = r0 + 2w + b, the extended state
or state B. The minima are separated by a total barrier of length b+ 2w and height
h. For sufficiently large values of h, transitions between the states become rare and
the rate constants are well defined. For sufficiently large values of b, trajectories on
the barrier plateau become diffusive. See a trajectory at high energy in Fig. 4.4. We
therefore expect this system to be a good test case for the new PPTIS method.

We simulate the system at constant energy E/N = 1.0 in a square box with periodic
boundary conditions. The number density is fixed at 0.7, by adjusting the size of the
box. The barrier length should always be less than half the box’s edge, implying the
number of particles N to increase accordingly with the value of the barrier length b.
The remaining barrier parameters are set to h = 15 and w = 0.5. The total linear
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Figure 4.4: A trajectory in the rd, ṙd

plane for the dimer model. This is the
outcome of an MD simulation at total
energy E/N = 10. The system starts
in A, overcomes the barrier, wanders
considerably in the region of flat bar-
rier and then ends in B.

momentum is conserved and is set to zero. The equations of motion are integrated
using the velocity Verlet algorithm with a time step ∆t = 0.002. The Monte Carlo
path sampling is carried out both in PPTIS and TIS by means of the shooting move
and the path-reversal move, as explained in Sec. 4.2 and sec. 3.2 The two moves were
performed with an equal probability of 50%. The intermolecular distance rd is a
suitable order parameter λ to define the interfaces.

4.3.2 The Simulation

We simulated a system of N = 100 WCA particles with a barrier length b = 2. The
minima of Uddw(rd) are located at rd ' 1.12 and rd ' 4.12, and the diffusive plateau
extends from rd ' 1.62 to rd ' 3.62. State A is defined by interface λ0 as rd < 1.22
and state B by interface λ17 as rd > 4.02. In the intermediate regime 16 interfaces
were chosen at rd = 1.24, 1.34, 1.40,1.46, 1.52, 1.62, 2.02, 2.42, 2.82, 3.22, 3.62, 3.72,
3.78, 3.84, 3.90, and 4.00.

First, we ran straightforward MD simulations in state A and B to compute the
fluxes that appear in both Eq. (4.8) and (3.19) by counting the number of positive
crossings through interfaces λ1 and λ16, respectively, see sec. 3.2.1. We obtained the
values 〈φ1,0〉/〈hA〉 = 0.1160±0.0008 and 〈φ16,17〉/〈hB〉 = 0.117±0.001. Subsequently,
we calculated the conditional probabilities (4.3). For PPTIS we calculated the one-
interface crossing probabilities for all the 16 interfaces on the barrier, while TIS sim-
ulations show convergence after 11 windows for both the forward and the backward
reaction path. In Fig. 4.5 we report the one-interface crossing probabilities p±i , p∓i and
the long-distance crossing probability P+

i , P−i . The long-distance crossing probabili-
ties appearing in the rate constant Eq. (4.8) for nI = 17 are P+

nI
= (2.37± 0.06)10−9

and P−nI
= (1.67 ± 0.03)10−9. These values can be compared with their TIS coun-

terparts PA(nI |1) = (2.4± 0.2)10−9 and PB(0|nI − 1) = (1.74± 0.05)10−9. We note
that because for the first 5 interfaces i = 1 . . . 5, p∓i equals unity, P−i is constant up
to i = 6. Similarly, for i = 11 . . . 16, p±i is unity and P+

i shows a plateau starting at
i = 12. This means that in the PPTIS methods, although for the equilibrium constant
C all the windows are necessary, the separate computation of kAB and kBA requires
fewer windows. The result is consistent with what we found in TIS. We report in table
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Figure 4.5: Top: PPTIS one-interface
crossing probabilities p±, p∓, see
Eq. (4.3). The p=, p‡ probabilities follow
directly from Eq. (4.4). Bottom: PPTIS
long-distance crossing probabilities P+

i ,
P−

i , see Eq. (4.5). The last points
contribute to the rate constants as in
Eq. (4.8). In both graphs the error is
within symbol size.

kAB/10−10 kBA/10−10 C
PPTIS 2.75±0.07 1.95±0.04 1.41±0.05
TIS 2.8±0.2 2.03±0.06 1.4±0.1

Table 4.1: Comparison of PPTIS and TIS. Forward and backward rate constants as well
as the equilibrium constant are reported for the system with short energy barrier. The rate
constant of 2.8 · 10−10 corresponds in real units for Argon to 7.7ms.

4.1 the final rate and equilibrium constants. They all coincide within the statistical
error.

The equilibrium constant C can also be derived by a free energy computation using
the relation C = exp(β∆F ) where ∆F is the free energy difference between states A
and B. We postpone this additional test to chapter 5. Besides computing the free
energy with traditional methods, we will show that the PPTIS method, created to
compute dynamical quantities like the rate constants, can also be adapted to provide
an equilibrium information such as the free energy.

4.3.3 Comparing TIS and PPTIS

In order to make an efficiency comparison between the two methods, we chose to
estimate the computational effort for a certain fixed error. We rather calculate the
error in the equilibrium constant C = kAB/kBA instead of in the rate kAB itself
because the expression of C in terms of the averages, that have to be calculated
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separately, is much simpler than the recursive expression (4.7) of kAB . Hence, the
error propagation from the error in the individual terms is simpler and yields a more
transparent comparison with TIS. Because of relations (4.8) and (E.9) the equilibrium
constant C can be written as:

CPPTIS =
[〈φ1,0/〈hA〉]

[〈φnI−1,nI
〉/〈hB〉]

[
p±nI−1

p∓nI−1

]
· · ·

[
p±1
p∓1

]
(4.20)

Each term within brackets [. . .] is calculated separately together with its error. The
error propagation of the total nI +1 terms determines the final overall error. Similarly,
using (3.19) in TIS the expression for C can be written as:

CTIS =
[〈φ1,0/〈hA〉]

[〈φnI−1,nI
〉/〈hB〉]

[PA(nI |nI − 1)] · · · [PA(2|1)]
[PB(0|1)] · · · [PB(nI − 2|nI − 1)]

(4.21)

Here, in total 2nI simulations have to be performed, each on a different ensemble.
In practice, however, not all the interface ensembles are needed, as PA(i|i − 1) and
PB(i|i+ 1) will converge to unity in the limit i→ nI and i→ 0, respectively.

In both Eqs. (4.20) and (4.21) the PPTIS and TIS the final equilibrium constant
is a product of factors. We determined each factor independently by performing Nbl

simulation blocks of Ncy Monte Carlo cycles. We adjusted Ncy so that the relative
standard deviation of each term after Nbl block averages was an arbitrary value of 3%.
We measured, under the same computational conditions (1.4 GHz AMD Athlon), the
CPU-time required and summed up all the times to get the relative efficiency. The
final errors on the rate constants given above were obtained by standard propagation
rules using all the available blocks of simulations. We computed the computation
times to reach the prefixed 3% error for each factor in Eqs. (4.20) and (4.21) and
found that for the simple dimer system the efficiency of PPTIS is a factor 2 higher
than TIS.

In figure 4.6 we plot the average path-length in each window for the two methods.
The direct comparison shows that on the barrier PPTIS keeps the path length constant
while the TIS path length increases. This is expected but it does not directly imply a
gain in efficiency. In Eq. (4.20) for PPTIS the error in the terms [p±i /p

∓
i ] will be more

or less the same for all i on the barrier. In Eq. (4.21) For TIS, however, the error in
[PA,B(i|i ± 1)] will decrease when its value gets closer to unity. The final efficiency
ratio is a balance between pathlength and the errors in the terms. The analysis of
the efficiency and its scaling with the diffusive barrier length requires some care and
we defer it to the more general section 6.1.

4.3.4 Validity of the memory loss assumption

We computed the memory loss function MLF(jδλ) as defined in section 4.2.1. We
used a central interface at rd = 2.62 and δλ = 0.01 and j ranging from 1 to 100,
corresponding to the entire length of the barrier plateau. Since not only the mean
value of the endpoint velocity λ̇ but its complete probability distribution f(λ̇) should
be equal for paths of the ensemble (−+) and (++) we computed the overlap∫ +∞

−∞

√
f±(λ̇)f‡(λ̇) dλ̇. (4.22)



92 4. Partial Path TIS

1 4 7 10 13 16
Interface

0

2

4

6

8

P
at

hl
en

gt
h

PPTIS
TIS kAB
TIS kBA

Figure 4.6: Comparison of path-
lengths for PPTIS and the TIS simula-
tions for the calculation of the forward
and backward rate constant. Because
of the diffusive character of the system,
the TIS path-lengths keep growing as
the interface moves further from the
initial stable state. The PPTIS path-
lengths on the contrary stay constant.
The errors are within the symbol size.

0 0.2 0.4 0.6 0.8 1
jδλ

0.7

0.8

0.9

1

O
ve

rla
p

f-+  f++
f+-  f--

-6 -4 -2 0.
λ

0

1

2

-6 -4 -2 0.
λ

0

0.3

0.6

f(. λ  )

jδλ = 0.01 jδλ = 0.2

Figure 4.7: Memory loss function
computed using the overlap of the dis-
tributions of the endpoint velocity λ̇,
see Sec. 4.3.4. In the insets we plot
the distributions for paths of the (+−)
ensemble (solid line) and the (−−) one
(dashed line), for two different win-
dow sizes jδλ = 0.01 and jδλ = 0.2.
The first two distributions are differ-
ent, and the second ones are almost
overlapping.

Similar expression was used for the paths (+−) and (−−). The results are reported
in Fig. 4.7. It can be seen that for jδλ ≥ 0.2 the memory loss assumption is satisfied.
Consequently an interface separation of 0.2 is what we used for the simulation of
sec. 4.3.2.

4.4 Simple PPTIS

In PPTIS the transition event is approximated by a sequence of hopping events be-
tween subsequent interfaces, see sec. 4.1. The hopping probabilities are computed in
a path sampling simulation involving three subsequent interfaces, see sec. 4.2. We
show here that the method still works when only two interfaces are employed, leading
to a simplified version of PPTIS. We give the theoretical derivations and test them
on a one particle system. We conclude discussing the applicability of this simplified
PPTIS method.

4.4.1 Theory

As usual in interface sampling methods, we partition the phase space by means of
nI + 1 interfaces 0 . . . nI defined by the hypersurfaces {x : λ(x) = λi}, see sec. 3.1.1
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and Fig. 3.1. Interface λ0 is the border of state A, λnI
is the border of state B, x is

the system phase space point and λ(x) the order parameter, see sec. 2.1.2.
A PPTIS window consists of three interfaces i − 1, i, i + 1 and simulations are

carried out in the ensemble of all the paths starting and ending at the outer interfaces
i − 1 or i + 1 and crossing the central one i at least once. Here, the idea is to use
just two interfaces, by taking the limits i → (i − 1)+, or i → (i + 1)−. We call the
two resulting interfaces l, r. The path ensemble consists of all paths that either cross
interface left in the positive direction or interface right in the negative direction. In
this way, it still makes sense to talk of paths of type (−+), (+−), (−−), (++), see
sec.4.2 and the whole PPTIS machinery can be readjusted in the limit accordingly.

The starting point is again the probability P (l
m|ij), eq. (3.13), which is the proba-

bility for the system to reach interface l before m under the condition that it crosses
at t = 0 interface i, while coming directly from interface j in the past. Instead of the
one-hop probabilities Eq. (4.3) we define the local, short-distance probabilities as

p±lr ≡ P (r
l |ll−), p∓lr ≡ P (l

r|rr+)

p=
lr ≡ P (l

r|ll−), p‡lr ≡ P (r
l |rr+), (4.23)

where r+ means right of r, l− left of l, and λ0 ≤ λl < λr ≤ λnI
. In this notation the

subscripts l, r are general integers, they do not have to be consecutive, and therefore
the probabilities (4.23) are in general not necessarily one-hop probabilities. The
global, long-distance probabilities (4.5) become

P+
j ≡ P (j

0|00−), P−j ≡ P (0j |
j
j+). (4.24)

For instance, P+
nI

is the probability of reaching nI before 0 provided that one crosses
interface 0 in the positive direction. P+

nI
is the same as taking λ1 = λ0 + ε in the flux

calculation of TIS or PPTIS (see sec. 3.2.1). We show in appendix E.3 that using the
assumption of memory loss the PPTIS recursive relations (4.7) still hold, and become

P+
r ≈

p±lrP
+
l

p±lr + p=
lrP

−
l

P−r ≈
p∓lrP

−
l

p±lr + p=
lrP

−
l

, (4.25)

with P+
0 = P−0 = 1.

Implementation of formulas (4.23), (4.25) can be done along the same lines of
their PPTIS counterparts, see sec. 4.2. We just add a remark about the memory
loss assumption. In the simple PPTIS method subinterfaces can be used to devise a
simpler test of the assumption than the computation of the memory loss function of
sec. 4.2.1. This is done as follows. Take a first window between l = l1 = 0 and r = r1.
In between define a finer grid of subinterfaces l ≤ s ≤ r, and sample p±ls and p∓ls.
The sampling can be done simultaneously for all of the subinterfaces. Similar to TIS,
one can use one path for the sampling of many interfaces. The p±ls is straightforward,
because one just has to find the λmax of the path, and fill in an histogram up to
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that value, as explained in sec. 3.2.3. The p∓ls requires more care, but is doable 3. In
this first window, Eqs. (4.25) say that P+

s = p±0s, P
−
s = p∓0s. Then take a second

window, that overlaps with the first, from l = l2 with λl1 < λl2 < λr1 , to r = r2 with
λr2 > λr1 , and compute p±l2,s and p∓l2,s. Using (4.25) with P+

l2
, P−l2 fixed, given from

the previous window, we get P+
r , P−r up to r = r2. In the overlapping region, between

r1 and l2, one should get the same curve, if memory loss is satisfied. This procedure
can be repeated for all pairs of windows, and gives a simple test of the validity of the
memory loss within the limits of the windows.

Finally, in the simple PPTIS method the calculation of the free energy becomes
trivial. Windows are now unbiased ensembles and the loop-boundary mechanism
of chap. 5 is not needed. One simply has to histogram λ, and then rematch the
histograms of each window, as in normal umbrella sampling, see sec. 2.3.1.

4.4.2 Numerical results

We test the simple PPTIS method on a system of one particle in a two dimensional
potential. Although extremely simple, this system shows some features of interest of
its own.

The model system

We consider the system proposed in [80], sec. V.A, and [11], case study 24, p. 456.
One particle experiences the two-dimensional potential

V (x, y) =
1
6
[4(1−x2−y2)2+2(x2−2)2+

(
(x+ y)2 − 1

)2
+
(
(x− y)2 − 1

)2−2] (4.26)

We report in fig. 4.8 a 3-d and a contour plot of the surface. There are two minima
at V (±

√
5/2, 0) = −1/12, a maximum at V (0, 0) = 2, and two saddle points at

V (0,±1) = 1. The saddles are degenerate, the hessian has eigenvalues (0, 8), and
thus the saddles are almost flat.

We consider the system in the canonical ensemble for a temperature β−1 = T = 0.1.
Some results can be obtained analytically. We define the order parameter λ(x, y) ≡ x
and consider the free energy

exp(−βF (λ)) ≡ P (λ) = 〈δ(λ(x)− λ)〉

=
1
Z

∫
dxdye−βV (x,y)δ(x− λ)

=
1
Z

∫
dye−βV (λ,y) (4.27)

By numerical integration of Eq. (4.27), we obtained a theoretical free energy curve.
We define state A using interface λ0 = −0.85 and we take λ1 = λ0. State B is
symmetrically defined, taking λnI

= 0.85 and λnI−1 = λnI
. The flux 〈φ1,0〉/〈hA〉 can

3p∓ls is not really the symmetric counterpart of p±ls, which would use λmin. A (+−) path or a

(−−) that crosses s both contribute, but the number of crossing s+ → s must also be counted
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λ1 P (λ1) P (λ1)x∈A 〈θ(λ̇)λ̇〉λ1 〈φ1,0〉/〈hA〉 βF (λ1) = − lnP (λ1)
-0.85 0.102 0.204 0.126 0.0258 2.28

Table 4.2: Some theoretical results

also be obtained theoretically. Using the definition of effective positive flux Eq. (3.10)
we can rewrite

〈φ1,0〉
〈hA〉

=
〈hb

0,1|λ̇|δ(λ− λ1)〉
δ(λ− λ1)

· δ(λ− λ1)
〈hA〉

= 〈λ̇θ(λ̇)〉λ=λ1P (λ1)x∈A (4.28)

where because of the presence of hb
0,1 only positive velocities λ̇ are selected. Because

of general symmetry reasons hA = 1/2 and as a consequence P (λ) = P (λ)x∈A/2.
Moreover, the equilibrium constant equals C = kAB/kBA = 1. The other term in
Eq. (4.28) is simply 〈θ(λ̇)λ̇〉λ1 = 1/

√
2πβ, see sec. 1.4.3. We summarize the theoretical

results in table 4.2.

Path Sampling

We defined the interfaces as in table 4.3. We simulated the system in the canonical en-
semble at T = 0.1, using both PPTIS and simple PPTIS. The path sampling for both
methods is performed using constant energy NVE dynamics and initial conditions
extracted from a canonical distribution, as explained in sec. 4.2 and 3.2. Moreover,
we performed canonical path sampling, by employing the shooting move with a Nosé-
Hoover thermostat [73], as explained in sec. 2.2.1.

All dynamical schemes were integrated using a velocity-Verlet integrator [11] with
time-step ∆t = 0.01. The free energy histogram had a bin width δλ = 0.001. We used
the shooting and reversal move with equal probability, 50% and harvested 107 paths
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λ0 = λ1 -0.85 λ5 -0.53 λ9 0.01 λ13 0.69
λ2 -0.77 λ6 -0.45 λ10 0.45 λ14 0.77
λ3 -0.69 λ7 -0.01 λ11 0.53 λ15 = λ16 0.85
λ4 -0.61 λ8 0 λ12 0.61

Table 4.3: Choice of interfaces for the 2d potential. They are more dense on the shoulders
of the free energy curve and wider in the middle, see 4.11. The small window around 0 is to
avoid metastable states (see text).

per window, after an equilibration of 105 paths. For normal PPTIS, the acceptance for
the shooting move was around 70%. For simple PPTIS, NVE dynamics, acceptance
for the shooting move was around 80%. For simple PPTIS, Nosé-Hoover dynamics,
acceptance for the shooting move was around 90% because there is no canonical MC
acceptance involved.

Two peculiarities were encountered in this system. First, since V (x, y) has two
saddle points at (0,±1), the particle can go from A to B over the barrier following
two channels. During the transition the trajectories, that are confined in windows
defined by λ(x, y) = x, choose only one of the two, as can be seen from the average y
coordinate in the window, plotted in fig. 4.9. Because of the symmetry of the system,
this does not seem to influence much the result, but indicates bad path sampling. In
sec. 4.5 we give a possible solution to this problem. Second, since the saddles are
almost flat, the system tends to be trapped in quasi-periodic orbits around x = 0,
of the form displayed in fig. 4.10. We have found cyclic x-oscillations up to the
range −0.1, 0.1. As a result the paths get too long and slow down the simulation
considerably. Sometimes they become even too long to be stored in memory. In fact,
in such a system with low number of degrees of freedom a non ergodicity can be
expected. In order to prevent this, we put a smaller window around 0, making the
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Figure 4.9: Choosing one way. From right
to left: first 〈y〉 is around 0, then it chooses
the upper saddle point at (0, 1).
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Figure 4.10: A metastable state around the
saddle point at (0, 1).
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method PA(nI |1)/10−4 PB(0|nI − 1)/10−4

PPTIS 6.16 6.18
simple NVE 6.13 6.21
simple Nosé 6.40 6.38

Table 4.4: The long-distance probabilities for all the methods employed.

system escape it in a reasonable time.
We report in fig. 4.11 the free energy results and in table 4.4 the long-distance

probabilities for all the methods we used. Taking the average of all the probabilities
and the flux at −0.85 from the theory, see table 4.2, we get for the rate kAB = kBA =
(1.61± 0.02)10−5. In [11] a value of 8.0 · 10−6 was found. We believe the discrepancy
is due to a failure of the memory loss assumption. Indeed, when computing the long-
distance probabilities P+

r , P
−
r , Eq. (4.25), with the use of subinterfaces, we found

a little difference in the rematching of different windows, as explained in sec. 4.4.1.
This could have been expected, as this simple potential probably shows not much
dissipation nor memory loss.

4.4.3 Resume

Basically we have modified PPTIS into an hybrid MC scheme. The implementation
is simpler and allows a straightforward calculation of the free energy profile along
the order parameter. Almost every path created with a shooting or reversal move is



98 4. Partial Path TIS

accepted. Paths are rejected only if they become too long, or due to the Boltzmann
weight in case of NVT simulations. The implementation of subinterfaces allows for
a simpler test of the memory loss, using the window rematching on the crossing
probability, besides the free energy. We think that such an additional test could be
devised for standard PPTIS as well.

However, there is a problem with simple PPTIS. Although we have not tried a
rigorous test, a preliminary run of simple PPTIS on a real complex system failed to
compute a rate constant or a free energy. We applied the method to study crystal
nucleation of a Lennard-Jones system, see chap. 7. For a given window when the
system was still in the undercooled phase the paths tended to become very short and
cluster around the left interface boundary. Because of the uphill free energy barrier
we ended up with the shooting move generating always a path made of 1 timeslice.
Such a bad sampling is due to the lack of the constraint to cross the middle interface,
that prevents a minimum amount of timeslices big enough to allow the shooting move
a proper sampling of the path space.

We have presented the method for completeness and pedagogical reasons, but we
have to stress the use of simple PPTIS in real applications might encounter problems.
Although tempting for its simplicity, it might end up in being too simple.

4.5 Parallel path swapping

A good sampling of the transition path ensemble relies on the ability to generate
a relevant subset of all the possible transitions, in the same way that in general a
good sampling of the possible states of a system relies on the ability to explore all
the relevant zones of the phase space. This can be problematic in the presence for
example of multiple reaction channels, as we saw in the simple system of sec. 4.4.2.

Parallel tempering techniques (also known as Replica Exchange methods) can fa-
cilitate the sampling [81], but require a rather large computational effort and cannot
be applied at constant energy. Here, we propose a less expensive parallel method es-
pecially tailored for PPTIS. This parallel path swapping (PPS) technique is based on
the exchange of paths between two subsequent interface ensembles. Fig. 4.12 shows
one path in the λi ensemble, consisting of all possible paths crossing λi while starting
and ending at either λi−1 or λi+1, and one in the λi+1 ensemble consisting of all paths
crossing λi+1 at least once, while starting and ending at either λi or λi+2. The second
half of the path in the λi ensemble is automatically a path for the λi+1 ensemble.
Using the notation of sec. 4.2, when the second half is moved to the λi+1 ensemble,
one just needs to elongate it forward in time to find out if it is a (−+) or a (−−)
path. In the case in figure it is a (−+) path in the λi+1 ensemble. Similarly, the first
half of the path in the λi+1 ensemble is automatically a path for the λi ensemble.
When moved to the λi ensemble, one has to elongate it backward in time to find out
if it is a (−+) path or a (++) path. In the case in figure it is (++) path.

The idea depicted in Fig. 4.12 can be transposed into a new MC move that attempts
swapping the current path of the λi ensemble with that of the λi+1 ensemble. This
path swapping move requires some care to satisfy overall detailed balance. In the case
in figure for example we have to pay attention when attempting the reverse move,
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Figure 4.12: Path swapping move for PPTIS. The last half of the path in the λi ensem-
ble and the first half of the path in the λi+1 are swapped to the λi+1 and λi ensembles,
respectively.

because the path of ensemble λi has two possible contributions for the λi+1 ensemble.
Consider the zone common to the ensembles, between interfaces i and i + 1. Define
for any path of window i or i+ 1 the quantity

Npiece ≡ Number of parts that directly connect i and i+ 1 (4.29)

This quantity can be either 0,1 or 2. For paths in the λi ensemble is 0 for (−−) paths,
is 1 for (−+) and (+−) paths, and is 2 for (++) paths. For paths in the λi+1 ensemble
is 0 for (++) paths, is 1 for (−+) and (+−) paths, and is 2 for (−−) paths. When
Npiece = 0 the path cannot be swapped, when Npiece = 2 one of the possible parts
is chosen with probability 1/2. However, to satisfy detailed balance on the reverse
move we have to introduce an additional acceptance probability. Consider moving a
path from the λi ensemble to the λi+1 ensemble, the acceptance probability reads

min

[
1,

N
(o,i)
piece

N
(n,i+1)
piece

]
(4.30)

where in the superscripts ’o’ and ’n’ stand for old and new. In practice this means
that when a path can be swapped, i.e. N (o)

piece 6= 0, if Npiece does not increase on going
from old to new (1 → 1, 2 → 1), the swap move is automatically accepted, otherwise
if Npiece increases (1 → 2) an additional acceptance probability of 1/2 is required.
Note that in order to calculate 4.30 for the new path, we must first complete the
evolution in the λi+1 ensemble, integrating forward in time. Similar reasoning holds
when moving the other path from the λi+1 ensemble to the λi ensemble.

Resuming a path sampling algorithm with a path swapping move is as follows.
Suppose there are NW windows. Naturally the swapping can occur only between
neighboring windows, and there are NW −1 possibilities. Choose a number α between
0 and 1 and start the following loop

1. Draw a random number y ∈ [0, 1]. If y < α choose a random window 1 . . . NW

and perform a normal path sampling move. If y > α choose one of the NW − 1
pairs of neighboring windows and perform a path swap move.
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2. Compute N (o,i)
piece and N

(o,i+1)
piece . If one of the two is 0, the move is rejected, go

back to step 1

3. If one of the above Npiece is 2, choose one of the possible pieces with probability
1/2. Swap the part of the paths belonging to the new ensemble and compute
N

(n,i)
piece and N (n,i+1)

piece by integrating forward and backward in time.

4. Accept the swap move with probability

min

[
1,

N
(o,i)
piece

N
(n,i+1)
piece

]
min

[
1,
N

(o,i+1)
piece

N
(n,i)
piece

]

5. Sample path averages and repeat from step 1

PPS was introduced in [20]. As noticed by the authors, another advantage of PPS
is that it allows to go beyond the pseudo-Markovian description of PPTIS. Fig. 4.12
shows that the paths at the right hand side, if we include the dashed trajectory part,
can connect four interfaces instead of only three. This extension allows for a long range
verification of the memory loss assumption. Moreover, while PPS can be very effective
when the confinement of short paths in PPTIS can cause sampling problems, even
TIS and TPS algorithms might benefit from path swapping when multiple reaction
channels exist.

4.6 Summary

In this chapter we have adapted the theory and algorithms of TIS, chapter 3, for the
efficient calculation of rate constants of two state activated processes with a diffusive
barrier. Like in TIS the phase space is divided in regions separated by interfaces.
TIS computes directly the overall transition rate kAB from the first interface, cor-
responding to stable state A, to the last interface, corresponding to stable state B.
PPTIS instead obtains the rate by means of an iterative scheme based on the hop-
ping probabilities from one interface to the next. Using either the iterative scheme
given here or for more general hopping networks the method of kinetic Monte Carlo,
one can solve the master equation and obtain the final forward and backward rate
constants. In deriving this algorithm we assumed complete memory loss between in-
terface, such that the system becomes essentially Markovian, thus validating the use
of kinetic Monte Carlo and similar algorithms. We showed that for a relatively simple
system, the diatomic molecule, the memory loss assumption (loss of correlation) holds
over the entire barrier. We expect that for more complex systems this memory loss
requirement will certainly be fulfilled, provided that the dynamics has a stochastic
character and the interfaces are placed sufficiently far apart. However, the choice of
order parameter requires still some caution, possibly more than in TIS, in order to
satisfy the memory loss requirement. For the simple dimer system, we showed that
PPTIS is already twice as fast as TIS.

In sec. 4.4 we presented a variation of PPTIS that is able to simultaneously com-
pute the kinetics and the free energy of the rare events. The simplicity of the methods
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unfortunately hinders its application in real systems. However since the free energy is
an important and useful additional information we adapted the idea to the standard
PPTIS. Before switching in the next chapter to the problem of free energy computa-
tions in PPTIS, we add some remarks concerning the literature.

The method advocated here to tackle diffusive barriers in complex systems is not
the first one that has been proposed in the literature. Several techniques have been
put forward in the last decade, for instance the diffusive barrier algorithm by Ruiz-
Montero et al. [17], briefly reviewed in sec. 1.5.3, and the coarse grained MD method by
Hummer and Kevrekidis [45]. The latter technique uses short trajectories to calculate
the average force projected on an order parameter space. They use that force to
integrate a stochastic equation of motion and explore the free energy landscape in
that way. Rate constants can then in principle be obtained from the dynamics on this
coarse grained surface.

A similar method to PPTIS is the milestoning method of Faradjian and Elber [71].
The two methods are very similar, but differ on two crucial points. First, the mile-
stoning method assumes a complete loss of memory at each interface, as in simple
PPTIS. At each interface the system can hop either to the right or to the left with
a certain probability and these probabilities do not depend on the history of the
path. This amounts to assuming that the coordinates orthogonal to λ are at each
interface distributed according to the equilibrium distribution. PPTIS instead takes
a stronger history dependence into account. At each interface memory effects may
persist but not much longer than the time needed to travel from one interface to the
other. As mentioned in sec. 4.4, this stronger history dependence of full PPTIS was
found necessary to investigate a case of crystal nucleation in a Lennard-Jones system
(see chapter 7). Second, the milestoning approach puts, on the other hand, more
effort in describing the time evolution on the barrier by using time dependent hop-
ping probabilities. These are required if one wants to study, for instance, the decay
of a distribution that is initially out of equilibrium, or the diffusion behavior on the
barrier. This time aspect introduces another history dependence [71], which is absent
in PPTIS where the final crossing probability is a quantity independent of time. This
is justified by the fact that PPTIS always assumes that the barrier is low populated.
Hence, the time that the system spends on the barrier can be long from a computa-
tional perspective, but is still negligible compared to the expected time the system
needs to enter the barrier plateau region from one of the stable states. In principle,
this condition should always be satisfied for a system that shows exponential decay
and, hence, has a well defined rate, but, of course, systems that do not obey these
conditions can still be interesting to study. To summarize, both methods are very
similar, but each one is more accurate to one of the points described above. However,
the two aspects do not exclude each other and could easily be merged into a single
algorithm if needed.

We conclude stressing that there is a large difference between the reactive flux
method based on transition state theory and the PPTIS technique. Although we use
hyper-surfaces to divide the phase-space we do not rely on a global large transmis-
sion coefficient. Instead, we calculate local transmission coefficients and use those as
hopping probabilities.



5 Interface Sampling and Free
Energies

Things should be made as simple as
possible, but not any simpler.

Albert Einstein

We introduce a method to evaluate simultaneously the reaction rate constant and the
free energy profile of a process in complex environment. The method employs the
partial path transition interface sampling technique we presented in chapter 4 for the
calculation of rate constants in diffusive systems. We illustrate the applicability of the
technique by studying the same system of sec. 4.3, a simple dimer in a repulsive fluid,
and we show that the free energy can be obtained at no additional computational
cost.

5.1 Theory

The method is based on the theory of (PP)TIS, already presented in sec. 3.1 and 4.1,
but we briefly review it here.

Consider a complex system which undergoes a transition between two stable states
A and B, separated by a high diffusive barrier. As the population on the barrier is
very small, the system shows exponential two state behavior and has a well defined
rate constant. The PPTIS method requires a set of nI + 1 non-intersecting multi-
dimensional interfaces {0, 1 . . . nI} described by an order parameter λ(x), where x
denotes the phase space point. We stress that the order parameter does not have
to correspond to the real reaction coordinate. We choose λi, i = 0 . . . nI such that
λi−1 < λi, and that the boundaries of state A and B are described by λ0 and λnI

,
respectively, see Fig. 3.1.

The rate constants were derived in Eq. (4.8), which we rewrite here

kAB =
〈φ1,0〉
〈hA〉

P+
nI

kBA =
〈φnI−1,nI

〉
〈hB〉

P−nI
. (5.1)

The fractions in the expression are the flux terms and can be calculated by counting
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i−1 i i+1

Figure 5.1: Illustration of loop and boundary
points. The open circles denote boundary points
with bi(x) = 1, time-slices that hit a boundary
in one time direction and reach λi in the oppo-
site time direction. The loop points (full circles)
with li(x) = 1 meet first the middle interface in
both directions. For both loop and boundary points
wi(x) = 1. The dashed lines are paths that do not
belong to the ensemble as they do not cross λi.
Hence, the corresponding time-slices (crosses) are
not part of the subset of phase points counted in
the λi ensemble (thus wi(x) = 0), but are loop-
points of the neighboring interfaces.

the frequency of leaving A and B using straightforward MD, see sec. 3.2.1. The
other factors P+

nI
, and P−nI

are the long distance probabilities defined in Eq. (4.5).
In words, P+

nI
, is the probability of leaving A and reach B before going back. P+

nI
,

is similarly defined for the reversed reaction B → A. These terms can be calculated
in a TIS simulation, see sec. 3.1.4. However, in case there is memory loss between
the interfaces, PPTIS can approximate the long distance crossing probabilities by
a recursive relation involving the one-hop probabilities (4.3) between neighboring
interfaces, see Fig. 4.2. The algorithm then proceeds as follows. A PPTIS window
is defined as three consecutive interfaces i − 1, i, i + 1. A window ensemble consists
of all paths starting and ending from the outer interfaces and crossing at least once
the middle one. The ensemble is sampled through a path sampling algorithm, and
the one-hop probabilities are computed, see sec. 4.2. After repeating for all windows
i = 1 . . . nI − 1, the long distance probabilities are derived using Eq. (4.7).

Here, we want to show that besides the rate constant it is also possible to obtain
the equilibrium free energy profiles along λ. The free energy in the canonical ensemble
is defined in Eq. (1.34) as βF (λ) ≡ − lnP (λ), where β is the inverse temperature,
and P (λ) ≡ 〈δ(λ(x)−λ)〉 is the probability to find the system at a certain value of λ.
In a generic ensemble the definition of free energy is simply generalized as − lnP (λ).

As shown in sec. 4.4, we could perform the PPTIS path sampling between two in-
terfaces instead of three, and allow the path to be completely free, but stop integrating
when an interface is hit. We would then essentially perform umbrella sampling (see
sec. 2.3.1) between the interfaces using hybrid MC [117]. The PPTIS interfaces act
as hard window boundaries. In that case, simply measuring the probability along the
path to be at a value of λ and joining all histograms would suffice to obtain the entire
free energy.

The problem in sampling P (λ) in PPTIS is the fact that the PPTIS method intro-
duces a bias, by restricting all paths in the ensemble to cross the middle interface. As
we said before, the λi path-ensemble in the PPTIS formalism consists of all possible
paths that start and end either at λi−1 or λi+1 and have at least one crossing with λi.
The collection of all time-slices of these paths is a subset of the phase space points
confined between λi−1 and λi+1 because we are missing the points around the outer
interfaces, as shown in Fig. 5.1. We can correct for this by comparing neighboring
interface ensembles. For this purpose, it is convenient to categorize the time-slices
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into the loop type and boundary type of phase points as illustrated in Fig. 5.1. Here,
we need the functions hf(b)

i,j (x), defined in Eq. (3.2), which are 1 if the forward (back-
ward) deterministic trajectory starting from phase space point x meets λi before λj

and 0 otherwise. We can now define the loop- and boundary-characteristic functions
as:

li(x) = hf
i,i−1(x)h

f
i,i+1(x)h

b
i,i−1(x)h

b
i,i+1(x) (5.2a)

bi(x) = hf
i−1,i(x)h

b
i,i−1(x) + hb

i−1,i(x)h
f
i,i−1(x) +

hf
i+1,i(x)h

b
i,i+1(x) + hb

i+1,i(x)h
f
i,i+1(x). (5.2b)

Again, these functions are either one or zero depending on whether x belongs to its
loop (l) or boundary (b) category. Similarly, the complete set of time slices in the
PPTIS ensemble can be characterized by

wi(x) = li(x) + bi(x) (5.3)

which is either 1 or 0. As bi and li vanish whenever wi is zero,

bi(x)wi(x) = bi(x), (5.4)

and

li(x)wi(x) = li(x), (5.5)

for any phase point x. Moreover, for a phase point with λi−1 < λ(x) < λi it also
holds

bi−1(x) = bi(x) (5.6)

and

wi−1(x) + li(x) = li−1(x) + bi−1(x) + li(x)
= li−1(x) + bi(x) + li(x)
= li−1(x) + wi(x) = 1 (5.7)

Using these Eqs. for any λ′ : λi−1 < λ′ < λi:

P (λ′) = 〈δ(λ(x)− λ′)〉
= 〈δ(λ(x)− λ′)(wi−1(x) + li(x))〉
= 〈δ(λ(x)− λ′)wi−1(x)〉+ 〈δ(λ(x)− λ′)li(x)〉
= 〈wi−1(x)〉 〈δ(λ(x)− λ′)〉wi−1

+ 〈wi(x)〉 〈δ(λ(x)− λ′)li(x)〉wi
, (5.8)

where 〈A(x)〉ρ ≡ 〈A(x)ρ(x)〉/〈ρ(x)〉 denotes a conditional ensemble average with
weight-function ρ(x). The term 〈δ(λ(x)− λ′)〉wi−1

can be calculated by histogram-
ming all timeslices of the paths generated by the PPTIS algorithm in the interface
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i − 1 ensemble. Similarly, 〈δ(λ(x)− λ′)li〉wi
can be obtained by histogramming the

loop points of the trajectories in the ensemble of interface i. The remaining terms are
computed by matching different histograms using scaling factors obtained from the
overlapping regions between two windows. These scaling factors are here defined as
si ≡ 〈wi(x)〉 / 〈wi−1(x)〉 and follow, using Eqns. (5.5) and (5.7), from

si ≡
〈wi(x)〉
〈wi−1(x)〉

=
〈δ(λ(x)− λ′)bi−1〉wi−1

〈δ(λ(x)− λ′)bi〉wi

, (5.9)

for any λ′ : λi−1 < λ′ < λi. Hence, one can integrate over λ′ to obtain the most
accurate value of si.

Using these scaling factors (5.9) and Eq. (5.8) one can derive the following relation
for the relative probability of the order parameter values a and b with λi−1 < a < λi

and λi < b < λi+1:

P (a)
P (b)

=
s−1

i 〈δ(λ(x)− a)〉wi−1
+ 〈δ(λ(x)− a)li〉wi

〈δ(λ(x)− b)〉wi
+ si+1 〈δ(λ(x)− b)li+1〉wi+1

. (5.10)

Hence, when all scaling factors si are known the total histogram P (λ) can be computed
by joining all probabilities from Eq. (5.10).

5.2 Algorithm

Based on the theoretical derivation of the previous section, we outline here the steps
of a practical implementation, including some hints from personal experience.

Given the interfaces 0 . . . nI , the PPTIS windows are defined as a set of three
consecutive interfaces i − 1, i, i + 1 for i = 1 . . . nI − 1. In each window a path
sampling simulation is carried out and at the end the results are rematched together
to obtain the rate constant. In addition one can compute the free energy profile
along λ without any expensive computations, but by just histogramming the loop
and boundary points as defined in Eq. (5.2) and Fig. 5.1. The procedure is as follows.

Choice of histogram bin width δλ: If ∆λi = λi+1−λi one should choose the bin
width δλ such that ∆λi/δλ is an integer for all i = 0 . . . nI − 1. The first bin
should be then the interval [λ0, λ0 + δλ]. As a consequence all the interfaces
are boundaries of bin intervals, and no interface should fall in the middle of a
bin. This is to allow the proper counting of phase points. In a PPTIS window
the integration is stopped when i − 1 or i + 1 are crossed. If a path has Ns

slices, the part of the path to be used for sampling consists only of the timeslices
1 . . . Ns−1, because the first and last fall outside the window, and do not belong
to the ensemble. If a bin is centered for example on i− 1, the histogram at that
point will be over- or under-estimated. Of course, one could use a histogram
with bins of variable width, fitting the bin boundaries to the interfaces, but this
is much more complicated.

Histogramming loop and boundary points: Given a path in the ensemble of
window i− 1, i, i+ 1 it is simple to distinguish loop and boundary points. One
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has to detect the first and last crossing of the path with the middle interface i.
Then loop points are all those in between the two crossing points, the boundary
ones are the rest. The crossing itself is actually two points, one on the left of
i and one on the right, or the other way around. The point closer to the outer
interfaces is a boundary point, the other is a loop one.

Window rematch Denote with Li(jδλ) and Bi(jδλ) the loop and boundary his-
tograms in window i. To maintain the proper relative weight, these histograms
should not be normalized independently, and one could in fact consider the
unnormalized raw data. Let

Ni =
∑

λi−1<jδλ<λi+1

Li(jδλ) +Bi(jδλ) (5.11)

be the total number of points histogrammed in window i, let the boundary areas
between the interfaces i− 1,i and i,i+ 1 be respectively

AL
i =

∑
λi−1<jδλ<λi

Bi(jδλ) (5.12)

AR
i =

∑
λi<jδλ<λi+1

Bi(jδλ) (5.13)

The scaling factors of Eq. (5.9) are given by the ratio of the areas in the over-
lapping region between i and i+ 1

si = AR
i /A

L
i+1 (5.14)

Next we rematch windows i and i + 1 in the overlapping region. First, the
histograms of the boundary parts are supposed to be equal after rescaling by
si. If this is not the case, there has been some sampling problem and the
simulation must be repeated. If they are almost equal we could just use one of
the two, but it is better to take a weighted average. By defining the weights
fL = Ni/(Ni + Ni+1) and fR = 1 − fL. The rematched boundary histogram
then is given by

BR
i (jδλ) = Bi(jδλ) ∗ fL +Bi+1(jδλ) ∗ si ∗ fR (5.15)

Second, we add the loop histograms, so that the final rematched histogram is

Pi(jδλ) = BR
i (jδλ) + Li(jδλ) + Li+1(jδλ) ∗ si (5.16)

which is valid for λi < jδλ < λi+1. Finally the rematched window must be
rescaled to the predecessing histogram between i−1 and i, for i > 1. The whole
histogram Pi(jδλ) must be multiplied by

i−1∑
k=1

sk (5.17)

All the Pi(jδλ), i = 1 . . . nI − 2 form the probability distribution P (λ) for
λ1 < λ < λnI−1. The distribution can be completed for λ < λ1 and λ > λnI−1

using two standard MC or MD simulation in the stable states.
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This procedure is in effect equivalent to umbrella sampling (see sec. 2.3.1) with the use
of overlapping windows. The implementation of the procedure is sketched in Fig. 5.2.
It requires some care in bookkeeping for array indices, but results in the free energy
− lnP (λ) together with the rate constants.

5.3 Numerical results

We test the validity of the method on the same dimer system of sec. 4.3. We con-
sider N = 100 particles at fixed density in dimension d = 2, interacting through a
purely repulsive Weeks-Chandler-Andersen (WCA) potential, In addition, two of the
particles experience a double well potential Uddw(rd), Eq. (4.18), with rd the dimer
interparticle distance, so that its two minima correspond to a compact and an ex-
tended configuration. The barrier height is chosen such that the states are stable,
transitions between them are rare, and the rate constants are well defined. We chose
18 interfaces defined by the order parameter λ = rd. State A is defined by rd < λ0

and state B by rd > λ17. For all the details of the remaining numerical parameters
we refer to sec. 4.3.

We considered two cases, one at constant temperature, and the other at con-
stant energy. We first calculated the canonical free energy βF (rd) = − lnP (rd),
at T = 1/β = 0.755, chosen to match the average kinetic energy of our previous
microcanonical simulation, sec. 4.3.2. In Fig. 5.2 we report the histograms of loop
and boundary points for two consecutive PPTIS windows, together with the rescal-
ing and rematching procedure. By iterating the procedure on all the windows, we
computed the free energy between λ1 and λ16. The free energy in the stable regions
A and B was obtained by directly histogramming P (rd) by means of two standard
MC simulations. To check the PPTIS result we performed an independent MC free
energy calculation. By applying a biasing potential of exactly −Uddw(rd) to the dimer
system, one can simulate a system of pure WCA particles, and obtain the free energy
from the probability of finding any two particles at distance rd. See appendix F for
the details. The resulting free energy agrees very well with our PPTIS results, as
shown in Fig. 5.3.

Path sampling simulations are often performed at constant energy. We therefore
also performed a PPTIS simulation on the same system, at constant energy E/N =
1.0. The simulation is the same of sec. 4.3.2, but now we also compute the NVE
free energy. Again, we checked the result by an independent free energy calculation.
As explained in appendix F, using the constant temperature biased MC simulation
described before, it is possible to reweight each canonical configuration to its proper
microcanonical probability for the unbiased system. We report in Fig. 5.3 the NVE
free energy profile obtained from the reweighted biased MC together with the PPTIS
one.

Finally, the forward and backward rate constants follow from a PPTIS simulation
together with the free energy once the fluxes in (5.1) are known. For both the canon-
ical and microcanonical cases we computed the fluxes using MD trajectories with
initial points in the stable states and sampled from the appropriate corresponding
distribution, see sec. 3.2.1. In table 5.1 we report the final rates. The constant energy
results compare well with our previous calculations, see sec. 4.3.2.
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Figure 5.2: The window rematching procedure. Top and middle panel: loop and boundary
points histograms for two consecutive windows of the λi−1 ensemble (with λi−2 = 2.02 <
rd < 2.82 = λi) and the λi ensemble (with λi−1 = 2.42 < rd < 3.22 = λi+1). Bottom: con-
struction of the corrected histogram P (r) (thick solid line) between λi−1 and λi. Repeating
this procedure with windows λi−2 and λi+1 results in the probability histogram over the
entire range λi−2 = 2.02 < rd < 3.22 = λi+1.

1 2 3 4
rd
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20
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NVT - biased MC
NVE - reweighted MC
NVT - PPTIS
NVE - PPTIS

Figure 5.3: Canonical and microcanonical free energies obtained from PPTIS and MC simu-
lations. The errors are within symbol size. The temperature and the energy of the respective
NVT and NVE simulations were chosen to give the same average kinetic energy. Still, the
free energy profile on top of the barrier is significantly different for the two ensembles.
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kAB/10−10 kBA/10−10 C CF CMC

NVT 10±4 6±2 1.5±0.8 1.5±0.2 1.419±0.003
NVE 2.9±0.5 1.9±0.2 1.5±0.3 1.39±0.07 1.423±0.002

Table 5.1: PPTIS forward and backward rate constants kAB and kBA, as well as the
equilibrium constant C = kAB/kBA. Moreover, integrating P (rd) from the free energy
curves over the stable regions we can obtain their relative probabilities FA, FB and the ratio
CF = exp(β(FA − FB), which is another expression of the equilibrium rate. We also report
CMC obtained using the free energies from the biased MC simulations. The results are all
consistent with each other.

5.4 Free energy as function of another order parameter

So far we explained how in a PPTIS simulation, together with the rate constants, we
can obtain the free energy profile along the order parameter λ(x). In this section we
show how we can also compute in the same simulation the free energy as function of
another variable η(x).

Consider the normal umbrella sampling method, briefly explained in sec. 2.3.1.
In Eq. (2.38) the definition of the windows Wi is in principle independent of the
histogrammed variable. So given a system with phase space point x, we partition the
phase space in windows defined by Wi = {x : λ(i)

L < λ(x) < λ
(i)
R } and we compute in

each simulation

PWi(η) =
∫
dxρ(x)hWi

(x)δ[η − η(x)]∫
dxρ(x)hWi

(x)
= 〈δ[η − η(x)]〉Wi (5.18)

Take two neighboring windowsWi andWi+1, which overlap in λ. The two correspond-
ing histograms PWi

(η) and PWi+1(η) will be different from zero in a common range
of η. However, if η is not a unique function of λ, i.e. the relation is not one-to-one,
contributions to the common η-zone might also come from phase points not belonging
to the common λ-zone. Therefore the relative weight of PWi

(η) and PWi+1(η) cannot
be simply determined by the ratios of the overlapping areas. Fortunately there is a
way to take this into account. We can split the histogram (5.18) into two histograms,
one given by points x for which λ(x) ∈ Wi ∩Wi+1 and another for the remaining
points. If we do the same in window i + 1 naturally the histogram probability in
the intersection is the same. We can compute then the relative weight for the whole
PWi

(η) with respect to PWi+1(η) by taking the ratio of the areas of the histograms in
the intersection. Since we know which points belong to the common λ-zone, we can
avoid counting them twice.

We can now apply this to PPTIS. We review the algorithm implementation of
sec. 5.2 adding the new free energy histogramming. We use the definitions li(x) and
bi(x) in Eq. (5.2) for loop and boundary points. Besides the loop and boundary
λ-histograms

Li(λ) = 〈δ(λ− λ(x))li(x)〉wi
(5.19)

Bi(λ) = 〈δ(λ− λ(x))bi(x)〉wi
(5.20)
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we define three new η-histograms.

Lη,i(η) = 〈δ(η − η(x))li(x)〉wi (5.21)
BL

η,i(η) = 〈δ(η − η(x))bi(x)θ(λi − λ(x))〉wi (5.22)

BR
η,i(η) = 〈δ(λ− λ(x))bi(x)θ(λ(x)− λi)〉wi (5.23)

The definition of loop or boundary point x uses λ(x), but in the histogram we use
η(x). The last two expressions distinguish between boundary points left and right of
interface λi because these are the common areas wi ∩wi+1. As noticed in sec. 5.2 all
these histograms should not be normalized separately, and it is in practice better to
leave the bin counting unnormalized. After all the simulations have been done, the
rematching is as follows. Compute the rescaling factor si as in Eq. (5.14), from the
ratio of the areas of boundary histograms Bi(λ) and Bi+1(λ) in the common zone
between interfaces i and i + 1. Denote with Ni the total number of points in the λ
histograms of window i (which should be equal to the total number of points in the
η histograms). Let fL = Ni/(Ni +Ni+1) and fR = 1− fL be the relative weights of
the histograms. Then the final rematch of the η histograms in two windows is

P (η) = Lη,i(η) + Lη,i+1(η) ∗ si +BR
η,i(η) ∗ fL +BL

η,i+1(η) ∗ si ∗ fR (5.24)

Equation (5.24) is in principle correct and allows the computation of a free energy
as function of η even if the order paramter used in the PPTIS simulation is a different
one λ. However, the bias of the interface that allows to visit the less-probable regions
in the λ domain, is not necessarily a good bias for the η domain. Therefore, if η and
λ are very different, this procedure might not accurately describe the P (η) profile.

5.5 Summary

At the heart of the separation of timescales, Eq. (1.1), and thus of the rare event
is a free energy barrier. Reducing the myriad degrees of freedom to a proper set
of variables λ, the function F (λ) = − lnP (λ) shows two minima separated by a
transition state (see Fig. 1.6).

In the approach of traditional methods, such as the Bennett-Chandler procedure,
the free energy computation along a reaction coordinate is one of the basic steps
to calculate the rate constant. Instead TIS and PPTIS no longer use neither the
reaction coordinate nor the free energy, but the crossing probability function whose
calculation is much less sensitive to the problem of the right reaction coordinate.
However, for the analysis of complex and diffusive processes, e.g. conformational
changes of biomolecules, it could be useful to have, besides the crossing probabilities
and the rate constants, also the free energy profile along order parameters, for instance
to identify metastable states and bottlenecks in the mechanism. Here, we have shown
that a method developed for rate computations, also gives this free energy as a side
product, with no additional computational effort.

Finally, we remark that even though the derivation of this chapter is based on
PPTIS, the free energy computation can be done also in TIS. It requires however
both the simulations for the forward kAB and reversed rate kBA.



6 Efficiency of Interface Sampling

[. . . ] the physics tends to be oscured
in the profusion of mathematics.

Herbert Goldstein [88]

Throughout chapters 3 to 5 we have presented the theory and methods of Interface
Sampling for the study of rare events in complex systems, as well as applications to
simple systems. In this chapter instead we concentrate on pure theoretical derivations,
and estimates concerning the efficiency of TPS, TIS, and PPTIS.

6.1 Scaling

In this section we present some theoretical estimates for the scaling of the CPU
time required for TPS, TIS and PPTIS. In all three methods, the rate constant is
obtained by rematching a series of specific path sampling simulations, in which paths
are restricted to different zones of the phase space, called windows. Therefore all
methods scale with the number of windows NW . The basic expression for the CPU
time we are going to use is

tCPU ∝
NW∑
i=1

TiNi (6.1)

where NW is the number of windows, and Ti, Ni are respectively the average path-
length and the number of paths we sample in window i. The proportionality constant
is the CPU time required to generate a path of unit length, which is system and
computer dependent.

In the following, we will compare Eq. (6.1) for different methods. To obtain a
measure of their relative efficiency, we will optimize the simulation parameters, e.g.
choice of the interfaces, and we will study the scaling of CPU time as function of
important qualitative properties of the system, such as the free energy barrier length.
Although based on approximations and qualitative reasoning, the results can be useful
as guidelines in real applications.

111
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6.1.1 TPS and TIS

Consider a set of interfaces 0 . . . nI , similar to the ones in Fig. 3.1. To calculate the TIS
probabilities PA(i+ 1|i) for i = 1 . . . nI − 1, the path sampling involves NW = nI − 1
window simulations. To make a proper comparison apply the same setup to TPS. The
umbrella sampling of sec. 2.3.1 requires NW = nI windows to compute the histograms
PAWi(λ, t), because one more simulation is required in the stable state B 1. In the
TIS and TPS method we can disregard the initial simulation in state A to calculate
the flux in TIS, and to complete the histogram PA(λ, t) in TPS. In both methods, the
computational time of these steps is negligible compared to the other part, involving
NW windows.

TPS umbrella sampling simulations use paths of fixed length t′ for all windows.
Assuming also a fixed amount of sampled paths Ni = N for all i we can write for the
TPS simulation time

tTPS
CPU ∝ NNTPS

W t′ = NnIt
′ (6.2)

In TIS the pathlength is variable, and cannot be predicted a priori. However, in the
simulation of the dimer system of sec. 3.3 we found a linear behavior between window
1 and NW , see Fig. 3.11. We can assume then Ti = i/NW t′. In the last window
the TIS pathlength becomes equal to the average transition time, the same quantity
t′ which is recommended in TPS umbrella sampling [35]. Assuming again the same
amount of paths per window as in TPS, i.e. Ni = N for all i, we obtain

tTIS
CPU ∝ N

NT IS
W∑

i=1

i

NTIS
W

t′ = N t′N
TIS
W + 1

2
= N t′nI

2
(6.3)

For simulations carried on the same system and same computer the proportionality
constant is the same and we can thus write for the ratio of computational times

tTPS
CPU

tTIS
CPU

=
NnIt

′

N t′nI/2
= 2 (6.4)

This result is valid for a system with an underlying uphill free energy barrier, but not
for diffusive systems. Also, we assumed the same window definition in TPS in TIS
and the same amount of paths per window in the two methods, which could not be
the optimal setup.

This rather qualitative reasoning compares well with the results of sec. 3.3.3, see
table 3.2, but we have to remark that the system considered there was quite an optimal
situation for TPS. Because of the high energy barrier separating the states A and B,
all transition paths have approximately the same length and once ∂B is crossed, it
is absorbed in B and does not recross ∂B. Then the average TIS pathlength in the
last window is equal to the fixed TPS pathlength. However, when there is a broad
distribution of pathways, the TPS pathlength should, in fact, be larger than the
largest path in this distribution to ensure a true plateau, while TIS will, on average,

1As explained in sec. 3.3.2, one computes from PAWi
(λ, t) the ratios of the value of the histogram

at the left and right boundary of the window. This ratio is the TPS analog of the TIS probability
PA(i + 1|i).
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have the mean path length of this distribution. Moreover, once the interface ∂B is
crossed, there might be some correlated crossings through ∂B just thereafter. Even
if the path is committed and remains at the right side of the barrier, this effect also
enlarges the necessary minimum pathlength for TPS. It is due to this phenomenon
that in sec 3.3.4, in the system with the low energy barrier, the TPS length was about
three times as large as the average TIS length for the final window (20 vs 7.4). So the
factor 2 of Eq. (6.4) can be considered a lower limit, and the efficiency will in general
be higher.

6.1.2 Error analysis

In order to optimize Eq. (6.1) as function of the system parameters, and in order to
find the scaling of computational time as function of, for instance, the free energy
barrier length, we have to fix an accuracy level for the computation. This can be
done by imposing a certain relative error on the total outcome of the simulation, i.e.
the rate constant.

In each window, we consider an observable Oi, we denote the average value with
pi = 〈Oi〉, the variance with σ2

i , and we assume for the final rate k

k =
NW∏
i=1

pi. (6.5)

This is a general notation meant to be applied to TIS and PPTIS. In case of TIS,
Oi = PA(i + 1|i) and k corresponds to kAB . In case of PPTIS, Oi = p∓i /p

±
i and k

corresponds to C, the equilibrium constant. Note that with this definition, in TIS
0 < pi ≤ 1, while in PPTIS simply pi > 0. From Eq. (6.5) and assuming uncorrelated
different windows, we can write for the total relative error on k

ε2tot =
NW∑
i=1

σ2
i

p2
i

1
Ni

(6.6)

Here we also assumed in each window that the different estimation measures of Oi

are uncorrelated. Hence, the error on the estimate of pi scales as the inverse number
of simulation paths 1/Ni. In the propagation formula (6.6), we can obtain a fixed
total tolerance error ε2tot on k, if we simulate in each window an amount of paths
Ni = σ2

iNW /p2
i ε

2
tot. Inserting into Eq. (6.1), the final formula we need is

tCPU ∝
NW∑
i=1

TiNi =
NW∑
i=1

Ti
σ2

i

p2
i

NW

ε2tot

. (6.7)

In reality, paths are correlated and the scaling 1/Ni for the relative error of the single
window estimate is not correct. If you consider Mi simulation blocks of mi paths, with
mi greater than the MC correlation length, then the scaling is effectively replaced by
mi/Ni = 1/Mi. Assuming the same correlation length for all the windows, formula
(6.7) is still valid. Since we found that in the model systems of previous chapters the
assumption of uncorrelated paths is approximately satisfied, we will base the following
derivations on Eq. (6.7).
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Figure 6.1: TIS setup for exponential barrier. (a) Linear free energy. (b) General free
energy

6.1.3 TIS - Exponential barrier

TIS windows are defined as the set of three interfaces 0, i − 1, i. The path ensemble
is defined by paths that leave interface 0, and cross interface i− 1. Since a path that
crosses i− 1 then either reaches i or not, Oi = PA(i|i− 1) is a boolean variable, and
its square relative standard deviation reads

σ2
i

p2
i

=
1− pi

pi
(6.8)

Consider then the situation in Fig. 6.1 (a), which shows a linearly increasing free
energy barrier F = αλ, with nI + 1 interfaces λ0 . . . λnI

equally spaced by ∆, so that
the barrier length is b ≡ λnI

−λ0 = nI∆, and ∆Ftot ≡ F (λnI
)−F (λ0) = nI∆F . The

probability PA(i|i− 1) = pi = p is then independent of i and Eq. (6.5) becomes

k = pNW ⇔ NW = ln k/ ln p. (6.9)

In the following we can simply assume NW = nI − 1 ' nI . For such a barrier the
rate decreases exponentially with barrier height, such that

− ln p ∼ ∆F = α∆ ⇔ ∆ = − ln p
α

(6.10)

As in sec. 6.1.1, we assume the average pathlength is a linear function of the λ distance
travelled by the paths, from A to window i, i.e.

Ti ∝ i∆ = − i ln p
α

. (6.11)
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Then, using (6.8), and substituting (6.11) into (6.7)

tCPU =
NW∑
i=1

− i ln p
α

1− p

p

NW

ε2tot

=
− ln k
αε2tot

1− p

p

NW∑
i=1

i ' − ln k
αε2tot

1− p

p

NW
2

2

=
b

ε2tot

1− p

p

∆F 2
tot

2 ln2 p
=

1− p

p ln2 p

∆Ftot

ε2tot

b∆Ftot

2
(6.12)

In the last but one passage we used b = − ln k/α and NW = (− ln k)/(− ln p) =
∆Ftot/(− ln p). We plot the first factor of the final expression in Fig. 6.2. It has a
minimum around p ' 0.2, which tells us that the optimal choice of interface separation
is around PA(i|i− 1) = 0.2. The other factors give the scaling of the CPU time and
show that it is proportional to the barrier height times the area under the barrier.

This result is valid for linearly increasing free energy barriers, where the hypothesis
(6.11) is more or less satisfied (see Fig. 3.11). However, this optimization can be made
more general. If instead of Eq. (6.11) we have

Ti = cg(−i ln p)g (6.13)

with g ∈ N and cg a coefficient depending only on g, Eq. (6.12) becomes

tCPU =
NW∑
i=1

cg(−i ln p)g 1− p

p

NW

ε2tot

' cg
1− p

p

NW

ε2tot

(− ln p)gNW
g+1

g + 1

=
1− p

p ln2 p

cg
ε2tot

(− ln k)g+2

g + 1
(6.14)

and the minimization result p ' 0.2 is unchanged and independent of g. Consequently,
if the situation is such as in Fig. 6.1 (b), we can impose again for all windows pi = p

0.2 0.4 0.6 0.8
p

1.5

2.5

3

3.5

4

4.5

5

CPU

Figure 6.2: CPU time as function
of TIS window crossing probability.
Exponential barrier. Minimum at
p ' 0.2.
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and assume
Ti = f̄(λi) = f̄(F−1(i∆F )) ≡ f(−i ln p) (6.15)

where f is a general function which can be Taylor-expanded. Then, applying the
minimization procedure to each term of the power series, the result p ' 0.2 remains
valid for a general form of the free energy.

We remark however that this result assumes a fixed window crossing probability p.
We have not tried to optimize TIS in the most general interface setup, and there are
indications that the use of windows with variable crossing probability might perform
better [122].

6.1.4 TIS - Diffusive barrier

Let us assume now a flat diffusive barrier. To help us in the theoretical derivations,
we can view the barrier as a set of b discrete states, and use the discrete model of
sec. 4.1.1 in the case of symmetrical hopping probabilities τi,i+1 = τi,i−1 = 1/2. The
basic expression we need is

T [i→j
0] = i/j = 1− T [i→0

j ] (6.16)

where T [i→j
0] is the probability of being in i and reach j > i before 0. This relation

is proven in appendix E.4. By definition, for a diffusive barrier Ti scales quadratically
with the λ distance travelled. We distinguish two situations. First, we assume a fixed
window width, and second a fixed crossing probability in the windows.

Fixed window width

From the discrete set of states 1, 2 . . . b let us build the windows wi = 1 + ∆(i − 1)
with i = 1 . . . NW and b = 1 +NW ∆ ' NW ∆, see Fig. 6.3(a). Then

pi = T [wi →wi+1
0 ] =

wi

wi+1
=

1 + ∆(i− 1)
1 + ∆i

(6.17)

from which, using Eq. (6.8)

σ2
i

p2
i

=
∆

1 + ∆(i− 1)
. (6.18)

1 w2 w3 w4 w5 w6

∆ ∆ ∆ ∆ ∆

w2 w3w1 w4 w5

p p p p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a)

(b)

w

Figure 6.3: Window choice for
TIS on diffusive barrier of length
b = 16. (a) fixed window width
(b) fixed crossing probability
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For the mean pathlength it holds Ti = (i∆)2 because the system is diffusive. We
have checked this behavior for σ2

i /p
2
i and Ti on the dimer system in sec. 4.3.1, using

a barrier length b = 6. As shown in Fig. 6.4 the findings based on the onedimensional
model can be verified also in a more complex system.

Eq. (6.7) becomes then

tCPU =
NW∑
i=1

(i∆)2
∆

1 + ∆(i− 1)
NW

ε2tot

=
b3

ε2totNW
2

NW∑
i=1

i2

1 + (i− 1)b/NW
. (6.19)

We have studied this function numerically using Mathematica [123]. The function
shows a minimum for NW = N∗

W , defining the optimum number of interfaces. This
minimum N∗

W has a behavior

N∗
W ' cbf ln c ' 0.5, f ' 2/7 (6.20)

which inserted into Eq. (6.19) yields, after an asymptotic expansion,

tCPU ∼ b2+f (6.21)

Fixed crossing probability

Consider the setup of Fig. 6.3(b). Now pi = p∀i, Eq. (6.9) holds and the windows wi

are defined by

pi = T [wi →wi+1
0 ] =

wi

wi+1
= p (6.22)
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the recursive relation wi+1 = wi/p is easily solved by wi = 1/pi−1, and since Ti ∝ w2
i+1

we obtain

tCPU =
NW∑
i=0

p−2i 1− p

p

NW

ε2tot

=
− ln k
ε2tot

p− 1
p ln p

NW∑
i=0

(
1
p2

)i

=
− ln k
ε2tot

p− 1
p ln p

1− p−2(NW +1)

1− p−2

=
− ln k
ε2tot

p− 1
p ln p

1− p−2k−2

1− p−2

=
− ln k
ε2tot

p− 1
p ln p

p2 − k−2

p2 − 1

=
− ln k
ε2tot

p2 − k−2

p(p+ 1) ln p
(6.23)

A numerical study of this function showed a minimum for p ' 0.47 which is not
sensitive to k for k−2 > 10.

The scaling with b follows from Eq. (6.23)

tCPU =
− ln k
ε2tot

p2 − k−2

p(p+ 1) ln p

=
NW

ε2tot

k−2 − p2

p(p+ 1)
∼ NW k−2 ∼ b2 ln b (6.24)

where in the last step we used k ∼ 1/b and n = ln k/ ln p = ln b/ ln p−1 ∼ ln b.
Comparing with Eq. (6.21) we see that the setup with fixed crossing probability
yields a more efficient scaling for large b.

6.1.5 PPTIS

As in the previous section we make use of the onedimensional model of sec. 4.1.1.
Consider a diffusive barrier of length b and a fixed interface separation ∆ = b/n.
Then it follows that Ti ∝ (2∆)2. Using as observable Oi = p∓i /p

±
i , we can write

σ2
i

p2
i

=
σ2

p∓i

(p∓i )2
+

σ2
p±i

(p±i )2
=

1− p∓i
p∓i

+
1− p±i
p±i

. (6.25)

where the first equality follows from cov(p∓i , p
±
i ) = 0 ∀i, which can be easily proven,

and the second is an approximation which assumes the ensembles (∓,=) and (±, ‡)
to be independent. However, for a flat barrier

p±i = T [∆ →2∆
0 ] = 0.5 = T [∆ →0

2∆] = p∓i (6.26)
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Then, we simply have σ2
i /p

2
i = 2, and

tCPU ∝
NW∑
i=1

∆2NW

ε2tot

∼ NW
2∆2 = b2 (6.27)

is independent of ∆.
This means that the choice of the windows does not matter as far as the total

relative error on the equilibrium constant is concerned. This seemingly crude result
is in accordance with a recent efficiency analysis of the regular Umbrella Sampling
method [124]. Some textbooks [11,125] have stated that the efficiency of a free energy
calculation on a relative flat landscape increases linearly with the number of windows.
This suggest that, apart from sampling problems, an infinite number of infinite small
windows would be the best possible choice. However, as correctly noticed in [124], the
gain of diffusing through smaller window is exactly cancelled by the error propagation
which was neglected in Refs. [11, 125]. Hence, it was found that the efficiency scales
as b2 and is independent of the number of windows used.

In this section we have given scaling results for the rate constant computation
on diffusive barriers using TIS and PPTIS. In the next section we present scaling
considerations for the TST approach, based on the calculation of the transmission
coefficient. Finally, we will compare and summarize the different approaches.

6.2 Transmission coefficients revisited

In sec. 1.5.2 (page 19) we mentioned some alternative expressions for the TST trans-
mission coefficient κ. These expressions try to improve the efficiency of the counting
of trajectories crossing the TST dividing surface defined at λ = λ∗, see Fig. 1.10.
We also introduced Eq. (1.65), based on the effective positive flux, whose definition
was given in sec. 3.1.3. Now, we are in a position able to derive a formal complete
expression for κTIS and to compare it with the some of the other approaches.

6.2.1 Transmission coefficient based on effective positive flux

Consider the TIS formula for the rate constant, Eq. (3.12). With the help of the flux
relation Eq. (D.2) we can write

kAB =
〈φnI ,0〉
〈hA〉

=
〈φλ∗,0h

f
nI ,0〉

〈hA〉
(6.28)

where as usual interface 0 is the border of state A, interface nI the border of state B,
and we introduced an intermediate interface at the TST dividing surface. Using the
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definition (3.10) of the effective positive flux for φλ∗,0 we can proceed rewriting

kAB =
〈φλ∗,0h

f
nI ,0〉

hA

=
〈hb

0,λ∗ |λ̇|δ(λ− λ∗)hf
nI ,0〉

〈hA〉

=
〈hb

0,λ∗ |λ̇|δ(λ− λ∗)hf
nI ,0〉

〈δ(λ− λ∗)〉
· 〈δ(λ− λ∗)〉
〈λ̇θ(λ̇)δ(λ− λ∗)〉

· 〈λ̇θ(λ̇)δ(λ− λ∗)〉
〈hA〉

· 〈hA〉
〈hA〉

'
〈hb

0,λ∗ |λ̇|δ(λ− λ∗)hf
nI ,0〉λ=λ∗

〈λ̇θ(λ̇)〉λ=λ∗
· kTST

AB (6.29)

where in the last passage we used the definition of kTST
AB , Eq. (1.33), and we ap-

proximated 〈hA〉/〈hA〉 ' 1. Because of the definition of the transmission coefficient,
kAB/k

TST
AB , we can write

κTIS =
〈hb

0,λ∗ λ̇θ(λ̇)δ(λ− λ∗)hf
nI ,0〉λ=λ∗

〈λ̇θ(λ̇)〉λ=λ∗
(6.30)

where we used the fact that only positive velocities contribute inside the average in
the numerator, due to the hb, hf functions, and hence |λ̇| can be substituted with
λ̇θ(λ̇). Comparing with Eq. (1.65) gives

χepf
AB(x0) = hb

0,λ∗(x0)h
f
nI ,0(x0) (6.31)

The expression (6.30) for κTIS can be found in [20] and was first derived by van
Erp in [119]. The calculation is performed by taking a set of independent states x0 on
the surface λ∗ and initiating from each state a series of trajectories. Only if λ̇(x0) > 0,
one has to integrate the equations of motion backward in time. Because of the term
hb

0,λ∗ , one can stop the integration if the evolution hits again the surface λ∗. If instead
one reaches state A, we start again from x0 and integrate forward in time to check if
we reach state B or not. As a result, this procedure only counts positive flux terms
(see Fig. 6.5).

A

B
λ*

Figure 6.5: Calculation of transmission coefficient κ with the effective
positive flux idea. When initial points x0 are sampled with negative
velocity λ̇ < 0 (crosses) they do not contribute, since to hit A on the
backward evolution they must first cross λ∗, and hence hb

0,λ∗(x0) is au-

tomatically zero. When points are sampled with positive velocity λ̇ < 0
but on the backward evolution they hit λ∗ before state A (open circles),
they also do not contribute. In the example in figure the path eventually
ends in B, so it must be considered as one reaction. This is properly
counted by the first point from bottom. It is effectively the only one that
contributes because the other points, even if different, simply belong to
the same reaction path.
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6.2.2 Comparison with other methods

Using the error analysis ideas of this chapter and the results of sec 1.5.3, we can
now give some comparative scaling considerations for different approaches to the
calculation of the rate constant in a diffusive regime. Namely, we consider

1. the standard TST-BC procedure, Eq. (1.48),

2. the Ruiz-Montero method, Eq. (1.62),

3. the effective positive positive flux approach of this section, Eq. (6.29),

4. TIS,

5. PPTIS.

The cases of TIS and PPTIS were discussed in sec. 6.1.4 and 6.1.5 respectively, so
let us concentrate on methods 1,2, and 3. They can all be considered as combinations
of a free energy calculation followed by the computation of a transmission coefficient.
As mentioned in sec. 6.1.5, the CPU time tUS

CPU for the free energy calculation with
the use of umbrella sampling scales as b2, the square of the barrier length. To compute
the scaling of the transmission coefficient κ we use the formula

tκCPU ∝ σ2
κ

κ2
T (6.32)

where T is the average length of the trajectories used in the calculation. Formula
(6.32) can be derived similarly to Eq. (6.7), and we assumed ε2tot = 1.

The scalings of σ2
κ/κ

2 for the methods 1,2, and 3 have been derived in sec. 1.5.2,
respectively in Eqs. (1.54),(1.64), and (1.67). Since here we are interested in the
scaling of κ and not of its estimator we can drop the dependence on Ntr.

The estimate of T needs some considerations. Method 1 requires the trajectories
to be committed to the stable states in order to reach a plateau in the time-dependent
transmission coefficient κ(t). Therefore paths must be generated on the whole length
of the barrier, and because of diffusion their time-length scales as T ∼ b2. Method
2 instead is based on the computation of the integral of the velocity autocorrelation
function, Eq. (1.63). It therefore requires integration of trajectories only for a time
equal to the decay time of the correlation function. In the case of a flat square barrier,
where estimation (1.64) holds, this decay time is constant, and thus T ∼ const. For
method 3 we can estimate T as follows, also assuming a flat square barrier separating
the states. Suppose to generate initial points x0 for the trajectories on the surface
λ∗ (see Fig. 6.5), which we can put in the middle of the barrier between A and B.
Assuming a symmetric velocity distribution, for half of the points λ̇(x0) < 0 holds,
which implies hb

0,λ∗(x0) = 0 and no integration of dynamics is needed. The other half,
for which λ̇(x0) > 0, we divide into two sets

S1 = {x0|λ̇(x0) > 0 ∧ hb
0,λ∗(x0) = 0} (6.33)

S2 = {x0|λ̇(x0) > 0 ∧ hb
0,λ∗(x0) 6= 0} (6.34)
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and we denote with (1− α)/2 and α/2 the fraction of points in each set respectively.
Necessary condition for a point to be counted is that its evolution backward in time
reaches A before λ∗. The set S1 are points not satisfying this condition. In this case
trajectories are integrated only the time needed to hit λ∗, and this time scales on
average linearly 2 with b. The set S2 contains the only points that might contribute
to the transmission coefficient if hf

nI ,0(x0) 6= 0, i.e. if the forward evolution reaches
B before A. But in either case, whether it reaches B or A first, the integration must
be carried for the full length of the barrier and thus T scales as b2. We still need to
estimate α, but this is easily done since the set S2 contains the reactive paths and
their amount is just the definition of κ. Since the barrier is flat we assume the other
points also contribute in similar amount and we estimate α ∼ 2κ. Indeed, as shown
in Fig. 6.5, only one point belongs to S2 out of all the crossing points with λ∗, and
we know from sec.1.5.2 that the inverse number of recrossings is proportional to κ.
Resuming, we can estimate the average pathlength for the effective positive flux as

T ∼ 1
2
· 0 +

1
2
[
(1− α)b+ αb2

]
(6.35)

∼ 1
2
[
(1− 2κ)b+ 2κb2

]
∼ 1

2
[b+ 2b] ∼ b

where we used the result κ ∼ 1/b for diffusive barriers (see Eq. (1.58) and sec. 4.1.1).
Using Eq. (6.32) we can derive the scaling of the CPU time tκCPU for the com-

putation of the transmission coefficient κ, and the total CPU time is then ttot
CPU =

tUS
CPU + tκCPU . We report the final results for methods 1-3 in table 6.1 together with

the TIS and PPTIS results. We also converted the scaling as function of the barrier
length b into the scaling as function κ, using again κ ∼ 1/b.

The results are quite interesting, indicating that PPTIS and the effective positive
flux approach are comparable to the Ruiz-Montero, and, surprisingly, that TIS still
performs quite well compared to PPTIS. However, we must remark that the compar-
ison presented here is based on models and approximations, most important that of
a flat square barrier separating the stable states. The qualitative findings of table 6.1
are just an indicative starting point and could change on a more careful theoretical
analysis. Moreover, we have not taken into consideration the other methods named
in sec. 1.5.3, giving different expressions for the calculation of the transmission co-
efficient. It would be interesting then to perform a more comprehensive study, also
testing the methods on realistic cases. Here, we conclude noticing that a comparative
study of ion channel diffusion [24] showed that the algorithm based on the effective
positive flux expression of Anderson [26] was superior to the other transmission rate
expressions. Moreover, it was found as efficient as an optimized version of the more
complicated Ruiz-Montero method.

2 This is a problem of first exit time through a specific end of an interval [6]. Suppose to have
a onedimensional diffusion in the interval [0, L] where the boundaries are absorbing. We want to
know the mean first exit time t(x) through boundary 0 when starting in x. Proceeding similarly to
sec. A.2, a backward Fokker-Planck equation can be written for t(x). Since the barrier is assumed
flat, only diffusion is considered, and the equation contains no drift term. The solution displays two
limiting behaviors. Let ε � 1 and D the diffusion coefficient. For x = L− ε, one obtains t ∼ L2/D
and the usual diffusive behavior is recovered. For x = ε, one obtains t ∼ Lε/D, which is a linear
function of the interval width.
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method tUS
CPU σ2

κ/κ
2 T ttot

CPU scaling
BC b2 1/κ2 b2 b2 + b4 ∼ b4 1/κ4

RM b2 1 const b2 + const ∼ b2 1/κ2

epf b2 1/κ b b2 + b2 ∼ b2 1/κ2

TIS n/a n/a b2 b2 ln b − lnκ/κ2

PPTIS n/a n/a const b2 1/κ2

Table 6.1: Scaling of total CPU time for different methods in the case of diffusive barriers.
BC=Bennett-Chandler, RM=Ruiz-Montero et al., epf=effective positive flux. Those meth-
ods are based on a procedure that requires first a free energy calculation, which we assume
here performed with Umbrella Sampling (US), and then the calculation of a transmission
coefficient κ. TIS and PPTIS are based on a different approach and this procedure is not
applicable (n/a).

6.3 The acceptance ratio for TIS on flat diffusive bar-
riers

In TIS simulations of diffusive systems with a barrier length b, we found that the
acceptance ratio α for the shooting move plateaus to a fixed value as the windows
approach the end of the barrier. This phenomenon happens for sufficiently large b and
is approximately independent of the momentum displacement in the shooting move.
In this section we try to give a qualitative explanation for it.

We refer again to the onedimensional model of sec. 4.1.1, see Fig. 4.1: s − 1
metastable states separate state 0 and state s � 1. Consider a TIS path ensem-
ble close to the end of the interface, e.g. for simplicity paths that start from 0, and
cross s− 1. Most of the paths in this ensemble will end up in s and we neglect those
that go back to state 0. The paths then start in 0, diffuse across the barrier and reach
s. Suppose to perform a shooting move taking a slice of the path which lies in state
i. The shooting will be accepted if integrating backward in time we reach 0 before s
and integrating forward in time we reach s before 0. We neglect for the moment the
acceptance probability caused by the variable pathlength, see sec. 3.2.2. Because of
Eq. (E.19) the acceptance probability is written as

p(i) = T [i→0
s]T [i→s

0] =
(

1− i

s

)
i

s
(6.36)

The overall acceptance probability is obtained summing Eq. (6.36) on all timeslices.
However Eq. (6.36) is given as function of the state i. Hence we need the distribution
ρ(i) given by the (normalized) number of time slices in state i. A moment reflection
shows that ρ(i) ∝ p(i) because the probability of a timeslice to be part of the path is
exactly the probability of acceptance of a new path generated by the shooting move.
The proportionality constant is given by the constraint

∑s
i=0 ρ(i) = 1. Using the

continuous approximation
s∑

i=0

ig ' sg+1

g + 1
g ∈ R (6.37)
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in the limit s� 1 we obtain ρ(i) = 6p(i)/s. Consequently we can write for the overall
acceptance ratio

α =
s∑

i=0

ρ(i)p(i)

=
6
s

s∑
i=0

p2(i)

=
6
s3

s∑
i=0

i2 +
i4

s2
− 2i3

s

' 1
5

= 0.2 (6.38)

This result disregards the acceptance probability given by the ratio of old and new
pathlengths, which lowers the value of α. Indeed when we performed simulations of
this simple onedimensional model we found that the acceptance ratio plateaus to a
value α = 0.135. This effect can be taken into account if we know the distribution of
pathlengths, i.e. in TIS the distribution of first passage times. In general it is system
dependent, because is related to the diffusion constant on top of the barrier, so that
the result α = 0.2 can be considered as an upper bound to the acceptance ratio of
the shooting move for general systems. Indeed, in a study of a 247-atom peptide in
water it was found a much lower acceptance of the order of a few percent [3].

6.4 Summary

This chapter concludes the presentation of the theory and algorithms of Interface
Sampling. Before switching to a real application with the study of crystal nucleation,
we want to summarize here some of the literature.

Most of what we presented in chapters 3-5 has appeared in [21,126,109,20,127]. In
[20] more details can be found on the TIS shooting acceptance criterion for stochastic
dynamics. Also in [20] one can find more techniques of Interface Sampling that
we have not presented here, such as the use of CBMC based shooting moves, an
algorithm for the calculation of activation energies, different algorithms for the flux
computation, and the use of time as an order parameter. Up to now the TIS method
has been successfully applied to two realistic cases, the folding of a polypeptide [3],
and hydration of ethylene [119]. These results show that TIS is capable of studying
rare events processes in complex systems efficiently and should encourage even more
challenging applications.
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In the conventional Becker-Döring nucle-
ation theory, [. . . ] all properties of the
cluster are uniquely fixed by their size,
fluctuations in the cluster properties to
be described by other coordinates being
neglected.

Kurt Binder [128]

In chapters 3,4, and 5, we have developed the interface sampling methods and imple-
mented them on model systems. Here, we want to apply Interface Sampling to a more
realistic case, the solid-liquid nucleation of a system of Lennard-Jones particles. A
supercooled liquid is in a metastable state because solidification is not initiated until
clusters of a critical size are formed (nucleated). Due to the presence of a free energy
barrier, this nucleation process is a rare event. Though the system is fairly simple,
the process is definitively not trivial.

7.1 The problem of nucleation

Liquids can be cooled significantly below the freezing temperature and kept in this
state without crystallizing. The phenomenon is known as undercooling, and its ex-
perimental observations on water date back to the beginning of the 18th century 1.
An undercooled system is thermodynamically metastable, being by definition in a
region of the phase diagram where the corresponding solid phase is more stable. In
most experimental situations the freezing is triggered by some disturbances, such as
dust, shocks, or the effect of the container walls. These heterogeneities help to ini-
tiate the crystallization, which would otherwise occur only because of spontaneous
fluctuations. We restrict ourselves to this latter case, called homogeneous nucleation.
As an activated process, it has difficulties to start spontaneously, but proceeds very
easily once started.

1D.B. Fahrenheit, Phil. Trans. Roy. Soc. 39, 78 (1724)
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R
Figure 7.1: Left: undercooled
liquid. Right: undercooled liq-
uid plus a spherical droplet of
bulk solid phase

The reason for this phenomenon is that the transition to the solid phase proceeds by
formation of small nuclei, and can be qualitatively explained using classical nucleation
theory (CNT). Nuclei are assumed to be spherical regions of solid phase immersed in
the undercooled liquid. Consider a system I of pure liquid, and a system II where a
spherical droplet of radius R is present (see fig. 7.1). The Gibbs free energy difference
between the two is written as

∆G = GII −GI = 4πR2γ +
4
3
πR3ρs∆µ (7.1)

where γ is the liquid-solid surface free energy density, ρs is the number density of the
bulk solid, and ∆µ = µsol − µliq is the difference in Gibbs free energy per particle
between the liquid and the solid. The first term is a surface free energy term and is
always positive because of the work that must be done to create an interface. The
second term is a bulk term, and since we are in an undercooled state ∆µ < 0 because
the solid is more stable than the liquid. As a result of the competition between the
two terms, the free energy as function of R displays a maximum at a critical nucleus
size R∗ (see Fig. 7.2). Nuclei of radius smaller than R∗ tend to shrink, but when sizes
larger than the critical size are attained, the solid nuclei can grow indefinitely. From
Eq. (7.1) we can derive an expression for the barrier height ∆G∗ = ∆G(R∗)

∆G∗ =
16πγ3

3ρ2
s∆µ2

(7.2)

which is inversely proportional to ∆µ2. If we heat the liquid, it becomes less under-
cooled, and we approach the melting temperature Tm from below. Then ∆µ vanishes
and in the thermodynamic limit the barrier becomes infinitely high, so that the two
system can coexist at T = Tm.

As shown in appendix G, the nucleation rate per volume, usually denoted with I,
can be written in classical nucleation theory as

I = ρl
24DS(n∗)2/3

λ2
D

√
|∆µ|

6πkBTn∗
e−β∆G∗ (7.3)

where ρl is the density of the liquid, n∗ is the number of particles in the critical
nucleus, DS is a self-diffusion coefficient, and λD is a typical diffusion distance for
particles to attach to the critical nucleus. Expression (7.3) is in qualitative agreement
with experiments [129,130], but in most cases neither λD nor γ are accurately known,
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Figure 7.2: The Gibbs free energy
of a spherical nucleus as function of
its radius R as given by classical nu-
cleation theory, Eq. (7.1).

and they are usually used as free parameters to fit the experimental data. Though
theoretical refinements as well as more accurate experimental methods have been
developed [131], CNT is too crude an approximation in real cases and a microscopic
picture of the nucleation process is still lacking. Computer simulations are then a
natural tool to help the understanding at fundamental level.

7.1.1 Rare event simulations of nucleation

Close to coexistence we can approximate [129] ∆µ ≈ ∆h∆T , where ∆h is the enthalpy
change per particle at coexistence and

∆T ≡ (Tm − T )/Tm (7.4)

is the degree of undercooling. From Eqs. (7.3) and (7.2) we see that when ∆T de-
creases, the rate decreases exponentially as exp(1/T (∆T )2). Hence, when ∆T is low,
the inverse nucleation rate may exceed the accessible computer time. Given the limits
of current computers on the size of the simulation box and the time length of the sim-
ulations, one has to impose very large undercoolings of the order of 40% in order to
observe spontaneous nucleation [131,132]. The results for such cases are not reliably
applicable to experimental cases at realistic undercoolings closer to coexistence.

In [131, 133, 134, 135] ten Wolde, Ruiz-Montero and Frenkel studied a Lennard-
Jones system at a moderate undercooling of 20%, and treated the nucleation as a rare
event using the Bennett-Chandler procedure (see sec. 1.5). Considering NPT simu-
lations at two different pressures, they computed the nucleation free-energy barrier
as function of a structural order parameter, the global Q6 (see later, sec. 7.2.3), by
means of Umbrella Sampling, and calculated the transmission coefficient using the
Bluemoon ensemble technique. They could thus obtain the nucleation rate and in-
vestigate the nucleation mechanism. In the precritical phase, nuclei are found to be
mainly body-centered-cubic (bcc) ordered. This preference for bcc is in accordance
with a scenario proposed by Alexander and McTague [136], who on the basis of gen-
eral symmetry considerations, concluded that in three dimensions the first nucleated
phase for simple fluids is bcc. As the nuclei grow to the critical size, the bcc structure
becomes confined to the surface, while the core develops a face-centered-cubic (fcc)
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phase. Critical and postcritical nuclei retain a bcc shell of approximately constant
width, but the interface between the crystal nuclei and the surrounding liquid is quite
diffuse. Both the density and the structural order parameter decay smoothly to a
liquidlike value. The calculation of the transmission coefficient showed the nucleation
process to be distinctly diffusive. When the system is near the top of the barrier, it
remains close to the top and the size of the largest cluster fluctuates around the criti-
cal size. The overall transition rate was found to be two or three orders of magnitude
larger than the one predicted by CNT or found in later calculations [137]. Moreover,
the mechanism analysis was performed using the equilibrium free energy calculations
along a predetermined reaction coordinate, a procedure that might hinder kinetic
effects (see sec. 1.7).

Summarizing, straightforward MD is not realistic, and the TST-BC investigation
might be missing some aspects of the process. Here, we do not want to rely on
Eq. (7.3) and we avoid using the TST-BC procedure, because we do not want to
assume a specific way of how nucleation proceeds by choosing a reaction coordinate.
For an investigation of the nucleation mechanism, in line with a first principle study,
possibly free of biases, nucleation is then a natural application for Interface Sampling.

7.2 Methodology

Here we describe the system and the MD scheme used in the TIS and PPTIS simula-
tions. We discuss then the preparation of the system in the initial undercooled liquid
state, and the choice of an order parameter to characterize the nucleation towards the
final solid phase.

7.2.1 The system

We consider a system ofN particles in three dimensions interacting through a pairwise
Lennard-Jones potential, Eq. (2.51). All the particles have equal mass m, and we use
reduced units, so that the LJ unit of energy ε, the LJ unit of length σ and m are
unity. The LJ unit of time (mσ2/ε)1/2 is therefore also unity.

Phase transitions are usually studied in the isobaric-isothermal ensemble perform-
ing separate simulations of the two phases at the coexistence point [11]. In our case
however, we investigate the growth of one phase inside the other. In reality, when a
liquid solidifies, for example at room temperature, the latent heat of solidifaction is
dissipated into the environment, acting as a reservoir. Instead in simulations the sys-
tem temperature is kept constant using an artificial thermostat, like stochastic noise
or additional variables coupled to the system, but is never a real bath of surronding
particles. The same reasoning applies to a variation in (specific) volume, which is dis-
sipated by the environment for example at atmospheric pressure. To avoid artificial
biases, we should use in principle the constant energy microcanonical ensemble and
simulate a very big system comprising also a sufficiently big environment. Since this
is not feasible, we chose for a compromise, and simulated the system in the isobaric-
isoenthalpic ensemble (NPH). We keep the pressure constant, but we let the system
develop latent heat as the nucleation proceeds.

To simulate the NPH ensemble we applied an extended hamiltonian method by
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Andersen [77] using a Trotter factorization of the associated Liouville operator [76]
with a time step ∆t = 0.01. The mass of the piston was W = 0.0027. We used a
cut and shifted LJ potential with a cutoff radius set at 2.5. Long-range corrections to
pressure and potential energy were applied on the fly, directly in the force subroutine
at every time step. In order to speed up the simulation we used a Verlet neighbor
list and a linked list to update the neighbor list [138]. Further details on the NPH
dynamics and the tail corrections can be found in appendix H.

To perform equilibration runs we also employed NPT simulations using a Berend-
sen thermostat [139]. In equilibration and test simulations the number of particles
ranged 2 from N = 1000 to N = 4000. The production runs were all performed in
the NPH ensemble with N = 10648.

7.2.2 LJ phase diagram

We benefitted from the extensive literature on the Lennard-Jones system to check the
outputs of our MD code and to locate the desired undercooling point in the phase
diagram.

Since the time the potential was introduced by Lennard-Jones [140], numerous
theoretical and numerical studies have been performed. The coexistence curves were
investigated by Hansen and Verlet in 1969 [141]. The following studies on the gas-
liquid coexistence were reviewed in 1993 by Johnson, Zollweg and Gubbins [142], who
fitted the simulation data to an accurate equation of state for the fluid phase. In the
middle of 1990’s the full LJ phase diagram was derived by Kofke [143] and Agrawal
and Kofke [144] using the Gibbs-Duhem integration. Recently, the coexistence curves
have been computed again by means of absolute free energy calculations. Van der
Hoef derived in [145] an equation of state for the solid phase and theoretical fits to
the solid-liquid coexistence curves. In [146] the same author extended the fits to
the gas-liquid coexistence. One of the last computations of the complete LJ phase
diagram was done by Barroso and Ferreira in [147]. We summarize the results of the
cited literature in Fig. 7.3. The LJ solid state is face-centered-cubic (fcc), and argon
and the other rare gases with the exception of helium are known to crystallize in
that structure [148]. One might ask whether a bcc solid phase exists in some regions
of the phase space. It is known that hard-core potentials tend to favor close-packed
structures, while soft-core potentials prefer body-centered-cubic (bcc) [149,150]. Even
though the bcc structure has been found mechanically instable for LJ systems at
room temperature [151], there might be the possibility of a stable bcc phase at high
temperatures and pressures, as suggested for other more realistic potentials for rare
gases [152, 153], but to our knowledge no fcc-bcc transition has been found for LJ
systems. Anyway, we are not concerned with these special cases, and we consider the
solid LJ phase to have a close-packed fcc structure.

In our simulations the pressure is constant and we chose the value P = 5.68,
used also by ten Wolde [131]. For this pressure the theoretical melting temperature is
Tm = 1.10676. To prepare the system in the undercooled state we first melted a simple
cubic lattice at a temperature T = 2.0, and then using NPT simulations we followed

2In the case of lattice simulations we took care of choosing an N such that the number of atoms
per unit cell were the characteristic one of the lattice
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an isobar decreasing gradually the temperature until T = 0.83, corresponding to 25%
degree of undercooling, Eq. (7.4). This corresponds to a nucleation event less rare
than in the system of ten Wolde (see sec. 7.1.1). Since the computational procedure is
hence less expensive, we chose these conditions as a first attempt to test the interface
sampling. The undercooled state was then equilibrated with an NPH simulation,
yielding a constant enthalpy per particle H/N = 1.412. The final state was used
as the starting point for the Interface Sampling. The equilibration procedure is also
visualized in Fig. 7.3.

7.2.3 Choice of the order parameter

In order to distinguish the solid and liquid state we used a method developed by
ten Wolde [131] that is able to find the solid clusters in the system. The method
is based on an algorithm that is able to identify if a particle i is solid or liquid by
looking at the orientational order around the particle. The algorithm makes use of
the complex bond-order parameter q̄6m(i),m = −6 . . . 6, defined in appendix I, and
works as follows.

1. define the neighbors of a particle i as all the particles j within a cutoff radius
rq. The radius rq can be taken from the first minimum of the g(r).

2. compute for each particle the bond-order parameter q̄6m, Eq. (I.1)

3. for a fixed particle i loop over the neighbors j and compute the normalized
dot-product

dij =
∑6

m=−6 q̄6m(i)q̄∗6m(j)(∑6
m=−6 |q̄6m(i)|2

)1/2 (∑6
m=−6 |q̄6m(j)|2

)1/2
(7.5)

As shown in appendix I, dij = d∗ij = dji. Therefore dij ∈ R and moreover
−1 ≤ dij ≤ 1. The distribution of dot-products has a different behavior in
solids and liquids. In particular in solids tends to be peaked towards 1, while
in liquids is broader around 0. We define then particles i and j to be connected
if dij exceeds a given threshold (in our case was 0.5).

4. in this way, for each particle one can compute the Number of Connections per
Particle (NCP). Again, solids tend to have more connections per particle than
liquids, and using another threshold (in our case 8.5), we define a particle to be
solid if its NCP exceeds the threshold. Otherwise the particle is liquid.

Once particles are distinguished into solid and liquid ones, we apply the criterion
that two solid particles belong to the same cluster if they are neighbors, i.e. if their
relative distance is less than rq. Having identified all the solid clusters in the system,
we choose as an order parameter λ for the definition of the interfaces (see sec. 3.2.3)
the size of the biggest solid cluster λ = nbig.

Instead of using a local order parameter such as nbig, another possibility is to use a
global order parameter, depending on the structure of the whole system. Van Duijn-
eveldt and Frenkel [154] have shown that a set of bond-order parameters introduced
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Figure 7.3: LJ phase diagram in the temperature-density plane (lower figure) and in
the pressure-temperature plane (upper figure). We also indicated the solid (fcc), liquid
and gas regions. For the solid-liquid coexistence curves we used the theoretical fits of
[145], for the solid-gas the ones of [146], and for the solid-liquid curves we used the
data of [143]. The critical point is located at (Tc, ρc, Pc) = (1.321, 0.306, 0.127) and the
triple point at (Ttr, Ptr) = (0.692, 0.00121), where the three phase coexist with densities
ρgas

tr = 0.00178, ρliq
tr = 0.847, ρsol

tr = 0.962. The open squares indicate the isobar which was
followed at P = 5.68 to undercool the system. The solid square indicates the corresponding
coexistence temperature Tm = 1.10676 and the final circle is the starting point for Interface
Sampling simulations, at T = 0.83, corresponding to 25% undercooling.
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by Steinhardt, Nelson and Ronchetti [155] might be used to investigate nucleation.
These order parameters are sensitive to the degree of spatial orientational correlation
of the vectors joining neighboring particles. In a liquid there is only local orienta-
tional order, the correlations decay rapidly and all bond-order parameters vanish in
the thermodynamic limit. In a crystal instead, the vector orientations are correlated
and the bond-order parameter are of order 1. In appendix I we define the bond-order
parameters, and in table 7.1 we report their values for some typical structures. In his
study of crystal nucleation [131], ten Wolde used Q6 as a crystalline order parameter,
because it vanishes in the liquid phase, while it is large for the simple crystal lattices
of interest. However, he also proved that the use of global order parameters, as Q6,
might induce artificial effects. When the total number of solid particles is small, the
system tends to distribute them in many small clusters because of entropic reasons.
Instead when the total number of solid particles is large, the interfacial free energy
dominates and a single big cluster is more favorable. In the study of nucleation, the
number of solid particles increases, and an undesirable discontinuous crossover from
one behavior to the other was found, which is also in contrast with the CNT picture of
one growing nucleus. This effect disappears in the thermodynamic limit, but it is not
negligible in computer simulations. The use of a local order parameter such as nbig

is therefore more recommendable. Moreover, with this choice of the order parameter
the simulations and the free energy computations can be related to CNT, which is
based on the picture of a growing nucleus. The bond-order parameters of table 7.1
will be used however to analyze the configurations and distinguish different crystal
structures.

In order to check the proposed algorithm for the identification of the biggest solid
cluster and to set the related parameters, we prepared the system in a liquid, body-
centered cubic (bcc), and face-centered cubic (fcc) structures, and equilibrated them
at the pressure P = 5.68 and a temperature T = 1.15, close to coexistence. These
equilibration runs were followed by NPH simulations. First, we computed the radial

Geometry Q4 Q6 Ŵ4 Ŵ6

hcp 0.097 0.485 0.134 -0.012
fcc 0.191 0.575 -0.159 -0.013
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013
ico 0 0.663 0 -0.170
(liq) 0 0 0 0
fcc-eq 0.080 0.388 -0.159 -0.013
bcc-eq 0.023 0.358 0.159 0.013

Table 7.1: Bond orientational order parameters for different cluster geometries. hcp: hexag-
onal close-packed structure, fcc: face-centered-cubic structure, bcc: body-centered-cubic
structure, sc: simple cubic structure, ico: icosahedral. We also report the parameters for a
bcc and fcc lattice equilibrated at the condition of our NPH simulations, P = 5.68, H = 1.412,
corresponding to 25% undercooling. Note that theQ4,Q6 change when going from the perfect
lattice to the equilibrated one, but the Ŵ4, Ŵ6 do not.
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Figure 7.4: Top: radial distribution function g(r). Bottom: distribution of the number
of connections per particle, and in the inset distribution of the dot-product Eq. (7.5). The
thresholds for the cluster-recognition algorithm are also shown. All curves were computed
from simulations of liquid, bcc and fcc structures equilibrated at P = 5.68 and T = 1.15,
close to coexistence.

distribution functions g(r), shown in Fig. 7.4a. The g(r) gives an estimate of a value
for the cutoff rq from the first minimum at 1.5. Second, similar to the simulations of
ten Wolde [131], we computed the dot-product distribution, reported in the inset of
Fig. 7.4. Clearly the liquid state can be distinguished from the different solid states.
Following [131] we chose a threshold value of 0.5 to consider two particles connected.
Third, we computed a histogram of the number of connections per particle, plotted in
Fig. 7.4b. Since for fcc the minimum of the g(r) is slight less than 1.5, more than one
shell is taken into account by the algorithm and the NCP is peaked at 13 instead of
12. This is however not a problem, since we are only interested in distinguishing liquid
from solid configurations. Taking a threshold of 8.5 we identify particles as solid if
their number of connections is 9 or more. Otherwise they are considered liquid.
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7.3 Rate constant
We computed the NPH rate constant kAB for the nucleation transition from under-
cooled liquid (state A) to solid (state B) using TIS and PPTIS.

In both methods the first stage is the calculation of the factor 〈φ1,0〉/〈hA〉, the
effective flux through interface λ1 of the trajectories coming from interface λ0, which
defines the initial state A (see sec. 3.2.1). After some short inspection runs we decided
to define λ0 = 25.5 and λ1 = 30.5, which allow us to compute a flux factor big enough
to gather sufficient statistics in a reasonable computer time. In Fig. 7.5 we report
λ(t) ≡ nbig(t) on a trajectory of time length 20. Using formula (3.20) of sec. 3.2.1, we
obtain the flux factor from the ratio of the number of effective positive crossings of λ1

to the total trajectory time length (see also inset of Fig. 7.5). Averaging on a series
of 30 runs, each of time length 200, we obtained the value 〈φ1,0〉/〈hA〉 = 1.29± 0.03.

A part of a flux trajectory that crosses λ1 coming from A is by definition a path
belonging to the first TIS window ensemble (see sec. 3.2.3). We chose one of such
parts out of the flux series and initiated a path sampling simulation. Interface λ2

was set using the rule of sec. 3.2.3, that the crossing probability PA(2|1) should ap-
proximately be 0.2. After some tests we found a convenient position at λ2 = 40.5,
and we performed a production run of 10 series of 100 paths each. The path-reversal
move was applied with a probability of 10% and the momentum displacement in the
shooting move was chosen to obtain an acceptance around 40% (see sec.3.2.3). One of
the paths A→ λ2 was then used to start a simulation in the following window ensem-
ble. We iterated the procedure for a total of 12 windows, employing the additional
interfaces λ3 = 60.5, λ4 = 80.5, λ5 = 110.5, λ6 = 130.5, λ7 = 160.5, λ8 = 190.5, λ9 =
230.5, λ10 = 270.5, λ11 = 310.5, λ12 = 360.5, and λnI

= 410.5 with nI = 13. We also
used subinterfaces to smooth the results. The rematched crossing probability function
is reported in Fig. 7.6 and shows a plateau which defines the last interface and the
state B. In TIS a path that reaches a nucleus of size nbig = 410.5 is committed to grow
until complete solidification. The final crossing probability is PA(nI |1) = (8±6)10−7,
and multiplying by the flux, the rate constant is kAB = (1.0± 0.8)10−6.

The first PPTIS simulation was also initiated using the trajectories from the flux
calculation. The third interface was defined like in TIS, at λ2 = 40.5, and then
we simply used a fixed interface separation defining λi = 40.5 + 20 ∗ (i − 2), for
i = 2 . . . 38 ≡ nI . A series of 100 simulations of 200 paths each was performed in
a total of 37 windows. Shooting and path-reversal moves were applied with equal
probability. At the same time the free energy was computed using the loop-boundary
method of chap. 5 and a bin width δλ = 1. We pushed PPTIS until nbig = 760
(using interface λ38 = 760.5) to check the attainment of a plateau and to obtain the
corresponding free energy until nbig = 740. The resulting long-distance probability
P+

nbig
is plotted in Fig. 7.6 together with the TIS crossing probability PA(nbig|1). We

did not perform a systematic test of the memory loss assumption using for example
the MLF method of sec. 4.2.1. However, comparing TIS and PPTIS we can state a
posteriori that this system is diffusive enough to satisfy memory loss within our choice
of interface separation. As seen in Fig. 7.6, PPTIS reaches a plateau at a value of
the final probability P+

nI
= (1.4± 0.9)10−6, which coincides with the plateau value of

TIS within the error. Consequently, the final PPTIS rate constant kAB = (2±1)10−6

also coincides with the TIS rate.
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Reintroducing units, the rate kAB is in units of τ−1. Nucleation rates I are usually
expressed as nuclei formed per unit time per volume (see sec. 7.1). We can obtain
this rate just dividing kAB by the volume of the simulation box, which in turn is
equal to N/ρliq, where the liquid density is ρliq = 0.994 and the number of particles
N = 10648. The result is I = (9 ± 7)10−11σ−3τ−1. Finally, using the values of
σ = 0.3405nm and τ = 2.156ps for argon, we get I = (1.1 ± 0.9)10−6nm−3s−1. As
noted by ten Wolde, on an experimental scale this means that argon would crystallize
basically istantly, and this is in accordance with the known difficulty in supercooling
argon [131].

The free energy βF (nbig) = − lnP (nbig) is plotted in Fig. 7.6. At small values of
nbig we used histogram data from the flux simulations in state A.

The free energy curve βF (nbig) shows an artificial minimum, while the correct free
energy should be derived by the distribution of cluster sizes P (n) (see appendix G.2).
Only for the biased region, is P (n) equal to P (nbig), as the probability to find a
second large cluster is very low. We plot the correct free energy 3 βF (n) = − lnP (n)
in Fig. 7.7. It displays a maximum at a critical nucleus n∗ = 243 for which βF (n∗) =
25.2± 0.7.
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) Figure 7.7: Free energy
− lnP (n), as derived from
P (nbig) corrected for small
values of n. The correction
amounts to compute P (n) at
low n from MD simulations
in the undercooled liquid, and
results in a steep initial increase
of the free energy profile.

7.4 Mechanism

We investigated the transition mechanism using paths generated in the last TIS win-
dow ensemble. When a path going from A to the last interface (at λnI

= 410.5) was
found, we first checked if it corresponded to a real transition by elongating it in time
and testing if it reached nbig > 1000 within a maximum transition time of 300. If that
was the case, the path was saved for later analysis. An average decorrelation time of
5 successful shooting moves was then waited before a new path A→ λnI

was checked.
In this way we generated a total of 84 NPH transitions going from an undercooled
state A for nbig ≤ 25 to a solid state for nbig > 1000.

3We remind that because of our choice of the dynamics, this is an NPH free energy, and not a
Gibbs NPT free energy.
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7.4.1 Path analysis

In this section we describe the procedure we used to analyze each timeslice of each
generated transition pathway.

We can distinguish the chosen observables into global ones, functions of all particles’
coordinates and momenta, and local ones, computed only on the particles defining
the biggest solid cluster.

The first kind include, for instance, the slice time index t, the pressure P , the
density ρ, the temperature T , the potential energy per particle U/N , the total energy
per particle E/N , and the enthalpy per particle H/N . As indicators of the global
ordering in the system we used the bond-order parameters Q4, Q6, Ŵ4, Ŵ6. From the
algorithm for the identification of the biggest solid cluster (see sec. 7.2.3) we also
obtain the total number of solid and liquid particles, as well as the number of all solid
clusters in the system. To the global observables naturally belongs the committor pB ,
defined in sec. 2.5 and computed as explained in sec. 2.5.1. The minimum number of
shooted trajectories Nmin to obtain pB ranged from 10 to 30, and the total number of
trajectories was chosen to reach an error σpB

ranging from 0.05 to 0.1, fixed for every
slice. Hence, because of Eq. (2.59), the slices for which pB ' 0.5 require the biggest
number of shooted paths, and are the computationally most expensive. In addition,
we tested a new idea on a generalization of the committor that includes not only the
trajectories initiated from the timeslice and integrated forward in time, but also the
backward ones. We report the results in appendix J.

The second set of observables, computed from the cluster particles only, can be
further divided into quantities determining the cluster shape and indicators of cluster
structure.

In order to characterize, besides the nucleus size nbig, also the shape, we calculated
the radius-of-gyration tensor [156]

R2
g =

1
nbig

nbig∑
i=1

riri (7.6)

where the positions ri of cluster particles are referred to the cluster center of mass.
The eigenvalues of the tensor 4 are denoted in descending order as R2

g1 ≥ R2
g2 ≥ R2

g3

and the radius of gyration is defined as R2
g = R2

g1 +R2
g2 +R2

g3.
In order to characterize the cluster structure, we employed again the bond-order

parameters Q4, Q6, Ŵ4, Ŵ6, but now defined using only the bonds between cluster
particles. To have a further indication on the formation of bcc, fcc, or liquid-like
structures, we used an analysis technique developed by ten Wolde [131], and ex-
plained in detail in appendix I. This technique is based on the distributions of the
local bond-order parameters q4(i), q6(i), ŵ6(i) , defined for each cluster particle i. In

4 The tensor R2
g defined by Eq. (7.6) is closely related to the inertia tensor I, Eq. (2.53). For a

cluster of N particles with equal masses m, the relation I = mN(R2
g1 − R2

g) holds, where 1 is the
identity tensor. The physical meaning of the two tensors is however different. The moments of inertia
Ii result from an average of the square particle distances from axis i, which is useful to characterize
the rotation of the body around the axis. The radii of gyration R2

g,i are instead the mean square

distances along axis i, and are indeed useful to characterize the shape of the body, since each R2
g,i

directly corresponds to the body elongation in direction i.
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separate NPH simulations we computed these distributions in reference systems of
pure liquid, bcc, and fcc particles, equilibrated at the same conditions of our system
(P = 5.68, H/N = 1.412). The distributions calculated for an arbitrary cluster struc-
ture can then be projected onto the distributions of these reference systems, yielding
three scalars fliq, fbcc, ffcc that quantify respectively the degree of liquid, bcc and fcc
structure in the cluster. A parameter ∆2 quantifies the contribution of the remaining
components, orthogonal to the reference systems. The smaller ∆2, the better the
quality of our projection.

Finally, in the structure analysis of a cluster, we also distinguished the cluster par-
ticles into bulk and surface particles. For a particle to be of bulk type, the number of
cluster neighbors should be 12 or more. Otherwise it is considered a surface particle.
We thus obtained the number of surface particles nsurf and the number of bulk parti-
cles nbulk = nbig−nsurf . The above structure analysis with the use of Q4, Q6, Ŵ4, Ŵ6

and fliq, fbcc, ffcc,∆2 was applied both to the cluster as a whole and to the core only,
with the surface particles removed.

7.4.2 Transitions

We show in Fig. 7.8 a typical transition. As the nucleation advances, and the size nbig

of the biggest cluster increases, the potential energy decreases, and the global density
increases. Since we perform NPH simulations, the temperature must also increase to
maintain the total enthalpy constant. The structural bond-order parameter Q6 also
goes up, and eventually reaches the value typical of an equilibrated fcc system. The
other bond-order parameters Q4, Ŵ4, Ŵ6 also plateau to the corresponding fccvalues.
In Fig. 7.8 we have plotted a trajectory from the liquid state until full solidification
of the simulation box, but as specified at the beginning of sec. 7.4, for the transition
analysis we stopped the TIS path integration when nbig = 1000 is reached (in this case
at a time t = 137). The distribution of TIS transition pathlengths is shown in Fig. 7.9
and shows the behavior typical of the distributions of first passage times [157,158]. In
Fig. 7.8 we also plot the committor pB(t) until t = 137, which has a distinct diffusive
behavior. The trajectory crosses the transition state region pB = 0.5 several times
before switching to the final solid state, and during the transition time it even visits
again configurations committed to the liquid state at pB = 0.

Subsequently, we analyzed the cluster shape and structure during the transitions
as function of the TIS order parameter, the size of the biggest solid cluster nbig.

First, we investigated the shape of the clusters. In Fig. 7.10(a) we plot the results
of the radius of gyration analysis. For a spherical object R2

g scales as nbig
2/3, whereas

for chains R2
g scales as nbig

α, with 1.2 < α < 2, depending on the stiffness of the
chain [131]. Hence, R2

g/nbig
2/3 should approach a constant value for spherical clusters,

while it should increase with nbig for chain-like clusters. At the very beginning, for
nbig < 30, R2

g/nbig
2/3 slightly increases, and until about nbig = 200 the first eigenvalue

R2
g1 is significantly larger than the other two. Then the three eigenvalues get close

to each other. This indicates that the clusters are first somewhat chain-like, then
elongated objects, and finally spherical. A more careful analysis takes into account
the dispersion of the shape observables. In Fig. 7.10(b) we plot the number of surface
particles, again normalized to nbig

2/3 for all the clusters in all the transitions. Indeed,
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up to nbig = 30, nsurf/nbig
2/3 follows the curve nbig

1/3, corresponding to nbulk = 0
(dashed line in figure), meaning the clusters are not entirely compact. Then the
average nsurf/nbig

2/3 (solid line in figure) becomes more flat quite rapidly around
nbig = 100 and finally approaches the constant value 4.8 typical of spheres 5. However
there is substantial scattering of the nsurf/nbig

2/3 points around the average, more
pronounced between nbig = 200 and nbig = 400. Bringing together these results with
the radius of gyration analysis, we can conclude that small initial elongated clusters
become spheres, but during the transition the spherical condition is approached with
a variance in the compactness. Some of the clusters grow compact, some retain a
degree of elongation.

Second, we looked at the structure of the clusters. In Fig. 7.11 we plot the results of
the analysis of the bond-order parameter distributions (see sec. 7.4.1). The small value
of ∆2 indicates that the analysis is sensible, and the cluster structure is reasonably
well represented by the superposition of fcc, bcc, and liquid structures. As nbig

increases, the bcc component stays almost constant, while the liquid part decreases
to make space for a fraction of fcc particles. Comparing with the results of ten Wolde
(see sec. 7.1.1) we can interpret this as a developing fcc core wetted by a constant
bcc surface. However, at variance with the findings of ten Wolde, we do not see
a transition from bcc- to fcc-dominated structure at the critical cluster size (here
nbig

∗ = 243) [131].
Summarizing, from the analysis of the transition paths as function of the size of

the biggest cluster, we get the picture of a growing object, spherical on average but
with roughness and distorsion, which has an increasing fcc component and a constant
bcc one. Before we discuss the nuclei in more detail, we would like to address the
question of what is the right reaction coordinate to describe nucleation. In path
sampling methods this question can, in principle, be answered by the analysis of the
committors.

7.4.3 Committor analysis

In the previous section we analyzed the transitions as function of the order parameter
nbig, effectively considering it as a reaction coordinate. Here we want to check if nbig

is a good reaction coordinate. For this purpose we computed the committor pB for
each timeslice of each path. This was the computationally most expensive part of
our investigation and required about three months of simulation time on one hundred
nodes of 1Ghz on average.

In Fig. 7.12 we plot the committor pB as function of the order parameter nbig.
Surprisingly, we do not find a clear monotonic curve. States at pB = 0, that are
committed to the liquid phase, include configurations containing the smallest clusters,
but also configurations with cluster sizes up to around 300. At the opposite side, slices
with pB = 1, committed to end in a solid phase, do contain the biggest clusters (up
to above nbig = 1000), but also clusters with sizes as small as 200. In the middle,

5 For a sphere of radius R containing N particles at a density ρ, the relation N = 4πρR3/3
holds. The number of particles in a surface shell of width ∆R is Nsurf = 4πρR2∆R. Consequently

Nsurf /N2/3 = 4π/(4π/3)2/3ρ1/3∆R. Using the fact that the cluster density is about 1 (see Fig. 7.18)

and for LJ particles the diameter is about 1, we get Nsurf /N2/3 ' 4.8.
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Figure 7.11: Structural com-
position of the biggest cluster
as function of the cluster size,
as found by projections of the
bond-order parameter distribu-
tion (see sec. 7.4.1). In order
to improve the analysis, clus-
ters with common size were re-
grouped before computing the
distributions.
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critical size nbig

∗ = 243
is reported as a dashed
line. The uneven distri-
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due to the changing number
of trajectories used to com-
pute pB with a fixed error
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Figure 7.14: Path committor probabil-
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∗(pB) restricted to the transition
ensemble. The curve is computed using
points for which nbig ∈ [240, 246]. Even
if transitions only are considered the dis-
tribution is substantially flat, indicating
nbig is not a good reaction coordinate.

configurations with increasing pB have on average an increasing nbig, but there is a
large scattering in the data points, the dispersion being of the order of ±100.

In particular, the transition states 6 at pB = 0.5 include cluster sizes with a dis-

6We consider here states with pB = 0.5 timeslices for which pB ∈ [0.4, 0.6]. So actually they are
states with pB = 0.5 ± 0.1, because 0.1 was the error chosen for committor computation. Unless
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tribution peaked around the free-energy maximum nbig
∗ = 243, but ranging in the

interval [151, 415] (see Fig. 7.6). The distribution is displayed in Fig. 7.13, together
with the distributions of nbig at pB = 0.2 and pB = 0.8. These distributions overlap
with each other, and the critical cluster size nbig

∗ = 243 falls in between. Indeed, the
critical size nbig

∗ = 243 comprises states with all the committor values, from 0 to 1, as
shown by the dashed line in Fig. 7.12. Using the points around this line we performed
the Geissler test restricted to the transition path ensemble (see sec. 2.5.2). The re-
sulting committor distribution P̄nbig

∗(pB) (see Eq. (2.62)) is shown in Fig. 7.14. A
necessary condition for nbig to be a good reaction coordinate is that this distribution
is peaked around pB = 0.5, but this is clearly not the case. Indeed if we perform the
complete Geissler test, the committor distribution Pnbig

∗(pB), computed for all phase
points with nbig = nbig

∗, might even display a worse profile than the one of P̄nbig
∗(pB)

(see Fig. 2.11c). The results of Figs. 7.12, 7.13, and above all Fig. 7.14 demonstrate
that even if nbig tends to follow the progress of the transition, as given by pB , it can-
not describe the progress completely, and therefore nbig is not a (sufficiently) good
reaction coordinate.

Having asserted that nbig is not sufficient, we searched for a better description of
the transition. Similar to Fig. 7.12, we analyzed the committor pB as function of all
the observables defined in sec. 7.4.1. Structural observables as Q4, Q6 or nsurf also
react to the advance of the transition, but in the best cases we were only able to
reproduce a diffuse behavior similar to that of Fig. 7.12. To identify a correlation
between two observables, we regrouped slices in sets with common committor in an
interval of ±0.1 and plotted the corresponding two chosen observables for all slices
in this group in a two-dimensional plot. In these scatter plots we looked for the ob-
servable combinations that displayed a most significant correlation and produced the
lowest overlap between groups with different committor value. We tried around 60
combinations, using the best choices from the one-dimensional correlation analysis.
Often the graphs show complete overlap between sets, or do not improve the oned-
imensional findings. Sometimes they generate trivial correlations, as in the case of
the correlation between nbig and the global Q6, which is just linear for any pB (it can
be deduced also from Fig. 7.8). We did find nevertheless a non-trivial improvement
using the cluster size nbig and the cluster Q6. We plot in Fig. 7.15 the results of the
analysis. The scattering is still rather diffuse, and there is overlap between different
pB sets, but this overlap is reduced with respect to the overlap of the onedimensional
projections along the axes, because of the shape of the iso-pB regions. In particular,
the transition state ensemble, even if not a clear dividing surface, is at an angle with
respect to the horizontal axis, allowing better distinction from the other regions. We
dedicate the next section to the analysis of this transition region.

7.4.4 Transition state ensemble

We decided to study the critical nuclei at pB = 0.5 analyzing the structural composi-
tion of the system in spherical shells around the center of mass of the cluster. Similar
to ten Wolde [131], we regrouped the particles of all critical timeslices into spherical
bins of radius r and then computed for each bin fliq(r), fbcc(r) and ffcc(r). At the

specified, same reasoning applies when we mention other values of the committor.
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Figure 7.15: Two dimensional correlation plot of the cluster Q6 versus the cluster size nbig

for different committor values.

same time we computed the average cluster radial density ρ(r). We remark that in
this analysis we used not only the cluster particles, but all the system particles in the
shells. The contribution of non-cluster particles becomes important as the surface of
the cluster is approached and ensures that the computed properties reach the corre-
sponding ones for the bulk liquid. This radial analysis is sensible if clusters have more
or less the same shape, i.e. they are spheres of the same size. Since the pB = 0.5 re-
gion includes clusters of different sizes, ranging from 151 to 415, we separated the set
into three subsets, one before the critical size nbig

∗ = 243, one around, one after. We
implicitly assumed the clusters are spherical, which turned out to be not entirely true
for the larger critical subset (see later, Fig. 7.19). However, the position of the center
of mass is hardly affected by the asymmetric shape, and given the larger size, the first
spherical shells around the center of mass are still part of the cluster, validating the
findings for the inner structure of the nuclei that we are going to present.

In Fig. 7.16 we plot the radial profiles. Clearly, as r increases, all the values
approach the bulk liquid ones. They do it smoothly, indicating the surface is quite
diffuse. More importantly, inspecting the profiles for low r, we can distinguish two
different kinds of clusters. The first is represented by the top graphs in Fig. 7.16,
referring to the small, but still critical clusters, and show a dense object with a large
fcc component in the core. The density is approaching that of bulk fcc solid. The
bcc component is stronger on the surface. With increasing critical cluster size (from
top graphs to bottom graphs), the core fcc part is substituted by an increasing bcc
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component and the density decreases. In the bottom graph, referring to the largest
critical nuclei, we find a second kind of critical clusters. The density has a plateau at a
value of 1.04, distinctly lower than ρfcc = 1.0665 and the cluster has a relatively large
bcc component. Hence, the first, compact fcc clusters, corresponding to the top and
middle graphs of Fig. 7.16, are in accordance with the results of ten Wolde [131], even
though in that case the density displayed a flatter plateau at the center of the cluster.
They can then be considered close to the equilibrium Umbrella Sampling results,
with some kinetic distortion. The second, less dense clusters of the bottom panels,
consisting of an fcc-bcc mixture are instead new, and can be considered another kind
of transition state that is not occurring in equilibrium sampling, but is generated by
kinetic effects.
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Figure 7.16: Composition of the system around the center of mass of the critical clusters
at pB = 0.5. All these clusters belong to the Transition State Ensemble, and are therefore
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Figure 7.17: Composition of the system around the center of mass of the clusters with
pB = 0.95± 0.05.

In order to check the progression of these critical clusters towards solidification,
we applied the same radial analysis to post-critical configurations with committors in
the range pB ∈ [0.9, 1.0]. As can be seen from Fig. 7.12 they include clusters ranging
in size from 200 up to 1000. The results are shown in Fig. 7.17. Interestingly, now all
three size-ranges have the same behavior. They just show a scaling with the growing
cluster radius. The behavior is basically that of the first kind of critical clusters: an
fcc core wetted by a bcc surface. It seems then that the second kinetic transition
state has equilibrated into this structure. We rearranged the information of Fig. 7.17
into Fig. 7.18 to compare the different sizes. As found by ten Wolde [131], the bcc
surface stays of constant width while the fcc core grows. The density inside the cluster
plateaus to a value slightly lower than that of bulk fcc, which was also found by ten
Wolde 7.

7 We remark that for a proper comparison, the density ρsol = 1.0665 plotted in Fig. 7.16, 7.17,
and 7.18 is not at the same NPH conditions (P = 5.68, H = 1.412), but at the same NPT conditions
(P = 5.68, T = 0.83, 25% undercooling). Because of the constraint of fixed total enthalpy, a complete
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Figure 7.18: Composition of the system around the center of mass of the clusters with
pB = 0.95 ± 0.05. The information of Fig. 7.17 is rearranged to compare different clusters
with different sizes. A bcc surface shell of constant width surrounding a growing fcc core
can be recognized.

Summarizing, using path sampling we were able to shed more light on the nucle-
ation process than the analysis of ten Wolde [131] based on equilibrium free energy
calculations with nbig as reaction coordinate. In sec. 7.4.3, we also found that a
better (though not completely satisfactory) description of the nucleation event can
made using nbig in combination with the bond-order parameter Q6 of the cluster
(see Fig. 7.15). In order to check if this description could be found also with free
energy calculations, we calculated the two dimensional free energy βF (nbig, Q6) =
− lnP (nbig, Q6). The results are shown in Fig. 7.19, together with the results of
the committor analysis as from Fig. 7.15. Interestingly, the transition state re-
gion is not perpendicular to the minimum free energy path in the (nbig, Q6) plane.
Even though the transition states at pB = 0.5 are concentrated at the saddle point
nbig = 243, Q6 = 0.3, the transition state ensemble exhibits configurations with large
Q6 and small nbig and viceversa (whose snapshots are also in figure). Their existence
is due to dynamical contributions, and is a new finding of the TIS path sampling.

fcc solid would have a much higher temperature T = 1.137 corresponding to a density ρ = 1.020 (see
Fig. 7.8).
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Figure 7.19: Contour plot of the two dimensional free energy as function of the size nbig

and the bond-order parameter Q6 of the biggest cluster. The contour lines are separated
by 1kBT . A minimum is present at about (nbig, Q6) = (16, 0.37), and a saddle point at
(243, 0.3). Transition states at pB = 0.5 are also shown together with pre-critical (pB = 0.1)
and post-critical (pB = 0.9) configurations. We also show the two kinds of transition states
we found. In the top left panel compact dense fcc objects, corresponding to small nbig and
large Q6. In the top right panel we show a critical cluster with opposite structure, large nbig

and small Q6, and a more mixed structure of fcc and bcc particles.
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7.5 Summary

In this chapter we have investigated the crystal nucleation in a Lennard-Jones sys-
tem from an undercooled liquid phase at P = 5.68, T = 0.83, corresponding to 25%
undercooling. Under these conditions the nucleation is a rare event and we there-
fore applied the Interface Sampling methods described in the rest of the thesis. We
calculated the rate constant using both TIS and PPTIS. The methods agree with
each other, showing the system is diffusive and the memory loss assumption is satis-
fied. We also studied the mechanism of crystallization by generating about a hundred
transition trajectories, and applying the committor analysis.

Using the committor analysis we were able to prove that the size of the biggest
cluster nbig is not a sufficiently good reaction coordinate, as it does not clearly dis-
tinguish configurations with different values of the committor pB . In particular, the
transition states are a mixture of clusters with sizes ranging from 150 up to 420.
We could improve the identification of a reaction coordinate combining nbig with a
structural order parameter, the bond-order parameter Q6 of the cluster.

Our results on the nucleation mechanism are mostly in accordance with those of
ten Wolde (see sec. 7.1.1). We do not find a sharp transition from initial bcc- to
fcc-dominated nuclei, but we do confirm the picture of a nucleus that is spherical on
average, and with a growing fcc core surrounded by a bcc surface shell. However,
we also discovered, by the analysis of the transition state ensemble, a second kind of
critical cluster, less spherical, and with a more bcc-like inner structure. This kind of
critical cluster equilibrates to the first kind of cluster structure, i.e. with an fcc core,
as the reaction proceeds. The newly found critical structure cannot be explained with
free energy calculations, even taking into account nbig and Q6. It is a kinetic effect
that could only be discovered using path sampling.



Conclusion

What you will see, if you leave the
Mirror free to work, I cannot tell.
For it shows things that were, and
things that are, and things that yet
may be.

Galadriel, Lady of Lórien

Rare events are transitions between stable states separated by a high free energy
barrier. Throughout this thesis, we have tried to outline how such events can be
investigated. The assumption of traditional methods as the TST-BC procedure, is
that the free energy profile contains all the relevant information: from the free energy
the rate can be computed, and the mechanism deduced. We have proved that this is
not always true. First, the rate computation must be completed with the calculation
of the transmission coefficient, which is far from trivial. Second, the choice of the
reaction coordinate, along which the free energy is computed, inevitably biases the
way we look at the mechanism. Moreover, the dynamical information neglected by a
static free energy calculation can be important in many cases.

For these reasons Transition Path Sampling was created. TPS extracts the in-
formation from the transitions themselves, i.e. from the interesting parts of all the
possible trajectories of the system. The reaction coordinate is replaced by an order
parameter, which is an algorithmic parameter, and does not, in principle, influence
the sampling of the trajectories. Based on TPS, we have developed the Transition
Interface Sampling methods. TIS methods improve the sampling efficiency of the
transition path ensemble and thus speed up the rate computation. Although very
similar in practice to TPS, TIS is not just a technical refinement, it has a differ-
ent spirit, because of the idea of the effective positive flux. The rate is computed
measuring fluxes through interfaces dividing the states, avoiding cancellations from
recrossings and false transitions, as was in TST-BC and TPS. In the case of diffusive
systems, Partial Path TIS efficiently exploits the loss of memory along the diffusive
trajectories to further improve the efficiency. We have also shown that the free energy
can also be computed, but now as a side product, and not a necessary step to the
rate computation.

The analysis of the mechanism and the identification of the reaction progress is
performed by computing committor distributions. The committor pB(r) is the com-
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mittment probability of configuration r to the final stable state B. When pB = 0
the reaction is at the beginning, in state A. When pB = 1 the reaction is at the
end, in state B. The configurations for which pB = 0.5 define the transition states.
For this reason, pB is the perfect reaction coordinate. Naturally, such an important
indicator is not cheap to obtain. For every configuration of all the sampled transition
paths, a series of trajectories must be initiated with random momenta and integrated
until reaching A or B. The whole process requires considerable time and computer
power. However, when committors have been finally computed, precious information
is available. First, by using the Geissler test, a chosen reaction coordinate can be
identified as good or bad. Second, the regrouping of configurations as a function of
their pB shows the advance of the reaction. The mechanism can then be elucidated
using the chemical, physical, or biological intuition, depending on the context. All
additional information, including free energy profiles, can be used to help.

We have shown an application of the above methodology for the case of the crystal
nucleation of a Lennard-Jones system. The size of the growing solid nucleus from an
undercooled liquid was usually thought to be the proper reaction coordinate. Solid
clusters smaller than the critical size, at the free energy maximum, shrink back to
the liquid state. Solid clusters larger than the critical size grow to full solidification.
However, when we computed the committor distribution for clusters of critical size,
we found an almost flat uniform curve. Indeed the transition states at pB = 0.5
include clusters of different sizes dispersed around the critical size. Some are compact
spherical objects with a fcccore, some have more oblong shapes with a mixed bccand
fccstructure. As the reaction proceeds (pB increases), the dispersion equilibrates
towards spherical clusters with a growing fcccore wetted by a bccsurface of constant
width. The behavior at high pB is in agreement with previous TST-BC studies, but
the identification of the transition states is a new dynamical finding.

In summary, the TIS interface fluxes for the rate computation and the TIS path
sampling, in combination with the committor analysis for the mechanism comprise a
complete method for the study of rare events. The whole procedure is expensive, and
in this sense it is a brute force approach, as TPS itself. However, it is, in principle,
very powerful. Using TIS path sampling in place of the TST-BC procedure, not only
the correct rate can be efficiently computed, but also the final mechanism properly
elucidated.



A Rates as first passage times

In this section we want to show that real systems can be approximated with a random
telegraph if the jump probabilities are defined as the inverse mean first passage times.
Otherwise stated, we want to prove that the sensible definition of a rate constant is
Eq. (1.15). Our treatment follows refs [6, 10]. It becomes more complicated, and we
will try not to go too deep into mathematical details. And the end of the section we
add the study of a simple onedimensional model to clarify the general results.

Consider the Langevin dynamics (1.22) in the high friction limit γ � 1, where it
reduces to a first order differential equation involving only the coordinates r. The
corresponding Itô stochastic differential equation is

γdr = −∇rUdt+
√

2γβ−1dη (A.1)

where dη is a Wiener process [6]. The analysis of the Langevin dynamics could be
done in the full phase space (r, v), but while it does not change the essence of the
results, it complicates the treatment considerably. Measuring time in units of γ we
can take γ = 1. In this appendix, since functions of more than one spatial variable
appear, we always specify the variable on which the differential operators act, as in
∇r.

To the stochastic process defined by (A.1) is associated the probability (see also
(1.3))

p(r, t|r′, 0) = Probability of r(t) ∈ [r, r + dr] at time t
provided that r(t = 0) = r′ (A.2)

This probability satisfies the forward and backward Fokker-Planck equations, respec-
tively

∂tp = ∇r ·
(
∇rU(r)p+ β−1∇rp

)
(A.3a)

∂tp = −∇r′U(r′) · ∇r′p+ β−1∆r′p (A.3b)

Defining the current J = −∇rU(r)p−β−1∇rp the first takes the form of a continuity
equation.

We will consider (A.3) for two classes of boundary conditions, namely
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1. forward equation and reflecting boundaries at infinity: J = 0. The time-
independent stationary solution pst(r) is then given by the Gibbs distribution
(1.16)

pst(r) = Z−1
r e−βU(r) = ρ(r) (A.4)

2. backward equation and absorbing boundary on a surface S. The probability of
being on the boundary is zero, i.e. p(r, t) = 0 ∀r ∈ S. In this case pst(r) ≡ 0.
This boundary condition is useful to solve first passage time problems, and we
will face them in sec. A.2.

A.1 Eigenvalue problem for the Fokker-Planck operator

Basically, all the properties of p, Eq. (A.2) can be deduced from the eigenvalue problem
associated to (A.3). Similar to the treatment of the Schrödinger equation in quantum
mechanics, we seek solutions for (A.3a) and (A.3b), respectively, in the form

ψ(r, t) = ψλ(r)e−λt (A.5)
ϕ(r, t) = ϕλ(r)e−λt (A.6)

Then to the functions ψλ(r), ϕλ(r) are associated the right and left time-independent
eigenfunction equations

Lrψλ ≡ ∇r ·
(
∇rU ψλ + β−1∇rψλ

)
= −λψλ (A.7)

L∗rϕλ ≡ −∇rU · ∇rϕλ + β−1∆ϕλ = −λϕλ (A.8)

where we have introduced the forward and backward Fokker-Planck operators Lr, L∗r .
It can be proven [6] that

1. The eigenfunctions form a biorthogonal system∫
dr ψλ(r)ϕλ′(r) = δλλ′ (A.9)

2. Since the Gibbs distribution is the stationary time-independent solution, see
Eq. (A.4), the probability (A.2) satisfies the detailed balance [6] equation

p(r′, t|r, 0) pst(r) = p(r, t|r′, 0) pst(r′) (A.10)

connecting the transition r → r′ and the reversed one r′ → r. As a consequence
for any solution ψ(r, t) of the forward equation (A.3a),

ϕ(r, t) = ψ(r, t)/pst(r) (A.11)

is a solution of the backward equation (A.3b). Which also implies ϕλ(r) =
ψλ(r)/pst(r).

3. In a suitably defined Hilbert space Lr is self-adjoint and negative semi-definite,
which implies the eigenvalues are real and

λ ≥ 0 (A.12)
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4. Assuming completeness, the solution of (A.3) can then be written as

p(r, t|r′, 0) =
∑

λ

ψλ(r)ϕλ(r′)e−λt (A.13)

satisfying the initial condition

δ(r − r′) = p(r, 0|r′, 0) =
∑

λ

ψλ(r)ϕλ(r′) (A.14)

5. When (A.3) is considered with reflecting boundary conditions, there always exist
a null-eigenvalue λ0 = 0, so that the spectrum is

λ0 = 0 < λ1 ≤ λ2 ≤ . . . (A.15)

Then (A.13) admits a stationary solution pst(r) 6= 0 for t → ∞. Using then
(A.13) and (A.11) one can derive that ϕ0(r) is a constant, and can be chosen
equal to 1. Then from (A.9) follows ψ0(r) = pst(r).

6. When (A.3) is considered with absorbing boundary conditions, see next section,
the spectrum (A.15) misses the null-eigenvalue λ0 and accordingly the stationary
solution is pst(r) = 0

Let us now assume that there is a spectral gap

λ1/λ2 � 1 (A.16)

i.e. the first non-zero eigenvalue is much smaller than the rest. There exists then a
range of times such that λ1t ' 0 and λit � 0 ∀i > 1. This implies that expansion
(A.13) can be approximately truncated at λ1. And p(r, t|r′, 0) can be expressed in
terms of the first eigenfunctions only. We distinguish two cases. In the case of reflect-
ing boundary conditions, we said already that ψ0(r)ϕ0(r′) = pst(r). The eigenvalue
λ1 being small, it has a behavior similar to λ0. Indeed ψ1(r) is the restriction of pst(r)
to the sets A, B with opposite sign, and ϕ1(r) is the characteristic function of the
set. In the case of absorbing boundary conditions on the surface ∂B, the functions
are defined on Bc = Rn\B and with the same reasoning ϕ1(r) is a constant, and can
be taken equal to 1, and ψ1(r) is the restriction of pst(r) to A. Opposite situation
holds in the case of absorbing surface ∂A. This behavior is summarized in Fig. A.1.

Because of the spectral gap assumption we can prove that each λ−1
i is associated

to the time to span (in ergodic sense) the region associated with the support of the
corresponding eigenfunctions. See for example [159] or, for a list of references to more
detailed explanations at various levels, the Ref. 3 of [70]. Then λ−1

1 is associated to
the lifetime τstable of stable states A and B (see next section) while λ−1

2 is associated
to the transition time τtrans. As a consequence relation (A.16) is equivalent to relation
(1.1), the separation of timescales.

A.2 Mean first passage time

Suppose to start in A and to compute the time needed to hit B. One has to consider
the situation of Fig. A.1 (b), absorbing boundary condition on ∂B. Since the evolution
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Figure A.1: Eigenfunctions for the Fokker-Planck operator in a system with spectral gap
λ1 � λ2. (a) reflecting boundaries (b) absorbing boundaries on Rn\B. Note that there is
no null-eigenvalue and associated eigenfunctions ϕ0, ψ0 because of the absorbing boundary
conditions, point 2 on page 153.
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stops when it reaches the surface (gets absorbed), if the system is still in Bc at time
t it means it has never left it.

Let tfp(r) be the first passage time, i.e.

tfp(r) ≡ min
t
{t : r(t) ∈ Bc, r(t = 0) = r} (A.17)

then for the probability of being still in B at time t holds

G(r, t) ≡
∫

Bc

p(r′, t|r, 0)dr′

= Prob{tfp(r) ≥ t}

=
∫ ∞

t

ρ(tfp(r))d{tfp(r)} (A.18)

where ρ(tfp(r)) is the probability distribution 1 for tfp(r). Integrating (A.3b) on
r, and renaming r′ → r for simplicity, we see that G(r, t) also satisfies a backward
Fokker-Planck equation

∂tG(r, t) = −∇rU(r) · ∇rG(r, t) + β−1∆rG(r, t) (A.19)

with initial conditions

G(r, 0) = 1 ∀r ∈ Bc and 0 elsewhere (A.20)
G(r, t) = 0 ∀r ∈ ∂B (A.21)

Because of the definition of G the mean first passage time is

tmfp(r) =
∫ ∞

0

tfp(r)ρ(tfp(r))d{tfp(r)} = −
∫ ∞

0

t∂tG(r, t)dt =
∫ ∞

0

G(r, t)dt

(A.22)
where we used the fact that ∂tG(r, t) = −ρ(t) follows from (A.18), and we integrated
by parts. We can derive an equation for tmfp(r) integrating (A.19) over (0,∞).
Noting that ∫ ∞

0

∂tG(r, t) = G(r,∞)−G(r, 0) = −1 (A.23)

we get
−∇rU(r) · ∇rt

mfp(r) + β−1∆rt
mfp(r) = −1 (A.24)

with the initial condition tmfp(r) = 0 if r ∈ ∂B.
Let us now apply what we learnt from the eigenvalue problem. Assuming the left

eigenfunctions are a complete set, we expand tmfp(r) as

tmfp(r) =
∑

λ

tλϕλ(r) (A.25)

1 An equation for ρ(tfp(r)) can also be derived, but the solution is not easy, even for simple
cases [157, 158]. The shape of such distribution however is approximately general and of the form
pictured in Fig. 7.9.
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inserting into (A.24) we get

−1 =
∑

λ

tλL
∗
rϕλ(r) = −

∑
λ

tλλϕλ(r) (A.26)

and making use of (A.14)∑
λ

tλλϕλ(r) = 1 (A.27)

=
∫

Bc

dr′δ(r′ − r)

=
∑

λ

∫
Bc

dr′ψλ(r′)ϕλ(r)

Equating each term we find tλ. Inserting back into (A.25) we get

tmfp(r) =
∑

λ

ϕλ(r)
λ

∫
Bc

dr′ψλ(r′) (A.28)

Finally, let us consider the separation of timescales. Suppose (A.16) holds. Then
we can approximate (A.28) with its first term

tmfp(r) ' 1
λ1

∫
Bc

dr′ψλ(r′) =
1
λ1

(A.29)

where we used the property of the eigenfunctions of λ1, namely being the characteristic
function of Bc, see Fig. A.1b. Since the buffer region has a negligible probability this
result is valid for r ∈ A, i.e. λ−1

1 = tmfp(A). Similar reasoning applies for the problem
with absorbing boundary conditions at ∂A. When we consider then the full system,
with reflecting boundaries at infinity, because of the linearity and the negligible weight
of the buffer region, we get

λ1 ' tmfp(A)−1 + tmfp(B)−1 ≡ kAB + kBA (A.30)

where we apply definition (1.15).
The connection to a random telegraph model is achieved defining

nA(t|r) =
∫

A

dr′p(r′, t|r, 0) nB(t|r) =
∫

B

dr′p(r′, t|r, 0) (A.31)

Using the expansion (A.13) truncated at λ1

nA(t|r) = 〈hA〉+ e−λ1t

∫
A

dr′ψ1(r′)ϕ1(r) (A.32)

where we used again ψ0(r′)ϕ0(r) = pst(r). We can then rewrite

nA(t|r) = 〈hA〉+ e−λ1t[nA(0|r)− 〈hA〉] (A.33a)
nB(t|r) = 〈hB〉+ e−λ1t[nB(0|r)− 〈hB〉] (A.33b)



158 A. Rates as first passage times

which correspond to the (1.7) and (1.8) as soon as we identify

λ1 = WAB +WBA (A.34)

〈hA〉 =
WBA

λ1
〈hB〉 =

WAB

λ1
(A.35)

Otherwise stated, what we have proven in this section is

kAB ≡ tmfp(A)−1 = WAB kBA ≡ tmfp(B)−1 = WBA (A.36)

i.e. a system with separation of timescales (1.1), or equivalently a spectral gap (A.16),
can be approximated with a random telegraph if we take as jump probabilities the
inverse mean first passage times.

This somewhat qualitative connection we presented can be refined into what is
called Kramers’ method, originally derived in [160] and rediscovered and reformulated
several times [6]. For a rigorous modern mathematical derivation see [161].

A.3 Correlation function for reactive flux

The Bennett-Chandler (BC) procedure or reactive flux formalism of sec. 1.5 makes
use of the correlation function (1.38), which we rewrite here

C(t) ≡ 〈hA(0)hB(t)〉
〈hA〉

(A.37)

Using the results of the previous sections we can prove relation (1.39).
Consider the numerator:

〈hA(0)hB(t)〉 =
∫
drdr′hA(r′)hB(r)p(r, t; r′, 0) (A.38)

where p(r, t; r′, 0) is the two-point probability of being in r at time t and at r′

at time 0. It is related to the two-point conditional probability by p(r, t; r′, 0) =
p(r, t|r′, 0)pst(r′). Hence, we can rewrite

〈hA(0)hB(t)〉 =
∫
drdr′hA(r′)hB(r)p(r, t|r′, 0)pst(r′)

'
∫
drdr′hA(r′)hB(r)[
pst(r′)pst(r) + pst(r′)ψ1(r)ϕ1(r′)e−λ1t

]
=

∫
drdr′hA(r′)hB(r)[
pst(r′)pst(r)− pst(r′)pst(r)e−λ1t

]
= 〈hA〉〈hB〉(1− e−λ1t) (A.39)

where we used in order, the expansion (A.13) truncated at λ1, and the properties of
the eigenfunctions Fig. A.1. As a result, using (A.34)

C(t) ' 〈hB〉
(
1− e−(kAB+kBA)t

)
(A.40)
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which is valid for t � λ−1
2 . It can be approximated for times λ−1

2 � t � λ−1
1 , i.e.

τtrans � t� τstable, see section A.1. The result is then the relation we were looking
for

C(t) ' 〈hB〉λ1t = kAB t (A.41)

where we used (A.34), (A.35).
Originally this formula was derived using linear response on a random telegraph

approximation which was assumed valid a priori as a reasonable macroscopic law [12].
Here the derivation is reversed. Thanks to the complicated but powerful spectral anal-
ysis of the Fokker-Planck operator, we have been able to derive the random telegraph
approximation from basic microscopic principles, and Eq. (A.41) as a consequence.

A.4 A model

Let us analyze a bistable onedimensional model. We compute analytically the mean
first passage time from one state to the other and we show that converges to a constant
value, identifiable with the inverse rate constant.

Consider the potential U(r) of Fig. A.2 a. The system admits the equilibrium dis-
tribution pst(r) = exp[−βU(r)] also plotted in figure. We put an absorbing boundary
at r = b, the border of state B. The equation (A.24) for the mean first passage times

r

k−1

BA

B

b

s

A

a

0

(a)

(b)

r

AB

Figure A.2: Onedimensional
bistable model. (a) potential
energy (full line) and equilib-
rium distribution (dashed line)
(b) mean first passage time
tmfp(r → B).
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becomes
−U ′(r)∂rt

mfp(r) + β−1∂2
r t

mfp(r) = −1 (A.42)

with the initial condition tmfp(b) = 0. Requiring an additional reflecting boundary
at −∞ the solution is [6]

tmfp(r → B) = β

∫ b

r

dyeβU(y)

∫ y

−∞
dze−βU(z) (A.43)

So far we have made no approximation. Now if the maximum at s is high and the
temperature low, then around s, exp[βU(y)] will be sharply peaked while exp[−βU(z)]
is very small. Therefore the inner integral is a very slowly varying function of y near
y = s, i.e. almost constant for those value where the other exponent is significantly
different from zero. Hence we can put y = s in the inside integral and take it outside:

tmfp(r → B) ' β

∫ s

−∞
dze−βU(z)

∫ b

r

dyeβU(y) (A.44)

The first integral can then be approximated with a Gaussian integral at a over
(−∞,∞), while the second can be approximately related to an error function. The
resulting behavior is shown in Fig A.2 b. For r in state A, in particular r ' a, there is
a plateau, due to the stability of the state. Extending the integral again to (−∞,∞)
we get for the plateau value

kAB = tmfp(A→ B)−1 =

√
U ′′(a)|U ′′(s)|

2πγ
e−β[U(s)−U(a)] (A.45)

with the characteristic exponential behavior as function of barrier height, see also
(1.36). We have also reintroduced the friction coefficient γ from (A.1), so that kAB

has the right dimension of an inverse time. Formula (A.45) is valid for γ � 1.
We apply then TST formula (1.35) to this simple system, with λ(r) = r and λ∗ = s.

In one dimension the free energy coincides with the potential energy. In the same
approximation of Gaussian integrals, we get

kTST
AB =

√
U ′′(a)

2π
√
m

e−β[U(s)−U(a)] (A.46)

so that
kAB

kTST
AB

=

√
m|U ′′(s)|
γ

(A.47)

The meaning of the result is discussed in sec. 1.5.2.



B Alternative TST rate expression

We derive (1.68) from (1.33). Considering only the numerator:

〈δ(λ(r)− λ∗)λ̇θ(λ̇)〉 =
1
2
〈δ(λ(r)− λ∗)|λ̇|〉 (B.1)

=
1
2

∫
Rn×Rn

drdvρ(r, v)δ(λ(r)− λ∗)|∇λ · v|

=
1
2

∫
Rn

drρ(r)δ(λ(r)− λ∗)

Z−1
v

∫
Rn

dv|∇λ · v|e−
β
2 vT Mv

=
1
2

∫
Rn

drρ(r)δ(λ(r)− λ∗)∫
Rn dv|∇λ · v|e−

β
2 vT Mv∫

Rn dve
− β

2 vT Mv

Consider the inner fraction only. It can be easily evaluated if the exponent were
rotationally invariant. We change then coordinates to y =

√
Mv. The jacobian

|detM |−1/2 cancels out in the ratio and we are left with∫
Rn dy|(M−1/2∇λ) · y|e−

β
2 yT y∫

Rn dye
− β

2 yT y
(B.2)

Now we can choose a reference frame such that the first coordinate y1 is along the
constant vector (M−1/2∇λ). The integral reduces then to

|(M−1/2∇λ)|
∫ +∞
−∞ dy1|y1|e−

β
2 y2

1∫ +∞
−∞ dy1e−

β
2 y2

1

= 2|(M−1/2∇λ)|
√
kBT

2π
(B.3)

Inserting back into (B.1) we get

〈δ(λ(r)− λ∗)λ̇θ(λ̇)〉 =

√
kBT

2π

∫
Rn

drρ(r)δ(λ(r)− λ∗)|(M−1/2∇λ)| (B.4)
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We could introduce mass-weighted coordinates r′ =
√
Mr, but not to complicate

things further let us assume all masses equal to m. Then M−1/2∇ = m−1/2∇ and we
have

〈δ(λ(r)− λ∗)λ̇θ(λ̇)〉 =

√
kBT

2πm

∫
Rn

drρ(r)δ(λ(r)− λ∗)|∇λ| (B.5)

which is the definition of a surface integral on λ(r) = λ∗ with the surface element
dσ(r) = δ(λ(r)− λ∗)|∇λ|dr.



C RRKM theory

We want to derive (2.55) from the general TST formula (1.33), in the microcanonical
ensemble and using an harmonic approximation to the potential energy. The result
has its origins in 1927, even before TST, which dates back to 1935, and is known
as the RRKM theory, from the names of its creators, Rice, Ramsperger, Kassel,
Marcus [162,163,164,165]. The derivation is a mathematical exercise that shows how
to compute ensemble averages with constraints.

At the basis of the demonstration there is the following integral formula, the surface
integration of a multidimensional sphere. Let x ∈ Rk and C > 0, αi > 0, i = 1 . . . k.
Then

∫
dkxδ

[
1
2

k∑
i=1

αix
2
i − C

]
= 2

∫
dkxδ

[
k∑

i=1

αix
2
i − 2C

]
(C.1)

=
2∏

i

√
αi

∫
dkyδ

[
k∑

i=1

y2
i −R2

]

=
2Sk∏
i

√
αi

∫ ∞

0

dyyk−1δ
[
y2 −R2

]
=

2Sk∏
i

√
αi

∫ ∞

0

dy
yk−1

2R
[δ(y +R) + δ(y −R)]

=
Sk∏k

i=1

√
αi

(2C)
k−2
2

In the first line we used δ(ax) = δ(x)/|a|. In the second a change of variables yi =√
αixi, R2 = 2C to have a spherical integrand. Then we moved to polar coordinates,

Sk is the k-dimensional surface area of unit-radius hypersphere. The final outcome
follows from the properties of the delta function. Note that the result is proportional
to the radius to the power k−2 and not k−1 as expected from geometrical intuition.

Given a system of N particles in dimension d = 3, let r, p be the n = dN dimen-
sional vectors of coordinates and momenta. The Hamiltonian and the microcanonical
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164 C. RRKM theory

distribution are written

H(r, p) =
pT p

2m
+ U(r) (C.2)

ρ(r, p) = Ω−1δ[H(r, p)− E]δ(P)δ(L) (C.3)

where Ω is the microcanonical partition function, we assume equal mass m for all
particles, and P, L are the vectors of total linear and angular momemtum.

Consider now the denominator of Eq. (1.33). The average 〈θ(λ∗ − λ(r))〉 is the
measure of stable state A, which is assumed to be the basin of a configurational
energy minimum. We approximate the potential U(r) with a quadratic function at
the minimum and write

〈hA〉 = Ω−1

∫
dnrdnpδ

[
pT p

2m
+
rTQr

2
+ UA − E

]
δ(P)δ(L) (C.4)

Now we proceed to the integration of the constraints δ(P)δ(L). They are linear and
represent fixed planes in the p space. Intersecting fixed planes with a sphere reduces
the dimension of the sphere. Explicitly, the constraints are rewritten as

δ(P) =
d∏

α=1

δ(vα · p) (C.5)

δ(L) =
d∏

α=1

δ(wα(r) · p) (C.6)

Here vα ∈ Rn has component 1 in the subspace of dimension-coordinate α and zero
otherwise, e.g. v1 = (1, 0, 0, 1, 0, 0, . . .). And wα = LT

r vα, where Lr ∈ Rn×Rn consists
of N block matrices 3× 3 of angular momentum multiplication. Vectors vα, wα only
depend on r, and are constants in the p space. Since the integrand in (C.4) is invariant
under rotations in the p space we can choose a reference frame such that v1 coincides
with the n-dimensional z axis. The Jacobian is unity for orthogonal transformations
and as a consequence δ(v1 ·p = δ(pn). We can reduce the integral to dn−1p. Repeating
for all the constraints we write the reduced integral

〈hA〉 = Ω−1

∫
dnrdspδ

[
pT p

2m
+
rTQr

2
+ UA − E

]
(C.7)

where s = n− 6 = 3N − 6, or 3N − 5 for linear molecules. The symmetric quadratic
form Q can be diagonalized with an orthogonal transformation, such that

Q = OTDO OTO = 1 (C.8)
D = diag(µA

1 , . . . , µ
A
s , 0, 0, 0, 0, 0, 0) (C.9)

and µA
i > 0 ∀i = 1 . . . s. Applying the transformation r → Or in the integral we can

write

〈hA〉 = Ω−1

∫
dn−sr

∫
dsrdspδ

[
pT p

2m
+
rTDr

2
+ UA − E

]
(C.10)

=
Ω−1V n−sS2s∏s

i=1

√
µA

i

m

[2(E − UA)]s−1
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where we used Eq. (C.1), and V is the volume of the system.
Next, consider the numerator of Eq. (1.33), which requires the definition of a

reaction coordinate. Since we identify the transition state as a saddle point of index
one, we take precisely the coordinate corresponding to the unstable mode, which we
assign to axis s

λ(r) = ı̂Ts O
T r (C.11)

λ̇(r, p) = ı̂Ts O
T p/m (C.12)

Here we approximate again U(r) with a quadratic form at the saddle point. A diago-
nalization like (C.8) holds, but now µTS

i > 0∀i = 1 . . . s− 1 and µTS
s < 0. The vector

ı̂s has component 1 for coordinate s and zero otherwise. The equation for λ̇ follows
from the Hamiltonian (C.2). The numerator is written then (using (1.37))

Ω−1

2m

∫
dnrdnpδ

[
pT p

2m
+
rTQr

2
+ UTS − E

]
(C.13)

δ(P)δ(L)δ(̂ıTs O
T r)|̂ıTs OT p|

We want to apply the same procedure of before to eliminate the constraints. The term
in square brackets is invariant under rotations in p space, but the last modulus is not.
This is not a problem however, because after rotating to integrate the δ(P)δ(L), we
can rotate back to the original frame in the remaining subspace. So the constraints
disappear and we are left with an integration on dsp. Using now the orthogonal
transformation that diagonalizes Q, on both r and p we get

Ω−1

2m

∫
dn−sr

∫
dsrdspδ

[
pT p

2m
+
rTDr

2
+ UTS − E

]
δ(rs)|ps| (C.14)

=
Ω−1V n−s

2m

∫
dps|ps|

∫
ds−1rds−1pδ

[
pT p

2m
+
rTD′r

2
+ UTS − E

]
=

Ω−1V n−s

2m

∫
dps|ps|

S2s−2∏s−1
i=1

√
µT S

i

m

[
2 (E − UTS)− p2

s

2m

]s−2

=
Ω−1V n−sS2s−2

2m
∏s−1

i=1

√
µT S

i

m

1
ms−2

∫ 2m(E−UT S)

0

ys−2dy

=
Ω−1V n−sS2s−2

2(s− 1)
∏s−1

i=1

√
µT S

i

m

[2(E − UTS)]s−1

where D′ = diag(µA
1 , . . . , µ

A
s−1), we used formula (C.1) again, and we changed variable

from ps to y = 2(E −UTS)− p2
s/2m. The integration top limit is cut to mantain the

integrand positive.
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Finally the ratio of (C.10) and (C.14) is

kRRKM
AB (E) =

(
E − UTS

E − UA

)s−1
∏s

i=1

√
µA

i

m∏s−1
i=1

√
µT S

i

m

S2s−2

2(s− 1)S2s
(C.15)

=
(
E − UTS

E − UA

)s−1 ∏s
i=1 ν

A
i∏s−1

i=1 ν
TS
i

where we used S2s−2/2(s− 1)S2s = 1/2π and defined the vibrational frequencies

νi =
1
2π

√
µi

m
. (C.16)

This expression is usually written using the definition of geometric mean. For com-
pleteness we also mention that in distribution (C.2) we did not take into account
discrete symmetries of the stable and transition state. When everything is considered
the RRKM formula reads

kRRKM
AB (E) =

(
E − UTS

E − UA

)s−1 (ν̄A)s

(ν̄TS)s−1

hA
PG

hTS
PG

(C.17)

where hPG is the order of the prevailing point group [33].
A final note concerns systems where the masses are not all equal to m. When the

system has a mass matrix M , Eq. (1.18), not proportional to the identity, we lose
the rotational invariance of H in the full p space (but not in the real space!). The
procedure then is to apply a canonical transformation p→M−1/2p, r →M+1/2r, to
mass weighted coordinates and unity mass matrix. When the new potential energy
is approximated with a quadratic form, new stationary points are found and new
associated eigenvalue problems are solved. The harmonic RRKM procedure is the
same, and expression (C.17) still holds, but the frequencies (C.16) are defined as
νi =

√
µ′i/2π where µ′i are the eigenvalues of the mass-weighted quadratic potential

energy M−1/2QM−1/2. All this complicated procedure has a simple geometrical
explanation. As pointed out by Goldstein [88] when diagonalizing two quadratic
forms simultaneously, first one has to be reduced to a sphere, to be able to rotate the
other without changing the first.



D Flux relation

Here, we prove relation (3.14). The demonstration is based on the continuity of the
trajectories, regardless of deterministic or stochastic dynamics, and can be generalized
also to a discrete state dynamics, if the evolution allows only jumps of one-step, e.g.
±1.

Given three interfaces i < j < k we show how the effective flux φi,k can be related
to the effective flux φi,j . If at time t = 0 a trajectory passes interface k while having
started in i some time earlier, there must always be an unique time when it passed
interface j for the first time. Therefore we can write:

φki(x0) = φki(x0)
∫ tb

ki(x0)

0

dt φji(x−t) (D.1)

We denote with tbki(x0), t
f
ki(x0) the backward and forward exit times from the region

between i and k. The situation is that of Fig. 3.5 (a), x0 is the black dot on k and
comes directly from i. The integral contributes only at the point on j denoted with
another black dot. The contribution is 1 because of the definition of φji.

Hence

〈φki(x0)〉 =
∫ ∞

0

dt〈φji(x−t)φki(x0)θ(tbki(x0)− t)〉

=
∫ ∞

0

dt〈φji(x0)φki(xt)θ(tbki(xt)− t)〉

=
〈
φji(x0)

∫ ∞

0

dtφki(xt)θ(tbki(xt)− t)
〉

=

〈
φji(x0)

∫ tf
ki(x0)

0

dtφki(xt)

〉
= 〈φji(x0)h

f
ki(x0)〉. (D.2)

The last but one equation needs some explanation. Denote with tfΩ(x), tbΩ(x) the
forward and backward exit time from a region Ω. For each phase point x0 and
phase space region Ω it can be shown that if t > tfΩ(x0) then tbΩ(xt) ≤ t and hence
θ(tbΩ(xt)− t) = 0. With reference again to Fig. 3.5 (a), now x0 is the black dot on j.
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168 D. Flux relation

We can have a contribution (equal to 1) from the integral only if starting from x0 we
do not touch i before k, otherwise is 0. That is precisely the function hf

ki(x0).
Finally we rewrite the last expression of Eq. (D.2) as a different ensemble average:

〈φki(x0)〉 =
〈φji(x0)h

f
ki(x0)〉

〈φji(x0)〉
· 〈φji(x0)〉

= 〈hf
ki(x0)〉φji

· 〈φji(x0)〉

= P (k
i |

j
i )〈φji〉 (D.3)

which is relation (3.14).



E Recursive relations for PPTIS

E.1 Recursive relations for the illustrative example

In this appendix we will derive the recursive relations (4.2) for the chain of metastable
states. For the transfer in the positive direction we can write

T [1 →j
0] = T [1 →j−1

0 ]T [j − 1 →j
0]

= T [1 →j−1
0 ]

(
1− T [j − 1 →0

j ]
)

(E.1)

and for the reverse direction

T [j − 1 →0
j ] = τj−1,j−2T [j − 2 →0

j ]

= τj−1,j−2

(
T [j − 2 →0

j−1] +

T [j − 2 →j−1
0 ]T [j − 1 →0

j ]
)

= τj−1,j−2

(
T [j − 2 →0

j−1] +(
1− T [j − 2 →0

j−1]
)
T [j − 1 →0

j ]
)

(E.2)

Bringing the T [j − 1 →0
j ] terms of Eq. (E.2) to the left side gives us:

T [j − 1 →0
j ] =

τj−1,j−2T [j − 2 →0
j−1]

1− τj−1,j−2(1− T [j − 2 →0
j−1])

(E.3)

Using 1−τj−1,j−2 = τj−1,j , we see that Eq. (E.3) is equivalent to Eq. (4.2b). Eq. (4.2a)
is then obtained by substitution into Eq. (E.1).
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170 E. Recursive relations for PPTIS

E.2 Recursive relations for a general barrier

The criterion of Eq. (4.6) gives for any positive integer q > 0 the following approximate
relations:

P (l
m|ii±q) ≈ P (l

m|ii±1)

P (i+q
i−1|

i
i+1) ≈ P (i+q

i−1|
i
i−1)(p

‡
i/p

±
i )

P (i−q
i+1|

i
i−1) ≈ P (i−q

i+1|
i
i+1)(p

=
i /p

∓
i ) (E.4)

With this in mind we can start a derivation similar to Appendix E.1:

P+
j ≡ P (j

0|10) = P (j−1
0 |10)P (j

0|
j−1
0 )

≈ P (j−1
0 |10)P (j

0|
j−1
j−2)

= P+
j−1

(
1− P (0j |

j−1
j−2)

)
≈ P+

j−1

(
1− P (0j |

j−1
j )

p=
j−1

p∓j−1

)
= P+

j−1

(
1− P−j

p=
j−1

p∓j−1

)
(E.5)

and for the reverse direction we can write:

P−j = P (0j |
j−1
j ) = p∓j−1P (0j |

j−2
j )

≈ p∓j−1P (0j |
j−2
j−1)

≈ p∓j−1

[
P (0j−1|

j−2
j−1) + P (j−1

0 |j−2
j−1)P (0j |

j−1
j−2)

]
= p∓j−1

[
P−j−1 +

(
1− P−j−1

)
P (0j |

j−1
j−2)

]
≈ p∓j−1

[
P−j−1 +

(
1− P−j−1

)
P (0j |

j−1
j )

p=
j−1

p∓j−1

]
= p∓j−1

[
P−j−1 +

(
1− P−j−1

)
P−j

p=
j−1

p∓j−1

]
(E.6)

Bringing the P−j terms to the left results in:

P−j =
P−j−1p

∓
j−1

1−
(
1− P−j−1

)
p=

j−1

(E.7)

With the help of Eq. (4.4) we can see that this is equivalent to expression (4.7).
Substitution of this relation into Eq. (E.5) results in the expression for P+

j in Eq. (4.7).
The recursive relations Eq. (4.7) also admit a non-recursive solution. First, since

for the ratio P+
j /P

−
j we can write

P+
j

P−j
=
P+

j−1

P−j−1

·
p±j−1

p∓j−1

, (E.8)
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we can easily find a solution for the n-th term of the sequence:

P+
n

P−n
=

n−1∏
j=1

p±j

p∓j
(E.9)

Second, it can be checked by direct substitution that the following formulas are a
solution to the recursive relations (4.7):

P+
n = D−1

n

n−1∏
i=1

p±i (E.10)

P−n = D−1
n

n−1∏
i=1

p∓i (E.11)

Dn ≡
n−1∏
i=2

p±i +
n−1∑
k=2

[(
k−1∏
i=1

p∓i

)
p=

k

(
n−1∏

i=k+1

p±i

)]
(E.12)

They have indeed a structure similar to the solution of mean-first passage time prob-
lems for birth-death processes [6].

E.3 Recursive relations for simple PPTIS

Following the same derivations of sec. E.2

P+
l ≡ P (l

0|00−) = P (r
0|00−)P (l

0|r0−)

≈ P+
r P (l

0|rr−) (E.13)

where I used the memory loss assumption. For the last quantity I can write

P (l
0|rr−) = 1− P (0l |rr−)

= 1− P (r
l |rr−)P (0l |rr+)

= 1− P (r
l |rr−)[1− P (l

0|rr+)]
= 1− P (r

l |rr−)[1− P (r
0|rr+)P (l

0|rr−)]
= 1− p=

r [1− (1− P−r )P (l
0|rr−)] (E.14)

and solving for P (l
0|rr−):

P (l
0|rr−) =

p±r
p±r + p=

r P
−
r

(E.15)

Putting (E.15) into (E.13) you get the first of (4.25).
Then the reverse part

P−l ≡ P (0l |ll+) = P (r
l |ll+)P (0l |rl+)

≈ p±r P (0l |rr+) (E.16)
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where I used the memory loss assumption. For the last quantity I can write

P (0l |rr+) = 1− P (l
0|rr+)

= 1− P (r
0|rr+)P (l

0|rr−)
= 1− (1− P−r )[1− P (0l |rr−)]
= 1− (1− P−r )[1− P (r

l |rr−)P (0l |rr+)]
= 1− (1− P−r )[1− p=

r P (0l |rr+)] (E.17)

and solving for P (0l |rr+)

P (0l |rr+) =
P−r

p±r + p=
r P

−
r

(E.18)

Putting (E.18) into (E.16) you get the second of (4.25).

E.4 Probability relation for symmetrical hopping model

Consider the discrete model of sec. 4.1.1 in the case of symmetrical hopping proba-
bilities τi,i+1 = τi,i−1 = 1/2 for all i. We want to prove the relation

T [i→j
0] =

i

j
(E.19)

where T [i→j
0] is the probability of being in i and reach j > i before 0. By definition

T [i→j
0] = 1− T [i→0

j ].
The proof proceeds in two steps. First we prove by induction that

T [j →j+1
0 ] =

j

j + 1
(E.20)

For j = 1, it is easily seen that T [1 →2
0] = 1/2. Suppose then that (E.20) holds for

j − 1, we have to prove it holds for j. Using Eq. (E.3) in the case of symmetrical
hopping probabilities, we can write

T [j →0
j+1] =

T [j − 1 →0
j ]

1 + T [j − 1 →0
j ]

(E.21)

from which

T [j →j+1
0 ] = 1−

T [j − 1 →0
j ]

1 + T [j − 1 →0
j ]

=
1

1 + T [j − 1 →0
j ]

=
1

2− T [j − 1 →j
0]

=
1

2− (j − 1)/j
=

j

j + 1
(E.22)
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where in the last passage we have used the induction hypothesis.
Second we use induction again on formula (E.20), for fixed i and varying j > i.

We have just proved that it holds for j = i+ 1. Let us assume it holds for j and let
us prove it for j + 1. This is immediately seen because

T [i→j+1
0 ] = T [i→j

0]T [j →j+1
0 ]

=
i

j

j

j + 1
=

i

j + 1
(E.23)

A consequence of expression (E.19) is that using Eq. (4.1) the rate constant kAB

can be written as
kAB = k0,1T [1 →s

0] =
k0,1

s
(E.24)



F Biased and reweighted averages

In Fig. 5.3 we showed the canonical and microcanonical free energies for the model
system of sec. 4.3.1. We explain here how we computed them using a single biased
MC simulation.

Within the usual convention of this thesis, we denote with r = (r1, . . . , rN ) and
p = (p1, . . . ,pN ) the n = dN dimensional vectors of coordinates and momenta, where
d is the dimension of the system and N the number of particles. The Hamiltonian of
the model reads

H(r, p) = K(p) + U(r)

=
N∑

i=1

p2
i

2m
+ UWCA(r) + Uddw(rd(r))

=
N∑

i=1

p2
i

2m
+
∑
i<j

UWCA(rij) + Uddw(r12) (F.1)

where rij = |ri − rj | and the order parameter is λ(r, p) = rd(r) = r12, identifying
particles 1 and 2 as the dimer.

For the canonical free energy we can write

e−βF (rd) ≡ 〈δ(rd(r)− rd)〉 = Z−1
r

∫
drδ(rd(r)− rd)e−βU(r) (F.2)

Zr =
∫
dre−βU(r) (F.3)

where we consider only the configurational part because the order parameter does not
depend on momenta. Expression (F.2) is easily remanipulated as

e−βF (rd) = Z−1
r

∫
dre−β[U(r)+Uddw(rd(r))−Uddw(rd(r))]δ(rd(r)− rd)

= Z−1
r

∫
dre−β[U(r)−Uddw(rd(r))]e−βUddw(rd(r))δ(rd(r)− rd)

= e−βUddw(rd)ZWCA

Zr
Z−1

WCA

∫
dre−βUW CA(r)δ(rd(r)− rd)

= e−βUddw(rd)ZWCA

Zr
〈δ(rd(r)− rd)〉WCA (F.4)
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where

ZWCA =
∫
dre−βUW CA(r) (F.5)

Hence, in Eq. (F.4) the second term is a constant and the last average is on a system
of pure WCA particles. In such a system it does not matter which particles are
considered 1 and 2, and one can increase the statistics by averaging on all pairs. As
a matter of fact the last term is simpy the radial distribution function without the
radial normalization. Using (F.4) we obtain

F (rd) = Uddw(rd)− kBT ln〈δ(rd(r)− rd)〉WCA (F.6)

In the same simulation we can also compute the microcanonical free energy using
a reweighting of the sampled configurations. To do this, we need to know the reduced
microcanonical probability density ρmic(r), defined as

ρmic(r) = Ω−1
r

∫
dpδ[H(r, p)− E]δ(P) (F.7)

Ωr =
∫
drdpδ[H(r, p)− E]δ(P) (F.8)

where P is the d-dimensional vector of total linear momentum, which is conserved, see
sec. 2.4.1. Note that the term is not present in the canonical free energy because of
the separation of coordinates and momenta in the integral average. The computation
of (F.7) is along the same lines of sec. C:

ρmic(r) = Ω−1
r

∫
dnpδ

[
pT p

2m
− (E − U(r))

]
δ(P)

= Ω−1
r

∫
dspδ

[
pT p

2m
− (E − U(r))

]
= Ω−1

r Ssm
s/2[2(E − U(r))]

s−2
2 (F.9)

In the second line we eliminated the d linear constraints δ(P) using the fact that the
integrand is invariant for rotations in p space. The remaining degrees of freedom are
s = n− d = dN − d, and the last line uses formula (C.1). Using the fact that in the
MC simulation of a pure WCA system the configurations are sampled with weights
proportional to the reduced canonical probability distribution

ρcan(r) = Z−1
r e−βUW CA(r) (F.10)

we can write for the ratio of the total microcanonical and WCA canonical probability
distributions

ρmic(r)
ρcan(r)

∝ e+βUW CA(r)[E − U(r)](dN−d−2)/2 (F.11)

The simultaneous computation of the NVT and NVE probabilities PNV T (rd),
PNV E(rd) proceeds as follows. Since in the pure WCA system it does not matter
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which two particles are considered a dimer, define for a configuration r and an inter-
particle distance rij the weight

wij =

{
[E−UW CA(r)−Uddw(rij)]

(dN−d−2)/2

e−βUW CA(r) if [E − UWCA(r)− Uddw(rij)] > 0
0 otherwise

(F.12)

derived from (F.11) with the requirement of positive kinetic energy. For each con-
figuration r generated by the MC simulation, loop over all pairs of particles, with a
separation less than half the simulation box. For each pair compute the distance rij ,
and histogram accordingly. For the NVT histogram add simply 1 to the bin counter,
for the NVE histogram, add the weight wij . Normalization follows as usual at the
end after the simulation. The NVE histogram gives PNV E(rd) directly. To obtain
PNV T (rd) from the NVT histogram instead, one has to add Uddw(rd) according to
formula (F.6).



G Classical Nucleation Theory

In a system undergoing a nucleation process a new phase is produced inside a metastable
phase, called the parent phase. At the end of the 19th century, J.W. Gibbs was the
first to realize that the stability of the parent phase is related to the work that has to
be done to create a critical nucleus of the new phase [166]. In the 1920’s and 1930’s
his ideas were developed into a kinetic theory of nucleation by Volmer and Weber,
Faruas, and Becker and Döring [167, 168, 169]. This theory was further developed
by Zeldovich [170] and Frenkel [171] in the 1940’s, and is now known as classical
nucleation theory.

We introduced CNT in sec. 7.1 where we discussed solid-liquid nucleation. We
present here CNT for the general nucleation of a phase α inside a phase β, and derive
Eq. (7.1) for the nucleation barrier and Eq. (7.3) for the nucleation rate.

G.1 Nucleation barrier

Consider a system (I) containing the homogeneous, metastable phase β and a sys-
tem (II) containing the parent phase β with a nucleus of phase α. The situation is
schematized in Fig. G.1 a. We want to compute the Gibbs free energy difference, at
constant temperature T and pressure p.

To do so, we consider the difference in total internal energy. Assuming that the
internal energy U is a homogeneous first-order function of the extensive parameters
S, V,N [172], we can write for system (I)

U I = T ISI − pIV I + µIN I (G.1)

where S is the entropy, N the number of particles, V the volume, and µ the chemical
potential. In system (II) a droplet of phase α is also present. We assume the temper-
ature T II is uniform throughout the system, but in general two different pressure and
chemical potentials are associated to phase α and β. Taking into account the energy
of the interface between the phases we can write

U II = T IISII − pII
αV

II
α − pII

β V
II
β + γA+ µII

αN
II
α + µII

βN
II
β (G.2)

where γ is the surface free energy density, A is the area of the interface, Nα, Nβ are the
number of particles in each phase, and Vα, Vβ are the volumes of each phase. Since the
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pβ pα

Phase(α)

Phase (β)

Phase (β)

(a)

pcoex

p

µ β

α
−∆µ

CNT

I

II

(b)

Figure G.1: (a) Formation of a nucleus of a stable phase α in a metastable phase β. (b)
Gibbs free energy per particle µ(p) for the two phases in system II. The phase β is at a
supersaturated pressure pβ > pcoex greater than the coexistence pressure, and is metastable
∆µ = µα(pβ) − µβ(pβ) < 0. Here the case of a critical droplet is shown, where µα(pα) =
µβ(pβ), and the CNT approximation of incompressible phase α, which results in a linear
approximation for the curve µ(α).

total volume is V II = V II
α +V II

β and the total number of particles is N II = N II
α +N II

β ,
we can rewrite Eq. (G.2) as

U II = T IISII − pII
β V

II + (pII
β − pII

α )V II
α + γA+ µII

βN
II + (µII

α − µII
β )N II

α (G.3)

As we consider the two systems at constant number of particles, temperature and
pressure, we have N I = N II, pI = pII

β = p, T I = T II = T . Moreover, since the parent
phase is the same in the two systems µI = µII

β . Taking the difference of Eq. (G.3) and
Eq. (G.1), and rearranging for ∆G = ∆U + p∆V − T∆S, we obtain

∆G = GII −GI = (pII
β − pII

α )V II
α + γA+ (µII

α − µII
β )N II

α (G.4)

This equation holds in general and no approximations have been made. As an il-
lustrative example, think of phase α as a liquid and phase β as a supersaturated
vapor, i.e. a vapor at pβ > pcoex. A droplet of liquid at pressure pα > pβ is present
in the vapor, and µα < µβ because the liquid is more stable. In (G.4) this implies
that the volume terms proportional to Vα and Nα give a negative contribution, while
the surface term γA is always positive. As a consequence ∆G has a maximum for
a critical nucleus size. The probability of growth is greater than the probability of
shrinking for nuclei with size greater than the critical size. For smaller nuclei, the
probability of shrinking prevails. For critical nuclei, the probability of shrinking is
equal to that of growth, which implies chemical equilibrium (no net flux of matter),
so that µ∗α = µbeta

∗, where the superscript ∗ denotes conditions at the critical size. In
this case the pressure difference between the phases is known as the Laplace pressure
∆p = pα − pβ (see also Fig. G.1 b).

In order to obtain a more useful expression for ∆G, CNT assumes:
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1. phase α is incompressible, i.e. ρα ≡ Nα/Vα is a constant. From the thermo-
dynamic relations (∂G/∂P )T = V , G = µN , we know that at constant T,N

dµ = dp
V

N
=
dp

ρ
(G.5)

Since in addition ρ is constant because of incompressibility, we can integrate
this relation and obtain a linear relation between µ and ρ (see also Fig. G.1 b):

µII
α (pII

α ) = µII
β (pII

β ) +
pII

α − pII
β

ρα
(G.6)

Substituting this last expression into Eq. (G.4), in which µII
α = µII

α (pII
α ) and

µII
β = µII

β (pII
β ), we obtain

∆G = γA+ [µII
α (pII

β )− µII
β (pII

β )]ραV
II
α (G.7)

2. the phase α is characterized by its bulk properties, in particular ρα is the density
of bulk phase α

3. the nucleus is spherical. Then Vα = 4πR3/3 and A = 4πR2, where R is the
radius of the nucleus

4. the surface tension γ is independent of R

Putting all the assumptions together we can rewrite Eq. (G.7) as

∆G = 4πR2γ +
4
3
πR3ρα∆µ (G.8)

where ∆µ = µII
α (pII

β ) − µII
β (pII

β ) < 0 is the difference in chemical potential between
the two phases at the same supersaturation pressure pβ . Eq. (G.8) is the same of
Eq. (7.1) where the phase α is a solid inside an undercooled liquid phase β.

Taking the derivative with respect to R we can find the critical radius that maxi-
mizes ∆G

R∗ =
2γ

ρα|∆µ|
(G.9)

∆G∗ =
16πγ3

3ρ2
α∆µ2

(G.10)

Finally, we can also rewrite Eq. (G.8) as function of the number of particles in the
nucleus n = 4πR3ρα/3

∆G = 4πγ
(

3n
4πρα

)2/3

+ n∆µ (G.11)

which gives a critical size

n∗ =
32πγ3

3ρ2
α|∆µ|3

. (G.12)
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G.2 Equilibrium distribution of cluster sizes

In this section we relate the CNT free energy, Eq. (G.11), to the distribution of cluster
sizes. We give here a qualitative thermodynamic description, but the final relation is
exact and can be derived rigorously from statistical mechanics [131,173].

Consider a system with homogeneous temperature T and denote with Nn the num-
ber of clusters of size n. So the system consists of N1 monomers, N2 dimers, . . . , Nn

n-mers, in a solvent of Nβ particles of phase β. We denote the total number of par-
ticles with N , and we assume Nβ � Nn ∀n so that N ≈ Nβ . Eq. (G.11) can be
rewritten

∆G = γA+ n[µα(p)− µβ(p)]
= µn(p)− nµβ(p) (G.13)

where we defined the chemical potential of the cluster µ(p) ≡ γA+ nµα(p), and p is
the pressure of phase β. We assume that the concentration of clusters is low enough
that we can ignore interactions between them and consider the system as an ideal
mixture. Using Eq. (G.5) and the equation of state for ideal gases p = ρkBT we can
obtain the chemical potential of the cluster at a different pressure

µn(pn) = µn(p) + kBT ln(pn/p) (G.14)

where we chose the other pressure as the partial pressure pn exerted by clusters of
size n. Substituting in Eq. (G.13) we obtain

∆G = µn(pn)− kBT ln(pn/p)− nµβ(p)
= −kBT ln(pn/p) (G.15)

In the last passage we made use of the equilibrium condition µn(pn) = nµβ(p), for the
substitution of n particles of phase β with a cluster of n particles of phase α. Since
the ratio of pressures pn/p is equal to the ratio Nn/Nβ ≈ Nn/N (Raoult’s law), we
finally arrive at the expression

P (n) ≡ Nn

N
= e−β∆G(n) (G.16)

which relates the cluster size distribution P (n) to the corresponding CNT free energy.
In a simulation, a direct histogramming of P (n) can produce the free energy

β∆G(n) = − lnP (n) only for small values of n because configurations with big clus-
ters are exponentially rare. Nevertheless special methods can be used, which rely on
biasing techniques, like the umbrella sampling method discussed in sec. 2.3.1. Usually
the bias is a function of the size of the biggest cluster in the system nbig. However,
the histogram of nbig is approximately equal to the histogram of n. In fact, we can
write

P (n) =
∑

i

iPi(n) (G.17)

where Pi(n) is the probability of having i cluster of size n. Assuming that the forma-
tions of different clusters are uncorrelated, Pi(n) = P1(n)i, and we obtain

P (n) =
∑

i

P1(n)i ' P1(n) ≡ P (nbig) (G.18)
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where we used the fact that for rare clusters P1(n) is small, so that the sum is
dominated by the first term.

G.3 Nucleation rate

Here we derive an expression for the nucleation rate in the context of CNT. We assume
that clusters grow or shrink via the attachment of single molecules. Consequently,
the cluster distribution Nn(t) satisfies a birth-death Master Equation [6, 7]

dNn

dt
= w+

n−1Nn−1 + w−n+1Nn+1 − (w+
n + w−n )Nn (G.19)

Defining the current Jn = w−nNn − w+
n−1Nn−1, the above equation is rewritten as

dNn/dt = Jn+1 − Jn, and a time-independent stationary solution Nst
n is found im-

posing Jn = 0, or equivalently the detailed balance condition

w−n
w+

n−1

=
Nst

n−1

Nst
n

(G.20)

A solution can be found by recursion and reads [6]

Nst
n = Nst

0

n∏
i=1

w+
i−1

w−i
(G.21)

Since we are interested in the rate constant, we follow the indications of chapter 1
and appendix A, and we apply the definition (1.15) of inverse mean first passage
time. Following the solution procedure of first passage problem, see sec.A.2 and the
example in sec. A.4, we put a reflecting boundary at n = 0 and an absorbing boundary
at n = n̄ > n∗, and we consider the equation for the mean first passage time starting
from n = 0. For onedimensional birth-death processes, the solution reads [6]

tmfp
0 =

n̄∑
i=0

i∑
j=0

φ(i)
w+

j φ(j)
(G.22)

φ(x) =
x∏

i=1

w+
i

w−i
(G.23)

Making use of Eq. (G.21) we can rearrange

tmfp
0 =

n̄∑
i=0

i∑
j=0

Nst
j+1w

−
j+1

t+j N
st
i+1w

−
i+1

=
n̄∑

i=0

1
Nst

i+1w
−
i+1

i∑
j=0

Nst
j+1w

−
j+1

t+j

=
n̄∑

i=0

1
Nst

i w
+
i

i∑
j=0

Nst
j (G.24)
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where we made use of the detailed balance equation (G.20).
At equilibrium Nst

n is given by Eq. (G.16). Since the free energy has the form
(G.11) (see also Fig. 7.2), the first sum in Eq. (G.24) is dominated by the term for
i = n∗. Correspondingly, the second sum is almost constant, the upper limit j can
be replaced with n∗, and it can be evaluated as Nst

0 ≈ N . Finally, approximating the
free energy with a quadratic form at the maximum, and replacing the first sum with
a gaussian integral, we can write

(tmfp
0 )−1 =

√
|∆G′′(n∗)|

2πkBT
w+

n∗Ne
−β∆G(n∗) (G.25)

= (NZ)(w+
n∗N)

(
e−β∆G(n∗)

N

)
(G.26)

where we have defined the Zeldovich factor Z =
√
|∆G′′(n∗)|/2πkBT [170]. In the

second passage we have rewritten the rate as a product of three factors to compare
it with the TST-BC expression (1.48). The last factor is the probability of being on
top of the barrier when starting from pure phase β, w+

n∗N is the crossing flux, and
NZ is the transmission coefficient κ to take into account the recrossings.

We can also make an estimate for the attachment rate on top of the barrier w+
n∗ .

We multiply the number of particles available at the surface of the nucleus, which
is proportional to (n∗)2/3, with a typical transition rate of these particles to become
part of the nucleus. This transition rate is proportional to DS/λ

2
D where DS is a self-

diffusion coefficient and λD a typical diffusion distance, of the order of the particle
diameter. The final result is [174]

w+
n∗ =

24DS(n∗)2/3

λ2
D

(G.27)

Finally, making use of the CNT expression for the free energy, Eq. (G.11), and dividing
by the volume of the system, we can rewrite Eq. (G.25) into an expression for the
rate per unit volume I

I = ρβ
24DS(n∗)2/3

λ2
D

√
|∆µ|

6πkBTn∗
e−β∆G(n∗) (G.28)

which in the case of solid-liquid nucleation corresponds to Eq. (7.3).



H NPH dynamics

Consider a system of N particles with mass m. Following Andersen [77], the Hamil-
tonian for the isobaric-isoenthalpic (NPH) ensemble can be written as

H(ρ,π) =
1

2mV 2/3

N∑
i=1

π2
i +

∑
i<j

U(V 1/3ρij) +
p2

V

2W
+ PextV (H.1)

Here V is the volume of the system, ρ = (ρ1, . . . ,ρN ) are the coordinates scaled with
the length of the box L = V 1/3 and π = (π1, . . . ,πN ) are the conjugate momenta.
So ρi = ri/L and πi = piL, where r = (r1, . . . , rN ) are the unscaled coordinates and
p = (p1, . . . ,pN ) are the unscaled momenta. The pairwise interaction U depends on
the modulus ρij = √

ρij · ρij = |ρij | = |ρi − ρj |, pV is the momentum conjugate to
the volume, W is the mass of the piston, and Pext is the external pressure we want
to keep constant.

From (H.1) the equations of motion are derived

ρ̇i =
∂H
∂πi

=
πi

mV 2/3
(H.2a)

π̇i = − ∂H
∂ρi

= V 1/3Fi(ρ, V ) (H.2b)

V̇ =
∂H
∂pV

=
pV

W
(H.2c)

ṗV = −∂H
∂V

= FV (ρ,π, V ) (H.2d)

We have defined the force Fi acting on particle i

Fi =
∑
j 6=i

Fij(ρ, V ) = −
∑
j 6=i

ρij

ρij
U ′(V 1/3ρij)

= −
∑
j 6=i

rij

rij
U ′(rij) =

∑
j 6=i

Fij(rij) (H.3)

where Fij is the contribution of particle j to the force acting on particle i. As shown
by Eq. (H.3) it corresponds to the force in the unscaled system. In Eq. (H.2) we have
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also defined a force FV acting on the volume V

FV = Pint(ρ,π, V )− Pext (H.4)

where Pint is the internal pressure of the system

Pint = Pint(ρ,π, V ) =
1

3V

 1
mV 2/3

N∑
i=1

π2
i − V 1/3

∑
i<j

ρijU
′(V 1/3ρij)


=

1
3V

 N∑
i=1

p2
i

m
+
∑
i<j

rij · Fij(rij)

 = Pint(r, p, V ) (H.5)

In the second line Pint is written as the sum of a kinetic contribution and the virial
term [175], and again corresponds to the internal pressure in the unscaled system.

By definition of the radial distribution function g(r), Eq. (H.5) yields [175]

P = 〈Pint〉 =

〈
1

3V

N∑
i=1

p2
i

m

〉
+

〈
1

3V

∑
i<j

rij · Fij(rij)

〉

= ρkBT −
2
3
πρ2

∫ ∞

0

g(r)U ′(r)r3dr (H.6)

where ρ = N/V is the number density. Since we use a cutoff radius rc for the
interaction, in a simulation we can only compute the virial term up to r = rc, and
Eq. (H.6) is rewritten as

P = ρkBT +

〈
1

3V

∑
i<j

rij · Fij(rij)

〉
− 2

3
πρ2

∫ ∞

rc

g(r)U ′(r)r3dr (H.7)

During a phase transition both the density ρ and the g(r) change so that the total
pressure stays constant. However in a simulation we do not know the function g(r) a
priori and we have to make some assumptions. Usually it is assumed that g(r) = 1
for r > rc, and in the case of a LJ interaction U(r), Eq. (H.7) is rewritten [138]

P = ρkBT +

〈
1

3V

∑
i<j

rij · Fij(rij)

〉
+

16
3
πρ2

[
2
3
r−9
c − r−3

c

]
(H.8)

where the last term are the long-range corrections. In the case of a liquid-solid
transition the g(r) functions look like in Fig. 7.4. Consequently, large values of the
cutoff (rc > 6) are usually employed, or the corrections are applied a posteriori using
the g(r) computed in the separate phases (see for example [147]). In our case however
we directly simulate the transition and it is more convenient to have a direct estimate
of the pressure. Therefore we calculated Pint in the integration scheme using formula
Eq. (H.5) and adding the correction factor given by the last term of Eq. (H.8). In
our simulations we use rc = 2.5 which is not so large. We checked however that on
increasing rc the difference in pressure stays within a tolerable few percent.
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In order to derive an integration algorithm for the equations of motion (H.2) we
follow the procedure of [76] to construct explicit time reversible integrators. We have
decomposed the Liouville operator associated to the Hamiltonian (H.1) into four parts

iL = iL1 + iL2 + iL3 + iL4 (H.9)

where we have chosen

iL1 =
N∑

i=1

1
mV 2/3

πi ·
∂

∂ρi

(H.10a)

iL2 =
pV

W

∂

∂V
(H.10b)

iL3 =
N∑

i=1

V 1/3Fi ·
∂

∂πi
(H.10c)

iL4 = FV
∂

∂pV
(H.10d)

We have employed a Trotter factorization of the Liouville propagator that yields the
following propagator accurate to O(∆t2)

eiL4(∆t/2)eiL3(∆t/2)eiL2(∆t/2)eiL1(∆t)eiL2(∆t/2)eiL3(∆t/2)eiL4(∆t/2) (H.11)

from which we obtain the integrator

pV (∆t/2) = pV (0) +
∆t
2
FV (0) (H.12a)

πi(∆t/2) = πi(0) +
∆t
2
V 1/3Fi(0) (H.12b)

V (∆t/2) = V (0) +
∆t
2
pV (∆t/2)

W
(H.12c)

ρi(∆t) = ρi(0) + ∆t
π(∆t/2)
mV 2/3

(H.12d)

V (∆t) = V (∆t/2) +
∆t
2
pV (∆t/2)

W
(H.12e)

πi(∆t) = πi(∆t/2) +
∆t
2
V 1/3Fi(∆t) (H.12f)

pV (∆t) = pV (∆t/2) +
∆t
2
FV (∆t) (H.12g)

Because of the symmetric factorization of the Liouville propagator, the integrator is
time-reversible. Moreover, the dynamical system defined by Eqs. (H.2) has a vanishing
phase space compressibility, and thus the algorithm is area-preserving [73]. Note that
since we have sandwiched the propagation of V between the propagation of ρi and
πi, we have to compute the forces only once per time-step.

In practice it is more convenient to use scaled coordinates but unscaled momenta.
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Inspection of Eqs. (H.12) shows that they can be rewritten as

pV (∆t/2) = pV (0) +
∆t
2
FV (0) (H.13a)

pi(∆t/2) = pi(0) +
∆t
2

Fi(0) (H.13b)

V (∆t/2) = V (0) +
∆t
2
pV (∆t/2)

W
(H.13c)

ρi(∆t) = ρi(0) +
∆t
L

p(∆t/2)
m

(H.13d)

V (∆t) = V (∆t/2) +
∆t
2
pV (∆t/2)

W
(H.13e)

pi(∆t) = pi(∆t/2) +
∆t
2

Fi(∆t) (H.13f)

pV (∆t) = pV (∆t/2) +
∆t
2
FV (∆t) (H.13g)

We remind that although the scaled coordinates are propagated, Fi and FV corre-
spond to quantities in the unscaled system. In this hybrid scheme scaled coordinates
and unscaled momenta are used, and since the compressibility does not vanish, the
integrator is no longer area preserving.



I Bond order parameters

The order parameters we present here were introduced in [155] to study orientational
order in liquids and glasses. They were then applied in [154] to compute nucleation
free energy barriers of soft-spheres. In this thesis, the use of bond order parameters
is two-fold. They are used to construct the Interface Sampling order parameter nbig,
the size of the biggest solid cluster in the system, as they enter the algorithm for
recognition of solid particles (see sec. 7.2.3). Besides, they are used to analyze the
nucleation clusters found by the Path Sampling, as indicators of the type and order
of the generated structures.

The bond order parameters are computed looking at the orientational order around
each particle. A criterion is needed to recognize the neighbors of a particle i, and we
chose to identify them as the particles j within a cutoff radius rq, which can be derived
for instance from the first minimum of the g(r). Let ri,rj be the position vectors of
particle i and j. Define the relative vector rij = ri − rj , its modulus rij = |rij |
and its orientation r̂ij = rij/rij . The neighbors of i are those particles j for which
rij ≤ rq, and the corresponding r̂ij is called a bond. Other choices of the definition
of neighbors can be devised, based for example on a Voronoy tasselation of the space.
It has been shown however that the bond order parameters are not very sensitive to
this choice [155], and we conveniently used therefore the numerically cheapest.

We call a bond-function the spherical harmonic Ylm(r̂ij). We consider r̂ij equiv-
alent to −r̂ij , meaning that the direction of the bond is not important. Hence we
consider only spherical harmonics Ylm(r̂ij) with l even [155,154], for which Ylm(r̂ij) =
Ylm(−r̂ij). Denote then with Nb(i) the number of bonds of particle i, and with Nb

the total number of bonds in the system. The relation Nb =
∑N

i=1Nb(i)/2 holds, but
note that Nb is not the number of pairs of particles because it is defined on neighbors
only.

Now we construct averages, denoted by a bar, of bond-functions Ylm(r̂ij) on

1. the neighbor bonds j = 1 . . . Nb(i), to get the local quantity, denoted by a small
letter

q̄lm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij) (I.1)

2. all the bonds, or equivalently the former averaged on all particles, to get the
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global quantity, denoted by a big letter

Q̄lm =
1
Nb

∑
bonds

Ylm(r̂ij) =
∑N

i=1Nb(i)q̄lm(i)∑N
i=1Nb(i)

(I.2)

where N is the number of particles in the system.

Then we can average on the m-component of the angular momentum to get rotation-
ally invariant objects. Respectively

1. from the local quantities

ql(i) =

(
4π

2l + 1

l∑
m=−l

|q̄lm(i)|2
)1/2

(I.3)

wl(i) =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l
m1 m2 m3

)
q̄lm1(i)q̄lm2(i)q̄lm3(i) (I.4)

ŵl(i) = wl(i)/

(
l∑

m=−l

|q̄lm(i)|2
)3/2

(I.5)

2. from the global quantities

Ql =

(
4π

2l + 1

l∑
m=−l

|Q̄lm|2
)1/2

(I.6)

Wl =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l
m1 m2 m3

)
Q̄lm1Q̄lm2Q̄lm3 (I.7)

Ŵl = Wl/

(
l∑

m=−l

|Q̄lm|2
)3/2

(I.8)

where the terms in square brackets in (I.4), (I.7) are Wigner 3j-symbols [176]. The
ql, Ql are called second-order invariants, the wl,Wl third-order invariants and the
ŵl, Ŵl are reduced order parameters [154].

I.1 Use in the analysis of cluster structures

In an isotropic liquid, averages of bond-functions, like Eq. (I.2), are expected to vanish
for l 6= 0, and consequently the rotationally invariant quantities as well. In a solid
instead, the quantities Ql,Wl, Ŵl are sensitive to the specific ordering of the lattice.
Naturally, the definitions of the global quantities can be also applied to a subset
of particles in the system, such as a nucleating cluster appearing in an undercooled
liquid. One has to compute the average (I.2) only on the bonds connecting particles
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Figure I.1: Distribution functions of the local order parameters q4(i), q6(i), ŵ4(i), ŵ6(i) for
a thermally equilibrated liquid, bcc, and fcc structure at P = 5.68 and constant enthalpy
H/N = 1.412 corresponding to 25% undercooling.

in the cluster. As a consequence, the bond-order parameters can give an indication
on the structure of the cluster. In [155] bond-order parameters up to l = 10 were
investigated and the set Q4, Q6, Ŵ4, Ŵ6 was found particularly useful to distinguish
different types of solid structures. In table 7.1 of sec. 7.4 we reported the values of
this set of bond-order parameters for a number of regular cluster geometries, as well
as for a bcc and fcc lattices equilibrated at the pressure and enthalpy of our NPH
Interface Sampling simulations. To each geometry corresponds a different signature,
which helps recognizing the cluster structures.

In Sec. 7.4 we also discuss the identification of cluster structures by means of an
algorithm based on the distributions of ql(i), ŵl(i). The technique uses the local bond-
order parameters q4(i), q6(i), ŵ6(i) computed for each cluster particle i, but using the
full neighbor shell, which on the surface includes also non-cluster particles. Similar
to [131], we computed in separate NPH MD simulations the distribution of these
local parameters on three equilibrated system, prepared in a liquid, bcc and fcc state,
at the same parameters P = 5.68, H/N = 1.412 of our system. We report them in
Fig. I.1, where for completeness we also show the distribution of ŵ4. We concatenated
the distributions of q4, q6, ŵ6 into a vector v̂α, α = liq, bcc, fcc, normalized to 1, i.e.
v̂α · v̂α = v̂2

α = 1. The number of components of the vector is equal to the sum of the
number of bins in each histogram, which in our case 1 was 100+100+200=400. Each

1We used a bin width of 0.01 and the number of bins followed from the fact that ql ∈ [0, 1] and
ŵl ∈ [−1, 1]. In practice the distributions are restricted to a smaller interval (see Fig. I.1) and the
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of these vectors v̂α is a sort of signature of the corresponding structure. Then, for a
given cluster to be analyzed, we compute the concatenated normalized vector v̂cl and
we find the scalar projections fα onto the structrure vectors v̂α by minimizing

∆2 = (v̂cl −
∑
α

fαv̂α)2 (I.9)

The stationary condition reads

∂∆2

∂fβ
= 2(v̂cl −

∑
α

fαv̂α) · (−v̂β) = 0 (I.10)

which is a linear equation and can be written as

v̂cl · v̂β =
∑
α

fαv̂α · v̂β (I.11)

or in matrix form

y = Mf (I.12)

where we defined the vector yβ = v̂cl · v̂β and the metric matrix Mαβ = v̂α · v̂β . The
first is computed for each cluster to be analyzed, while the second is derived from the
basis vectors only and is a fixed quantity in the simulation. If the basis vectors v̂α were
orthogonal, then the matrix M would be the identity matrix and the minimization
solution f equal to the standard scalar products y. Inverting Eq. (I.12) we can find the
requested f -components, namely fliq, fbcc, ffcc. Together with ∆2, computed at the
end from Eq. (I.9), they give an indication of the relative abundances of the selected
structures in the cluster from which v̂cl was computed. The normalization of the
f -components follows from Eq. (I.9) together with the stationary solution Eq. (I.12),
and reads

1 = ∆2 + f · y = ∆2 + fTMf (I.13)

where the role of M as a scalar product matrix is explicit.

I.2 Use in the determination of the biggest cluster

Another use of the bond-order parameters arises in the algorithm for the determi-
nation of the biggest solid cluster. In order to identify solid and liquid particles the
procedure of sec. 7.2.3 has to determine if two particles i and j are connected. This
is done testing if the dot-product dij , defined by Eq. (7.5), exceeds a threshold. We
want to prove here that this test is well defined, demonstrating that the complex
quantity dij is actually real and independent of the order of i and j, i.e. we want to
demonstrate dij = d∗ij = dji. It suffices to consider only the numerator in Eq. (7.5).

effective number of non-zero bins was around 100.
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Using the definition of q̄lm Eq. (I.1)

l∑
m=−l

q̄lm(i)q̄∗lm(j) =
1

Nb(i)Nb(j)

l∑
m=−l

Nb(i)∑
k=1

Ylm(r̂ik)
Nb(j)∑
k′=1

Y ∗lm(r̂jk′)

=
1

Nb(i)Nb(j)

l∑
m=−l

∑
kk′

Y ∗l,−m(r̂ik)Yl,−m(r̂jk′)

=
1

Nb(i)Nb(j)

l∑
m=−l

∑
kk′

Y ∗l,m(r̂ik)Yl,m(r̂jk′)

=
l∑

m=−l

q̄∗lm(i)q̄lm(j) (I.14)

where in the second line we used Yl,−m(r̂) = (−1)mYlm(r̂), and in the third the fact
that the sum on m is symmetrical around m = 0. This proves dij = d∗ij . By definition
then d∗ij is also equal to dji. Note that the demonstration holds for any value of l and
not only l = 6 as in Eq. (7.5). Because of this property the number of operations to
compute a dot-product like Eq. (I.14) can be reduced to nonnegative m’s only, i.e.

l∑
m=−l

q̄lm(i)q̄∗lm(j) = q̄l0(i) ∗ q̄l0(j)

+ 2
l∑

m=1

Re(q̄lm(i))Re(q̄lm(j)) + Im(q̄lm(i))Im(q̄lm(j)) (I.15)

where Re, Im denote the real and imaginary part. The expression applies also in the
case i = j, to calculate the denominator in Eq. (7.5). So the spherical harmonics can
be stored and evaluated for just the nonnegative values of m, bringing a speed-up in
the calculation.



J Generalized committors

Consider Eq. (2.56) defining the committor pB . Using the definition of the path
ensemble (sec. 2.1) and of the function hf

ij(x) (Eq. (3.2)), pB can be rewritten as

pB(r) =
〈δ(r0 − r)hf

nI ,0(x0)〉
〈δ(r0 − r)〉

= 〈hf
nI ,0(x0)〉r0=r (J.1)

where x0 = (r0, p0) is the phase space point consisting of coordinates r0 and momenta
p0 of all particles at time 0. So for a given configuration r, pB(r) is 1 if trajectories
started with random momenta from the ensemble distribution reach B at interface
nI before A at interface 0.

We generalize the definition to

pAB(r) = 〈hb
0,nI

(x0)h
f
nI ,0(x0)〉r0=r (J.2)

where the backward trajectory is also included. So pAB(r) is 1 if trajectories started
from r come from A and end up in B. With the same reasoning we can define pBA(r),
pAA(r) and pBB(r).

For any r, pAB(r) = pBA(r) because of microscopic reversibility, and if there are
no other attraction basins the normalization 2pAB(r) + pAA(r) + pBB(r) = 1 holds.
The connection with the previous committor is given by the relations

pB = pAB + pBB (J.3)
pA = pBA + pAA (J.4)

which shows that the standard committor includes not only reactive trajectories A→
B, or B → A but also contributions from the A→ A and B → B ones.

We chose a path out of the nucleation transitions (see sec. 7.4) and we com-
puted in two separate simulations the committor pB and the generalized committors
pAB , pAA, pBB . We report the results in Fig. J.1. In the inset we show that relation
(J.3) is satisfied. For pB = 1/2 it follows from Eq. (J.3) and the normalization that
pAA = pBB . Slices around t = 25 satisfy this relation, and pAA = pBB ' 0.25, which
implies pAB = pBA ' 0.25, i.e. equiprobability of ending in A and B, as expected
from a transition state.
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Figure J.1: Generalized committors. A typical error is shown. Inset: comparison with
normal committor. Only the part different from 0 and 1 is shown.

We introduced the generalized committors for fear that strange behaviors might
occur that are not highlighted by the standard committors. For example a state for
which pAA = pBB ' 1, would still yield pB = 0.5, even though reactive trajectories do
not pass through it (pAB = pBA ' 0). The test reported here proved that this is not
the case, at least for the system considered. However, the calculation of generalized
committors requires the same computational programming and effort of the standard
ones, which can be recovered afterwards from relations (J.3). In any case we would
then advise the use of generalized committors as an additional check.



K Algorithms

We give here an indication of how to build a TIS code and a PPTIS code, including
the free energy calculation. We give examples in a pseudo code based on C, and
we make extensive use of pointers to handle dynamical memory operations. This
appendix is a schematic introduction, but a full working Interface Sampling code can
be found at http://www.science.uva.nl/~moroni/.

K.1 TIS

Let us start with the variable definitions. The basic data structure we need is the
definition of a timeslice

typedef struct {

double r,v; system phase point

double Temp; temperature
double Energy; conserved energy

int nbig; order parameter
int zone; zone identifier

} slice;

which we divided into three parts. The first is the system phase point, defined as
the minimum amount of information one needs to start an MD trajectory. For NVE
dynamics the positions and velocites of all particles are sufficient. For generalized
Hamiltonian dynamics the additional degrees of freedom must also be included. The
second part of the slice data structure are properties computed from the slice phase
point (in the example, temperature and conserved energy). It is not strictly necessary
to store them, as they can be recomputed every time a slice is accessed. However it
comes useful, and their memory storage is usually negligible compared to the one of
the phasepoint, proportional to the number of particles. Moreover, in some cases it
might be really necessary to store these properties, as the re-computation might be
too time-consuming. The third part of a slice is constituted by the order parameter,
which in turn identifies the zone. As explained in sec. 3.2.3, TIS window i is defined
by the two interfaces λi and λi+1. We use the zone system, so the variable zone
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can take the value 0, corresponding to state A, or range between Fzone and Lzone,
defined respectively as the zone before interface λi and the zone after interface λi+1.
The integers Fzone and Lzone are in general not consecutive because there might be
sub-interfaces in between.

Using arrays of slices we can construct paths

typedef struct {

slice data[100]; the slice array

slice *start; path start
int Nslice; number of time slices
int direc; reading direction (+1/-1)
int pathtype; 0: A→ λi+1 or 1: A→ A

} path;

The path data structure can be divided in two parts. The first is simply the array of
all slices, and in this case we assumed a maximum of 100 slices per path. The second
part are path properties that change as paths are sampled. The start variable is a
pointer to the starting slice of the path, which is not the base address of the array,
but changes dynamically. The other variables are self-explaining and their use will
become evident in a moment.

The final variables we need, are those defining how the path sampling is performed,
plus of course the paths themselves:

int pathstep; MD steps between slices
int offset; offset slice for a path
double deltav; velocity change in shooting
double revprob; prob. of a reverse move

path mypath1; allocated paths
path mypath2;

path *pathaux; pointer to scratch path
path *pathnow; pointer to actual path

histogram interface; interface crossing prob.

MDstate_data MDstate1; evolution state 1
MDstate_data MDstate2; evolution state 2

The first variable is used to store timeslices only every pathstep MD steps, in order to
save memory. Variable offset is a fixed offset used in the creation of new paths. The
mypath variables are fixed memory allocations containing the paths, while the point-
ers pathaux and pathnow are dynamical, and are continually swapped by successful
shooting moves. The mechanism is explained in Fig. K.1. Variable interface 1 is the
sampled PA(i+1|i). Finally we declared two variables MDstate. They are the input of
an external subroutine responsible for the MD evolution. The paths are constructed
moving data back and forward between the slices and the MDstate variables.

The main algorithm looks like
1No histogram data type exists in C. Here it is just a notation to distinguish it from other

variables. One can just think of it as an array of integers.
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Nslice (new)

start

pathaux mypath2

data[0] data[1] data[99]

......

start

pathnow mypath1... ...
data[0] data[1] data[99]

Nslice (old)

... ......

Figure K.1: Path representation and shooting algorithm. An amount of memory is allo-
cated for the timeslices (squares). Paths consists of Nslice slices starting from start. An
attempt to create a new path is done in pathaux using a slice (black square) from the present
path pathnow. If successful, pathaux and pathnow are swapped.

int main()

{

int Npath; total number of paths
int MM; counter for MC random walk

initialize(); set-up

for (MM=1;MM<=Npath;MM++) { loop on all paths
if (random()>revprob) { MC random walk

shoot();

} else {

if (pathnow->pathtype==1) {reverse();}

}

sample(); sample on the generated path
}

results(); dismiss
}

The function random() generates a random number uniformly in [0, 1]. Reversal
move can be applied only if the path starts in A and ends in A, which we define
here of type 1. The initialize() subroutine is responsible for the set-up of all
the variables needed for the MD evolution and the ones named before for the path-
sampling. The subroutine results() writes out the final output. The rest is the core
of path sampling and we describe it in detail.

The reverse move is as follows

void reverse()
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{

slice *p;

int i;

pathnow->start+=(pathnow->Nslice-1)*pathnow->direc;

move the start to the end
pathnow->direc=-pathnow->direc; invert reading direction

p=pathnow->start; Apply time reversal
for (i=0;i<pathnow->Nslice;i++) { to all slices

slice_invert(p); p+=pathnow->direc;

}

}

where the subroutine slice_invert() inverts the velocities of all particles. Paths
have a starting point pathnow->start and a reading direction pathnow-> direc.
To access for example the third slice, one must consider the pointer pathnow->
start+3*pathnow->direc.

The shooting algorithm is as follows

int shoot()

{

int M; index of shooting point
int nsmax; maximum pathlength
int Nsliceff; effective number of slices
slice *q,*p,*ps; pointers to slices
int cross[100]; the crossings with λi

Pre-MD : set variables

Nsliceff=pathnow->Nslice-2; no shoot from endpoints

M=(1+(int)(random()*Nsliceff))*pathnow->direc; slice q in the old path
q=pathnow->start+M;

p=pathaux->data+offset+M; slice p in the new path
if (pathnow->direc==-1) p+=pathnow->Nslice;

copy_slice(q,p); copy slice q into p

slice_vchange(p,deltav); change velocities
slice_vadjust(p); adjust constraints
slice_recalculate(p); recalculate slice properties

copy_slice_MD(p,&MDstate1); copy slice to MD state
prepare_MD(&MDstate1); prepare the MD state
copy_MDstate(&state1,&state2); duplicate MD state

nsmax=ceil((double)Nsliceff/random())+2; decide max pathlength
pathaux->Nslice=1; reset new number of slices
pathaux->direc=pathnow->direc; complete path info
ps=p; save the shooting point
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Backward shooting

do {

p-=pathaux->direc; move slice pointer backward
pathaux->Nslice++; increment length
MD(&state1,pathstep,-1); MD evolve for pathstep steps
copy_MD_slice(&state1,p); transfer MD state into slice
slice_recalculate(p); recalculate slice properties

} while ((p->zone>0) && (p->zone<Lzone) && (pathaux->Nslice<nsmax));

if ( (p->zone != 0) || (pathaux->Nslice>=nsmax) ) return(0);

if A is not reached or pathlength
is exceeded, reject. Else go on.

pathaux->start=p; set starting point of new path

Forward shooting

p=ps; restart from the shooting point
do {

p+=pathaux->direc; move slice pointer forward
pathaux->Nslice++; increment length
MD(&state2,pathstep,+1); MD evolve for pathstep steps
copy_MD_slice(&state2,p); transfer MD state into slice
slice_recalculate(p); recalculate slice properties

} while ((p->zone>0) && (p->zone<Lzone) && (pathaux->Nslice<nsmax));

if (pathaux->Nslice>=nsmax) return(0); if pathlength is exceeded, reject

Post-MD: Check crossing

if ( Ncrossings(pathaux,cross,Fzone)>0 ) {

pathaux->pathtype=FindPathtype(pathaux); find type
swap_path(&pathaux,&pathnow); swap path pointers
return(1);

}

else return(0);

}

We select only slices excluding the endpoints of the path, which means paths have
a minimum of three slices. Because of the time-reversal move, paths can be read in
two different directions, which is accounted for in the choice of the shooting point.
To every velocity component of each particle the subroutine slice_vchange adds a
random number extracted from a gaussian distribution of zero mean and standard
deviation deltav. The linear constraints of vanishing linear and angular momentum
are taken into account by subroutine slice_vadjust, as explained in sec. 2.2.1. The
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subroutine slice_recalculate computes the second and third part of variables in
the slice data structure, as defined at the beginning of this section. They include the
order parameter and the zone number. Two MDstate variables are used, one for the
backward, and one for the forward shooting. It is slightly more efficient than using
just one, as the MD forces do not have to be computed again. After the MD evolution
two more subroutines require some explanation. FindPathtype is the first and reads

int FindPathtype(path *pa)

{

Finds the type looking at the last slice of the path
0: A→ λi+1 or 1: A→ A

slice *p;

p=pa->start+(pa->Nslice-1)*pa->direc; go to last slice

if (p->zone==0) return(1); if it is in A, type is 1
else return(0); else type is 0

}

The second subroutine Ncrossings finds all the crossings of a path with a specified
interface. It reads

int Ncrossings(path *pa, int *cross, int s)

{

Finds the crossings of the path with the interface s
interface s separates: zone s — zone s+1

int nc; number of crossings
int i;

slice *p;

p=pa->start;

nc=0;

for (i=0;i<(pa->Nslice-1);i++) { Check all slices but last
if ( crosses(pa,p,s,1) ) { If crosses

cross[nc]=i; save the slice number
nc++;

}

p+=pa->direc;

}

return(nc);

}

The crossings are stored in the array cross taken as input, and the number of crossing
is returned. The auxiliar function crosses is

int crosses(path *pa, slice *p, int s)

{
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Finds out whether slice p crosses interface s (either directions)

Interface s separates: zone s | zone s+1

A slice cross is defined: p to p+pa->direc

int sR=s+1;

if ( (p->zone<sR && (p+pa->direc)->zone>s) ||

(p->zone>s && (p+pa->direc)->zone<sR) ) return(1);

else return(0);

}

which takes into account the two possible crossings left/right or right/left. In TIS it
is not needed to know all the crossings of the path with λi, but just to know if the
path has at least one. However, the subroutine Ncrossing will turn useful for PPTIS.

Finally, when a path has been generated, we can sample the desired crossing prob-
ability

void sample()

{

int zonemax; maximum zone reached
int i;

slice *p;

p=pathnow->start; set initial value
zonemax=p->zone;

for (i=1;i<pathnow->Nslice;i++) { loop on the slices
p+=pathnow->direc;

if (p->zone > zonemax) zonemax=p->zone;

}

for (i=0;i<zonemax-Fzone;i++) fill the bins up to zonemax
interface.count[i]++;

}

If the zone zonemax has been reached, all the (sub)interfaces up to that point have
been crossed, and the histogram is filled up accordingly. By definition of the path
ensemble all paths must cross the first interface λi, so that the value of first bin at the
end will be exactly Npath. The crossing probability PA(i+1|i) follows by normalizing
the whole histogram to this value, and is performed by the subroutine results()
after the path sampling.

K.2 PPTIS

The PPTIS algorithm is very similar. The data structure of slices and paths are the
same. The types of path are now 4

int pathtype; 0 : ±, 1 : ∓, 2 :=, 3 : ‡
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PPTIS window i is defined by interfaces i− 1, i, i+ 1. Variable zone ranges now only
between Fzone, before λi−1, and Lzone, after λi+1. Then Lzone=Fzone+2 since we
do not consider sub-interfaces. In the sampled properties interface is replaced by

int Npathtype[4]; counts the type of paths
histogram loop; recrossing points
histogram bound; boundary points

containing also the free energy quantities.
The main algorithm only differs in the fact that now the reverse move can always

be applied, so no check on the path type is needed

if (random()>revprob) { MC random walk
shoot();

} else {

reverse();

}

The reverse move is identical, while the shooting move differs in two points. First,
in the condition to stop the MD integration interface 0 must be replaced by Fzone

} while((p->zone>Fzone) && (p->zone<Lzone) && (pathaux->Nslice<nsmax));

Second, the FindPathtype subroutines now reads

int FindPathtype(path *pa)

{

Finds the type looking at the first and last slice of the path
0 : ±, 1 : ∓, 2 :=, 3 : ‡

slice *p0,*pF; pointers to first and last slice

p0=pa->start; first slice
pF=p0+(pa->Nslice-1)*pa->direc; last slice

if (p0->zone==in->Fzone) {

if (pF->zone==in->Lzone) pathtype=0; type ±
else if (pF->zone==in->Fzone) pathtype=2; type =

}

else if (p0->zone==in->Lzone) {

if (pF->zone==in->Fzone) pathtype=1; type ∓
else if (pF->zone==in->Lzone) pathtype=3; type ‡

}

}

The main difference then is in the sample() subroutine, which now reads

void sample()

{

int nc,cross[100]; number of crossings, the crossings with λi

int i;

slice *p;
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Crossing probability

Npathtype[pathnow->pathtype]++; count the number of paths
distinguishing the types

Free energy

nc=Ncrossings(pathnow,cross,Fzone+1); Find crossings with λi

p=pathnow->start+pathnow->direc; Start from the second slice
for (i=1;i<pathnow->Nslice-1;i++) { Loop, up to the last slice but one

if (i<=cross[0] || i>cross[nc-1]) updatehisto(&bound,p->nbig);

If the slice is before the first cross
or after the last, update bound

else {updatehisto(&loop,p->nbig);}

else update loop
p+=pathnow->direc;

}

}

The variables Npathtype count the paths differentiated per type, and the crossing
probabilities follow from Eq. 4.14. The free energy is computed afterwards from the
rematch of boundary and loop histograms of all windows, as explained in sec. 5.2.
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[169] R. Becker and W. Döring, Ann. Phys. 24, 719 (1935).
[170] J. Zeldovich, J. Expr. Theor. Phys. (Russia) 12, 525 (1942).
[171] J. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946).
[172] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed. (John

Wiley & Sons, New York, 1985).
[173] H. Reiss and R. K. Bowles, J. Chem. Phys. 111, 7501 (1999).
[174] K. F. Kelton, in Crystal Nucleation in Liquids and Glasses, edited by H. Ehrenreich

and D. Turnbull (Academic Press, Boston, 1991), Vol. 45, pp. 75–177.
[175] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press,

London, 1986).
[176] E. W. Eisenstein, Wigner 3j-Symbol, from MathWorld, A Wolfram Web Resource,

http://mathworld.wolfram.com/Wigner3j-Symbol.html.

http://mathworld.wolfram.com/Wigner3j-Symbol.html


Samenvatting

Dit proefschrift gaat over de theorie en simulatie van fysische of chemische rare events.
Dit zijn zeldzame transities tussen stabiele toestanden die met zo’n lage frequentie
plaatsvinden ten opzichte van de moleculaire tijdschaal, dat ze niet zo maar in een
computersimulatie nagebootst kunnen worden. Onder rare events verstaan we dus
niet de passage van de komeet van Halley, maar bijvoorbeeld het vouwen van ei-
witten, conformatieveranderingen in moleculen, chemische reacties en nucleatie in
faseovergangen. Veelgebruikte simulatiemethoden zoals Molecular Dynamics (MD),
genereren dynamische trajectoria door middel van integratie van de bewegingsverge-
lijkingen voor alle atomen in het systeem. Maar omdat de moleculaire tijdstap in
de orde van femtoseconden ligt, hebben zelfs moderne computers drie jaar rekentijd
nodig om een enkele microseconde te simuleren van een redelijk klein atomair sys-
teem (bijv. een eiwit). Dus gewone MD kan niet worden gebruikt voor het simuleren
van rare events en speciale methoden moeten ontwikkeld worden. Dit proefschrift
beschrijft een recente strategie om transities te bestuderen, de zogenaamde path sam-
pling methode. Speciale aandacht krijgt de door ons ontwikkelde Transition Interface
Sampling (TIS) methode en zijn toepassing op de kristalnucleatie in een vloeistof.

In hoofdstuk 1 introduceren we het probleem van rare events en de traditionele ma-
nieren om deze problemen aan te pakken. Aan de hand van een simpel stochastisch
model, de willekeurige telegraaf, geven we een definitie van de reactiesnelheidscon-
stante: de frequentie waarmee de gebeurtenis of transitie plaatsvindt. In complexere,
realistische systemen moet deze definitie gegeneraliseerd worden. De eerste historische
poging is de Transition State Theory (TST). TST geeft echter alleen een benadering
van de daadwerkelijke reactiesnelheidsconstante, die gecorrigeerd kan worden met be-
hulp van zogenoemde Bennett-Chandler (BC) procedure. Hierin neemt men aan dat
er een speciale variabele bestaat, genaamd de reactiecoordinaat (RC), die de voort-
gang van de reactie goed kan beschrijven. De BC-procedure bestaat uit twee stappen.
De eerste stap is de berekening van de vrije energie barrière als functie van de RC. De-
ze vrije energie curve vertoon een maximum tussen de twee stabiele minima, waaruit
de barrièrehoogte is af te leiden . De tweede stap is de berekening van de transmis-
siecoëfficiënt, door middel van het schieten van dynamische trajectoria vanaf de top
van de barrière. Uit deze twee bijdragen kan de reactiesnelheidsconstante berekend
worden. De wiskundige details van TST en BC, en de connectie met de theorie van
stochastische processen, zijn in de bijlagen A en B beschreven. Het laatste deel van
hoofdstuk 1 is een samenvatting van enkele andere methoden voor rare events die in
de literatuur zijn verschenen.

208



Samenvatting 209

Hoofdstuk 2 beschrijft de Transition Path Sampling (TPS) methode, waarop TIS
geinspireerd is. Het achterliggende idee van TPS is om alleen op de interessante
stukken van al de mogelijke trajectoria zich te concentreren: de transitiepaden die over
de barrière leiden. Met behulp van een Monte Carlo algorithme in de padruimte kan
een reeks van trajectoria worden verzameld die de begin- en eindtoestand verbinden:
het zogenaamde transitiepadensemble. We leggen uit hoe dit algorithme werkt en hoe
de reactiesnelheidsconstante kan worden afgeleid. We geven ook een toepassing van
TPS op structurele veranderingen in een kleine cluster van Lennard-Jones deeltjes.
We vergelijken de resultaten met de RRKM theorie, een soort gemodificeerde TST (zie
bijlage C). TPS heeft een belangrijk voordeel ten opzichte van de TST-BC-procedure.
TST-BC is gebaseerd op voorkennis van een RC, maar deze kan erg moeilijk te vinden
zijn in complexe systemen. Een slechte benadering van de RC leidt tot een grote fout
in de reactiesnelheidsconstante. Daarentegen is TPS gebaseerd op het genereren van
de echte dynamische transities, zonder de noodzakelijkheid van een a priori keuze
van de RC. Bovendien kan het transitiepadensemble worden geanalyseerd met de
committor techniek, die in de laatste sectie van het hoofdstuk wordt beschreven. Met
deze techniek kan de kwaliteit van een RC bepaald worden. De committors zijn een
krachtig hulpmiddel om het reactie mechanisme uit te zoeken.

Hoofdstuk 3 beschrijft de details van de TIS methode. TIS dankt zijn naam aan het
gebruik van multidimensionele oppervlakten in de faseruimte: de interfaces. Twee van
zulke oppervlakken definiëren de stabiele toestanden, waartussen de andere interfaces
geplaatst zijn. De reactiesnelheidsconstante kan berekend worden door middel van een
efficiënte bepaling van de effective positive flux door deze oppervlakken. De theorie is
uitgelegd in sectie 3.1 en in bijlage D. Daarna beschrijven we de praktische uitvoering
van een TIS-simulatie. TIS gebruikt een Monte Carlo algorithme, vergelijkbaar met
dat van TPS, maar veel sneller, zoals blijkt uit een test op een dimeer in een vloeistof.

In hoofdstuk 4 passen wij TIS aan om diffusieve systemen te kunnen bestuderen.
In dat geval is de barrière breed, zodat een pad veel tijd nodig heeft om de andere
stabiele toestand te bereiken vanuit de initiële toestand. De transitiepaden worden
zodoende te lang, wat de TIS methode vertraagt. De oplossing die wij voorstellen, is
om deze lange transitie op te delen in een aantal kortere, partiële paden. Deze pro-
cedure geeft de juiste reactiesnelheidsconstante met de aanname dat er decorrelatie
(geheugenverlies) van de paden optreedt voor afstanden groter dan de partiële pad-
lengte. De theorie van deze Partial Path TIS (PPTIS) wordt behandeld in sectie 4.1
(met behulp van bijlage E), vervolgd door een praktische beschrijving van een compu-
tersimulatie. We testen PPTIS op een diffusieve versie van hetzelfde dimeermodel als
voor TIS werd gebruikt. TIS en PPTIS geven dezelfde reactiesnelheid, maar PPTIS
is veel sneller. In de laatste sectie van hoofdstuk 4 opperen we de mogelijkheid om
met behulp van parallelisatie van PPTIS een betere sampling van de padruimte te
bereiken.

In hoofdstuk 5 beschrijven we hoe de PPTIS-methode, die op het genereren van dy-
namische trajectoria gebaseerd is, tegelijkertijd een statische evenwichts- vrije energie
kan uitrekenen. Het idee is om de Umbrella Sampling methode voor de vrije energie
berekening aan de PPTIS-techniek aan te passen. Uit dezelfde paden die voor de re-
actieconstant gegenereerd zijn, kan de vrije energie berekend worden, zonder dat dat
extra computertijd kost. Achtereenvolgens beschrijven we de noodzakelijke theorie,
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de uitvoering van een computersimulatie en de toepassing op hetzelfde dimeermodel
zoals gebruikt in hoofdstuk 4. Het resultaat wordt vergeleken met reguliere Umbrella
Sampling. Details zijn te vinden in bijlage F.

Hoofdstuk 6 beëindigt de discussie over Interface Sampling. We geven hier puur
theoretische afleidingen voor de schaling van de efficientie van TIS en PPTIS. Ook
nemen we de berekening van de transmissiecoëfficiënt nogmaals onder de loep en
bespreken een nieuwe manier om deze uit te rekenen, gebaseerd op het idee van
effective positive flux.

In het laatste deel van het proefschrift, hoofdstuk 7, worden de TIS-, PPTIS-
en RC-analysetechnieken toegepast op het kristalnucleatieproces. Als een vloeistof
onder de bevriezingstemperatuur wordt gebracht, begint de faseovergang naar de
vaste stof alleen als een kristalkiem groot genoeg is. De traditionele theorie voor
nucleatie, de classical nucleation theory, is in bijlage G beschreven. Deze theorie
neemt in feite aan dat de grootte van de kiem het enige belangrijke aspect is. Ook
de traditionele BC-procedure heeft deze impliciete aanname. Het is echter mogelijk
dat ook andere eigenschappen belangrijk zijn tijdens het nucleatieproces. Met behulp
van de pad-sampling methoden kunnen we deze belangrijke eigenschappen bepalen.
In bijlagen H en I beschrijven wij de details van het systeem en de methoden. De
nucleatiesnelheden die uit TIS en PPTIS volgen, komen goed met elkaar overeen.
Vervolgens gebruiken wij de committors om het padensemble te analyseren. Een
generalisatie van de techniek is ook in bijlage J getest. De belangrijkste conclusie is
dat nucleatie kan plaatsvinden via verschillende mechanismen. Soms zijn de kritische
kiemen klein en compact, een andere keer groot en minder gestructureerd. Een goede
RC zou dus niet alleen de grootte van de cluster moeten bevatten, maar ook de
kwaliteit van de kristalstructuur.

In de laatste bijlage K geven wij de computercode van de TIS- en PPTIS-algorithmen.
De uitvoering van de methoden is in detail beschreven.
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