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Preface

In principle, the most fundamental laws in chemistry are known since 1926,
when Schrédinger postulated his wave equation. This basic law of quantum
mechanics is capable of describing all inter- and intramolecular interactions
with great accuracy. Except for metals, relativistic corrections are mostly
negligible and therefore the relativistic Dirac equation (1928) is of less im-
portance. One could therefore argue that chemistry is not a science in itself.
It just follows the laws of quantum mechanics and is therefore nothing but
applied physics. However, as a cook does not stop when he has gathered all
his ingredients, science does not stop when its basic laws are known. The
‘cooking part’ can still be a hell of a job. Up to now, theoretical chemists and
physicists are by no means capable to replace the job of the experimentalists.
If industries try to invent a new catalyst for a certain chemical process, they
usually do not rely on theoretical calculations. Much more efficient are the
methods of an experimentalist: a bit of intuition and a lot of trial and error.
The reason for this is that theoretical calculations take enormous amounts
of time when systems are complex. Mathematical analytical solutions of the
Schrodinger equation only exist for the most simple systems, like the hy-
drogen atom. If the total number of particles is more then two, one has to
rely on approximate numerical calculations. Of course, computers are an
enormously powerful tool, but the number of atoms and electrons in most
chemical systems is so large that even calculations on powerful supercom-
puters can take years.

Still, if a theoretical calculation can be performed, it can give much more
insight on how the chemical process evolves and why a certain type of
molecule is a good catalyst and another is not. This makes it worth study-
ing these systems on a theoretical basis. However, the computational costs
strongly limit the system size and simulation time. Gas-phase reactions con-
taining only a small number of atoms are therefore usually the subject of
these studies. Most chemical reactions in nature, in industry, or in labora-
tory experiments do not occur in the gas-phase, but occur in the presence
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of a solvent like water. An accurate description of liquid water requires
at least about 20 water molecules. In the last years an enormous progress
has been made in the possibilities for theoretical calculations. This is partly
due to the increase in computer power, but more important were the cre-
ative inventions of smart algorithms. Density Functional Theory and the
Car-Parrinello method have, by use of minor approximations, decreased the
computational costs by orders of magnitude. In combination with statistical
methods to simulate rare events, the understanding of molecular behavior
of more and more complex chemical reactions is in our reach.

I started my PhD four years ago and the final result is this doctoral the-
sis. The main question was to investigate the solvent effect on chemical
reactions, in particular chemical reactions with alcohols in water. One of
the conclusions of this research is that solvent dynamics is indeed very im-
portant. Molecular fluctuations in liquid water, yielding special structures
between water molecules, can have an enhanced polarizing effect on so-
lute molecules. This effect can facilitate or even initiate a chemical event.
This thesis also contains a related but different subject. During the research,
while studying methods for rare events, I got a new idea to improve upon
the Transition Path Sampling method. In cooperation with Daniele Moroni
and Peter Bolhuis we turned this idea into a completely new method for
the calculation of rate constants. This new method, that we named Transi-
tion Interface Sampling, has become an important additional subject of this
thesis.

Of course, this work could never have come to a successful end without
the help and support of many people during the last four years, for which I
am very grateful. Therefore, I would like to thank a number of people: First
of all, my supervisor Evert Jan Meijer for sharing his detailed knowledge
and broad experience on the art of Ab Initio molecular dynamics. Secondly,
my promotor Berend Smit for having given me the opportunity for this PhD
and for his stimulating support. Jan Willem Handgraaf, my most direct col-
league in this field, for our fruitful collaboration during the last four years.
Peter Bolhuis and Daniele Moroni for developing Transition Interface Sam-
pling to a promising method. All the members of the manuscript commis-
sion for carefully and critically reading this manuscript. Daniele Moroni
and Sofia Calero for being my paranimfs. For correcting parts of this thesis I
would like to thank David Dubbeldam, my father Herman van Erp, and my
mother Elize Schade. For solving many of my computer problems I owe a lot
to Thijs Vlugt, Gooitzen Zwanenburg and Jochem Wichers Hoeth. I thank
Arent Pelster for his help on the digital part of the cover. Moreover, for so-
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cial support I am grateful to a countless number of people among which are:
all my colleagues and friends of the ITS department, all my friends of Am-
sterdam and Nijmegen and of all other places in the world, the Weesperflat
people, all the people from the Crea oil painting classes, especially Caro-
line of course, family (in particular my aunt Marianne and uncle Jacques for
their hospitality in Bloemendaal the first half year of my PhD), my brother
Pepijn and his wife Kitty, coming over for my defense from Tanzania, and
finally my parents; thanks for everything.
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Chapter 1

Introduction

1.1 Structure of the Thesis

The starting point of my work as a PhD student was to investigate the in-
fluence of the solvent on chemical reactions with alcohols. Since the last
decade this type of research has gained an increasing popularity. The rea-
son for this is that the increase of computer power as well as the invention
of smart algorithms have made it possible to perform full electronic calcu-
lations of much larger systems than before. It has been conjectured that the
influence of the solvent plays an important role in chemical processes, espe-
cially for water, which is known to be one of the most complex liquids [1].
To investigate this, knowledge about the solvation properties of the reactant
and product molecules is essential. Therefore, in chapter 2 we studied the
solvation of methanol, the smallest alcohol. Chapter 3 deals with the sol-
vation of ethylene and ethanol in water. The latter can be considered as an
important pre-study for the hydration/dehydration reaction between ethy-
lene and ethanol in acid aqueous solution, which is investigated in chapter 4.
In chapter 5 we introduce the new method of Transition Interface Sampling
(TIS) for the calculation of rate constants in rare event simulations. We de-
rive the central expression of the TIS theory and apply the method on a
simple molecular dynamics (MD) simulation. In chapter 6 we end with a
simulation that combines the TIS method with ab initio methods to study
the direct gas-phase hydration of ethylene. In this introduction I will con-
tinue by giving a short overview of the subject and a short introduction to
the used methods.
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1.2 The Solvent

Due to the still increasing computer power and the invention of efficient
algorithms, the Car-Parrinello [2] method being the prime example, it is
nowadays possible to study the molecular evolution of chemical reactions
in solvents on an ab initio level. Before, only chemical reactions in the gas-
phase were suitable for simulations, as the number of particles required for
a correct description of a solvent was beyond the computational capabilities.
However, in solution many chemical processes are fundamentally different
from the gas-phase. The solvent is able to influence the chemical process in
many ways. One of the known effects is that the solvent structure can sta-
bilize or destabilize transition states, and can in this way lower or enhance
reaction barriers.

A way to mimic these effects is to replace the solvent by a continuous
field. However, this approximation is by no means capable of describing
all the complexities of a solvent. Especially for the most common solvent,
liquid water, the continuous field description would be a too strong simpli-
fication. Water has an unique structure due to its ability to form hydrogen
bonds. In liquid water each molecule is on average hydrogen bonded to
four neighboring water molecules, yielding a kind of tetrahedral structure
(see Fig. 1.1). Although this structure is very dynamical with a constant pro-
cess of breaking and making of hydrogen bonds, the local structure in one
fixed snapshot of liquid water looks very similar to a crystal. This typical
hydrogen bonded structure is responsible for the fast proton transfer in lig-
uid water, the strong polarizing effect on solute molecules, and many other
characteristics [1].

Nowadays ab initio methods, like the Car-Parrinello method, are able to
simulate systems with 30 to 60 water molecules. To give an indication for
the computational costs of these kind of systems: a 10 ps (1072 s) simu-
lation with 30 water molecules takes approximately a two weeks non-stop
calculation on a cluster of 20 computers running in parallel. This is suf-
ficient to describe the structural and dynamical properties of liquid water
and aqueous solutions.

1.3 Alcohols and Aqueous Alcohol Solutions

Primary alcohols (methanol, ethanol, propanol,...) consist of a hydroxyl
(OH) and an alkyl (C,Hgp+1) group. The hydroxyl group has the ability to
form hydrogen bonds. In that way, alcohols are similar to water. However,
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Figure 1.1: Typical snapshot of liquid water. For clarity, only five water molecules
are shown. Oxygens are dark grey. Hydrogens are light grey. The dashed lines
indicate the hydrogen bonds. The middle water molecule is connected via four
hydrogen bonds to four neighboring water molecules. In this hydrogen bonded
network, the middle water molecule acts two times as proton donor (to the up-
per waters) and two times as donor acceptor (from the lower waters). These four
hydrogen bonds yield locally the typical tetrahedral structure of liquid water.

the alkyl group is apolar, what makes the molecular structure of liquid alco-
hol considerably different from that of liquid water. Whereas water forms
a tetrahedral network, liquid alcohol has the tendency to form chains, rings
or small clusters.

Since the hydroxyl group can participate in the hydrogen bonded wa-
ter network, small alcohols are well soluble in water. The molecular struc-
tures of alcohol-water mixtures are subject of many scientific debates. Some
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scientist believe that, in dilute alcohol solutions, water molecules orient
themselves around the hydrophobic alkyl group forming a kind of hydro-
gen bonded cage. This effect, often referred as hydrophobic hydration [3,
4], increases the local water structure and decreases the mobility of water
molecules in the vicinity of the alkyl group. However, the conclusions of
different experimental studies do not all agree on this point. Most expe-
rimental measurements, such as X-ray or neutron diffraction experiments,
only give indirect information on molecular structures. Computer simula-
tions are therefore essential for a better understanding of these structures
and for a good interpretation of the measured results. Still, the picture of
alcohol/water mixtures is far from complete.

1.4 Chemistry with Alcohols

Chemical reactions with alcohols in an aqueous environment are important
for many biological and industrial processes. Examples of such reactions are
the conversion of ethanol into acetaldehyde in biological systems and the
hydration of ethylene for industrial ethanol production. The latter reaction
is examined in chapter 4 and 6. This process implies the following addition
reaction :

CyHy + HyO = CoH5OH (1.1)

Surprisingly, the reverse reaction is also applied by industry, but on a
much smaller scale. For western countries, ethylene is relatively cheap as it
is a product from the cracking process of crude oil. Many developing coun-
tries do not have the large supply of fossile fuels, but do have large amounts
of ethanol from fermentation of molasses. For them the reverse reaction of
(1.1) is the most economical way to produce ethylene. The reaction barrier of
reaction (1.1) is high, making the industrial ethanol synthesis energetically
expensive. However, the addition of an acid catalyst can lower the energe-
tical cost significantly. Phosphoric acid has proven to give the best catalytic
properties. This due to its effectiveness and its subduction of possible side
products, but basically, the mechanism of the catalytic process is the same
for all acids. The important part is the positively charged proton that will
split off when the acid is solvated in water:

H3PO, + Ho,O = HpPO; + HzO™. (1.2)

The H3O™ hydronium plays the catalytic role in the reaction process and
makes an alternative pathway possible:

H30+ + CoHy = HyO + CQH;_ (13)
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CoHZ + Hp0 = CoH;0Hy (1.4)
CoHs0HJ + HoO = CoH50H + H30™. (1.5)

If the reaction steps (1.3) and (1.4) follow subsequently, then one speaks
of the Adg2 mechanism. It is known that for small alcohols, like ethanol,
the Adg3 mechanism is more favorable for the hydration reaction [5,6]. In
that mechanism, step (1.3) and (1.4) happen simultaneously and protonated
ethylene CZH;— is not present as intermediate reaction product. Step (1.3)
and (1.4) are the rate determining steps as (1.5) has a much lower reaction
barrier. The acid catalyzed mechanism for the hydration of ethene (1.3-1.5)
lowers the activation barrier by approximately 30 kcal/mol compared to
reaction (1.1). This implies an enhancement of the reaction rate by many
orders of magnitude. Although, qualitatively the mechanism shown here is
know for a long time, little is known about how this process exactly evolves
in the environment of an aqueous solution. Ab initio molecular dynamics
simulations can provide valuable insight towards a better understanding of
this process.

1.5 Ab Initio Molecular Dynamics

Ab initio is Latin for ‘from the beginning’. In the same context, Ab initio MD
(AIMD) is often called “first principles” MD. It means that this method is
derived from the fundamental laws of physics. In that sense, this method is
different than force field MD. In an AIMD simulation, forces on the ions are
obtained by a full electronic structure calculation based on the Schrédinger
equation of quantum mechanics. Force-field MD tries to mimic these forces
without performing these expensive electronic structure calculations. It uses
empirical potentials describing the forces on pairs of atoms or molecules as
function of their relative positions. This potential is obtained by postulating
an ansatz with a few free parameters. These can be fitted to, for example,
available experimental data for equilibrium structures. Obviously, for those
cases force field MD is not truly independent to experiment. Still, it can
yield valuable insights that one can impossibly obtain from experimental
measurements. Besides, force field MD is many times faster than AIMD.

In turn, AIMD has some crucial advantages. In liquids, the total force
on a molecule is not a simple summation in terms of pair interactions be-
tween this molecule and its neighbors. The force between two molecules
can significantly be influenced by the presence of a third or a fourth nearby
situated molecule as this can change the complete electronic state. In po-
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lar liquids, it is known that dipole moments of individual molecules can
strongly fluctuate and depend sensitively on the polarization of the surroun-
ding molecules. In principle, these effects can be incorporated in standard
MD by use of more advanced force fields, such as many body potentials and
polarizable force fields (for water, see e.g. Ref. [7]). However, the design of
such extended force fields is not an easy job. In AIMD these effects come
naturally as the problem is treated starting from its quantum mechanical
origin. More importantly, AIMD gives the possibility to study chemical re-
actions. The making and breaking of chemical bonds are accompanied with
huge changes in the electronic density. The forces in intermediate stages,
during the chemical event, cannot be known a-priori, which makes the de-
sign of accurate force fields for most situations an impossible task.
Straightforward AIMD is not feasible for large systems because of its
enormous computational effort. Fortunately, innovative algorithms have
drastically decreased the computational expense using only a few approx-
imations. In this respect, Density Functional Theory (DFT) [8, 9] and the
Car-Parrinello algorithm [2] were major breakthroughs. Of course, the in-
creased computer power was also of importance. These developments have
opened new possibilities for research, that were out of reach before.

1.5.1 DFT

The foundation of Density Functional Theory is the Hohenberg-Kohn (HK)
theorem [8], which states that, for the electronic ground state, there is a one-
to-one relation between the complex multi-dimension wavefunction and the
electronic density:

Uo(ry,ro,r3,...,rN) <> po(r). (1.6)

Here, ¥ and py are respectively the wavefunction and the electron density
of a N-electron system in its ground state, r denotes the general space coor-
dinates (z,y, z) and r; denotes the space coordinate of electron i. Relation
(1.6) implies that, if the system is in its electronic groundstate, knowledge of
the electron density is in principle sufficient to obtain the N-electron wave-
function and thus all the information on the system. Consequently, the total
electronic energy E, can be expressed as a functional ! of the density py only:

Eelpo] = (Yo | He| To) = T[po] + Uee[po] + Ueat[po]- (1.7)

A functional A[f(z)] is an extended type of function, that does not depend on a single
input parameter or on a set of input parameters, but has a whole function f(z) as argument.
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Here, H, is the Hamiltonian of the electron system, T'[py] and Upe[po] de-
note the electron kinetic energy and the electron-electron interaction energy
and Uegt[po] is the electron energy due to an external potential, usually the
Coulomb interaction between the atomic nuclei and electrons. In principle,
the electronic ground state density py(r) can now be found by finding the
minimum of the functional E.[p] as E¢[p] > E.[po] for any p(r) # po(r). To
find the density that minimizes E,[p], we can use a variational approach.
This requires taking the functional derivative 2 of E,[p] to solve 5%)[”] =0.
The problem with Eq. (1.7) is that the HK theorem only proves that that
unique functional E,[p] exists, but the functional itself remains unknown.
There is no straightforward recipe to obtain the shape of this functional,
but based on various principles one can design approximate energy func-
tionals. Almost all existing functionals are designed within the framework
of the Kohn-Sham (KS) formalism [9], where the interacting many-electron
system is mapped onto a system of non-interacting electrons, yielding the
exact same electron density. This formalism relies on the assumption, that
the density pg can be expressed in terms of N orthonormal Kohn-Sham or-
bitals ;

N
p(r) =i (r)ehi(r), (1.8)
i=1

that satisfy the Kohn-Sham equations (atomic units)

|~ 5+ 0@ di(o) = ), (19)

with vs(r) an effective potential, referred to as the Kohn-Sham potential,
and ¢; the energy eigenvalues of the KS orbitals. If the assumption is valid,
then the decomposition of Eq. (1.8) is unique yielding another one-to-one
relation

po(x) 5 v, (). (1.10)
Relation (1.10) implies that solving Egs. (1.9) is equivalent to finding the
minimum of Eq. (1.7) by solving ‘SE;;;D[’J] = 0. Again, the exact Kohn-Sham

potential vs(r) is unknown. It is however much easier to find approximate
expressions for v (r) than for E,[p] directly. To achieve this, it is convenient

2The function derivative % of a functional A[f(z)] gives back a function g(x) as follows:

g(z) = %f(“] = g(z') = limaf—o A[f(”“)H(”“*(f})df]*A[f(z)], where §(xz — z') is the Dirac-

delta function.
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to separate v (r) into following contributions:
V5(r) = Vgt (r) + vu(r) + vae(r), (1.11)

with vege(r), vu(r), and v, (r) the external potential, the Hartree potential
and the exchange-correlation potential, respectively. The potential vez(r)
corresponds to Ugzt[po] in Eq. (1.7). For an isolated system with m ions,
Vezt(r) is equal to:
ven®) = =3 2L (1.12)
ext “~ |I' — RI| ’ .

with R the position and Z; the charge of ion I.
The Hartree potential vy (r) approximates the Coulomb repulsion be-
tween the electrons in the following way:

!
vi(r) = /dr’ ) (1.13)
r — 1|

Note that Eq. (1.13) cannot be exactly equal to the Coulomb electron repul-
sion, as in the true Coulomb electron interaction, an electron cannot repel
itself.

The exchange-correlation potential v,.(r) can be expressed as the func-
tional derivative of the the exchange-correlation energy:

0 Exc[p(r)]
dp(r)

This exchange-correlation energy E,.[p] basically corrects all the other terms
and is the only remaining unknown part of the problem. As v4(r) depends
explicitly on the electron density p(r) itself via relation (1.13) and (1.14), the
KS Egs. (1.9) must be solved iteratively in a self-consistent field approach.

The physical meaning of the non-interacting electron system, satisfying
relation (1.9) and with total wavefunction ¥4 = det|yn, e, ...,¥n|, is that
it has the same electron density as the real system. Other quantities do not
have to be the same. For instance, the energy is not a simple sum of the KS
electron energies ¢;, but must be obtained by putting the density of Eq. (1.8)
back into Eq. (1.7), which has now an easier form:

Vze(T) (1.14)

Elpo] = Ts[po] + Ueat[po] + Un[po] + Exclpo]; (1.15)
with T[p], Uest[p] and Ug|[p] defined as:

N
Tl = Y [Au o), (1.16)
=1
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_ 1 ,p(r)p(r')
Unlp] = E/dr/drﬁ, (1.17)
Ualel = [ dr ple)vean (o), (1.18)

where the * in the Eq. (1.16) denotes the complex conjugate.

The main achievement of the KS formalism is that T'[pg] in Eq. (1.7) is
now replaced by Ts[po] in Eq. (1.15), which can be found by solving the one-
electron equations (1.9), and putting the obtained KS orbitals {#} into Eq.
(1.16). This is formally correct as the KS assumption implies that ; = 1;]p].
The above procedure looks rather cumbrous, but practice has shown that
attempts to approximate T'[pg] directly, the so-called orbital-free methods,
are (still) rather inaccurate.

The remaining exchange-correlation energy can now be expressed as:

Eze[po] = T[po] — Ts[po] + Uee[po] — Unpo]- (1.19)

This energy corrects for the fact that an electron cannot repel itself and for
the fact that the electron motions are not truly independent. The exchange-
correlation energy can be approximated by the local density approximation
(LDA) based on the results of an uniform electron gas:

Buelpl = [ dr p(x) g™ (o (1)), (1.20)

with elniform () the exchange-correlation energy density function of the uni-

form electron gas that is known to a high accuracy from Monte Carlo cal-
culations [10]. In spite of its approximate nature, LDA works surprisingly
well in many applications, in particular in solid state physics. However, for
a quantitative study of chemical systems, that often require an accuracy of a
few kcal/mol, LDA generally fails. One can improve LDA by adding terms
which depend on the spatial derivatives of the electronic density, commonly
referred to as generalized gradient approximations (GGA). The main draw-
back of DFT is that there is no systematic way to improve the energy functio-
nal. Inventing new functionals is a science in itself, but the true functional is
not known. In practice, you have to choose, among the existing functionals,
a functional that gives the best possible description for your system. For
our research, we used the Becke-Lee-Yang-Parr (BLYP) functional [11, 12]
that has shown to give a good description of liquid water [13,14].

DEFT has proven to be more accurate than, for instance, the Hartree-Fock
method and to be much faster than other methods of comparable accuracy.
This has made DFT one of the most important methods in quantum chemis-

try.
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1.5.2 Car-Parrinello

To obtain a manageable algorithm, AIMD methods use the following two
approximations. First they consider the nuclei (ions) as classical particles
and only the electrons are treated quantum mechanically. Secondly, the
Born-Oppenheimer approximation is applied, where one assumes that the
electronic state will remain constantly in the ground state. This implies that
the electrons will adapt instantaneously to the motion of the ions. For most
systems these two approximations are very accurate.
We can now write down the equations of motion for the ions:

mIRI = _i [Vion—ion({R}) + B, [PO]] ) (1.21)

dR;
with m; the mass of ion I and Vjy,_jon ({R}) the Coulomb interaction be-

tween the ions. Eq. (1.21) can be simplified by use of the following relation:
3

d _ 0 0Ee[po] dpo(r)
R, Delrol = aRIEE[”O]JF/dr 5o dR;

0 0
= TR’jEe[pO] - TR’erzt[pO]a (1-22)

where we have used ”j;—lgp] = 0if p = po. This is the DFT-variant of what
is called the Hellmann-Feynman theorem which is valid for a system in its
electronic ground state. This theorem states that the force, as well as the
energy, can be calculated for a given atomic configuration without recalcu-
lating the electronic states, or finding their derivatives. This makes force
calculations simpler and allows to rewrite Eq. (1.21) as follows:

M
. R; RZZ
RI Z( I 14J

1<J

po(r)(r —Rr)Zr
o +Z/d |r—RI|3 . A

In principle, this equation together with Eqs. (1.8) and (1.9) allows to
perform an AIMD simulation. It requires the numerical integration of Eq.

3The difference between the total derivative & and the partial derivative % on a func-

dz
tion a(z, f(z)) is the following: La(z, f(z)) = limgz—o a(etde, f(m+§f))7“(x S@) whereas

Bam (z, f(z)) = limgy_,o 2L2Fde: f(’”)) a(e.f(@) The total derivative and the partial deriva-

tive can be related via the so called chain rule: La(z, f(z)) = 6; + 3” % Similarly,
for a functional A[f], that has an explicit dependence on a variable A an in addition an

implicit dependence on A via the function f(z), the chain rule is as follows: S A[f] =
% + [ dx%)[cf] %. This is used in step 2 of Eq. 1.22.
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(1.23) by making small time steps like in standard MD. However, after each
time step the time-consuming iterative calculation of Eq. (1.9) has to be per-
formed to update the electronic density. Moreover, numerical calculations of
the electronic structure will never be completely converged. Consequently,
the forces determined by Eq. (1.23) will be slightly in error. Experience has
shown that this error accumulates, yielding a non-conservation of the en-
ergy accompanied by a deviation of the calculated trajectory from the true
one. In order to keep this deviation within acceptable bounds the electronic
structure calculation requires a very high degree of convergence [15]. This
gives rise to a strong computational effort.

In 1985 Car and Parrinello adopted an alternative approach [2], that
avoids the expensive iterative calculation of Eq. (1.9) at every time step.
First, one expands the KS orbitals 9; into a proper basis set {¢,}, usually
plane waves

Pi =Y Ciada (1.24)

Now, instead of finding the basis set coefficients c;, by iteratively sol-
ving Eq. (1.9), Car-Parrinello MD (CPMD) uses a dynamical optimization.
Basically, this implies that the basis-set coefficients are considered as one-
dimensional particles with an associated mass p yielding a similar equation
for ¢;q as Eq. (1.23) for the ions:

. oF
péia = =55 + O Aijcia- (1.25)
acia j

Here A;; are the so-called Lagrange multipliers which constrain the KS
orbitals to remain orthonormal. In addition to Egs. (1.23) and (1.25) there is
also an equation for the time evolution for these Lagrange multipliers, that
we will not give explicitly. The electronic mass x has no physical meaning,
but it is required in order to define the dynamics for the electronic coeffi-
cients ¢;. By choosing the mass p small enough, the electronic coefficients
will experience sufficiently large acceleration ensuring that the electrons can
quickly adapt to the motions of the nuclei and that the deviations of the elec-
tronic coefficients from the true ground state remain sufficiently small. On
the other hand, a too small value of ;s requires a very small time step. So in
practice one has to find for each system a kind of optimum.

At each MD time step, the ion motions and the basis set coefficients will
change according to Eq. (1.23) and (1.25). During the simulation, the elec-
tron density will remain close, though not exactly equal, to the true density
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po, yielding forces on the ions that are again not exactly correct. However,
the average force in CPMD has proven to be very accurate. This is because
the deviations are, in contrary to straightforward AIMD, not systematic.
Consequently, the ionic motion calculated from a CPMD simulation does
match the true motion to a high accuracy, also over longer time [16]. This
makes CPMD a very efficient way to perform AIMD simulations.

1.5.3 Pseudopotentials

Due to the very steep potential in the region near the nucleus, and due to
the orthogonality condition between different states, the KS orbitals exhibit
rapid oscillations close to the nuclei. A good description of these wavefunc-
tions would require, in a plane-wave expansion, a very large basis set. So, if
we would include all electrons in a system explicitly using the full Coulomb
potential of the nuclei, the computational costs would be prohibitive. For-
tunately, it is known that the core electrons states are almost independent
of the environment surrounding the atom and that only the valence elec-
trons participate strongly in the interactions between atoms. This allows
to make a simplification in the description of the electronic state. Using
the fact that the core electron states are almost fixed, we can define, for
each atomic species, a pseudopotential, that incorporates the effects of the
nucleus and core electrons [17-19]. These pseudopotentials must be con-
structed such, that they correctly describe the interaction of the nucleus and
the core electrons with the valence electrons outside the core region. The va-
lence pseudowavefunctions corresponding to this modified potential do not
have the rapid oscillations of the true wavefunctions in the core region. This
drastically reduces the number of basis set coefficients required for their
representation. Then, the calculation only explicitly considers the valence
electrons in terms of these pseudowavefunction solutions that approach the
true wavefunction outside a core radius r.. The enhancement in efficiency
due to the pseudopotentials is considerable, as it ‘decreases” the number of
electrons in the system and secondly allows for a much smaller basis set for
the remaining valence electrons.

Different schemes exist for the construction of pseudopotentials. The
type of pseudopotential used for the research in this thesis are the so-called
semi-local norm-conserving Martins-Troullier pseudopotentials [20]. For a
more detailed overview of pseudopotentials, I refer to Ref. [21,22].
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1.6 Simulating Rare Events

The above section dealt with the problem of how to make an AIMD calcula-
tion computational feasible. The methods discussed in this section are also
important for standard MD simulations. Given the system size and simu-
lation time accessible by MD simulations, most chemical reactions should
be considered as rare events. It is not possible to simulate these reactions
in a direct way by imitating the same conditions under which one measures
rates experimentally. In experiments, rate constants are obtained by mea-
suring the macroscopic densities of reactant and product states over a long
period. These macroscopic densities, corresponding to billions of molecules,
will show an exponential relaxation with a decay according to the rate of re-
action. MD simulations can only describe a few hundreds of molecules dur-
ing simulation times of nanoseconds (the situation for AIMD is even much
worse). The probability to detect one single event in these simulations is
completely negligible. Therefore, additional techniques are required to de-
termine reaction rates by molecular simulation. Many methods have been
devised to this purpose, yielding crucial information on reaction barriers,
rate constants and mechanisms of reaction. In the next section we will give
a very short introduction to the constrained dynamics method, also called
thermodynamic integration, that is used in chapter 4. In section 1.6.2 we
will introduce the Path Sampling methods. In chapter 5 we will improve
the original Transition Path Sampling method by a new method, that we
call Transition Interface Sampling. This new method is used in chapter 6 in
combination with AIMD, for the calculation of the non-catalyzed gas-phase
hydration of ethylene.

1.6.1 Constrained Dynamics

Transition State Theory (TST) estimates the reaction rate as well as the acti-
vation energy of a chemical reaction from the free energy profile along a well
chosen reaction coordinate. Mostly, this reaction coordinate will be some-
thing like the length of a bond that has to be broken or to be formed, but
in general it can be any complex function of the coordinates of all particles.
Given a reaction coordinate A({R}), one can obtain the free energy change
AF(X) along the reaction path using the technique of thermodynamic inte-
gration (see, e.g., Ref. [23]). Along this path from reactant (A({R}) = A4) to
product state (A({R}) = Ap), one can then identify the transition state di-
viding surface (A({R}) = A* with A4 < A\* < Ap), thatis a local maximum of
the free energy function, called the free energy barrier. If the reaction coor-
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dinate is well chosen, this barrier corresponds to the true reaction barrier or
activation energy of the reaction. This free energy barrier can be expressed
as follows:

A* H
AF(N) = FO') — F(\) = / X’ <L()‘)> . (1.26)
AA 8)\ N
Here H is the Hamiltonian of the complete system The brackets denote
an ensemble average, and the subscript indicates that the conditional ave-
rage is evaluated at a value A({R}) = X of the reaction coordinate. The term

- <Mg)\& >>J is usually called the mean force. To evaluate this conditional en-

semble average in a MD simulation, one can use the method of constraint
where the dynamics of the system is performed with the reaction coordinate
fixed at the specified value \'. The mean force is in that case approximately
equal to the constraint force (Lagrange multiplier) needed to keep the con-
straint at its fixed value. It is not exactly equal as the constraint introduces
a bias in the ensemble. However, it is possible to correct for this bias and to
obtain the exact mean force and free energy barrier [24,25].

Although, the free energy barrier is then exact, it still depends on the
choice of the reaction coordinate. Only for an ideal reaction coordinate, the
free energy barrier corresponds to the true reaction barrier. For an ideal reac-
tion coordinate, any trajectory crossing the transition state dividing surface
will remain at that side for a long time. This is exactly the assumption made
in TST. In practice, one can usually not find such a coordinate, and fast re-
crossings are inevitable. In those situations the free energy barrier will serve
as an underestimate of the true activation energy, whereas the TST rate ex-
pression will serve as an overestimate of the true reaction rate. In many
cases, one can correct for the incorrect reaction coordinate by calculating
a transmission coefficient that requires an additional simulation. Still, the
choice of the reaction coordinate must be approximately correct. Otherwise,
the corresponding transmission coefficient can be extremely low, yielding
an inaccurate calculation.

In high dimensional complex systems, the choice of reaction coordinate
can be extremely difficult and usually requires detailed a priori knowledge
of the transition mechanism. For those cases, one can use Transition Path
Sampling that was specifically designed to overcome these limitations, though
with a price of a high computational cost. However, the new path sampling
method introduced in this thesis, gives a strong improvement of the effi-
ciency compared to Transition Path Sampling. This will make path samp-
ling a good alternative to the thermodynamic integration method for many
systems.
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1.6.2 Path Sampling

The original path sampling method, called Transition Path Sampling, is
based on the calculation of a time correlation function k4E5(t), that, for a
true exponential decay, will exhibit a plateau yielding the true reaction rate
of the system:

ha(0)hp(t
kg () = % kap =kig (T). (1.27)

Here h4 and hpg are the characteristic functions of the two stable states, the
product and the reactant state respectively, and T is a value in the plateau
time region. The characteristic function of each state is either one, if the
system is inside, or zero, if the system is outside the stable state region.
Of course, the shape of the function k¥45£%(¢) depends on how one defines
the stable states. However, as long as the choice of the state definitions is

reasonable, the plateau value will not sensitively depend on this.

To calculate Eq. (1.27) in TPS, one samples a large number of paths, star-
ting in A and ending in B, by use of a Monte Carlo algorithm that employs
the so called shooting move (illustrated in Fig. 1.2). One of the advantages
of this method compared to the constrained dynamics method is that the re-
action evolves in a more natural way yielding a better understanding of the
actual mechanism of the molecular rearrangements during a reactive event.
Besides, if TST does not work due to a very low transmission coefficient,
path sampling can still be applied. However, for most systems it is compu-
tationally more demanding than thermodynamic integration.

In chapter 5 we introduce a new algorithm called Transition Interface
Sampling (TIS) that improves the efficiency of Transition Path Sampling.
The idea is to introduce new characteristic functions based on a different
kind of states, the overall states. These overall states exist next to the two
stable states. Now, different from stable state definitions, a system belongs
to overall state A or B not only depending on its instantaneous configuration,
but also on its past behavior. Overall state A covers all phase space points
lying inside stable region A, but also all phase space points that visit 4,
before reaching B when the equations of motion are integrated backward
in time. Similarly, state B comprises stable state B and all phase points,
coming directly from this state in the past (not via A). These two states
span the complete phase space and they do not sensitively depend on the
definitions of the stable states. This allows to write a rate expression similar
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Figure 1.2: [lustration of the shooting move. The picture shows the free energy
landscape as function of ¢; and ¢a, which represent two projections of the degrees
of freedom in the system. The two circles, located in the valleys of this mountain
landscape represents the two stable states A and B, that are separated by a free
energy barrier. Two paths are shown that start in A and end in B. One path (n) is
obtained from the other (0) via a MC shooting move. This works as follows. Along
the old trajectory, one takes a random time slice at which one adds random changes
AP to the momenta of all particles. This configuration with the new momenta
P' = P + AP is then integrated forward and backward in time yielding the new
trajectory (n). As long as the momenta changes are small, the chance that the new
path will reach both stable states will be considerable. Then, by replacing the old
path by the new one and starting the same procedure again, one can collect a whole
set of different paths, all going from A to B.

to Eq. (1.27):
<hA(O)hB(O)>

bap = St (1.28)

This expression has significant advantages over Eq. (1.27). Again, the
evaluation of Eq. (1.28) is performed by sampling a number of paths via a
similar kind of shooting moves. However, unlike in TPS where each path
must have a fixed length T', here the path lengths are variable and each path
can be limited to the strict minimum, necessarily for the determination of
the h4 and hg characteristic functions. Secondly, the ensemble average in
Eq. (1.27) consists of both positive as negative terms, whereas expression
(1.28) consists of positive terms only, resulting in a faster convergence of
the MC algorithm. The third point requires a bit more knowledge about
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the two path sampling methods, for which I refer to chapter 5. To increase
the statistical accuracy, TPS combines the MC algorithm with a kind of free
energy calculation by use of umbrella sampling techniques. In TIS this is re-
placed by a series of so-called interface ensemble averages, yielding another
improvement to the total efficiency compared to TPS.






Chapter 2

Hydration of Methanol in Water
A DFT-based Molecular Dynamics Study 1

We studied the hydration of a single methanol molecule in aqueous solu-
tion by first-principle DFT-based molecular dynamics simulation. The cal-
culations show that the local structural and short-time dynamical proper-
ties of the water molecules remain almost unchanged by the presence of
the methanol, confirming the observation from recent experimental struc-
tural data for dilute solutions. We also see, in accordance with this expe-
rimental work, a distinct shell of water molecules that consists of about 15
molecules. We found no evidence for a strong tangential ordering of the
water molecules in the first hydration shell.

2.1 Introduction

The solvation of alcohols in water has been studied extensively [26]. It is of
fundamental interest in physics, chemistry and biology, but also of impor-
tance in technical applications. The characteristic hydroxyl group allows
alcohols to form hydrogen bonds and is responsible for the good solubility
of the smaller alcohols. In contrast, the alkyl group is hydrophobic and does
not participate in the hydrogen bonding network of water. The presence of
both hydrophobic and hydrophilic groups make the microscopic picture of
solvation of alcohol in water a non-trivial and therefore interesting matter.
Understanding the solvation of methanol in water is a prerequisite for

!This chapter is based on: Titus S. van Erp, Evert Jan Meijer, “Hydration of methanol
in water. A DFT-based molecular dynamics study”, Chemical Physics Letters 333 , 290-296,
(2001).
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the study of chemistry of alcohols in aqueous solution. Important exam-
ples of such reactions are the conversion of ethanol into acetaldehyde in
biological systems or the industrial ethanol production by acid-catalyzed
hydration of ethylene. An accurate microscopic understanding of the me-
chanism and kinetics of such reactions is of fundamental interest. However,
presently, this picture is still far from complete. Density Functional The-
ory (DFT) based Molecular Dynamics simulation has proved to be a promi-
sing tool provide such an insight. An accurate calculation of the chemical
bonding is incorporated via a DFT-based electronic structure calculations.
The effect of temperature and solvent on the reactive events is implicitly ac-
counted for via the Molecular Dynamics technique. The implementation of
DFT-based MD as proposed by Car and Parrinello [2] has proven to be ex-
tremely efficient. It has successfully been applied to study of a large variety
of condensed-phase systems at finite temperature. Applications to chemical
reactions include the cat-ionic polymerization of 1,2,5-trioxane [27], or the
acid-catalyzed hydration of formaldehyde [28].

As a first step towards the study of chemical reactions involving alcohols
we present in this chapter a Car-Parrinello Molecular Dynamics (CPMD)
study of the hydration of the simplest alcohol (methanol) in aqueous solu-
tion. Recent experimental work [29] has provided detailed structural infor-
mation on the solvation shell. Various molecular simulation studies (e.g.
Ref. [30-34] have addressed structure and dynamics of both the solute and
the solvent. This experimental and numerical work has revealed that there
is a distinct solvation shell around the methanol, and that the water struc-
ture is little affected by the presence of a methanol molecule. In this chapter
we will address these structural properties and in addition consider the dy-
namics of the methanol and the water molecules in the solvation shell.

This chapter is organized as follows. First we outline the computational
approach and its validation. Then we present the results for the structure
and dynamics of a single solvated methanol in water. We conclude the chap-
ter with a summary and discussion.

2.2 Methods and Validation

Electronic structure calculations are performed using the Kohn-Sham for-
mulation [9] of DFT. [8] We employed the BLYP functional that combines
the local density approximation (LDA) with a Becke gradient correction for
the exchange energy [11] and a gradient correction for the correlation en-
ergy proposed by Lee, Yang and Parr [12]. Among the available functionals,
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the BLYP functional has proven to give the best description of the structure
and dynamics of water. [13,14] All calculations 2 were performed using the
CPMD package [35].

The pseudopotential method is used to restrict the number of electronic
states to those of the valence electrons. The interaction with the core elec-
trons is taken into account using semi-local norm-conserving Martins- Troul-
lier pseudopotentials. [20] The pseudopotential cutoff radius for the H was
chosen 0.50 au. For O and C the radii are taken 1.11 and 1.23 a.u. for both
the 1=s and 1=p term. The Kohn-Sham states are expanded in a plane-wave
basis set matching the periodicity of the periodic box with waves up to a
kinetic energy of 70 Ry. Test calculations showed that for this structural and
energetic properties were converged within 0.01 A and 1 kJ/mol, respec-
tively. Frequencies are converged within 1 %, expect for CO and OH stretch
modes that are underestimated by 3 % and 5 % compared to basis-set limit
values.

To validate the computational methods outlined above we performed
a series of reference calculations of relevant gas - phase compounds with
the CPMD package. Energetics and geometry were calculated for methanol,
water, two mono - hydrate configurations, and the di-hydrate configuration
shown in Fig. 2.1. These calculations were performed using a a large peri-
odic box of size 10x10x10 A3, The interactions among the periodic images
were eliminated by a screening technique similar to that of Ref. [36]. In ad-
dition we determined for the methanol molecule both the harmonic vibra-
tional frequencies and the frequencies at finite temperature (T= 200 K). The
latter includes the anharmonic contributions, and were obtained from the
spectrum of the velocity auto correlation function (VACF) of a 3 ps CPMD
calculation at E= 200 K. The calculated peak positions can be compared with
experimental spectra. Results of the gas-phase calculations were compared
with results obtained with a state-of-the-art atomic-orbital based DFT pac-
kage (ADF [37] ), and with results from MP2 calculations of Ref. [38]. In the
comparison of the energies zero-point energies were not taken into account.

Complexation energies and geometries of the methanol hydrates are given
in Tab. 2.1 and Fig. 2.1. Deviations among CPMD and ADF are within
1 kcal/mole for the energies, smaller than 0.005 A for the inter-molecular
bonds and within 0.03 A for the weaker intra-molecular bonds. This indi-
cates a state-of-the art accuracy for electronic structure methods employed

ZComputational resources consisted of an IBM-SP and a cluster of state-of-the-art PC’s.
Calculations were executed in parallel using MPI and amounted to a total of & 10000 hours
of CPU-time.
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Figure 2.1: Energy-optimized geometries of two water/methanol dimers and a
trimer. Distances (A) and angles (degrees) are shown for three computational me-
thods: CPMD-BLYP (top, present work), ADF-BLYP [37] (middle, present work)
and MP2 [38] (bottom).

in CPMD. Differences among BLYP and MP2 are within acceptable lim-
its, with BLYP complexation energies smaller by 4 kJ/mole (dimer) and
10 k] /mole (trimer). These deviations are similar to the comparison of BLYP
and MP2 for the water dimer binding energy, [13] > where BLYP is 4 k] /mole
smaller, with the MP2 energy only 1 k] /mol below the experimental value.
Assuming similar differences for the complexation energies bonds in the
methanol hydrates would suggest that BLYP underestimates the methanol-
water binding energy by approximately 5 k] /mol. Inter- and intra-molecular
BLYP bond lengths are up to 0.02 and 0.06 A longer compared to the MP2
results, respectively.

3MP2 limit estimate. See for example [39]
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Table 2.1: Complexation energies (kJ/mol) of methanol hydrates shown in Fig. 2.1.
Numbers are bare values without zero-point energy corrections and entropy con-
tributions.

Complex CPMD-BLYP ADF-BLYP* MP2?

CH;0H + H,0 (a) 20.2 20.2 24.4

CH;30H + H,0 (b) 17.1 17.6 21.0

CH;0H + 2 H,O 58.3 59.6 68.8
@ Ref. [40].

¢ G2(MP2) method. MP2(full) /6-311+G(d,p) optimized geometries. From Ref. [38].

Vibrational frequencies are listed in Tab. 2.2. Again comparison of CPMD
and ADF is excellent, consistent with the results for the energetics and ge-
ometries. Comparing the calculated finite-temperature frequencies against
the experimental values shows that BLYP tends to underestimate the fre-
quencies of almost all modes by ~ 10 %. This trend is a known feature of
BLYP. For example similar deviations are observed for BLYP calculation of
water. [13]

Overall we conclude that the reference calculations of gas-phase pro-
vides confidence that DFT-BLYP performs with a sufficient accuracy for a
quantitative study of methanol hydration.

2.3 Solvation

We performed Car-Parrinello Molecular Dynamics simulations of the solva-
tion of a single methanol molecule. We considered two systems: one with 31
water molecules and the other with 63 water molecules, yielding methanol-
water solutions with mole ratios of 1:31 and 1:63. In the following they are
referred to as the small and large system, respectively. For reference we
also performed a simulation of a pure water sample of 32 molecules. The
molecules are placed in a periodic cubic box with edges of 9.98 A (small
solvated methanol system), 12.50 A (large solvated methanol system), and
9.86 A (pure water) corresponding to the experimental densities at ambi-
ent conditions. The temperature of the ions is fixed at 300 K using a Nosé-
Hoover thermostat [42-44]. The fictitious mass associated with the plane-
wave coefficients is chosen at 900 a.u., which allowed for a time step in the
numerical integration of the equations-of-motion of 0.145 fs. The two sys-
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Table 2.2: Harmonic and T=200 K vibrational frequencies of gas-phase methanol
molecule.

Harmonic Anharmonic
v(em 1) v(cm 1)
mode | CPMD-BLYP ADF-BLYP® | CPMD-BLYP Exp.’
(T=200 K)

7(OH) 280 380 280 270
v(CO) 940 950 880 1034
r(CHs) 1040 1050 980 1075
r(CHj) 1130 1130 1070 1145
4(OH) 1330 1340 1270 1340
0(CHs) 1430 1430 1320-1430¢ 1454
0(CHs) 1460 1460 1320-1430¢ 1465
0(CHs) 1470 1470 1320-1430¢ 1480
v(CHs) 2940 2910 2640 2844
v(CHs) 2990 2950 2740 2970
v(CHs) 3060 3020 2830 2999
v(OH) 3550 3590 3310 3682

@ Ref. [40].

b Ref. [41].

¢ Modes not separated. Broad peak with width listed.

tems were equilibrated for 1 ps from an initial configuration obtained by a
force-field simulation. Subsequently we gathered statistical averages from
a 10 ps trajectory of the 31+1 molecule system, from a 7 ps trajectory of the
63+1 molecule system, and from a 10 ps trajectory of the pure water system.

2.3.1 Structure

In Fig. 2.2 we have plotted the radial distribution functions (RDF) of the
water oxygen atoms. The minor variations among the RDF’s of the small
methanol system, the large methanol system, and the pure water system is
an indication that the local water structure, as measured by this RDF, is at
only marginally changed by the solvation of a methanol molecule. Note, in
this respect, that for the 32 molecule the first solvation shell constitutes a
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significant fraction of the total number of water molecules (see below).
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Figure 2.2: Calculated carbon-oxygen (top) and water oxygen-oxygen (bottom)

radial distribution functions for the small (solid line) and large (dashed line)
methanol system.

Fig. 2.2 also shows the RDF of the methanol carbon and water oxygens
for the small and large methanol system. A pronounced first peak clearly
indicates the existence of shell of water molecules at a distance of ~3.7 A.
Comparing the RDF’s of the small and large system shows a noticeable
difference. This should be attributed to the limited size of the small sys-
tem. It suggests that a proper description of the solvation structure of a
single methanol in a cubic periodic simulation box requires at least 50 water
molecules. Integrating the RDF for the large system up to the minimum at
r = 5.0 A yields 16 water molecules in the first solvation shell. The definite
solvation shell observed in our simulations is consistent with the neutron
diffraction data of Soper and Finney [29] who studied a 1:9 molar methanol-
water system. Differences in molarity limits a quantitative comparison of
the carbon-oxygen RDF, but a qualitative comparison learns that peak posi-
tions match with the peak values slightly more pronounced in the simula-
tion results.

To analyze the orientational ordering of the water molecules around the
methanol we computed the distribution function of the angle between the
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C-Og20 bond vector and the normal to the plane of the water molecules
in the first solvation shell. The results show that angle distribution is rela-
tively uniform with a small tendency towards the tangential orientation, a
feature occurs for all solvation shell radii in the range of 3.7-5.0 A. Over the
range of 0°-90° the distribution gradually decays, with the value at the tan-
gential orientation (0°) about a factor of 2 larger than at the perpendicular
orientation (90°). Qualitatively, this seems consistent with data for the orien-
tational distribution obtained from neutron-diffraction data [29]. However
from this experimental data it is concluded that the water molecules prefer
to lie tangential and form a cage around the methanol. Our data do not give
clear evidence for a cage-like structure. However, this might be a different
interpretation from similar data. Note, in this respect, also that the expe-
rimental data cannot be quantitatively compared to our data, as different
orientational distribution functions are employed.

To analyze the hydrogen bonding we adopted the definition of Ref. [31]:
two molecules are hydrogen bonded if simultaneously the inter-oxygen dis-
tance is less than 3.5 Aand the OHO angle is smaller than 30°. From the
simulation of the large system we found that the methanol hydroxyl group
donates and accepts on average 0.9 and 1.5 hydrogen bonds, respectively.
For a water molecule these numbers are equal and measured to be 1.7 in
the simulation of the pure water sample. These results indicate that the
methanol hydroxyl group participates strongly in the hydrogen bonding
network with the a donating behavior similar to water hydrogen and a ac-
cepting character somewhat smaller than a water oxygen.

2.3.2 Dynamics

The time scale (7-10 ps) of the present simulations allows for a reliable ana-
lysis of dynamical properties occurring on the picosecond time scale.

The velocity auto correlation function (VACF) of the hydrogen atoms
provides an important measure of hydrogen bonding. Fig. 2.3 shows the
Fourier spectrum of the calculated VACF of hydrogen atoms of the wa-
ter molecules in the small and large methanol sample. The three distinct
peaks correspond to the vibrational (3100 cm~!), bending (1600 cm~!), and
librational- translational (500 cm~!) modes of the water molecules. The
most important observation is that mutual comparison of the two methanol
samples and the comparison of these with the spectrum of the pure wa-
ter sample (also plotted) shows no significant difference, not even for the
small methanol sample where the solvation shell constitutes half of the wa-
ter molecules in the system. This demonstrates that also the short-time
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dynamics of the water molecules is hardly affected by the solvation of a
methanol molecule.
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Figure 2.3: Bottom: Calculated Fourier s(pectl?um of the velocity auto correlation
function of the water hydrogens for the small methanol system (solid line), the
large methanol system (dashed line), and the pure water sample (dotted line). Top:
Calculated Fourier spectrum of the velocity auto correlation function of the hydro-
gen atom of the methanol hydroxyl group for the large methanol system (dashed
line) and for an isolated methanol molecule (solid line).

An indication for the average residence time of a water molecule in the
first solvation shell is obtained by monitoring the trajectories of the indivi-
dual water molecules. We found that in the large methanol system over 7
ps 10 water molecules left the region within 5 A from the methanol carbon.
From this we estimate the average residence time to be of the order of a few
picoseconds.

Fig. 2.3 shows the Fourier spectrum of the VACF of the hydroxyl H of
methanol obtained from the trajectory of the large system. The spectrum is
of limited accuracy due to the relatively short trajectories (7 ps). For compa-
rison, the calculated spectrum for a single methanol molecule at T' = 200 K
is also plotted. In solution the OH stretch (von) peak, with a calculated
gas-phase position of about 3300 cm™!, has shifted by a2 200 cm™! to lower
frequencies and has a relatively large width. The shift and width are both
typical characteristics of a hydrogen bond and are also observed in the water
spectrum (Fig. 2.3). In contrast to the OH stretch mode, we see that the OH-
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bending mode (Jom at 1300 cm~!) is blue-shifted by an amount of 50-100~!
cm~!. A comparison with experimental frequency shifts in infrared spectra
is limited as, to our knowledge, no experimental data for dilute methanol-
water solutions are reported. However, a comparison with measured shifts
in liquid methanol [45] shows similar trends for the shift of infrared stretch
(-354 cm 1) and bend (+78 cm 1) peaks. The torsional mode (Ton), expected
to be shifted upward to around 600 cm™!, is not visible in our calculated
spectra due to the large statistical errors.

2.3.3 Discussion

We have studied the solvation of a single methanol molecule in water using
DFT-based Car-Parrinello molecular dynamics simulation. Validation of the
approach showed that energetics, structural, and dynamical properties of
reference gas-phase compounds were sufficient to expect a quantitative ac-
curacy of calculated properties.

The calculated solvation structure supports the experimental observa-
tion [29] that a shell of about 15 water molecules is formed around the
methanol. Structural analysis also learns that the hydrogen bonded net-
work of water is only minimally distorted by the presence of the methanol
molecule. This confirms the proposition of Soper et al. [29] that speculations
that the normal water structure is significantly enhanced by the hydropho-
bic alkyl group is groundless. The calculations showed that methanol OH
group is strongly involved in hydrogen bonding, both as acceptor and as
donor. Analysis of the dynamics learns that the average residence time of
a water molecule in the first solvation shell is of the order of a few picose-
conds. The vibrational spectrum of the water molecules is hardly changed
by the presence of the methanol, indicating that the short-time dynamics
is hardly affected by the presence of the methanol molecule. Vibrational
analysis shows that methanol OH-stretch peak is a broad feature that is
significantly red-shifted upon solvation, confirming its hydrogen-bonding
character.

In conclusion, from comparison with available experimental data we
have shown that first-principle DFT-based molecular dynamics simulation
provides a reasonable accurate description of the structure and dynamics of
a dilute aqueous methanol solution. This opens the way towards the study
of chemistry involving methanol and larger alcohols in water.



Chapter 3

Ab Initio Molecular Dynamics Study
of Aqueous Solvation of Ethanol and
Ethylene !

The structure and dynamics of aqueous solvation of ethanol and ethylene
are studied by density functional theory based Car-Parrinello molecular
dynamics. We did not find an enhancement of the structure of the hy-
drogen bonded network of hydrating water molecules. Both ethanol and
ethylene can easily be accommodated in the hydrogen-bonded network of
water molecules without altering its structure. This is supports the conclu-
sion from recent neutron diffraction experiments that there is no hydropho-
bic hydration around small hydrophobic groups. Analysis of the electronic
charge distribution using Wannier functions shows that the dipole moment
of ethanol increases from 1.8 D to 3.1 D upon solvation, while the apolar
ethylene molecule attains an average dipole moment of 0.5 D. For ethylene,
we identified configurations with 7-H bonded water molecules, that have
rare four-fold hydrogen-bonded water coordination, yielding instantaneous
dipole moments of ethylene of up to 1 D. The results provide valuable in-
formation for the improvement of empirical force fields, and point out that
for an accurate description of the aqueous solvation of ethanol, and even of
the apolar ethylene, polarizable force fields are required.

!This chapter is based on: Titus S. van Erp, Evert Jan Meijer, ”Ab Initio Molecular Dy-
namics Study of Aqueous Solvation of Ethanol and Ethylene”, accepted for publication in
Journal of Chemical Physics
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3.1 Introduction

The study of the solvation of alcohols in aqueous solution is of fundamental
interest in physics, biology and chemistry, but also of importance in tech-
nical applications [26,46-55]. Among the alcohols, ethanol is one the most
well studied compounds. Aqueous ethanol solutions are common in chemi-
cal research and industry applications. Ethanol can be produced by aqueous
hydration of ethylene, that is readily available from natural sources. This
process can be accelerated by acid catalysis. The reverse route of decom-
posing ethanol into water and ethylene is also of importance. For example,
for developing countries who do not have a large supply of fossil fuels, de-
hydration of ethanol obtained from biomass is often the most economical
way to produce ethylene. As is well known, solvation structures play a cru-
cial role in aqueous solution chemistry, where reactive events often require
a significant reordering of the water molecules in the solvation shell. The
solvation of ethanol and ethylene are therefore crucial in the course of their
(acid-catalyzed) interconversion. The aqueous solvation of these molecules
will be addressed in the present paper. Elsewhere we report on an ab initio
molecular dynamics study of the acid-catalyzed conversion [56].

Ethanol and ethylene have distinct solvation properties in aqueous so-
lution. Ethanol is easily soluble as its polar hydroxyl group can partici-
pate in the hydrogen bonded network and the hydrophobic ethyl group
is relatively small. In contrast, the apolar ethylene molecule has a much
weaker interaction with water and is generally considered to be hydropho-
bic. Mixtures of water and ethanol have been studied extensively, both ex-
perimentally as by molecular simulation. Experimental studies employing
NMR [57-61], ultrasonic absorption [62], infrared absorption spectroscopy
[58, 59, 63, 64], mass spectroscopy [63,65], X-ray diffraction measurements
[63,66], neutron diffraction [66—68], and dielectric relaxation measurements
[69-72] have been performed to unravel the solvation properties of ethanol.
Molecular simulation studies using empirical force fields have addressed
the equation of state, thermodynamics, and structure and dynamics of sol-
vation of aqueous ethanol solutions [73-77]. The following general pic-
ture of the aqueous solvation in dilute solutions has emerged: the hydroxyl
group participates in the hydrogen-bonded network, while the hydropho-
bic alkyl group is accommodated in the hydrogen-bonded network of wa-
ter molecules. The nature of hydration structure around the hydropho-
bic part of alcohols is still a controversial subject. It has been suggested
[26,46,48,49,51,54,60, 61] that hydrophobic solutes enforces the network of
hydrogen-bonded water molecules around it and decreases their mobility,
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a notion referred to as hydrophobic hydration [3,4]. However, recent ex-
perimental and computational studies have shown that for small alcohols
the structure and dynamics of the water molecules in the solvation shell is
almost identical to that of bulk water [67,68,75].

Much less is known for the solvation of ethylene in water under ambient
conditions. Experimental [78] and theoretical [79, 80] work addressed the
clathrate hydrates of ethylene in water. The isolated ethylene-water com-
plex has been a subject of various studies. In the lowest energy configura-
tion, the ethylene molecule forms a weak bond with water. An early ab initio
study of Del Bene in 1974 [81] has characterized this interaction as a 7-H
hydrogen bond of a water proton with the 7 electrons of the C=C bond. Se-
veral experimental techniques have been applied to measure the strength of
this interaction, such as the matrix isolation study of Engdahl and Nelander
[82,83], the microwave spectra study of Andrews and Kuczkowski [84] and
the molecular-beam measurements of Peterson and Klemperer [85]. Re-
cently Tarakeshwar et al. [86-88] and Dupré and Yappert [89] have per-
formed calculations on the ethylene-water complexes with high level ab ini-
tio methods. The interaction is weak compared to a hydrogen bonds such
as in the water dimer. The role of the 7-H bond in aqueous solvation under
ambient conditions is still an open question.

Molecular simulation provides an approach to study the microscopic be-
havior of liquids complementary to experimental studies. All molecular
simulations studies of aqueous ethanol solutions up to now are based on
empirical force fields that are designed to reproduce a selection of experi-
mental data. Obviously, molecular simulations based on these potentials do
not provide a picture completely independent from experiment. Moreover,
the reliability of the results at conditions that are significantly different from
those where the potential was designed for, may be questionable. Density
functional theory (DFT) based molecular dynamics (MD) simulation, such
as the Car-Parrinello molecular dynamics method [2], where the interactions
are calculated by accurate electronic structure calculations, provides a route
to overcome these limitations. This has been demonstrated in studies of lig-
uid water [14,90,91] and aqueous solvation [92-94]. Important advantages
of DFT-MD over force-field MD are that it intrinsically incorporates polari-
zation, that it accounts for the intra-molecular motion and therefore allows
for a direct comparison with spectroscopy of intra-molecular vibrations, and
that it yields detailed information on the electronic properties, such as the
energy levels of electronic states and the charge distribution. In a broader
chemical perspective it is important to note that DFT-MD is capable to study
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chemical reactions in solution, where force-field MD would fail completely
as it cannot account for the change in chemical bonding.

Here, we report on a DFT-based MD simulation of the solvation of ethanol
and ethylene. First we describe the simulation methods. Then we show re-
sults of geometries and energetics of relevant gas-phase complexes, that will
serve as a validation of the numerical methods employed. Subsequently, re-
sults of structure, dynamics, and polarization of the solvated species will be
shown. We conclude with a discussion.

3.2 Computational Methods

Electronic structure calculations are performed using the Kohn-Sham [9]
formulation of DFT [8]. We employed the gradient-corrected Becke-Lee-
Yang-Parr (BLYP) functional [11, 12], that has proven to give a good de-
scription of the structure and dynamics of liquid water [91]. The DFT-based
MD simulations of aqueous ethanol and ethylene are performed using the
Car-Parrinello method as implemented in the Car-Parrinello MD (CPMD)
package [35]. Norm-conserving Martins-Troullier pseudopotentials [20] are
used to restrict the number of electronic states to those of the valence elec-
trons. Cut-off radii for H, O and C atoms were chosen to be 0.50, 1.11 and
1.23 a.u., respectively both for the l=s and I=p terms. The Kohn-Sham or-
bitals are expanded in a plane-wave basis, matching the periodicity of the
periodic box with waves up to a kinetic energy of 70 Ry. With this basis set
energies and geometries are converged within 0.25 kcal/mol and 0.01 A , re-
spectively. Vibrational frequencies are converged within 1 %, except for C-O
and O-H stretch modes that are underestimated by 3 % and 5 % compared
to the basis set limit values [93]. In the molecular dynamics calculations,
the fictitious mass associated with the plane-wave coefficients is chosen at
900 a.u., which allowed for a time step in the numerical integration of the
equations-of-motion of 0.145 fs.

To validate the computational approach we compared CPMD results for
energies and structures of relevant gas-phase molecules and complexes with
state-of-the-art atomic-orbital DFT-BLYP calculations performed with with
the Amsterdam density functional (ADF) [95-98] code, and other high-level
quantum chemical results taken from literature. The gas-phase calculations
with CPMD were performed in a large periodic box of 10 A using the
screening technique of Ref. [36] to eliminate the interactions among peri-
odic images. We have not included zero-point energies in the energies of
the gas-phase compounds. This also holds for computed energies taken
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from literature and referred to in the present paper. This, to ensure a proper
comparison between our results and those from literature.

The MD simulations of the solutions were performed for a ‘small” and
a ’large’ system to assess the finite size effects. For the small system a si-
mulation of 10 ps was performed in a cubic periodic box of length 10.07 A,
both for an ethanol solution of 31 waters and 1 ethanol as for an ethylene
solution of 32 water and 1 ethylene. For the large system 5 ps simulations
were performed using a periodic box with bcc symmetry and a volume of
1977.6 A3. This periodic cell, a truncated octahedron, is in shape closer to a
sphere than a simple cube, and therefore better suited for liquid simulation.
The large ethanol solution consisted of 63 waters and 1 ethanol, while the
large ethylene solution consisted of 64 waters and 1 ethylene. The box sizes
for both the ethanol and ethylene solutions were set to match the experi-
mental densities of the ethanol solutions under ambient conditions. For the
ethylene system this will be slightly larger than the experimental density, as
the effective volume of ethanol is a bit smaller than the combined volume of
ethylene + water. However, we do not expect this to give rise to observable
changes in the calculated properties. For reference we performed 10 ps MD
simulations of a single ethanol and ethylene in a periodic cubic box of 10
A, and a pure water systems of 32 water molecules in a cubic box of 9.85
A for simulation times of 10 ps. For all simulations there was an initial equi-
libration trajectory of 1 ps. Temperature was controlled by a Nosé-Hoover
thermostat [42-44] and fixed at 300 K.

3.3 Gas-Phase Complexes

The ethanol monomer has two stable conformers very close in energy: the
symmetric trans structure and the a-symmetric gauche structure (see Fig. 3.1).
The main distinction is the orientation of the OH bond with respect to the
CCOplane. A microwave study [99] has shown that the trans form is slightly
(0.12 kcal/mol) more stable than the gauche form. Tab. 3.1 lists the most im-
portant geometric data of the trans and gauche conformers, and compares
the CPMD results with ADF calculations, B3LYP calculations [100], and ex-
perimental data [101]. CPMD and ADF bond lengths differ at most 0.01
A and angles are within 0.5°. Comparing CPMD with B3LYP and experi-
mental values yields differences upto 0.03 A and 0.5%, and 0.04 A and 1° re-
spectively. The calculated energy difference between the two conformers is
listed in Fig. 3.2. CPMD, ADF, B3LYP of Ref. [102], and fourth-order Méller-
Plesset perturbation (MP4) [103] predict the trans conformer to be stable
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Figure 3.1: Illustration of the trans and gauche conformers of ethanol.

by 0.07-0.10 kcal/mol, in good agreement with the experimental value of
0.12 kcal/mol. In contrast, the B3LYP calculation of [100] yields the oppo-
site, with the gauche conformer stable by 0.23 kcal/mol. Vibrational fre-
quencies obtained by a Fourier transform of the velocity auto correlation

Table 3.1: Gas-phase complexes: ethanol gauche and trans monomer. Distances in
A, angles in degrees. Our results: CPMD-BLYP and ADF-BLYP, are compared with
B3LYP/6-311G(2d,2p) [102] and experimental microwave spectroscopy data [101].
Geometry | Gauche

Method | CPMD ADF B3LYP EXP

rog | 0981 0971 0961 0.945

rco | 1455 1447 1429 1427

rcc | 1529 1532 1521 1.530

<rcyg > (@nCH3) | 1099 1097 1.091 1.094

<rcyg>(@nCH2) | 1100 1.099 1.092 1.094

acoy | 1080 1082 108.7 108.3

acco | 113.0 1131 113.0 1122

Geometry | Trans

Method | CPMD ADF B3LYP EXP

rog | 0980 0970 0960 0.945

rco | 1458 1449 1432 1425

rcc | 1523 1524 1515 1.530

<rcyg>(@nCH3) | 1.098 1.09% 1.090 1.094

<rcyg>(@nCH2) | 1103 1102 1.095 1.094

acoy | 1084 1084 1090 108.3

acco | 1076  108.0 108.0 107.2
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Figure 3.2: Relative energies of ethylene-water and ethanol-water in kcal/mol.
Zero-point energies (ZPE) are not included. For ethylene, the energies are rela-
tive to the separate molecules, whereas for ethanol the separate water and trans
ethanol conformer is taken as the reference value. 3 and 7 indicate the bin-
ding energies of ethanol and ethylene respectively. 9 is the binding energy be-
tween ethylene and the water-dimer. The literature values are: a: MP4-(SDQT)/ cc-
pVTZ [103], b: DFT/B3LYP/6-311G(d,p) [102], c: DFT/B3LYP/6-311G(d,p) [100], d:
microwave experiment [99] e: MP2/6-311+G(2df,2p)+BSSE [104], f: MP2/TZ2P++
[86], g: MP2/6-311+G(2d,2p) [89], h: CCSD(T)/aug-cc-pVDZ [88], i: Matrix isola-
tion study [83], j: MP2/aug-cc-pVDZ [87], and k: Matrix isolation study [82]. For
(e), (f), (g), and (h) we gave the BSSE-corrected (lowest value) and the non-BSSE
corrected values (highest value). (i) and (k) are the experimental values minus the
ZPE of [89].
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function (VACF) of a single ethanol at 300 K yields an OH stretch frequency
of 3200 cm ! and a CH stretch frequencies in the range of 2600-2800 cm !,
This should be compared to the experimental values of 3653 cm~1[102], and
2800-3000 cm ! [63,102], respectively. The tendency of BLYP to underesti-
mate frequencies by ~ 10% is a known feature, and also observed in BLYP
calculations of water [91] and methanol [93].

For the ethanol-water complex we distinguished four complexes, with
both the ethanol trans and gauche conformer acting as proton donor or ac-
ceptor in the hydrogen bond with water. Tab. 3.2 lists the most important
geometric data obtained with CPMD and ADFE. Fig. 3.2 shows the energy
differences for all complexes. As for the ethanol monomer there is excel-
lent agreement between CPMD and ADF results, with deviations within
0.02 A and 2° for bond lengths and angles, and the binding energies within
0.2 kcal/mol. This indicates a state-of-the art accuracy of the electronic-
structure method employed in CPMD. The CPMD-BLYP calculation pre-
dicts the complex with the water molecule donating a proton to the ethanol
gauche conformer to be the most stable, with a binding energy relative to
the isolated water and trans ethanol conformer of 4.75 kcal/mol. The com-
plex with the ethanol trans conformer donating a proton is less stable by
0.82 kcal/mol. Switching to the other ethanol conformer within either com-
plex destabilizes the complex by 0.07 and 0.4 kcal/mol, respectively. The
relative stability of the ethanol donor and acceptor complexes is similar
to that for the methanol-water complex where CPMD-BLYP [93] and the
complete-basis-set second-order Moller-Plesset perturbation (MP2) estimate
[105] yields the methanol acceptor complex stable by 0.74 and 0.35 kcal /mol,
respectively. There are no experimental data for the structure and energe-
tics of the ethanol-water dimer. The MP2 result of Ref. [104] provides the
only high-level quantum mechanical study reported in literature. This study
does not distinguish between the trans and gauche conformers. Therefore, a
comparison with our results is somewhat limited. For the ethanol acceptor
configuration the MP2 and CPMD-BLYP result for the complexation energy
are similar. However, for the ethanol donor configuration the MP2 com-
plexation energy is more than 1.3 kcal/mol larger than the CPMD-BLYP
results. Consequently, the MP2 calculations yield an opposite relative sta-
bility of the two water-ethanol configurations, with an energy difference of
0.92 kcal/mol. It should be noted that in the same study the methanol-
water complex with the methanol as hydrogen bond donor is found to be the
most stable, in contradiction with the MP2 basis-set limit result of Ref. [105].
This suggests that in the Ref. [104] a limited basis set or other factors could



3.3 Gas-Phase Complexes 37

Table 3.2: Gas-Phase complexes: ethanol-water dimers. Distances in A, angles in
degrees. CPMD-BLYP and ADF-BLYP are compared. We differentiate four com-
plexes with the ethanol can be in the gauche or trans geometry and acts as proton
acceptor or proton donor in the ethanol-water hydrogen bond. Hy; is the hydrogen
of the water that is not involved in a hydrogen bond, C; is the hydroxyl carbon, Cs
is the methyl carbon and O,, is the water oxygen.
Geometry | Gauche
H-bond | H-acc H-don
Method | CPMD ADF | CPMD ADF
rog inH20 | 0994 0981 | 0981 0.972
TOH,, I H20 | 0981 0970 | 0981 0.971
roy ineth. | 0981 0971 | 0987 0.978
royg H-bond | 1934 1912 | 1988 2.011
rcc | 1526 1528 | 1.532 1.533
rco | 1469 1457 | 1452 1440
TOO | 2924 2884 | 2978 2983
ro,C, | 3653 3.626 | 3773 3.793
ro,C, | 3932 3.920 | 4128 4.033
o HOHin H20 | 1042 1050 | 104.6 1049
aCOH | 1079 1084 | 1085 108.7
aOH-O | 1726 1702 | 1724 1728
Geometry | Trans
H-bond | H-acc H-don
Method | CPMD ADF | CPMD ADF
royg inH20 | 0993 0982 | 0981 0.972
TOH,, inH20 | 0978 0969 | 0982 0.971
roy ineth. | 0982 0970 | 0988 0.977
rog H-bond | 1928  1.929 | 1960 1.993
rcc | 1.521  1.522 | 1.523 1.526
rco | 1474 1460 | 1454 1442
roo | 2908 2989 | 2983 2.968
ro,C, | 3641  3.641 | 3815 3.764
ro,C, | 4013 4.008 | 5229 5.189
o HOHin H20 | 104.6  105.0 | 1042 104.9
aCOH | 1079 108.2 | 1089 108.5
aOH-O | 168.1 1684 | 175.0 174.1
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have lead to spurious reversal of the relative stability of the two water-
ethanol configurations. The CPMD-BLYP hydrogen bond interaction energy
for the ethanol-water dimer is of the same order of magnitude as the CPMD-
BLYP result for the water-water [91], water-methanol [93], and methanol-
methanol [106] dimer. Comparison of these three dimers against high-level
quantum chemical calculations and experimental values indicates that BLYP
underestimates the binding energy by approximately 1 kcal/mol. For the
ethanol-water dimer we could expect a similar difference. Here we should
add that going from water, via methanol, to ethanol the dispersion forces
become increasingly important. These are not accounted for in gradient-
corrected functionals such as BLYP. Correlated methods such MP2 incor-
porate, to a good approximation, dispersion forces. In Ref. [106] we esti-
mated, in a comparison of BLYP and high-level MP2 calculations [107] for
the methanol-dimer in non-hydrogen bonded configurations, that the ab-
sence of dispersion interaction in BLYP amounted to an underestimate of
the binding energy of ~1 kcal/mol. For the ethanol-water dimer this num-
ber could serve as an underestimate. Yet, although by far not insignificant,
the magnitude of the deviation is much smaller than the hydrogen-bond in-
teraction. Therefore, it can be argued that for a study of aqueous ethanol
neglecting the dispersion interaction is acceptable.

Next we discuss the ethylene-water complexes. We will consider com-
plexes with a single water and a water dimer. The dominant interaction of
water with ethylene is a 7-H bond, where a proton of the water molecule
binds to 7 electrons of the double C=C bond. There exist two stable com-
plexes between ethylene and a single water molecule, indicated as the EW1a
and EW1b geometry (see Fig. 3.3). Both geometries have Cs symmetry with

s B =% s == =%

Figure 3.3: [llustration of the EW1a and EW1b ethylene-water complexes.

the plane of the water molecule orthogonal to that of ethylene molecule. In
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the EW1a structure the water-plane is parallel to the C=C bond, whereas in
EW1b it is orthogonal. In Tab. 3.3 we compare the CPMD-BLYP geometries
with ADF-BLYP and MP2 [86,89] and coupled-cluster singles and doubles
(CCSD) [88] results. Fig. 3.2 shows the energy differences, and compares
these to values reported in literature. Again, the CPMD and ADF results are
in excellent agreement, with energies smaller than 0.02 kcal/mol, and ge-
ometries within 0.01 A and 0.3°, except for the non bonded OH,,; distance
that is related to water orientation, a coordinate along which the energy
surface is relatively flat. The BLYP result shows a significant =-H binding
energy of ~ 1.4 kcal/mol. However, in MP2 [86,88,89] and CCSD [88] cal-
culations, binding energies are ~ 1-2 kcal/mol stronger, accompanied by a
shorter 7-H bond with differences 0of 0.12 A and 0.14 A for EWlaand EW1b,
respectively. The comparison with the experimental value gives a similar
picture with the BLYP underestimating the binding energy by ~ 2 kcal /mol.

Table 3.3: Gas-Phase complexes: ethylene-water, EWla, EW1b structures (see
Fig. 3.3). Distances in A, angles in degrees. CPMD-BLYP, ADF-BLYP and MP2-
TZ2P++ [86] calculations are compared. H is the water-hydrogen involved in the
m-H bond; Hy,; is the other hydrogen of the water molecule. CM is the midpoint of
the two carbons of the ethylene molecule.

Geometry | EWla EW1b
Method | CPMD ADF MP2 | CPMD ADF MP2
rcc | 1334 1.336 1335 1.336

TH-CM | 2483 2485 2363 | 2570 2524 2.383
TO-cM | 3452 3460 3.301 | 3.527 3497 3.337
TH.,-CMm | 3909 3833 3816 | 3957 3.881 3.793
nb
rog | 0984 0975 0962 | 0978 0974 0.962
TOH,y, 0980 0970 0958 | 0976 0.970 0.958

agoy | 1042 1045 1047 | 1044 1045 1047

Matrix isolation studies [82,83] have revealed that the complex of ethy-
lene with two water molecules consists of a water dimer that has one wa-
ter molecule 7-H bonded to the C=C double bond. Recent high-level MP2
calculations have indicated that the presence of the second water molecule
enhances the strength of the 7-H bond [87, 89]. From Fig. 3.2 we see that
BLYP result are qualitatively in line with this observation, with a binding
energy of the (water-dimer)-ethylene complex of 2.25 kcal/mol, up from
1.41 kcal/mol for the single-water binding. However, quantitatively MP2
and BLYP compare less well, with BLYP underestimating both the total bin-
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ding energy as well as the increase from the single-water binding. Again,
the experimental value [82,83], that is closer to the MP2 result, shows a sig-
nificantly stronger binding than BLYP. Both for the water-ethylene and for
the (water-dimer)-ethylene complex the differences of BLYP with MP2 and
experiment are significant relative to the total binding energy. This absence
of dispersion interaction in BLYP will be an important factor contribution to
this discrepancy.

Overall, we conclude that the reference calculations provide confidence
that BLYP is capable of a quantitative study of a the aqueous solvation of
a single ethanol molecule where interactions are dominated by relatively
strong hydrogen bonds. BLYP qualitatively accounts for the weaker 7-H
binding in water-ethylene systems. However, comparison with MP2 and
experimental data suggest that its strength is significantly underestimated.
Yet, for a single solvated ethylene the hydrogen bonds among the solvating
water molecules will be the dominant interaction. Hence, we believe that
BLYP will be able to quantitatively describe dilute aqueous ethylene solu-
tions. Both for ethanol and ethylene the absence of dispersion attraction in
BLYP will have some impact, in particular for the coordination around the
CHjy and CHj3 groups, where BLYP only accounts for the steric repulsion.
Except for the notion of the absence of the dispersion interaction, a better
understanding of the performance of BLYD, its agreement and differences
with MP2 and experimental results, is desirable. This falls outside the scope
of the present work but would be an important topic of future work.

3.4 Solvation Structure

3.4.1 Ethanol Solvation

Fig. 3.4 shows ethanol-water radial distribution functions (RDFs) of the
small and large ethanol solutions. The pronounced structure in the hydro-
gen bonding RDFs (HH, OH, HO, OO) are a clear indication of the presence
of hydrogen bonds. All RDFs show that the small system gives a good de-
scription of the first solvation shell, while the large system also includes
the second solvation shell. The peak positions of the force-field simula-
tions of Fidler and Rodger [75], indicated by crosses, are close to our results.
Note that the good agreement for the CO RDFs, that are potentially sensi-
tive to a proper description of the dispersion attraction, suggests that the
absence of the dispersion interaction in our CPMD-BLYP simulation is of
limited importance for a proper description of the aqueous solvation of the
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Figure 3.4: Ethanol-water RDFs of the ethanol solutions. All insets show both the
results of the small (solid line) and the large system (dashed line). For all graphs
9AB indicates that the first atom A belongs to ethanol and the second atom B be-
longs to water. If the first is a hydrogen, A=H, then always the hydroxyl hydrogen
of the ethanol is meant. C; is the carbon bonded to the hydroxyl group, C, is the
carbon of the methyl group.

hydrophobic group of ethanol. The position of the first peak of the OH- and
HO-RDF indicates that the average hydrogen-bond length is 1.7 A for both
the ethanol-donor and -acceptor bond. Integration of the OO-RDF upto the
first minimum r = 3.3 A yields on average 3 water molecules in the first
solvation shell of the hydroxyl group, in good agreement with the neutron
diffraction value of ~ 3 [68] . Integrating the methyl-oxygen (C2O) RDF up
tor = 5.7 A indicates that the first solvation shell of the methyl group con-
sists of approximately 21 water molecules. These coordination numbers are
of the same order as the experimental estimation of Petrillo et al. [66], who
found that there are 18 + 2 water molecules within 4 A from the center-of-
mass of an ethanol in aqueous solution.
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3.4.2 Ethylene Solvation

In Fig. 3.5 we show the ethylene-water RDFs of the small and large ethylene
solution. Both the carbon-oxygen and the intermolecular carbon-hydrogen
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Figure 3.5: Ethylene-water RDFs of the ethylene solutions. The result for small
system and large system are given by the solid and dashed line, respectively. H
denotes the water hydrogens only.

RDFs are shown. Experimental or simulation data for ethylene in aqueous
solution at room temperature were not available. The comparison between
the small and large system shows a larger deviation in the first solvation
shell than was found for the ethanol solutions. Apparently, the small ethy-
lene system is not able to accommodate properly the first solvation shell.
Integration the CO-RDF of the large system up to the first minimum at 5.7
A yields a hydration shell of 23 water molecules. More spatial information
can be extracted from Fig. 3.6 where, for the large system, the distribution
of water H-atoms around the ethylene C=C axis is shown. X and Y are
components of the vector joining a water hydrogen and the midpoint of the
C=C bond. Here, X is the distance orthogonal to the C=C axis and Y the
parallel distance. Note that we used the four-fold symmetry to improve the
statistical accuracy yielding four identical quadrants. The ethylene hydro-
gens are shown to visualize the size of the ethylene molecule, but do not
indicate any angle dependence around the C=C axis. The figure shows a
well defined elliptic region with no hydrogens present except for two weak,
but clearly visible, peaks in the mid plane Y = 0 at X = £2.5. These should
be attributed to the presence of 7 — H bonded configurations.

3.4.3 Water Structure

In Fig. 3.7 the calculated water oxygen-oxygen RDFs of both the ethanol and
the ethylene solutions are compared to those calculated for pure water. Note
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Figure 3.6: Time and rotational averaged normalized density distribution p(r)/po
(with py is the average hydrogen density) of the water-hydrogens around the sol-
vated ethylene molecule obtained from the large system simulation. The rotational
average is about the C=C axis. The four-fold symmetry is imposed so that all qua-
drants contain the same information. The density regions 1.0 < p(r)/po < 2.0 and
p(r)/po > 2.0 are illustrated by small and large pixels, respectively.

that the first solvation shell contains a large fraction of the total number of
water molecules, especially for the small system. Structural changes due to
the solute molecule should therefore be detectable by comparing these sys-
tems with the pure water system. For the ethanol solution we see a small
drop of the first peak accompanied by a slight increase at the first minimum.
This indicates some decrease in the hydrogen-bond structure, when com-
pared to the pure water. As the small ethylene-water solution is too small to
accommodate a fully relaxed water solvation shell, Fig. 3.7 only shows the
RDFs of the large ethylene system. The RDFs show a similar behavior as for
the ethanol solvation, with a slight decrease of the first peak and a small
increase of the RDF in the region around the first minimum. The small
changes in the structure of the solvating water shell around ethanol and
ethylene indicate that the hydrogen-bonded water network is very flexible
and can easily open up to accommodate small apolar solute groups with-
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out significantly changing its structure. Our findings are consistent with the
neutron diffraction experiments of Turner and Soper [67] and force-field mo-
lecular dynamics simulation of Fidler and Rodger [75] who also did not find
any evidence of structural enhancement in the hydration shell of ethanol.
Turner and Soper found that only for larger hydrophobic solutes this effect
was experimentally detectable, but even then very small. The same trend
was found in a CPMD-BLYP molecular dynamics study of the solvation of
methanol [93].
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Figure 3.7: Water-water RDFs. Left: the two ethanol solution systems are compared
with pure water. Right: the large ethylene solution system is compared with pure
water. Thin solid lines indicate the pure water, thick solid lines the small system,
and thick dashed lines the large system.

3.4.4 Hydrogen Bonds

To examine the hydrogen bond statistics in the ethanol solution we adopted
the definition of Ref. [31]: two molecules are hydrogen bonded if simulta-
neously the inter-oxygen distance is less than 3.4 A and the OHO angle is
smaller than 30°. With this definition we found that, for the large system,
ethanol oxygen donates on average 0.9 hydrogen bonds and accepts 1.7. For
the small system we found 1.0 and 1.6, respectively. This in consistent with
the fact that approximately three water molecules occupy the first solvation
shell of the hydroxyl group. For comparison, in a CPMD-BLYP simulation
we found that methanol in a dilute aqueous solution donates on average 0.9
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hydrogen bonds and accepts 1.5 [93]. From the pure water simulation these
numbers were measured to be 1.7.

For the ethylene molecule a well defined definition for the 7-H hydrogen
bond does not exist. To investigate the influence of the 7-H hydrogen bond
on the solvation structure we looked at the water hydrogen positions rela-
tive to the C=C axis (see Fig 3.6). Inside the elliptic region around the C=C
bond that is depleted of hydrogens we clearly detect near the center-of-mass
of the ethylene molecule at a distance of ~# 2.5 A a region with an increased
amount of water hydrogens. Integration over this region with 0 < X < 2.6
and 0 < Y < 1 yields a value of 0.42. This implies that approximately 40%
of the time a water molecule is oriented towards the double bond, forming
a m-H bond.

3.5 Solute Dynamics

The time scale of the present simulations (5-10 ps) allows for an analysis
of the short-time dynamics. As we mentioned above BLYP underestimates
most vibrational frequencies by more than 10 %. However, the frequency
shifts upon solvation still provide valuable information and allow for a di-
rect comparison to experiments. Fig. 3.8 shows the spectrum of the velocity
auto correlation functions (VACFs) of the ethanol hydroxyl hydrogen for the
large ethanol solution and for a single isolated ethanol. The spectrum is of
limited accuracy due to the relative short trajectory. However, the calcula-
tions show that, upon solvation, there is a clear red shift of about 200 cm ™!
of the OH stretch frequency. Experimental data for the OH frequency shift
of ethanol in dilute aqueous solution is not available. However, the OH
red shift is a typical characteristic of a hydrogen bonded liquid. A com-
parison with measured shifts in liquid ethanol, from 3676 cm~! [108] to
3330 cm ! [109], shows a similar trend. In a CPMD-BLYP simulation of a
dilute aqueous solution of methanol we found a similar red shift for the
methanol OH frequency of about 200 cm !

The vibrational spectrum of the VACF of the ethylene molecule is not
shown. As for the ethanol system there was a limited accuracy due to the
relatively short calculated trajectory. We observed that upon solvation the
CH and CC peaks do broaden. However, an estimate for peak shift falls
outside the accuracy of the calculated spectra. The matrix isolation studies
of Engdahl and Nelander [82,83] show minor changes in frequencies when
isolated ethylene is compared with the ethylene-water complex, with the
largest shift being a blue shift of 12 cm ™! of the out-of-plane bending mode
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Figure 3.8: Spectrum of the VACF of the hydroxyl ethanol hydrogens in the gas-
phase and in the large aqueous system.

(v7 =~ 947 cm™1).

3.6 Polarization

As the electronic structure is an intrinsic part of a CPMD simulation, de-
tailed information about the electronic charge distribution can be obtained.
To quantify the charge distribution we used the method of maximally loca-
lized Wannier functions that transforms the Kohn-Sham orbitals into Wan-
nier functions, whose centers (WFC) can be assigned a chemical meaning
such as being associated with an electron bonding- or lone-pair [110, 111].
It also provides a unambiguous route to assign dipole moments to indivi-
dual molecules in a condensed phase by assuming the electronic charge to
be distributed as point charges located on the WFCs. Obviously, for this
procedure to work it is required that the charge distributions of different
molecule can be clearly distinguished. This has been demonstrated to hold
for liquid water in Ref. [112] where charge overlap of neighboring molecules
was rather small. Although we did not perform a similar analysis for the
systems of the present study it can be expected that for ethanol-water pairs,
that have a very similar hydrogen bonding, the charge distribution overlap
will be equally small. The ethylene-water m-H bond is much weaker and
therefore expected to show even less charge overlap. We therefore believe
that the WFCs provide a meaningful picture of the charge distribution of the
systems considered in the present study.

Tab. 3.4 list the calculated dipole moments for the gas-phase systems
and the average dipole moment for the solvated systems. The latter were
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Table 3.4: Dipole moments obtained by Wannier-function analysis. The liquid wa-
ter value (a) was taken from Silvestrelli et al. [112,113]. In the last column the total
dipole moments of the gas-phase complexes are given.The first value for water in
the E2W complex is the water closest to the ethylene, the second value is the dipole
of the other water molecule. The solvated ethanol and ethylene dipole moments
are obtained by taking the average of 28 independent configurations from the cal-
culated trajectories.

complex | ethanol/ethylene water total
single-water - 1.82 1.82
liquid water - 3.0 (a)
ethanol gauche 1.83 - 1.83
ethanol trans 1.66 - 1.66
gauche P-acc 2.32 2.16 2.76
gauche P-don 191 191 2.62
trans P-acc 2.13 2.13 2.47
trans P-don 191 2.12 2.29
solvated ethanol 3.08 2.97
ethylene 0.00 - 0.00
EWla 0.37 1.95 2.10
EW1b 0.33 1.90 2.02
E2W 0.51 225,217 241
solvated ethylene 0.51 3.00

obtained from 28 independent configurations of the small solvated systems.
The distributions of these dipole moments are shown in Fig. 3.9. For ethanol
we observe an significant increase in going from the gas-phase molecule via
the water-ethanol cluster to the fully solvated system. This trend is very si-
milar to what is found for water [112,113] and methanol [106] and may be
considered typical feature of a strongly hydrogen bonding molecule. The
calculated distribution of dipole moments of solvated ethanol shows that
thermally driven fluctuations give rise to a significant variation ranging
from 2.0 D to 4.0 D.

Also for ethylene we observed a significant change of the dipole moment
upon solvation. Being apolar in the gas phase, the average dipole moment
increases up to 0.5 D when complexed with the water dimer and in solution.
In solution it exhibits rare fluctuations where the dipole moment reaches
values of up to 1.0 D. Fig. 3.10 shows a typical snapshot where such an
extreme high value of the dipole moment is reached. The two WFCs of the



48 Aqueous Solvation of Ethanol and Ethylene

0.5

04l ethylene
c
2 ethanol -
2
T 03f
2] 2
S A
z
T 02}
©
Qo
o
s / \
0.1t o L
,ﬂ\ / \\" \“‘
,/ ‘\‘-, / \‘\
°%% ‘ 10 ‘ RS : ‘ 2%

20 3.0
dipole moment (D)

Figure 3.9: Dipole moment distribution of the solvated ethylene and the solvated
ethanol molecule.

ethylene double bond are located near the middle of the C=C bond, just
below and above the plane of the molecule. In the figure we see clearly
that the upper m-WFC is acting as proton acceptor. The 7-H bond shifts this
WEC further out of plane inducing an ethylene dipole moment orthogonal
to the plane of the molecule. The snapshot suggests an enhancement of the
ethylene polarization by the fact that the 7-H bonded water molecule has
in turn a rare four-fold hydrogen-bonded water coordination, with three of
the waters donating a proton. This should be seen as a manifestation of the
strengthening of the 7-H bond upon complexing water molecules with the
water molecule that is 7-H bonded to the ethylene, a feature found in gas-
phase MP2 calculations [87,89] and also in the present BLYP calculations,
and discussed above in section 3.3.

3.7 Conclusions

We have studied the solvation of ethanol and ethylene in water by DFT-
based (Car-Parrinello) Molecular Dynamics. Validation of the computa-
tional approach by comparing structure and energetics of relevant gas-phase
complexes against experimental results and state of the art quantum chemi-
cal calculations showed that CPMD employing the DFT-BLYP is capable of
qualitatively describing the aqueous solvation of a single ethanol of ethy-
lene molecule.

The structural properties of the ethanol solvation were in good agree-
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Figure 3.10: A snapshot of ethylene solvated in water. The figure shows a rare con-
figuration where the ethylene molecule has a large dipole moment of ~ 1 D. For
clarity, only the ethylene molecule and five water molecules are shown. Carbon
and oxygens are dark grey. Hydrogens are light grey. Besides the atoms also the
WCFs are shown (middle grey). The water molecules have WFCs in both OH bonds
and two aside the oxygen corresponding to the lone pairs. Ethylene has four WFCs
along the CH bonds and two out-of-plane WFCs between the carbons correspon-
ding to the 7 bond. The dashed lines indicate the hydrogen bonds. One the protons
of the central water molecules points towards the "“upper’ 7 bond WEC. This is the
manifestation of the 7-H bond in this picture.

ment with both neutron diffraction data [67] and force-field MD simula-
tions [75]. We found that in aqueous solution ethanol accepts on average 1.7
hydrogen bonds and donates on average 0.9 hydrogen bonds. For ethylene
we found it has approximately 0.4 7-H bonds with a water molecule. Both
for ethanol and ethylene the simulations provide no structural evidence for
hydrophobic hydration: the structure of the hydrating water shell was not
enhanced compared to that of pure water. The calculation even indicated a
slight decrease in the structure. For aqueous ethanol the calculated red shift
of the hydroxyl vibration upon solvation was consistent with experimental
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findings.

Analysis of the electronic charge distribution by means of Wannier func-
tions showed that the interaction with water can significantly increase the
dipole moment of the ethanol and the ethylene molecule. The average dipole
moment of ethanol increases from 1.8 D in the gas phase to 3.1 D in aque-
ous solution. Ethylene, that is apolar in the gas phase, attains an average
dipole moment of 0.5 D in solution. We identified configurations, with a -
H bonded water molecule that has a rare four-fold hydrogen-bonded water
coordination, where the instantaneous dipole moment of ethylene takes val-
ues of up to 1 D. Such configurations with large solute dipole moments may
also play an important role in activating chemical reactions involving the
solutes as we have seen in a CPMD-BLYP study of the acid-catalyzed hydra-
tion of ethene [56]. The strong polarization effect raises questions towards
the common consideration of thinking ethylene as a apolar and hydropho-
bic molecule. The electronic charge analysis also points out the necessity of
polarizable force fields for both ethanol and ethylene when dissolved in wa-
ter. The present results may be considered valuable for the design of such
force-fields.



Chapter 4

Hydration/Dehydration Reaction
between Ethanol and Ethene !

We performed a DFT-based based Molecular Dynamics simulation of the
acid-catalyzed hydration of ethylene in aqueous solution under ambient
conditions. As this reaction can be considered as a rare event we applied
a constrained method. This method yields the free-energy barrier and can
give clues how spontaneous events occur. Our simulation confirms the
Adg3 mechanism at which two bonds are formed simultaneously causing
a sudden change in its electronic structure and a flip from negative to posi-
tive constraint force. The specific structure of the hydrogen bonded network
plays a crucial role in both the hydration reaction as in the reverse reaction.
As it is not included in the imposed reaction coordinate it leads to hysteresis
in a small window of the reaction coordinate.

4,1 Introduction

Hydration of ethene (also called ethylene) has been used in industry for
large scale production of ethanol since several decades. In the industrial
process the hydration of ethylene proceed in a gas-phase pressure recycling
operation over solid phosphoric acid catalysts, manufactured by impregna-
ting silica carriers [114,115]. It may sound surprising that the reverse reac-
tion, the dehydration of ethanol, is also used in industry for the synthesis

"This chapter is based on work in progress, to be published as a letter and as a full arti-
cle: Titus S. van Erp, Evert Jan Meijer, “"Ethene Hydration in Acid Solution. Revealing the
Solvation Structure of Reacting Pathways” and Titus S. van Erp, Evert Jan Meijer, ”Ab Initio
Study:Hydration/Dehydration Reaction between Ethanol and Ethene”
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for ethylene. Although this technology is now only of very limited impor-
tance because of the current availability of ethylene from more economical
favorable petroleum based sources. However, the situation can be different
for developing countries, that have scant petroleum resources, but do have
substantial amounts of fermentation ethanol available derived from agri-
cultural waste products. For them, a vapor-phase dehydration of ethanol
is often the most efficient and economical way to produce ethylene [116].
The presence of the acid is of great importance for both industrial processes.
It allows for a different reaction mechanism, which lowers the activation
energy and increases the reaction rates yielding an energetically and eco-
nomically favorable conversion. Baliga and Whalley [117] have measured
the hydration of ethylene in dilute aqueous perchloric acid in the range of
170-190 C° at 100 bars and estimated a barrier height of 33.3 1.0 kcal/mol.
Perchloric and sulfuric acids are known to be better catalysts than phospho-
ric acid in terms of conversion. However, industry uses phosphoric acid
instead as side reactions are more suppressed for this catalyst. Still, the ba-
sic mechanism is roughly same for all acids. The important catalytic group
of the acid is the positively charged proton that can easily split off forming
a hydronium ion H3O" when solvated in water. Therefore, if one wants to
study the general mechanism of the acid catalyzed hydration in a molecular
simulation, it is sufficient, to a good approximation, to limit the presence of
the acid by the hydronium only.

If the catalyst is absent, the reaction barrier is about twice as high. MP2
calculations show energy barriers of 57.7 kcal/mol for the hydration and
67.1 kcal/mol for the dehydration reaction [118]. Consequently, this reac-
tion will only occur under extreme conditions. The non-catalyzed dehy-
dration reaction is experimentally observed for an ethanol molecule that
is strongly vibrational excited via a chemical activation [118, 119] or by a
pulsed HF [120] or COy, laser [121]. Theoretical calculations of rate constants
were performed in the high temperature regime (700 K- 2500 K) [122] and
for the laser induced decomposition of ethanol [123]. These measurements
and calculations show that, for these conditions, the dehydration process
yielding ethylene and water is the most favorable unimolecular decomposi-
tion reaction of ethanol.

The presence of an acid changes the reactive pathway and enhances the
rate. If, in addition, the reaction evolves in a solvent, the reaction mecha-
nism can be very complex as solvent molecules may participate in the re-
action process. However, also the gas-phase association reaction between
H3O™ and ethylene, and its reverse, the gas-phase dissociation of proto-



4.1 Introduction 53

nated ethanol, have attracted scientists interest. The gas-phase association
reaction is, for example, of importance for astronomical physics. It is be-
lieved that this process is responsible for the presence of ethanol observed
in interstellar clouds [124]. The precise mechanism of this association reac-
tion is still matter of scientific debates. There is evidence that the gas-phase
formation of protonated ethanol CoCH5OH; has a m-complex CoHy-H30™*
as an intermediate. In this complex the proton of the hydronium is bonded
to the m-electrons of the double bond of the ethylene. For a single proton,
computational studies to proton affinities have shown that the bridged =-
bonded structure is more stable than the open ethylene cation [125-128].
Likewise, for the hydronium-ethylene complex, experimental [129-133] and
theoretical [128,132, 134] studies have shown the stability of the m-bonded
ethylene-hydronium ion molecular associate CoH4-H3O™. Therefore, it is
believed that the mechanism for the gas-phase reaction between ethylene
and the hydronium ion implies an indirect carbon protonation. First, the
proton of the hydronium will approach the middle of the ethylene forming
a bond to the m-electrons of the double bond. In a second stage, this proton
will move to a carbon site and the HoO group to the other site forming the
open structure of the protonated ethanol.

In general, one has to be cautious to make hard conclusions on the re-
action mechanism in a solution based on the knowledge of the gas-phase
results. An early experimental study to the acid catalyzed hydration of
alkenes suggested that this 7 - complex also existed as an intermediate in
the condensed phase [135]. Indeed, also for other alkenes than ethylene,
the bridged structure seems to be more stable than the open cation struc-
ture [136, 137]. However, when solvation is taken into account energetics
can change considerably. Jorgensen and Munroe have shown that the open
ethylene cation is getting more and more favored to the bridged structure
upon increasing solvation in HCI clusters [127]. Moreover, measurements
of ethylene hydration in concentrated sulfuric acid advocate the proton at-
tachment to the alkene directly through the formation of a carbocation [138].
Therefore, the general opinion is nowadays that for the hydration of olefins
in the condensed phase the formation of an intermediate m-complex is not
necessary.

Reactions in liquid water are of special interest as the role of the hy-
drogen bonded network of liquid water in chemical processes is presently
subject of many discussions. In a broader perspective, this reaction can be
related to other reactions in solvents in which proton transfer plays an im-
portant role. In this context we can refer to many other Car-Parrinello stud-



54 Hydration/Dehydration Reaction between Ethanol and Ethene

ies (see e.g. [28,139-142]). Of great importance is also the pioneering work of
Hynes and co-workers (see e.g. Ref. [143-148]) in which they deal with the
solvent influence in proton transfer reactions by using a reaction coordinate
that incorporates the degrees of freedom of the solution. More specifically
related to this work is the ab initio study of Mohr et al [55], in which they
showed that the hydrogen bonded network around an ethylene-cation radi-
cal can stimulate or prevent the hydration reaction depending on its precise
structure. Recently, we showed that ethylene, usually considered as a hy-
drophobic molecule, can be induced to instantaneous dipole moments of
~ 1. D due to the polarization by the surrounding water molecules [149].
This points out that the presence of the solvent introduces many new effects
that can significantly alter the reaction mechanism in comparison with the
gas-phase reaction.

Molecular simulation provides an approach to study the microscopic be-
havior of liquids complementary to experimental studies. Standard mole-
cular simulation techniques are based on empirical force fields that are de-
signed to reproduce a selection of experimental data. Obviously, molecular
simulations based on these potentials do not provide a picture completely
independent from experiment. Moreover, the reliability of the results at con-
ditions that are significantly different from those where the potential was
designed for, may be questionable. Density functional theory (DFT) based
molecular dynamics (MD) simulation, such as the Car-Parrinello molecu-
lar dynamics method [2], where the interactions are calculated by accurate
electronic structure calculations, provides a route to overcome these limita-
tions. Important advantages of DFT-MD over force-field MD are that it in-
trinsically incorporates polarization, that it accounts for the intra-molecular
motion and therefore allows for a direct comparison with spectroscopy of
intra-molecular vibrations, and that it yields detailed information on the
electronic properties, such as the energy levels of electronic states and the
charge distribution. The most important advantage is that DFT-MD, in con-
trary to force-field MD, is capable of studying chemical reactions. The mak-
ing and breaking of chemical bonds are accompanied with huge changes in
the electronic density. The forces in intermediate stages, during the chemical
event, cannot be known a-priori, which makes the design of accurate force
fields for these situations an almost impossible task.

We studied this reaction in both directions under ambient conditions in
the presence of an aqueous solution. We limited the catalytic contribution to
the addition of a single H3O™ to the solution. The accuracy of the used ab ini-
tio method for our system is supported by earlier work, such as the studies
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of liquid water [14,90,91] and aqueous solvation [92-94,149]. This chapter is
organized as follows: First we will discuss the computational method in sec-
tion 4.2. In section 4.3 we will show the specific stages of the reaction when
the system is forced over the barrier and estimate the free-energy barrier in
section 4.4. In section 4.5 we will look in more detail to structural changes
as function of our chosen reaction coordinate and as function of time when
the reaction coordinate is fixed. Then in section 4.6 we will apply the Wan-
nier analysis to obtain more insight in the electronic changes in the system.
In section 4.7 we will look at the specific hydrogen bonded network struc-
ture to determine the topology conditions under which the reaction can take
place. The conclusions are summarized finally in section 4.8.

4.2 Computational Methods

We performed MD simulations using the CPMD package [35]. This program
combines MD motion of the ions with electronic structure calculations using
the Kohn-Sham [9] formulation of Density Functional Theory (DFT) [8] in a
efficient way using the Car-Parrinello algorithm [2]. This algorithm treats
the basis set coefficients of the Kohn-Sham orbitals as dynamical variables
and avoids in this way the expensive self-consistent field calculation, that
have to be solved iteratively each time step for ordinary Born-Oppenheimer
dynamics. Although the electronic wave function is never in its ground state
during the simulation, it stays sufficient close so that the calculated forces
on the ions are close to the true forces and deviations are not systematic and
cancel out [21]. For the exchange correlation energy we chose the BLYP func-
tional that includes Becke’s [11] gradient correction for the exchange energy
of the uniform electron gas and the correlation functional of Lee, Yang and
Parr [12]. This functional has proven to give a good description of liquid wa-
ter [13,14], for proton transfer [28,139,141,142], for the aqueous solvation of
alcohols [93,149], and the aqueous solvation of ethylene [149]. CPMD uses
a plane wave basis set, matching the periodicity of the periodic box with
waves up to a kinetic energy of 70 Ry. An uniformly distributed negative
background charge was added to compensate the positive charge of the pro-
ton. Pseudopotentials were used to limit the number of electronic states to
the valence electrons. Interaction with the core electrons was described by
semi-local norm-conserving Martins-Troullier pseudopotentials [20]. Cut-
off radii for H, O and C atoms were chosen to be 0.50 a.u. , 1.11 and 1.23 a.u.
respectively for both I=s and 1=p terms. The simulations were performed in
a periodic box of length 10.19 A, that matches to the experimental density
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of the ethanol solution under ambient conditions. Starting from the ethy-
lene side of the reaction, the box contained 31 water molecules, one H3Ot
for the acidity, and one ethylene molecule. Temperature was controlled by
a Nosé-Hoover [42-44] thermostat and fixed at 300 K. The fictitious mass
associated with the plane-wave coefficients is chosen at 900 a.u., allowing a
time step for the MD ions motion of 0.145 fs.

Ab Initio MD simulations are computationally demanding and typical simu-
lation times are consequently limited to ~ 10 pico seconds. In view of the
large reaction barrier, the chance that within this short period a spontaneous
reaction occurs is negligible. To enforce the reaction we use the constrained
dynamics method combined with thermodynamic integration (see e.g. [23]).
This method requires a definition of a reaction coordinate that connects re-
actant and product side. With the reaction coordinate fixed by constrained
MD, the time average constraint force can be measured. Proper integration
of this mean force over the reaction coordinate yields the reversible work or
the difference in free-energy. By making a series of simulations, each with
a different value of reaction coordinate in the intermediate range between
reactant and product state, one can numerically approximate this integra-
tion and obtain the free-energy profile and thus the activation and reaction
energy. Recently the corrections to the mean force to obtain the exact free-
energy have been outlined [24, 25]. However it has been shown that this
kind of corrections to similar systems are of minor importance [28,150]. We
have chosen a reaction coordinate () similar to [28], that controls the transfer
of the proton to the ethylene carbon. This reaction coordinate () is defined
as the difference between two distances: @ = |O-H| — |H-C| where O and
H are the oxygen and hydrogen of the hydronium ion and the C is one of
the carbons from the ethylene molecule. This constraint controls the pro-
ton transfer from the hydronium ion to the ethylene molecule. This is the
reaction step with the highest energy barrier and is the only part of the reac-
tion, that we force by our constraint. A negative value of ) implies that the
proton H is close to the oxygen O forming a hydronium ion H3O*, while
positive value means that the proton is closer to the carbon C. Note that this
definition of @ allows a lot of flexibility. When @ is fixed, the |O-H| and
|H-C| distances can still fluctuate in time. This allows the reaction to evolve
in a more free way, than if we would have chosen for a more simple reaction
coordinate such as the |C-H| distance. In total we performed 21 simulations
in which Q was fixed at different values in the range [-1.59 A : 1.59 A].
The values close to the transition state around Q = 0 A were performed
over simulation times of approximately 10 ps. In this range hysteresis oc-
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curs. Therefore, performed in this range simulation series with increasing
and decreasing @, in the following indicated by “(hydration)” and ”(dehy-
dration)”. For the values |@Q| > .212 A shorter simulation times of 5 ps were
performed. In this range there is no hysteresis. All simulation data were
sampled after 0.7 ps of equilibration time.

4,3 Mechanism

We started with a simulation without any constraint at the ethylene side.
The extra proton in solution can be freely transferred along hydrogen bonds
between water molecules. We waited until a hydronium was formed close
to the ethylene and then we applied the constraint. Starting point of the
series of simulations was a constraint value of Q = —1.06 A at which a si-
mulation of 5 ps was performed. In this simulation the selected proton is on
average 2.07 A away from the carbon atom and 1.01 A from the oxygen. In
panel A) of Fig. 4.1 we see a particular snapshot of this simulation. One of
the other non-constrained hydrogens of the hydronium ion has moved to-
wards one of the neighboring water molecules. We observed that the proton
transfers of these hydrogens for this ) value was limited to the first neigh-
boring water molecules and that these hydrogens always returned to the
constrained-oxygen. Thus, the positively charged proton was not lost in the
solution but remained close to the ethylene. Therefore, extra constraints on
the hydronium ion were not needed.

The Q =-1.06 A simulation was followed by a series of subsequent si-
mulations where we moved the proton towards the ethene-carbon. Panel
B) of Fig. 4.1 shows a snapshot of the simulation @ = 0.0 A (hydration),
where the proton H is forced to stay exactly in between the oxygen and the
carbon. Proton transfers of the other non-constrained hydrogens to neigh-
boring water molecules were no longer observed, indicating that the mole-
cular bonds between the oxygen and these hydrogens are stabilized. The
|C-H| distance is strongly fluctuating in the range [1.24A : 1.58A ]. Bonds
between atoms in this figure are drawn according to distance dependent
bond definitions, that assigns a CH bond when the interatomic distance is
less than 1.31 A and a OH bond when it is less than 1.27 A. The simulation
movie for this constraint value shows a constant appearance and disappea-
rance of the two bonds. In section 4.6 we try the give a more elucidated
definition of a bond not only dependent on the distance.

Panel C) of Fig. 4.1 is a snapshot for the constraint value of @ = +0.106
A (hydration). The average |C-H| distance is decreased compared to pre-
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Figure 4.1: Four snapshots from four different simulations, each with a different
constraint value for ). The important atoms and bonds are visualized by ball stick
representation, the others by sticks. Dark grey indicate oxygen, white hydrogen
and middle grey carbon atoms. The white dashed lines indicate the hydrogen
bonds between the waters and there is a dashed line that connects the three atoms
that determine (). The constraint values are, A): @ = —1.06 A, B): Q = 0.0 A (hy-
dration), C): @ = 0.106 A (hydration) and D): Q = 1.06 A. Each picture shows one
typical time shot of four simulations.

vious @ = 0.0A (hydration) simulation. However, in this typical snapshot
the instantaneous distance is a bit higher than in panel B). The interatomic
distances are beyond the distance of what one would normally assign for a
bond. Therefore, the constrained-proton looks isolated not forming a bond
with either the carbon or the the oxygen atom. In section 4.6 we show how-
ever that this picture is misleading. Contrary to the distance dependent
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bond definitions, but based on electronic density, one does can speak of a
stable CH bond in panel C) and not in panel B). At the other side of the
ethylene, one of the waters out of the solution has formed a bond to the
other carbon. This reaction step happens spontaneously when the reaction
coordinate () is fixed at this value.

The last panel D): Q = +1.06 A, shows that the proton has moved closer
to the carbon almost at the ideal CH bond length of 1.10 A. At the other
carbon the CO bond has remained stable for all Q@ > 0.106 A and protonated
ethanol has been formed. Subsequently, the protonated ethanol loses one
proton at the oxygen site. Apparently the barrier for deprotonation of the
protonated ethanol is small or absent. This is consistent with a recent study
of hydrated methanol clusters [151] that show that for the largest cluster
considered (HFCH30OH(H20)g) energy differences between configurations
with HT attached to either methanol, water, or the H* in between methanol
and water are very small. The issue of deprotonation of aqueous protonated
alcohols is presently under investigation [152].

4.4 Energetics

The time-averaged constraint force is plotted in Fig. 4.2. We see that, for
large negative and positive () values, the force is approaching zero. For the
transition region @ ~ 0 A we detect sudden jumps in the mean force. From
left to right the force chances from negative to positive sign. This is directly
related to the formation of the CO bond at the other carbon. When we start
from a configuration where this CO bond is established and decrease the
reaction coordinate again, this CO bond is not directly broken. The solva-
tion shell has to rearrange before the reaction will occur backwards, which
gives rise to hysteresis. Similar effects were found in the Sy2 reaction be-
tween CH3Cl and C1™ [150] and in the acid catalyzed addition of water to
formaldehyde [28] in aqueous solution.

For the reaction coordinate Q = 0.053 A we found two almost stable
configurations, ) = 0.053 A (hydration) and @@ = 0.053 A (dehydration).
The @ = 0.053 A (hydration) configuration was stable during the complete
10 ps simulation. For the @ = 0.053 A (dehydration) configuration the CO
bond stayed intact for about 8 ps when suddenly this bond was broken and
the constraint force swapped from a positive to negative value. Also in the
Q =0.106 A (hydration) and Q = 0 A (dehydration) simulations, a sudden
reactive event was observed after 2 and 3 ps respectively.

The mean force was integrated by taking the stable point values and
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Figure 4.2: Top: the average mean force as function of reaction coordinate (). Values
for |Q| > .2 A were obtained after averaging over a MD run of at least 5 ps, for
|Q| < .2 A more than 10 ps simulation runs were applied. Each run started with
.7 ps of equilibration for which no data was collected. Both direction (hydration)
and (dehydration) are indicated by solid and dashed lines respectively. There is
hysteresis in a small window with a strong change in the mean force. The arrows
indicate that during the simulation run a flip in the constraint force was observed
in the direction of the arrow. Bottom: The integrated curve yielding a free-energy
barrier of 23.3 kcal/mol and a reaction energy of 5.3 kcal/mol.

the weighted average for the two @ = 0.053 A cases. The obtained free-
energy barrier is 23.3 kcal /mol, while the reaction energy is 5.3 kcal/mol as
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is shown in the lower panel of Fig. 4.2. The barrier is 10 kcal/mol lower than
the experimental value of Baliga and Whalley [117], who found a reaction
barrier of 33.3 +1.0 kcal/mol. However, static BLYP calculations with per-
chloric acid in the gas-phase shows a similar barrier of 24.7 kcal /mol [153].
It is a known feature that DFT tends to underestimate barrier heights to
some extend (see for example Ref. [150]). The comparison between our re-
sult and the gas-phase BLYP calculation of Ref. [153] is complicated by two
factors. First of all the mechanism is different, where in the gas-phase reac-
tion the hydrating water molecule also provides the proton, whereas in the
our solution-calculation the proton providing water and the hydrating wa-
ter are different molecules approaching the ethylene molecule from oppo-
site side. Secondly, it should be noted the approximate reaction coordinates
we have chosen gives rise to a underestimate of the true reaction barrier.
To arrive at a better insight of the effect of the solvent we performed some
calculations of protonated hydrated ethylene configurations mimicing the
mechanism observed in solution. Preliminary calculations show that for
a cluster with a single H3O" providing the proton and a single hydrating
water molecule at the opposite side of the ethylene molecule the barrier is
absent. A small barrier of & 4 kcal/mol appears of both the H;O" as the
hydrated water molecule are solvated by two water molecules. This sug-
gests that the solvation effects play a significant role increasing the barrier
in the order of 20 kcal/mol. Note that these processes are highly unlikely in
the gas-phase as they require simultaneous collisions between three or more
molecules.

Obviously, the catalytic effect is significant as a decrease of 30 kcal/ mol
implies an increase to the reaction rate in orders of magnitude. We can make
an additional comparison to acid catalyzed hydrations of other alkenes. An
early measurement of Lucas and Liu [154] showed a reaction barrier of 18.9
kcal/mol for the acid-catalyzed hydration of trimethylethylene. This lower
activation energy is consistent with the view that larger molecules are better
able to delocalize the charge allowing for a more stable transition state [155].

The calculated reaction energy in solution of 5.3 kcal/mol is lower that
the MP2 value of 9.4 kcal/mol [118,119] and the BLYP-CPMD value of 9.09
kcal/mol [149]. However, the latter values are just energy differences and
do not take the change in entropy into account. The entropy is higher at
the ethylene side, as here is one extra water molecule in solution that can
freely move. This lowers the free-energy at that side and thus decreases the
free-energy difference between reactant and product side, or equivalently
the reaction energy.
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4.5 Structural Properties

In Fig. 4.3 we showed two relevant time averaged interatomic distances
as function of the reaction coordinate. The distance |CH] is the distance
between the carbon and the hydrogen, that is partly controlled by the con-
straint ). The other distance |CO)| is the distance between the other carbon
and the closest water-oxygen. Note that this is not always the same oxygen
as water molecules move to and away from the ethylene molecule during
the simulation. Surprisingly, in the reactive region around @ = 0 A there
is no noticeable decrease in the |CH| distance, whereas the mean constraint
force shows a sudden change from a negative to a positive value. The de-
picted |CO| distance instead does show a clear and sudden decrease as func-
tion of @ in this region. The hysteresis effect is also clearly noticeable here,
while for the |CH| curve the (hydration) and (dehydration) values almost
completely coincide. Furthermore, when looking to the |CH| curve, we see
that it is gradually decreasing and it is difficult to pinpoint where a real
molecular bond is formed. Finally, for @ > .5 A the distance seems to be
converged to its normal bond length of 1.10 A.
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Figure 4.3: Time averaged distances as function of the constrained value Q. Top:
|CH] is the distance between the constrained hydrogen atom and carbon atom. Bot-
tom: |CO] is the distance between the other carbon and the closest oxygen atom
from the liquid water. Note that this oxygen by this definition does not necessarily
belong to the same water molecule. The (hydration) and (dehydration) indicate
that the simulation started from the ethylene or ethanol side respectively

In Fig. 4.4 we show the time evolution of these two distances for two
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specific 'reactive” simulations: = 0.053 A (dehydration) and @ = 0.106
A (hydration). Clearly the |CO| distance and the constraint force are strongly
correlated, with the two graphs almost as if they were mirror reflections.
The |CH]| distance shows almost no correlation with the constraint force.
For the @ = 0.106 A (hydration) we can detect only a bit more fluctuative
behavior in the reactive time domain. As the constraint force acts on these
atoms and a fixed reaction coordinate @) allows changes in the |CH| distance,
one would expect a stronger effect. Fig. 4.4 shows, however, that the con-
straint force changes sign, indicating that the proton is now attracted to the
carbon instead of to the water oxygen, without influencing the interatomic
|CH| distance.
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Figure 4.4: constraining force, distances |CO| and |CH| as function of time for two
‘reactive’ simulations: Q = 0.053 A (hydration) and @ = 0.106 A (dehydration).
Average values of each these two simulation runs are depicted in Fig. 4.2 and Fig.
4.3 as one point each.

4.6 Electronic Structure

From the previous we can conclude that, although the constraint force sud-
denly changes, the structural changes occur at the other side of the molecule.
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Somehow the structural changes at that side of the molecule must change
the affinity of this proton to form a bond with the carbon or with the oxygen.
A change in the electronic structure must be the cause of this phenomenon.
To quantify the electronic density distribution we used the method of max-
imally localized Wannier functions whose centers (WFC) can be assigned
with a chemical meaning such as being associated with an electron bonding
or lone-pair [111] and can also be used to calculate individual dipole mo-
ments of molecules in solution [106, 112,113, 149]. The dipole moment of a
single molecule can then be approximated as if it consists of point charges
located at the atom positions and on the WFC positions, at atom positions
a positive charge equal to its atom number minus its core electrons and at
the WFCs a negative charge of -2 e. The total number of WFCs is the to-
tal number of valence electrons divided by two and its positions can give a
clear insight in the electronic changes of the system during a reaction. From
our series of simulations we took a few snapshots at important points just
before and after a reaction. On these configurations we applied the Wannier
function analysis to detect the electronic changes. We did not make enough
calculations to obtain accurate statistical averages, but our aim was to see
on a more qualitative level how the electronic structure is changing in the
reactive process. Ethylene has in total six Wannier orbitals, four at the CH
bonds and two, forming the double bond in the middle of the carbons just
below and above the plane of the ethylene molecule. The water molecules
have in total four WECs tetrahedrally oriented around the oxygen, two of
them forming the OH bonds and the other two indicating the lone pairs.
The situation for hydronium is more or less the same, but then three form
an OH bond and only one WEC is left at the oxygen site. Fig. 4.5 gives in a
cartoon illustration of the observed structural and electronic changes of the
reaction.

Panel 1) is the typical situation for @ around -0.5 A. The hydronium OH
bond is directed towards the middle of the CC-bond. The WFC below the
ethylene plane is attracted by the positive charge of the hydronium and is
shifted slightly towards this proton. This cause an increase of the angle
aq from 27° to 35° and induces a dipole moment orthogonal to the plane
of the ethylene molecule with a strength of approximately 1.9 D. This is a
significant dipole moment, approximately equal to a water molecule in the
gas-phase [112,113]. The interaction between the hydronium OH bond and
the WEC of the double CC bond can be considered as a kind of hydrogen
bond. In Ref. [149] we showed that even in a neutral aqueous solution this
effect is also significant and can induce instantaneous dipole moments of
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Figure 4.5: Cartoon representation of the change of atomic configuration and WFCs
along the reaction path. The solid dark circles are the carbon atoms, the gray circles
the oxygen and white circles the hydrogen atoms. The striped circles depict the
WEC positions.

1.0 D to a solvated ethylene molecule. It is not surprising that the effect
of the hydronium ion is even stronger. The upper Wannier orbital has also
moved a bit downwards to the middle of the CC bond, but this shift is much
smaller.

Step 2) is the situation for () around zero. The constrained proton is in
the middle of the carbon and the oxygen. The induced dipole moment is
no longer exactly orthogonal as the lower WFC has moved away from the
middle and is now closer to the left carbon. «; has become approximately
50° and ay is approximately 120°. Clearly, the proton attack is directing to
the carbon site and is not forming a bridged structure. This observation is
consistent with the experiments of Nowlan and Tidwell [138] and the calcu-
lations of Jorgensen and Munroe [127], that indicate that the protonation in
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a solution is approaching directly to the carbon site and that the formation
of an intermediate m-bonded complex is not necessary.

Step 3) is a situation for Q = 0.106 A (hydration). a; has increased till
50-80°, while ay is still around 120-130°. The lower WEC is further away
from the right carbon, which make this side more positively charged. It
is a general feature of protonation, that the charge donation to the proton
comes primarily from the terminal atom rather than the atom bonded to the
proton [126]. Incidentally, water molecules at the other side approach the
other carbon at distances of 2.6 A, but usually are rejected back unless this
coincides with a ideal solvation structure.

This brings us to step 4), the same () value, but later in time. The in-
coming water molecule and the solvation structure around it have found
a proper configuration for a nucleophilic attack. The CO distance rapidly
decreases and forms a bond. Fig. 4.4 shows that there is a chance that di-
rectly thereafter this water is rejected back to the solution. The specific water
configuration has decreased the reaction barrier, but this is also true for the
backward reaction. This can induce a sequence of hydration and dehydra-
tion reactions, but at some moment the situation stabilizes and the water
gets definitely attached to the carbon. The |CH] distance in this reaction
process does not chance that much, but the lower WFC flips over 30-40°
more in line to the CH bond, yielding a; =~ 100° and ay ~ 170° . Whereas
first, this WFC was playing part in both the bonding between the two car-
bons and between hydrogen and the carbon, now its function is only the CH
bond. The increase of a1 over more than 90° indicates that this WFC does
no longer take part in the CC bond. The constraint force on the proton H is
first repulsive with respect to the carbon, while after the transformation it
becomes suddenly attractive. The fixed constraint () prevents however that
the CH bond will fully relax to its rest value. The carbon, the WFC, and the
proton are almost in line according to as =~ 170°. This gives a clear indica-
tion that the CH bond is formed. Moreover, the fact that now only one WFC
is positioned in the middle of the two carbons followed by the out-of-plane
bending of the ethylene-hydrogens shows clearly the change from sp2 to
sp3 hybridizing of the CC bond.

The Wannier analysis shows that both molecular bonds, the CH and the
CO bond, are formed simultaneously. This indicates that the process occurs
following an Adg3-type mechanism. Conversely, the dehydration reaction
follows the E2 mechanism, being the inverse of the Adg3. The alternative
Adg2 hydration and E1 dehydration mechanisms imply a stable ethylene
cation as intermediate. Although, several undergraduate text books use
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the E1 mechanism for the description of the acid catalyzed dehydration of
ethanol (and, similarly, an Adg2 mechanism for the acid catalyzed hydra-
tion of ethylene), the current opinion is that a concerted E2-type mechanism
more probably governs the hydration of primary alcohols [5, 6]. Consistent
with this view are the experiments of Baliga and Whalley that indicate a
transition state for the hydration of ethylene with at least one firmly bound
water molecule [117].

4.7 Hydrogen Bonds

In this section we will discuss the role of the hydrogen bonded network of
the liquid water for this reaction. The constraint values for which we ob-
served a spontaneous reaction are: +0.106 A (hydration) and 0.0 A (dehy-
dration), +0.05 A (dehydration). The spontaneous reaction step that is not
controlled by the constraint is the formation or breaking of the CO bond.
From our simulation with Q = +0.05 A (dehydration) we saw that the pro-
tonated ethanol and thus the CO bond was stable for about 8 ps, when sud-
denly the OHy group was split off. We estimate a distance between the
carbon and the oxygen of 1.8 A that we call a critical dehydration distance.
Incidentally, due to fluctuation in the molecule the CO distance stretches be-
yond this critical distance as shown by Fig. 4.4. As the vibrational energy
itself is not large enough to break this bond, it must be a specific hydrogen
bonded structure that, at a certain moment, pushes the reaction just over
the barrier. This happens only when such an extreme fluctuation beyond
1.8 A coincides with a specific solvation structure. To examine this we com-
pared a few cases where this critical situation was reached and looked why
in one case the reaction was successful and in the other not. The top panels
of Fig. 4.6 show two typical cases that are very similar in structure from the
same @ = 0.053 A (dehydration) simulation, but at different times. Only the
important molecules and WFCs are visualized. The left situation at ¢t = 3.03
ps shows an unsuccessful and the right one at ¢ = 8.14 ps shows a successful
dehydration configuration. The |CO| distances are 1.805 A and 1.786 A re-
spectively and the |CH| distances are 1.32 and 1.35 A. The two situations are
almost identical except that in the second case the protonated ethanol forms
three hydrogen bonds, donating two and accepting one, while in the first
configuration there are only two donating hydrogen bonds. We checked
this for the whole simulation run up to the moment of reaction, and it was
found that OHy group of the protonated ethanol was constantly bounded
by two hydrogen bonds, in which the OH, group acted as proton donator.
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The times that it also accepted a proton via a hydrogen bond were rare and
there was no overlap with the fluctuations larger than 1.8 A, until just before
the reaction point at ¢ = 8.14 ps.
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Figure 4.6: Four structures obtained from two simulations. Dark grey indicate the
oxygens, white the hydrogen, middle gray the carbons and light grey the WECs.
The dashed lines indicate hydrogen bonds and other weak attracting forces be-
tween WFCs and atoms. Top left panel:Q = 0.0529 A (dehydration) at 3.03 ps, top
right panel: @ = 0.0529 A (dehydration) at 8.14 ps. Bottom left panel:QQ = 0.106
A (hydration) at 1.52 ps, Bottom right panel: @ = 0.106 A (hydration) at 1.97 ps.

For the hydration reaction case @ = 0.106 A (hydration) we estimated
the critical hydration distance for the incoming water to be 2.6 A and pos-
tulated that the reaction can only be successful when the water approaches
from the other side of the ethylene plane with respect to the hydronium ion.
Again we looked closely at similar configurations. At the bottom panels we
see two snapshots of the @ = 0.106 A (hydration) simulation, one at 1.52 ps
and the other at 1.97 ps. The |CO| distances are 2.63 A and 2.64 A respec-
tively and the |CH| distances are 1.39 and 1.37 A. Although, in both situa-
tions the attacking water molecule is three times hydrogen bonded, only the
last one was successful. We must conclude that the possibility of a reaction
is not simply depending on the number of hydrogen bonds, but depends
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in a more subtle way on the precise hydrogen bonded structure. Further
examination of the two panels gives a clue what could be the crucial diffe-
rence between the two configurations. If we relate the axis between the car-
bon and the middle water molecule with the hydrogen bonds around this
water, we can detect a kind of umbrella structure. We think that the right
panel is more favorable as it is much more similar to a tetrahedral structure.
In this case the three outer water molecules position the middle one in an
ideal orientation with its free WFC in a perfect line between its oxygen and
the (positively charged) carbon of the ethylene. The other situation devi-
ates significantly from the ideal tetrahedral configuration. To restore a more
tetrahedral configuration the central water molecule has to move upwards,
removing it from the ethylene molecule and thus leading to a non reactive
event. More quantitative, the COO angles in the left panel are from left to
right:112.0°, 89.4° and 149.3° and in the right panel they are:105.7°, 98.1°
and 118.4°. The latter case is indeed much closer to the tetrahedral structure
with angles of 109°.

4.8 Conclusions

We performed a DFT-based based Molecular Dynamics simulation of the
acid-catalyzed hydration of ethylene in aqueous solution under ambient
conditions. To overcome the reaction barrier, we used the constrained dyna-
mics method in combination with thermodynamic integration to obtain the
free-energy profile along a chosen reaction coordinate. We found a reaction
barrier of 23.3 kcal/mol and a reaction energy of 5.3 kcal/mol. This is much
lower than the experimental barrier of 33.3 £1.0 kcal/mol [117]. However,
the BLYP functional underestimates the reaction barrier to some extend and
the approximate reaction coordinate gives probably an additional under-
estimation of the barrier. A DFT-BLYP calculation of the gas-phase reaction
showed a similar barrier of 24.7 kcal /mol [153]. However, the comparison is
somewhat misplaced as the mechanism for the reaction is different, where in
the gas-phase reaction the hydrating water molecule also provides the pro-
ton, whereas in the our solution-calculation the proton providing water and
the hydrating water are different molecules. Primarily calculations suggest
that the latter mechanism in the gas-phase, involving the H3O"-CoH,;-HyO
complex, has no barrier at all. In that sense, one could say that the solvent
effects increase the barrier by about 20 kcal/mol. Though, this process is
not so likely in the gas-phase as it requires a simultaneous collision of three
molecules.
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The protonation of the ethylene is directly pointed towards the carbon
site without the formation of a 7-bonded bridged structure as an intermedi-
ate. Moreover, our simulations confirm the assumption that the reaction fol-
lows the Adg3 mechanism for which simultaneously two bonds are formed.
The |CH| distance is minimally changing after the reaction has been establis-
hed, but the constraint force has a sudden change from repelling to attrac-
ting the proton towards the carbon. We studied this effect by the Wannier
analysis of the electronic structure. The WEC participating in the double
bond between the carbons has a sudden change and moves away from the
ethylene center more in alignment with the CH axis. This indicates a change
from sp2 to sp3 hybridization and the formation of a CH bond. The Wannier
analysis gives in this way clear information on how and when molecular
bonds are formed, which is not possible to achieve from the atomic positions
only. Furthermore, we looked at the specific hydrogen bonded network that
enables a reaction to occur when the reaction coordinate is fixed close to the
top of the free-energy barrier. The increasing constraint value transfers the
proton towards the carbon and polarizes the ethylene molecule, yielding a
positively charged carbonium ion at the other side. This enables the spon-
taneous formation of a CO bond between that carbon and a water molecule
from the solution. For the dehydration reaction of the protonated ethanol
we found that when due to spontaneous fluctuations the CO bond is over
stretched beyond 1.8 A and simultaneous the OH, group of the protonated
ethanol has more than two hydrogen bonds, the reaction is likely to oc-
cur. For the hydration reaction we found that the attacking water molecule
should approach at a distance of 2.6 A. Mostly, this water will be rejected
back into the solution. However, when this water has three hydrogen bonds
and the COO angles are close to the tetrahedral value of 109° the hydration
can occur and protonated ethanol will be formed. This proves once more
the solvation structure participates strongly in the mechanism and is, there-
fore, part of the true reaction coordinate [143-148]. This study shows that
the occurrence of a reactive event depends on the solvation structure in a
very subtle way. Our simulations suggest that the reaction is initiated by a
number of effects, in which both rare fluctuations of the solute molecule as
the occurrence of properly structured water groups play a crucial role.



Chapter 5

Transition Interface Sampling
A Novel Path Sampling Method for the Calculation of

Rate Constants 1

We derive a novel efficient scheme to measure the rate constant of tran-
sitions between stable states separated by high free energy barriers in a
complex environment within the framework of transition path sampling.
The method is based on directly and simultaneously measuring the fluxes
through many phase space interfaces and increases the efficiency by at least
a factor two with respect to existing transition path sampling rate constant
algorithms. The new algorithm is illustrated on the isomerization of a di-
atomic molecule immersed in a simple fluid.

5.1 Introduction

The calculation of rate constants of activated processes dominated by rare
events, chemical reactions being a prime example, is still one of the ma-
jor computational challenges. As transition rates depend exponentially on
the activation barrier height, the expectation time for an event can exceed
current computer capabilities by many orders of magnitude. As a result
most chemical reactions cannot be simulated by direct molecular dynamics
(MD) methods, except those with very low activation energies. The conven-
tional way to tackle this time scale problem is based on transition state the-

'This chapter is based on:Titus S. van Erp, Daniele Moroni, and Peter G. Bolhuis, "A
Novel Pathsampling Method for the Calculation of Rate Constants”, accepted for publication
in Journal of Chemical Physics. Supplemented to this article are the appendixes (5.5.1) and
(5.5.3).
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ory (TST) and separates the problem in two steps [156-160]. The first step is
the calculation of the free energy barrier as function of a reaction coordinate,
the second stage is the calculation of the transmission coefficient by samp-
ling fleeting trajectories departing from the top of the barrier. If the reaction
coordinate is well chosen, the top of the free energy barrier corresponds to
points in phase space close to the true transition state, and the transmis-
sion coefficient will have a reasonable value. However, in high dimensional
complex systems the choice of reaction coordinate can be extremely difficult
and usually requires detailed a priori knowledge of the transition mecha-
nism. Consequently, an intuitively chosen but wrong reaction coordinate
can result in a very low transmission coefficient, and hence a statistically
inaccurate or immeasurable rate constant.

Chandler and collaborators [161-165] devised a method for which no
prior knowledge of the system is needed. This method, called transition
path sampling (TPS), gathers a collection of trajectories connecting the reac-
tant to the product region by employing a Monte Carlo (MC) algorithm. The
resulting path ensemble can be used to elucidate reaction mechanisms, tran-
sition states and reaction coordinates. The TPS method has been success-
fully used on such diverse systems as cluster isomerization, auto-dissociation
of water, ion pair dissociation and on isomerization of a dipeptide, as well
as reactions in aqueous solution (see Ref. [164] for an overview). Just as
in the conventional case mentioned above, an additional second simulation
is needed to determine the rate constant within TPS. This simulation com-
bines the path sampling method with the umbrella sampling technique to
estimate the probability to reach the product state from the initial reactant
state. The final macroscopic rate constant is given by a plateau in the time
derivative of a correlation function [163]. In case of two distinct stable states
this plateau region should always exist at times longer than the typical mo-
lecular relaxation time. However, when reaction pathways are complex and
exhibit multiple recrossings, these typical molecular relaxation timescales
can be relatively long. In that case the TPS rate constant calculation is com-
putationally expensive, as the path length must exceed these timescales.

In this paper we improve the efficiency of the TPS rate constant calcula-
tion on several points by introducing an alternative scheme for calculating
reaction rates, named transition interface sampling (TIS). The first of these
improvements is allowing the path length to vary, so that by a well chosen
definition of the stable states we can limit the length of each path to the
strict minimum. Secondly, the new method is based on the effective posi-
tive flux through dividing surfaces or interfaces and is consequently much
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less sensitive to multiple recrossings or diffusive barrier crossings. Thirdly,
the number of different types of Monte Carlo moves is reduced, making the
implementation of the algorithm conceptually simpler.

This paper is organized as follows: In section 5.2 we briefly describe the
existing algorithms and present the theoretical derivation for the TIS rate
constant expression. The implementation of the algorithm is discussed in
section 5.3. We illustrate the algorithm on a diatomic molecule in a fluid of
repulsive particles and make a quantitative comparison to the original TPS
calculation in section 5.4. We end with concluding remarks in section 5.5.

5.2 Theory

5.2.1 Transition State Theory and the Calculation of Rate Con-
stants

Consider a dynamical system in which transitions can take place between
two stable states A and B. If the barrier between A and B is sufficiently
high, the system will show exponential relaxation for which the forward and
backward rate constants k4 g and kp4 are well defined and can be expressed
in terms of microscopic properties. Measuring these rate constants by com-
puter simulation is traditionally done by the two stage Bennett-Chandler
(BC) procedure based on the principles of TST [159,160]. The first step is the
calculation of the reversible work or free energy to bring the system from
stable state A to the transition state. This free energy F'(\) has to be calcu-
lated as a function of a suitably chosen reaction coordinate A. This A can be
a complex function of all particle coordinates » and momenta p: A = A(z),
with z = {r,p}. The maximum in F'()\) defines the transition state dividing
surface A* [23,166]. By convention, the system is in A if A(z) < A\* and in B
if M(z) > A",

The main assumption in TST is that any trajectory coming from A and
crossing the transition state dividing surface A(z) = A* will remain at the
B side of the dividing surface for a long time. The reaction rate can there-
fore be expressed as the positive flux through the multidimensional dividing
surface \*. Two equivalent (see Appendix 5.5.1) expressions for this flux are

Gt L OO =A@ za) = X)

(w0
At At (O — X))
(A(z0)8(A(z0) — A)0(A(x0)))
(O(A* = A)
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—_— 5.1
A* f_A;oei/BF(A)d)\’ ( )

= (A@0)f(A(20)))

where z; specifies the set of coordinates and momenta of the system at time
t, the dots denote derivatives with respect to time ¢, the brackets (. . .) denote
equilibrium ensemble averages and 6(z) and d(z) are the Heaviside step-
function and the Dirac delta function respectively. In the last equality of
Eq. (5.1) the connection to the reversible work F'(\) is made, and 8 = 1/kgT,
where kg is Boltzmann’s constant and 7" is the temperature. The subscript
A\* to the ensemble brackets, indicates that the ensemble is constrained to
the top of the barrier \*.

We consider the system to be completely deterministic and thus we can
write z; = f(zy,t —t') = f(zo,t), in which f is the time-propagator func-
tion. Evaluation of the function f(z,t) requires integrating the equations of
motion over the time interval ¢ starting with configuration z. Nevertheless,
the equations derived in this paper are still valid when applied to stochastic
dynamics.

Even when the TST assumption is accurate, it can be extremely difficult
to find a proper reaction coordinate for which recrossings do not occur. As a
result a wrong choice for the reaction coordinate will give a much lower free
energy barrier than the real activation free energy and will correspondingly
overestimate the rate constant. Fig. 5.1 illustrates that Eq. (5.1) overcounts
trajectories. One can correct for this overcounting by multiplying the TST
rate constant with the transmission coefficient x(¢) to obtain the true rate
constant

kap(t) = k4% K(2). (5.2)

The calculation of the time dependent transmission coefficient x(t) con-
stitutes the second part of the two stage BC procedure [159, 160]. k(t) be-
longs to the approximate dividing surface A\* [156,158-160] and can be de-
termined by taking an ensemble average of many short trajectories starting
from the dividing surface:

W) = o (M) -2)) . 6
( )

A(0)0(A(x0))

After a short molecular time ¢, the trajectories are committed to a stable
state and x(t), and hence k4p5(t), become constant: the transmission coeffi-
cient x, and the rate constant k45, respectively. It is however important to
start sufficiently close to the true transition state dividing surface. Other-
wise the transmission coefficient will be extremely low, making an accurate
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Figure 5.1: The thin solid curve show the two dimensional free energy landscape
in contour plot. A is the chosen reaction coordinate, g represents all other degrees
of freedom. A and B denote the state regions. The vertical line at A* corresponds
to the maximum in the free energy function F()) as is shown at the right upper
side. The free energy as function of the ideal reaction coordinate is also shown at
the right lower side. This reaction coordinate is a complex function of all degrees
of freedom Ajjaa] = Ajdeal(? @) and the corresponding free energy function has
its maximum at the true transition state dividing surface Ajqea = Ay, This
true dividing surface is the dashed curved line. The corresponding free energy bar-
rier is much more narrow and higher than the artificial barrier due to the incorrect
reaction coordinate. Four possible trajectories are shown. The black solid arrows
indicate a positive flux through the surface \* and the white solid arrows indicate
the negative fluxes. TST rate expression (5.1) counts all positive fluxes of trajecto-
ries I, Il and III. Consequently, non-true reactive events like I and III have a artificial
contribution to the rate constant and also trajectory II is overcounted one time. To
correct for this, one can calculate the transmission coefficient k. In the TPS equa-
tion (5.4), if Aa = Ap = A*, trajectories III and IV are not counted because of the
ha(zo) term. Trajectories I and II are correctly counted in the final summation due
to the cancellation of positive and negative flux terms.

estimate of the rate constant problematic or even impossible. In many cases,
in particular for complex condensed matter systems, a sufficiently close re-
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action coordinate is difficult to find and requires considerable a-priori know-
ledge about the system.

5.2.2 Transition Path Sampling

Transition path sampling (TPS) is developed to overcome the difficulties
mentioned above [161-165]. Its main advantage is that no prior knowledge
of the transition state is needed. The rate constant in TPS is expressed as the
time derivative of a general time correlation function.

d (ha(zo)hp(zt))
ELES(t) = =C(t), C(t) = , 5.4
in which h4(z) and hp(z) are the characteristic functions defined by:
ha(z) = 1, ifze A, else ha(z)=0
hp(z) = 1, ifxze B, else hp(z)=0. (5.5)

In case of a single order parameter A(z;) describing the transition, the
phase space regions A and B are defined by A4 and Ap: z; € Aif A(z4) <
A and z; € Bif A(z;) > Ap. Knowledge of the precise location of the
dividing surface A*, Ay < A* < Ap, is not required in TPS. Therefore, the
order parameter A does usually not correspond to the reaction coordinate.

The microscopic expression for the rate constant in Eq. (5.4) is time de-
pendent, while the phenomenological rate constant is not. However, just
as the transmission coefficient x(¢) becomes a constant, the time dependent
function k45 (t) reaches a plateau after a molecular timescale 1. The phe-
nomenological rate constant is equal to the plateau value: kap = k455 (T).
This plateau region should always exist for times 7" between the molecular
timescale and the characteristic reaction time: ¢y, < T < tixn. In other
words, T' is larger than the timescale to commit to one of the stable states,
but much shorter than the expectation time ¢4, of a completely new reactive
event. If we take Ay = Ap = A\* and the limit ¢ — 04, Eq. (5.4) transforms
into the expression for the positive reactive flux or, equivalently, the TST
equation (5.1). For ¢t > 0, however, the reactive flux measured by Eq. (5.4)
no longer consists of purely positive contributions. The final rate constant is
a sum of positive and negative fluxes, and thus the overcounting of trajec-
tories in Eq. (5.1) is circumvented. (See Fig.(5.1)).

We can rewrite the time dependent rate constant of Eq. (5.4) into [163]:

s (hB®) Ay ,
Kas (8) = (hB(t')) A,H5(T) CF), (5-6)
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where Hp(T') = maxo<i<t hp(z:) and (...) 4 g, (r) denotes an average on
the ensemble of paths of fixed length T starting in A and entering B at least
once [163]. These ensemble averages are evaluated using a Monte Carlo
procedure employing the shooting and shifting moves [162]. The two factors
in Eq. (6.6) have to be evaluated separately. First, a path sampling simula-
tion is performed to compute (hg(t)) 4, i, (r) in the interval [0, T]. The path
length 7" must be long enough for the time derivative to display a plateau.
Subsequently, one chooses a ¢’ in interval [0, T'] and computes C(t') using the
path sampling in combination with an umbrella sampling technique [163].
A drawback of the TPS rate constant calculation is that the function k455 (¢)
can be strongly oscillatory because of recrossings and will reach a plateau
only after a relatively long time. The path length in TPS must exceed the
typical timescale of these oscillations, and consequently, in that case TPS is
computationally costly.

5.2.3 Transition Interface Sampling

Just as the BC and the TPS rate constant algorithms, the TIS method is
based on a flux calculation. In contrast to these schemes, however, TIS mea-
sures the effective positive flux 2, instead of a conditional general flux as in
Eq. (5.4) or Eq. (5.1). This implies that only positive terms contribute to the
rate, allowing for faster numerical convergence. A flux is normally defined
through a hypersurface in phase space defined by an order parameter, the
reaction coordinate. But, similar to the TPS case, we do not want to suffer
from a bad choice of reaction coordinate. Therefore, instead of using a single
dividing surface, we introduce a series of interfaces through which we mea-
sure this flux. We then derive an expression that relates the flux through
a certain interface to the flux through an interface which is closer to A to
replace the expensive TPS umbrella sampling procedure.

In order to formulate a proper flux, we have to divide the entire phase
space into two complementary regions called overall states A and B. These
states do not only depend on the position at the time of consideration but
also on its past behavior. Overall state A covers all phase space points lying
inside stable region A, which constitutes the largest part, but also all phase
space points that visit A, before reaching B when the equations of motion
are integrated backward in time. Similarly, state B comprises stable state B
and all phase points, coming directly from this state in the past, i.e. without
having been in A. It is useful to generalize the characteristic functions in

"Here, effective means that the recrossings through the interfaces are not being counted
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Eq.(5.5) for an arbitrary phase space region 2
ho(z) = 1, ifze, else hqo(z)=0. (5.7)

For each phase point z and each phase space region 2 we can determine the
minimum (first entrance) times #(z) and t{l(x) needed to reach Q starting
from configuration z by integrating the equations of motion backward and
forward in time, respectively:

() = —max[{tlho(f(z,t)) =1At <0}
th(z) = +min[{t|hao(f(z,t) =1At>0}], (5.8)

where the min and max function return respectively the lowest and highest
value of their arguments. In addition, it is useful to define for each phase
point z and each set of two non-overlapping phase space regions {1, Q2}
the following characteristic functions:

Py o,(@) = 1 ifho, (f(@, ~thue,(@)) =1, (59
0 otherwise

6{21,92 (37) = 1 if th (f(.’E, +t{)1UQQ (fL'))) =1, (510)
0 otherwise (511)

In words, these functions measure whether a trajectory reaches 2 before
25 or not. As the system is ergodic, each phase space region will be visited
in finite time and thus B?h,ﬂz (z) + B?lz,ﬂl (z) = 77,{)1’92 (z) + 7162,91(:5) =1
for any z. Using these definitions the characteristic functions for the overall
states A and B are given by

ha(z) = b p(z), hs(z) =k 4(2). (5.12)

These states together span the complete phase space, as the system can
never stay in the intermediate region between A and B forever. The overall
states A and B do not sensitively depend on the definition of stable state A
and B as long as it is reasonably. Of course, the stable regions should not
overlap, each trajectory between the stable states must be a true rare event
for the reaction we are interested in. In addition, the probability that after
this event the reverse reaction occurs shortly thereafter must be as unlikely
as an entirely new event. In other words, the system must be committed
to the stable states. Therefore, a reasonable definition of A and B requires
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that they should lie completely inside the basin of attraction of the respec-
tive two states > (see also Ref. [165]). Special care has to be taken with this
condition for processes which show many recrossings between state A and
B before settling down. Such processes can occur in solution or in dilute
gasses. For instance, for organic reactions in aqueous solution, a rare spe-
cific hydrogen bonded network can lower the bond-breaking barrier and
initiate the reaction. If the lifetime of those rare solvation structures is high,
a sudden reverse reaction can occur as the barrier for the backward reaction
is also lowered by the same amount [167-169]. A similar phenomenon can
happen in dilute gasses for which rare spontaneous fluctuations in the ki-
netic energy are the main driving force. A particle moving from one state to
another due to a very high kinetic energy as result of sequence of collisions
can cross the potential energy barrier several times before it will dissipate
its energy by a new collision and relax into one of the stable states (see e.g.
Refs. [170,171]). These problems can in principle be solved by an adequate
choice of the stable state definitions. For instance, the definition can depend
explicitly on the presence of certain hydrogen bonds or on kinetic energy
terms.

With our definition of overall states .A and B we can write down our rate
equation in the spirit of Eq. (5.4):

(hal@o)hs(0))
(ha(zo)) 7

where the dot denotes the time derivative taken at ¢ = 0. This rate expres-
sion does not depend on time although the evaluation of the characteristic
functions still requires integration of the equations of motion. The transition
from A into B takes place when the system coming from A will cross the in-
terface A\p for the first time (see Fig. 5.2). After this event the system will
stay in B. Eq. (5.13) counts therefore only the first crossing through interface
Ap and is hence equivalent to the effective positive flux expression

kap = (5.13)

A (hal@0)A(@0)8(A(20))5(A(w0) — As)) 60
(ha(zo))

L {ha(z0)0(As — A(20))0(A(zar) — AB))

AtS0 At (ha(zo))

*In general, A and B are defined in phase space, but for most practical cases configuration
space might be enough.
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Figure 5.2: Example of phase space regions in TIS. Thin solid curves denote the
free energy contour lines. ¢; and ¢, are two arbitrary projections of the degrees of
freedom. A and B are the two stable states. The dots on the three shown trajectories
indicate the positions of the system at successive time steps. The overall state .4 and
B are indicated by black and white dots respectively. Only one trajectory starts in
A and ends in B and is therefore a true reactive event. The system changes from
state A into B when it enters region B for the first time. It can leave stable region B
shortly thereafter, but never go back to A in a short time. The stable regions have
to be chosen to fulfill that condition.

Note the similarity with Eq. (5.1). Strictly speaking (Ap — A(zo)) is re-
dundant in Eq. (5.14) as h4(z¢) = 0 if 8(Ap — A(xo)) # 1. The last expres-
sion in Eq. (5.14) is most suitable for a numerical approach with At as the
time step in a molecular dynamics simulation. Evaluation of Eq. (5.14) re-
quires counting all phase space points which at ¢ = 0 are just about to cross
interface Ap in one time step and will enter region A before B when inte-
grating backward in time starting from zy. Unfortunately, Eq. (5.14) is not
very efficient from a computational point of view because only a very small
fraction of phase points close to interface Ap actually belong to A, leading
to poor statistics. We can enhance the statistical accuracy by relating the
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flux through Ap to the flux through an interface closer to A. We therefore
introduce a set of n non-intersecting interfaces A, A2, A3, ... A, each inter-
face A; closer to A than the next interface \;;; (see Fig. 5.3). We define the
corresponding phase space regions 2, = {z|A(z) > A;}. In this way Q) is
equivalent to our stable state B, while (2, , is the phase space outside stable
state A. By introducing the following definition

Aim Ait’_‘lﬁ,mi (o) 0(Ai — A(@0))0(Mmat) — M), (5.15)

Figure 5.3: Example of the division of the phase space by interfaces. A and B are the
stable state regions with interfaces A4 and Ag. The interfaces A; ... A¢ correspond
to a calculation of Eq. (5.18) with n = 6. The dashed lines are the sub interfaces in
between. Four trajectories are shown corresponding to a P(A4]|A3) ensemble calcu-
lation. On each trajectory the z time slice is indicated with a circle. Black circles
correspond to E*{;QM (z0) = 0 and white circles correspond to BQQM (zo) = 1.

Eq. (5.14) reduces to
kag = (®axg)/ (ha)- (5.16)
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where (® 4 ;) denotes the effective positive flux through interface A;. The
rate constant is thus equal to the effective positive flux through interface
Ap with the condition the trajectories came directly from A. Note again
that (®4.5,) / (ha) is equal to the TST rate expression in Eq. (5.1) in case
X* = g = Ap. The effective flux (®4,);) can now be related to the effective
flux (® 4y, ,) through an interface A;_; closer to A by (see Appendix 5.5.2)

(@api(20)) = (Bh, a@0)), X (Bap (@),  (B17)

Pan_y

where (...) denotes the ensemble average over all phase space points

Pani_1
xo for which @4 5, (o) # 0. The factor ( ’_lng.,A(xo) )q,A,X = P(NilXi—1) is
the conditional probability that a trajectory, cozming from lA, passes \;, given
the fact that it has passed the interface A\;_; at an earlier time. By recursively
substituting Eq. (5.17) into Eq. (5.16) the rate constant can be expressed as a
product of conditional probabilities:

kap = 7<<I)A”\l>nlzf<hf > <i_1f >
(ha) g \ P LRV RRAZEY

— LMI)nﬂlP(A- IA)P(AB|An) (5.18)
= <hA> 1 i+1|Ng B{An )
. <CI)A’)\1> f _ <(I)A,)\1)

= G Fhade,,, = g PO

This expression is the central equation for TIS (In Appendix 5.5.3 we show
how Eq. 5.17 can also be used to derive an alternative expression for the
transmission coefficient allowing a more efficient computation than Eq. 5.3).
Instead of just calculating the individual terms in the product of Eq. (5.18)
we can equivalently determine a continuous crossing probability function
P(A|A1) for X between A; and Ag. This is reminiscent of umbrella samp-
ling where a free energy difference is usually estimated as a function of a
continuous parameter A [23]. When calculating the ensemble average for
P(AilAi—1) we can also evaluate P(A|A;_1) for interfaces A between A;_1
and A; by dividing the phase space into a finer grid of sub interfaces (see
Fig. (5.3)). In this way we acquire useful information without significant
extra cost, and, in addition, a measure for the convergence of the ensemble
averages. The final monotonically decreasing crossing probability function
P(A|A1) can be obtained by matching the histograms from the different en-
semble simulations. Techniques commonly applied in umbrella sampling
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such as overlapping windows between two successive ensemble averages
and the use of biasing functions can also be employed here.

5.3 The Transition Interface Sampling Algorithm

Inspection of Eq. (5.18) clearly shows that the TIS rate constant calculation is
also a two step procedure. The first step, the effective flux (®4 ,) / (h4) can
be computed by simply running a MD simulation starting with a configura-
tion in A and counting the number of effective crossings. For an interface A\
close enough to stable state A one can obtain a statistically accurate value.

The second part of the calculation consists of evaluating the product of
the P(Xit+1|A;) ensemble averages for the different interfaces A; in Eq. (5.18).
Here we need to sample all paths from region A to either A or 2, , that
exhibit at least one crossing with interface A;. The Monte Carlo moves in TIS
are very similar to the shooting move used in the TPS algorithm. The main
difference is that the backward and forward integration is abandoned as
soon as the edge of either A or Q,,, , is reached. If the new path is accepted
there is only one phase point z along this path for which ®4 . (z) # 0,
defining phase space point zy. The shifting moves that were required in
the original TPS implementation to enable proper sampling and improve
statistical accuracy are here unnecessary.

To bootstrap the sampling procedure we first generate an initial path that
starts in A, then crosses the interface ); and finally ends in either A or Q) ,
(see for more details on initial path generation Ref. [165]). The phase space
point z is then defined as the first crossing point of this path with interface
\;. Further, let 7 = int(t/At) be the discrete time slice index, and 7° =
int(t% (zo)/At) and 7/ = int(tf;UQMr1 (zo)/At) the forward and backward

terminal time slice indices, respectively. Including z, the initial path then
consists of N{© = 70 + 7/ 4 1 time slices. With these definitions in mind is
the TIS algorithm as follows:

1. From the current path with length N(°) choose a random time slice 7,
with —7t < 7 < 7.

2. Change all momenta of z;A; by adding small random displacements
op from a Gaussian distribution. Make sure the total momentum is
conserved [165]

3. In case of a constant energy (NVE) simulation, rescale the new mo-
menta to the old energy value and continue with step 4. In case of
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constant temperature (NVT) accept the new momenta (else reject the
whole TIS move) with a probability [23]:

min [1, exp (B(E(%,) E(xggt)))] :

Here, E(z) is the total energy of the system at phase space point z.

4. Integrate equations of motion backward in time by reversing the mo-
menta at time slice 7, until reaching either A or €2, ,. Reject in case of
Q),,, else continue with the next step.

5. Integrate from time slice 7 forward until reaching either A or Q,,, .
Reject if the entire trial path does not cross interface )\;, else continue
with the next step.

6. Accept the trial path with a probability

N ()
min |1, —/|,
N()
where N is the length of the new path. If accepted, replace the old
path with the new one.

7. Reassign z to be the first crossing point with \; and sample the value
of h{hiﬂ (o) to measure P(Ai41]X;).

8. Repeat from step 1.

As usual in Monte Carlo schemes, any rejection along this route implies
counting the old path again in the ensemble average. The acceptance prob-
abilities at step 3 and step 6 are required to satisfy the detailed balance con-
dition (see e.g. Ref [23]).

Instead of generating a complete path and then accepting or rejecting
accordingly to the probability at step 6, it is more efficient to determine a
maximum path length in advance. Before embarking on the time consuming
fourth and fifth step, we first take a uniform random number « between 0
and 1 and determine the maximum allowed path length by:

N = int(N©) /). (5.19)

In this way we can directly stop the integration and reject the TIS move as

)

soon the path length N(®) exceeds the maximum Ng{ax. In the course of the
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TIS simulation the path-length fluctuates. This also means that the average
path length becomes automatically shorter when changing from ensemble
average P(Ai+1|Ai) to ensemble average P(\;|A;—1) closer to A.

The algorithm presented here does not require shifting moves because
there is only one unique zy phase point along each pathway. However, one
could consider the use of path-reversal moves as they have negligible com-
putational cost and can sometimes facilitate ergodic sampling [165].

5.4 Numerical Results

5.4.1 The Model

We tested the TIS algorithm on a simple diatomic bistable molecule im-
mersed in a fluid of purely repulsive particles. Such a system has previously
been used in illustrating TPS rate constant calculations [163] and is therefore
a good starting point for a comparison between the two methods. The sys-
tem consists of N particles in 2 dimensions with interactions given by a pair-
wise Lennard-Jones (L]) potential truncated and shifted at the minimum,
often referred to as the Weeks-Chandler-Andersen (WCA) potential [172]

Vivea(r) = 4e[(r/o) 2 — (r)o) %] +€ if r<my (5.20)
0 if r > 7o, (5.21)

where r is the interatomic distance, and ¢ = 21/65. Throughout this section
reduced units are used so that e and o, respectively the L] energy and length
parameters, as well as the mass of the particles are equal to unity. The L]
unit of time (mo?/e)}/? is therefore also unity. In addition, two of the N
particles are interacting through a double well potential

972
Viw(r) = h l1 - w] : (5.22)
w

This function has two minima separated by a barrier of height / correspon-
ding to the two stable states of the molecule: a compact state for r = ry and
extended state for = 79 + 2w. For a high enough barrier, transitions be-
tween the states become rare and the rate constant is well defined. Hence,
this system provides a useful test case for the TPS and TIS algorithms.

The system is simulated at a constant energy F in a simulation square
box with periodic boundary conditions. The total linear momentum is con-
served and is set zero for all trajectories. The equations of motion are inte-
grated using the velocity Verlet algorithm with a time step At = 0.002. As
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in Ref. [163] we focus here on the computation of the rate constant for the
isomerization reaction of the dimer from the compact state to the extended
state. In the following section we describe general simulation details. In
section 5.4.3 we discuss the results for a system with a high enough bar-
rier to avoid recrossings. Subsequently, we reproduce the simulations from
Ref. [163] in section 5.4.4. These results do show recrossings, and we discuss
the consequences for TPS and TIS.

5.4.2 Methodology

The TPS rate constant calculation evaluates the two factors in Eq. (5.6) sepa-
rately as explained in section 5.2.2. The first term in Eq. (5.6) is the ratio be-
tween the plateau value of the reactive flux correlation function (hp(T)) A,Hp(T)
and the correction (hp(t')) 4, m,(r). The second term C(t') requires an um-
brella sampling simulation in the form of a series of window calculations.
An order parameter is chosen to define the characteristic functions of the sta-
ble states and to partition phase space in windows for the umbrella samp-
ling. Besides shooting and shifting Monte Carlo moves to generate new
paths in the transition path sampling we also employ a diffusion move that
shifts the path by one time slice in arbitrary direction. This move is compu-
tationally very cheap but increases the statistics of the correlation functions.
In all our simulations we therefore set the percentages for shooting, shifting
and diffusion to 5%,10% and 85%, respectively. The parameters involved
are always gaged such that the acceptance ratio is around 40% for shooting
and shifting moves, ensuring an optimum efficiency of the sampling [163].

The TIS method involves a direct determination of the flux and the cal-
culation of the crossing probability functions P(\;|A;—1) between a series of
successive interfaces as given by Eq. (5.18). The flux term in Eq. (5.18) is
computed by means of a straightforward MD simulation starting in state A
and counting the number of effective positive crossings through interface
A1, i.e. when the trajectory is directly coming from A. The second term in
Eq. (5.18) is computed using the TIS algorithm of section 5.3. The basic re-
quirement is a definition of a set of interfaces partitioning the phase space.
Between these interfaces we defined a finer grid of sub-interfaces to con-
struct the crossing probability function P(A|A1). As in the TPS calculation
we adjusted the momentum displacement for the shooting move to give an
acceptance of about 40%.

Many parameters are involved in the two methods and to compare the
relative efficiency we measured the CPU-time required for an arbitrary fixed
error of 2.5% for each step in both the TPS and TIS calculations under the
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same computational conditions (1Ghz AMD Athlon). In both methods the
final rate constant consists of a product of factors which have to be calcu-
lated independently. For each factor we performed M simulation blocks of
N Monte Carlo cycles and adjusted N such that after M block averages the
relative standard deviation of each term in Eq. (5.4) and (5.13) was 2.5%. The
total CPU-time is given by summing the individual 2.5% error CPU-times
for each factor. The final error in the rate constants is obtained by the stan-
dard propagation rules using all simulation results (i.e. not only the ones
for the 2.5% error CPU time calculation).

5.4.3 System with High Energy Barrier

This system had a total number of particles N = 25, and a total energy
E = 25. The square simulation box was adjusted to give a number density
of 0.7. The barrier height was h = 15 and the width-parameter w = 0.5, so
that the minima of Vj,,(r) were located at r ~ 1.12 and r ~ 2.12 while the top
of the barrier was at r ~ 1.62. In the TPS rate calculation we defined stable
states Aand Basr < r4 = 1.5 and r > rg = 1.74, respectively. We com-
puted the correlation function (hp(t))4,m, () using TPS with a fixed path
length T' = 2.0. The correlation function is shown in Fig. 5.4 together with
its time derivative, the reactive flux. The latter function clearly displays a
plateau. Next, we chose four different ¢’ = 0.1,0.3,1.0,2.0 and performed
umbrella sampling simulations using 8 windows to calculate C(t'). In each
window we measured the probability to find the path’s end point r(¢') at a
certain value of r. These probability histograms were rematched and nor-
malized. The final probability functions are shown in Fig. 5.5. Integration
of the area under the histogram belonging to region B leads to C(¢') and
finally to the rate constant [163]. In Tab. 5.1 we give the values of the dif-
ferent contributions to the rate constant given by Eq. 5.6, together with the
rate constant. We report the average relative computation time needed to
reach the 2.5% error (see section 5.4.2) in Tab. 5.2.

For the TIS calculations we use the same order parameter r and the same
definition for region B, i.e. interface Ap is set at r = 1.74. Stable state A was
defined by setting Ay = A; at r = 1.24. This interface is closer to the basin of
attraction than the TPS stable state definition but yields a higher flux term
(®a,x)/(ha) and gives better statistics. Note that the different definition of
stable state A does not change the final rate constant, as the overall state A
does not sensitively depends on this definition. The flux term is calculated
by straightforward NVE MD. As )4 is equal to \; every positive crossing of
this interface is counted in the flux because all trajectories must by default
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come directly from A. The conditional crossing probabilities P(X;11|A;) in
Eq. (6.18) are calculated for n = 5 interfaces between the stable states (see
Fig. 5.6). Between these interfaces we impose a finer grid to obtain the
entire crossing probability function. The results for each stage and the final
rate constant are shown in Tab. 5.1. The rate constants of both methods
agree within the statistical accuracy, showing that the TIS method is correct.
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Figure 5.4: TPS correlation function (hp(t))4,m, (1) (top) and its time derivative
(bottom) for the system with high energy barrier. The error is comparable to line
thickness.
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Figure 5.5: TPS probability distributions P(r,t') for four ¢ = 0.1,0.3, 1.0, 2.0 for the
high energy barrier. The probability P(r,t') is the chance that a path of length ¢
and starting in A will have the end point conformation with a diatomic distance r.
The graph is the result of the matching of eight window calculations. These eight
windows are defined as r < 1.19,1.18 < r < 1.28,1.27 < r < 1.35,1.34 < r < 1.40,
139 < r < 147,146 < r < 1.54,1.53 < r < 1.75, r > 1.74. The errors on the
histogram points are within the symbol size.

In Tab. 5.2 we give the relative computation time to reach the 2.5% error for
each term.

In comparing both methods we have to recall that the efficiency of TPS
depends strongly on the choice of #'. On the one hand the umbrella calcu-
lation of C(t') is much faster for low values of #'. But on the other hand the
error in the correction term (hp(t')) 4, i, (1) increases for lower ¢'. As a result
there is an optimum ¢’ for the error/CPU-time ratio, in this case approxi-
mately at ¢ = 0.3. Even for this optimized situation the TIS calculation is
about two times faster. One could object that the correlation function in Fig.
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TPS
hp(T — _

¢ Gatan C(t)/10713  ky,p/10713
0.1  3300+100  0.001840.0001  6.0+0.5

03  7.54:+0.03 0.76£0.02 5.840.1

1.0 1.236:0.005 4.8+0.3 5.940.4

2.0  0.553:0.002 11.440.9 6.3+0.5
TIS

(@ay)/(ha) PABIA)/107  kasp/1071
0.119640.0005 4941 5.940.2

Table 5.1: Comparison of rate constants for the high energy barrier, computed with
TPS at different ¢’ and TIS. Contributing factors from Eq. (5.6) and Eq. (5.18) are also
given.

5.4 has reached a plateau for ¢ = 1.5 already, reducing the TPS computation
time by a factor 3/4. But the choice for a path length T' = 1.5 cannot be taken
without a-priori knowledge. The first term in Eq. (5.6) implicitly depends
on the path length 7". Changing 7" would alter the ensemble and might re-
sult in a different shape of the flux correlation function. We did not check
this in detail, but we believe that T' cannot be chosen much smaller with-
out introducing systematic errors. Furthermore, we emphasize here that we

TPS

# % W1 W2 W3 W4 W5 W6 W7 W8 Total
0.1 11.0 001 0.05 0.1 0.04 023 027 1.3 0.01 13.01
0.3 0.2 0.01 0.14 028 0.13 0.58 0.43 0.19 0.02 1.98
1.0 0.1 17 1.7 09 06 30 26 64 02 172
2.0 0.1 003 1.8 45 44 153 80 203 0.6 55.03

TIS

(Pax)/(ha) IntA; Intdy IntAz IntAy IntAs Total time
0.07 0265  0.09 0.15 0.21 0.215 1

Table 5.2: Comparison of CPU-times required for the 2.5% error at each stage for
the system with high energy barrier. The times are renormalized to the TIS total
computation time. W1 to W8 denote the different windows used in the calculation,
Int A1 to Int A5 denote the interface ensemble calculations.
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Figure 5.6: TIS crossing probability P(A|A1) = (]_léh A)®a4,, as function of A = r
for the system with a high energy barrier. The function is computed by matching
the five interface ensemble calculations. These interfaces were chosen at: Ay =
1.24,X0 = 1.34,A3 = 1.40,A4 = 1.46 and A5 = 1.52. The error on the points is
within symbol size. The inset is an enlargement in linear scale of the last part of the
function. We clearly detect a horizontal plateau when approaching Ag.

put much more effort in optimizing the TPS algorithm by tuning ¢/, the win-
dows, the ratio between shooting, shifting and diffusion moves than we did
for TIS.

Figure 5.7 shows the histograms of path lengths for each TIS ensemble
calculation and shows why TIS is faster. Sampling paths of fixed length
with TPS results in spending unnecessary computation time inside the ini-
tial and final stable regions A and B. In the TIS algorithm instead every path
is adapted to its minimum length. Bringing the interface in closer to A re-
duces these transition times. TIS optimizes itself during the simulation.
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Figure 5.7: Histograms P (L) of path length L for each ensemble, computed for the
system with the high energy barrier. Inset (a) is an enlargement of the bottom left
area, where windows 2,3,4 display a second peak. They represent that small frac-
tion of paths that are able to cross all the interfaces up to the rightmost interface and
do not have to return to A (cf. the trajectories with the white circle in Fig.3). Inset
(b): average path length in each window. At variance with TPS the TIS algorithm
adapts the path length to the ensemble. In going from interface 5 to interface 1 one
gets closer to state A and the path length shortens accordingly.

5.4.4 System with Low Energy Barrier

In order to compare with previous results, we adopted the parameters from
Ref. [163]. The total number of particles was N = 9, the total energy was
E = 9 and the square simulation box was adjusted for a number density
of 0.6. The barrier height is A = 6 and the width-parameter is w = 0.25.
Minima are at r ~ 1.12 and r ~ 1.62, while the top of the barrier is at
r =~ 1.37. This barrier is much lower than in the previous section resulting
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in more frequent transitions. An approximate rate constant could even be
achieved by straightforward MD simulations.

For the TPS calculations we defined the stable states A and B by r <
r4a = 1.30 and r > rp = 1.45, respectively [163]. Using standard TPS si-
mulation we computed the correlation function (hp(t)) 4, () With a total
path length T = 2 (shown in Fig. 5.8). Next, we measured the probability
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Figure 5.8: TPS correlation function (hp(t))4,m, (1) (top) and its time derivative
(bottom) for the system with low energy barrier. The error is comparable to line
thickness.
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histograms to find the paths end point at a certain order parameter value r
for four different times ¢ = 0.1,0.4,0.8,2.0, using five windows [163] (see
Fig.5.9). As described in the previous section, matching the probability his-
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Figure 5.9: TPS probability distributions P(r,¢') for four ¢' = 0.1, 0.4, 0.8, 2.0 for the
system with low energy barrier P(r,t') as in Fig. 5.5. The graph is the result of the
matching of five window calculations. These five window calculations are defined
asr < 1.22,1.21 <r <1.26,1.25<r < 1.30,1.29 < r < 1.46, r > 1.45 The errors
on the histogram points are within the symbol size.

tograms and subsequent integration leads to C(¢'). The resulting final rate
constants, shown in Tab. 5.3, are comparable with the results of Ref. [163],
but more accurate. We will discuss these values after giving the results of
TIS.

Fig. 5.10 shows that fast recrossings can occur for a low barrier, implying
that r alone is not sufficient as an order parameter to define the stable states
in the simulations. Apparently, this does not effect the TPS results much,
but it is very important for TIS because of the assumption that stable region
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TPS
hp(T — _
¢ Gatan C(t)/1075 kap/1075
0.1 47.3+0.2 1.40840.007 6.671+0.04
0.4 2.50540.007 2.671+0.01 6.68+0.03
0.8 1.240+0.003 5.424+0.05 6.72+0.07
2.0 0.507+0.001 13.940.2 7.03+0.09
TIS
[ T _ _
S]] e, /107 kaLp/1070
0.2334+0.0003  29.6+0.2 6.90+0.06

Table 5.3: Comparison of rate constants for the low energy barrier computed with
TPS at different ¢’ and with TIS, including the contributing factors from Eq. (5.6)
and Eq. (5.18), respectively. Computation times are reported in units of the TIS
CPU-time.

B is really stable and recrossings do not take place. To ensure the stability of
the TIS stable states we chose a new order parameter that not only depends
on the inter-atomic distance r in the dimer but also on a kinetic term, given
by 7. The stable states can then be defined by

. T
Ey(r, 1) = 1 + Vi (r)
z € Aifr < 1.37 and Ey(r,7) < 1.5
z € Bifr > 1.37and E4(r,7) < 1.5, (5.23)

where Ej is the sum of the kinetic and potential energy of the dimer that has
a reduced mass of 1/2. In the {r, 7} plane these stable states form a D-shape
and an inverse D-shape regions for A and B respectively (see Fig. 5.11).
Crossing the interface A4 or Ap implies that the vibrational energy is de-
creased below the threshold, E; = 1.5. This threshold is made low enough
to make fast recrossings to the other state unlikely. However, if we would
have chosen it too low the paths would have become very long. We eva-
luated the crossing probability function in Eq. (5.18) for n = 3 interfaces.
The entire crossing probability function was obtained by partitioning the
phase space in sub-interfaces of the form r = X and Ey(r,7) = X as shown
in Fig. 5.11. Note that in TIS multidimensional or multiple order parame-
ters can be used in one simulation without a problem. This is more difficult
in TPS, where a proper mapping of the complete phase space is required.
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Figure 5.10: Intra-molecular distance of the dimer as function of time from a
straightforward MD simulation for the system with the low energy barrier. Hori-
zontal dashed line at 1.37 corresponds to the top of the potential barrier. Horizontal
dashed lines at 1.3 and 1.45 correspond to the TPS state definitions of Ref. [163]. In-
sets are enlargements of four typical events on a scale of 10. 1) and 4) correspond to
true reactive events, A — B and B — A respectively while 2) and 3) are non-true,
fast recrossing events. In particular, event 3) shows capricious behavior with many
crossings of the barrier. The figure shows a clear separation of timescales, ¢ ~1
and trxn ~ 1000.

mol

Fig. 5.12 shows the final rematched crossing probability. The monotonically
decreasing function tends to reach a plateau on approaching the last inter-
face. The last two values are not exactly equal but differ by 0.03%, indicating
that a small fraction of the paths crossing the one but last sub-interface still
succeed to return to A without crossing Ag. This difference is comparable
with the chance of a new independent transition (given by the rate con-
stant). Note that without the kinetic energy definition for the stable states
Eq. (5.23), the final crossing probability and thus the rate constant would
have been overestimated by a factor 5/4.
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Figure 5.11: One calculated path of the low energy barrier system shown in the
{r,7} plane. The vertical solid lines are the interface A1,A2 and As. The curves A4
and \p are the boundaries of the TIS stable states. The dashed lines are the sub-
interfaces. The path starts at the dot on A4 and crosses the barrier three times before
dissipating its energy and relaxing into state B.

For the effective flux (® 4 y,) / (h4) calculation we performed MD simu-
lations as described in section 5.4.2. In contrast to the high barrier case, A; is
not equal A4, and not all positive crossings with \; are effective crossings.
We counted only the first crossing when the system left region A and waited
until the system fell back to region A before counting a new crossing. As the
MD trajectory sometimes displayed a spontaneous transition to region B,
we stopped the simulation and started again by replacing the system in a
randomized configuration of A. Tab. 5.3 shows the final values and the cor-
responding errors of these calculations. The relative computation time for
each term is detailed in Tab. 5.4.

If we compare the final results of Tab. 5.3 we see that the efficiency of TIS
is more than nine times better than the TPS efficiency for ¢’ = 2, and more
than two times better than TPS value for ¢ = 0.8. But the TPS # = 0.1 and
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Figure 5.12: The crossing probability P(A|A1) for the system with the low energy
barrier. The function is computed by matching ensemble calculations with inter-
faces A1 atr = 1.20, A2 at r = 1.26 and A3 at r = 1.32. The inset is an enlargement
of the final part. The function is converging to a plateau but has not yet reached it.
The different values of the last points are due to the presence of fast recrossings.The
error is inside the symbol size.

t' = 0.4 efficiencies are about 20 % better than TIS. When we compare the
rate constants, however, we notice that the TPS results for different ¢ do not
agree. Among the TPS rate constants only the ¢’ = 2 case is consistent with
the TIS result. We believe that the t = 0.1 and ¢ = 0.4 results suffer from
systematic errors. For instance, for the shorter paths the TPS simulations
might not be completely ergodic. Another explanation might be that a path
length of T' = 2 is too short to allow convergence of the reactive flux. In the
TIS calculation the average path length in the three interface simulations,
from the closest to B to the closest to A, is, respectively, 7.4, 4.3, and 0.63;
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TPS

# %’%(%Dﬁ*;—g W1 W2 W3 W4 W5 Total

01 068 003 0009 001 01 0001 0.83

0.4 0.4 009 003 004 025 001 082

08 028 021 007 011 15 004 221

20 035 028 038 093 727 014 935
TIS

&)
{ (,’2::)1) IntA\; Int)Xy Int)As Total

0.015 0.085 0.45 0.45 1

Table 5.4: Comparison of CPU-times required for the 2.5% error at each stage for
the system with the low energy barrier. The times are renormalized to the TIS total
computation time.

much longer than the TPS path length (see Fig.5.13). It is therefore surpri-
sing that the TPS approach with the simple stable state definition and very
short paths still gives approximately the right rate constant. And indeed,
when we computed the TPS correlation function with the TIS state defini-
tions Eq. (5.23), we found that the path length had to be at least 7" = 20 to see
a plateau. We think that TPS works even with the simple state definitions
and the short paths because both positive flux and negative flux terms con-
tribute to Eq. (5.6). The TPS algorithm collects many paths of which some
are not real transitions, but fast recrossings. The cancellation of positive and
negative terms of these fast recrossing paths ensure the (almost) correct fi-
nal outcome. In TIS each path must be true transition event and contributes
as a positive term in rate equation (5.18), enhancing the convergence. This
explains that the CPU time for the TIS calculation despite the much longer
paths is still comparable with TPS one for low t'. We note that the path en-
semble using the more strict stable state definition is of course more useful
in the analysis of the reaction mechanism.

For a more accurate comparison of the computation time we must keep
the systematic errors lower than the statistical errors. In other words, we
have to make sure that the results are converged. To test the convergence

of the flux correlation function in TPS we can derive the following equality
from Eq. (5.6) :

(hB(t") a,15(T) _ o)
(hB(t")) A gy C")

(5.24)
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Figure 5.13: Path length distribution P(L) for each interface ensemble in the low
energy barrier system The inset shows the average path length in each ensemble.

This equation is valid for any ¢',¢” < T if T is large enough. We found that
the equality does not hold for the system with the low barrier, indicating
that T is too low in the TPS calculation. Further examination of the flux
correlation function (hg(t')) 4,1, () reveals that the apparent plateau has in
fact a small positive slope. Calculations for higher values of T' suggest that
one has to increase the path length at least to 7" = 8 to convergence to a
plateau. With this in mind we think that the TIS computation is about a
factor five more efficient than the TPS algorithm for the model system with
the low barrier.
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5.5 Conclusion

We developed a novel method, named transition interface sampling, for the
calculation of rate constants based on transition path sampling concepts.
Just as the original transition path sampling, the new method enables the
calculation of rate constants of transitions between stable states separated
by high free energy barriers without prior knowledge of the reaction co-
ordinate. The new algorithm is different in spirit from the rate constant
calculation that was introduced in Refs [162,163]. In TPS the time corre-
lation function (h4(zo)hp(z:))/(ha) is determined for a single time using
an umbrella sampling scheme followed by a calculation of the reactive flux
prefactor in a separate path sampling simulation. The path length used in
this simulation has to be long enough for the plateau to be reached. The TIS
method advocated here calculates the flux correlation directly by measur-
ing the fluxes through a number of different interfaces and relating the flux
through one interface to the next one. The big advantage of a flux instead
of a correlation function is that trajectories going through the interfaces all
contribute to the rate whereas in TPS there are recrossings to be counted. In
addition, the new method improves the original TPS method on a several
other points. Once the interface is reached, the integration of motion can
be stopped instead of going all the way to region B. In this way the TIS
algorithm adapts itself to the optimal path length. One does not have to
optimize the new method as much as TPS, where one has to find the opti-
mal ¢’ value and a proper balance between shooting and shifting. Besides
being faster, the concept of calculating a flux comes natural with the rate
constant definition, and implementation of the algorithm is hence simpler.
Also, multidimensional or even discrete order parameters can easily be im-
plemented in TIS. In the illustrative example we showed that we can obtain
an increase in efficiency of at least a factor of two to five with respect to the
TPS method used in Ref. [163].

However, one has to be more careful in the definitions of the stable states,
meaning that stable states have to be really stable. In TPS the choice of stable
states is a bit more flexible as the final rate constant consists of cancellation of
positive and negative terms. In section 5.4.4 we showed how this problem
for TIS can be solved by defining stable regions that explicitly depend on
kinetic energy terms.

In summary, we believe that the TIS algorithm can make the rate con-
stant calculation of many processes feasible that were hitherto difficult to
obtain. For instance, chemical reactions in solution, isomerization of clus-
ters and conformational transitions in biomolecules. In a future publication
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we will report on these, more complex, applications.

5.5.1 Appendix A: Proof of Flux Equivalence
Here we prove that lima;—0 2;0(A* — A)@(A(At) — A*) = AS(A — A*)0()) by
showing that

- * A) — \* \) —
Algw /d)\/d/\e/\ OOM(AL) — A)a(\, 3)

/ i / AAAS(A = M)A a(A, ) (5.25)
for any arbitrary function a(, )). Here we used the short hand notation
A= A@o), A = A(zo), and A(At) = A(zay)-

In first order of At we can write
O — NI (AL) — X) = 0N — NI + Ath — A*), (5.26)

which is only non-zero for A > 0and \* — AtA < XA < A*. Thus, we can
rewrite the first part of Eq. 5.25 as:

1 o N L
Al;r_r)lo Y Joo dA AL dra(\ ) =
1 e 1 [V : (A = X)™ 9™a(A, N)
Alir—rgo At Joo A AR da [ )+ Z ! oN™ |/\:/\*]

2 diha(\, M)A+ O(At) = / i / AAAS(OA = A0 a(A, )
(5.27)

In the second line, we have used an infinite Taylor expansion and in the last
line we have dropped all terms of order O(At) and higher. The equality
derived here justifies the change between Atﬁ()\* — A)O(A(At) — A*) and
A6(A — A*)0(X), which is used in Egs. 5.1 and 5.14.

5.5.2 Appendix B: Flux Relation

In this appendix we show how the effective flux ®4 , can be related to the
effective flux @4 ), , through an interface A\;_; closer to A. If at time ¢t = 0
a trajectory passes interface \; while having started in A some time earlier,
there must always be an unique time when it passed interface A;_; for the
first time. Therefore we can write:

thua (o)
P45 (z0) = P (7o) /0 TN At @ () (5.28)
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and hence,
(P (960)

o
/0 dt<<I>A)\i,1(37—t)@A)\i(xO)e(tAuQ,\ o)

—/ dt @AA 1($0)@A>\($t)9(t,4um ) >
<<1>A A1 (o / di® 4y, (wt)e(tAum 1) —t>
tﬂUQ)\.(
= ( ®axi_: (0) /0 P dt®an(a)

= (Dap_. (@0)h;,. a(20)).- (5.29)
The one but last equation follows because for each phase point  and phase

space region 2 it can be shown that ¢ > t{z(x) =t (f(z,t) <t = Q(t?z(f(:v, t)—

t) = 0. We rewrite the last expression of Eq. (5.29) as a different ensemble
average:

<(I>A,)\¢_1 (‘TO)E{)AWA(];O)> -
<¢A,/\i—1 (‘TO)}_L{bmA('TO»

= Gy < (@ (@)
= <}_l{2,\i:A(-T0)>q)A L X{@an (@), (5.30)

where (.. '>¢A,)\i_1 denotes the ensemble average over all phase points z for

which @4 5, ,(zg) # 0. The last equality gives rise to Eq. (5.17).

5.5.3 Appendix C: Alternative Transmission Coefficient

For some systems, the free energy calculation combined with the calculation
of a transmission coefficient will be more efficient than path sampling. For
instance, if one wants to know the free energy profile as function of a cer-
tain reaction coordinate, it is more efficient to use this information instead of
calculating the crossing probability function, which would require a compa-
rable additional computational effort. Of course, an accurate rate constant
can only be obtained for systems for which the transmission coefficient is
not too small. Else, the free energy approach will fail and the path sampling
technique is required.
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If one uses the free energy calculation in combination with a transmis-
sion coefficient, then usually the free energy calculation is the computatio-
nally most expensive part. However, if the barrier crossings are diffusive
with many recrossings of the transition dividing surface, then the Bennet-
Chandler expression of the transmission coefficient (5.3) can be very inef-
ficient. For those cases, Ruiz-Montero et al. [173] designed an alternative
transmission expression to improve the efficiency.

The effective positive flux formalism derived in this chapter, allows also
an alternative expression for the transmission coefficient. Starting with Eq.
5.16 and with the use of Eq. 5.29 we can write:

Eon = $2428) <‘I’A=A*B{23,A> _
Ty (ha)
(R0, 600 = A0 ARG, ) ~ (R0, 600 = N0 RS, L)
(ha) a | (0(x =A%)
=N ey (0= X))
an—»waw (h.a) (O( =)
<B?479A*0(}‘) }‘BéB,A>A* (0" = N) TST
<)_\0()_\)>XF X TV X kag - (5.31)

Here we have used Egs. (5.15) and (5.25) in the second line and the
substitution of the TST rate constant (5.1) in the last line. Using the fact that
(B(A* = X)) = (h4) we can write for the transmission coefficient:

(TIS — <Blj‘1aﬂx* ‘?(’.\)_ A B{IB,A >>\* .
<A9(A)>A*

(5.32)

This expression is more efficient than Eq. (5.3) as it only exists of positive
terms and therefore enhances the convergence. It also limits the number of
acquired integration steps. The calculation is performed by taking a set of
independent configurations with A = A* obtained from the free energy cal-
culation. For each configuration, we consider a set of random velocities of
all particles in the system taken from the appropriate Maxwell-Boltzmann
distribution for constant temperature NVT or constant energy NVE. Then,
only if A > 0 we start integrating the equations of motion backward in time.
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Now, if the crossing is diffusive, there is big change that this backward in-
tegration will rapidly cross A\*. As for that case }_L%,Q)\* = 0, we can directly
stop the integration. This decreases strongly the total number of integration
steps compared to Eq. (5.3), where we need to perform the integration till
reaching either reactant or product side for both A > 0 as A < 0. Besides, if
the backward integration does end up in A without recrossing A*, then this
trajectory is likely to have a high kinetic energy and thus also the forward
integration will probably not be trapped on the barrier. It would therefore be
interesting to compare this method with that of Ref. [173] that was precisely
designed for diffusive barrier problems.






Chapter 6

Non-Catalyzed Hydration of Ethylene
A Combination of Born-Oppenheimer Dynamics and

Transition Interface Sampling

We applied the new method of transition interface sampling in combina-
tion with Born-Oppenheimer dynamics on the direct gas-phase hydration
of ethylene. This method is an improvement of the original transition path
sampling, that is designed for the calculation of rate constants for systems
for which transition state theory does not work. The direct hydration of
ethylene implies the breaking of the ethylene double bond and the water
OH bond making the reaction barrier high. The sampled paths show very
different behavior and seldomly cross the barrier via the saddle point of the
potential energy surface.

6.1 Introduction

The direct hydration/dehydration reaction between ethylene and ethanol
without a catalyst can occur under extreme conditions. Experimental mea-
surements and theoretical calculations show that ethanol dehydrates into
ethylene and water, when it is strongly chemically activated [118, 119] or vi-
brational excited by a laser [120, 121, 123]. Park et al have calculated rate
constants in the temperature range of 700-2500 K by very accurate ab initio
methods within the context of transition state theory [122]. However, if the

IThis chapter is based on work in progress, to be published as a letter: Titus S. van
Erp, Evert Jan Meijer, "Non-Catalyzed Hydration of Ethylene. A Combination of Born-
Oppenheimer Dynamics and Transition Interface Sampling”
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system has many saddle points and temperatures are high, it is very uncer-
tain that the transition state theory is accurate. To overcome these problems
Chandler and co-workers proposed the transition path sampling method
(TPS) [164]. Transition interface sampling (TIS) improves strongly the effi-
ciency of TPS and it is conceptually more transparent as it needs only one
type of Monte-Carlo (MC) move [174]. The TPS method uses two types of
MC moves, the shooting and shifting move. The TIS method uses only an
adapted shooting moves at which the path length is variable. This allows
to reduce the number of integration steps to the strict minimum. Shifting
moves are redundant in the TIS sampling method. Besides a more effi-
cient calculation of the rate constant, the analysis of the sampled paths of
the TIS algorithm, yields more useful information about the reaction me-
chanism than TPS [174]. Geissler et al successfully applied the path samp-
ling technique in combination with the Car-Parrinello (CP) method for the
proton transfer in a small water cluster [141] and for the autoionization in
liquid water [142]. With the same techniques, Ensing and Baerends have
studied reaction paths for the chemical reaction between iron(Il) and hydro-
gen peroxide in aqueous solution [175]. Here we apply the TIS sampling
technique to the hydration reaction of ethylene in combination with Born-
Oppenheimer Molecular Dynamics (MD).

6.2 Theory and Methods

The basic concept of TIS theory is that besides stable definitions for A and
B also overall states A and B are introduced as indication of the reactant
and product state. A particle is no longer assigned to one state on basis of
its instantaneous position, but on its position in the past. Using these state
definitions the TIS rate constant no longer depends on time. This means in
practice that the path length of the sampled paths can be limited to the strict
minimum. The TIS expression for the rate constant is:

h.a(0)hs(0 h
< A(UzA;g( )> _ <(?;?.:‘)0>H?:1 <h5f))\i,A><I>A,)\i—l oD

kap =

The last part of Eq. 6.1 allows the computational calculation for rare events
in a similar way as in umbrella sampling. The expression consists of the
flux (®4,),) / (ha) out of stable region A times the product of the condi-

tional probabilities <7L{2/\' A><I> . These are the probabilities for a particle
v AN

coming from A to cross interface \; given that it has crossed interface A\;_1
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Figure 6.1: Left:illustration of the two order parameters OC and OH. Right:all 89
sampled paths projected in the OC-OH square. A; is the interface, Ag and Ay are
the boundaries of stable state A: (ethylene+water) and B: (ethanol) respectively.
The large black dot at the corner of interface A; is the true transition state, the
small black dots represents the highest potential energy points (the barrier crossing
points) for these paths.

before. We calculated this conditional probability for one interface between
the stable states. The definitions of the stable states and interface, depending
on two order parameters (the distances O-C and O-H), are given in Fig. 6.1.

As the dynamics involves large fluctuations in the electron density due
to the bond breaking and forming, we used the BO dynamics method of
the CPMD package [35]. We did not use the “on the fly” Car-Parrinello (CP)
algorithm, that was not stable under these conditions. The time step was
0.73 fs and after each 5 time steps the algorithm checked if the system has
reached either A or B. Each path was accepted according to the Metropo-
lis MC algorithm. Temperature of the Boltzman-weights was 1000 K. After
each shooting move we continued the BO dynamics at a constant energy
along the path.

6.3 Results and Conclusion

From a total of 387 shooting moves we collected 89 different paths with the
condition of starting in A and crossing the interface A\; at least once. We
found a value 82 % for the conditional probability to reach B. In Fig. 6.1
these 89 paths are projected in the {O-C, O-H} plane. The small dots indicate
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Figure 6.2: Four very different pathways taken from Fig. 6.1. The small dots are
the same as in Fig. 6.1. The large dot indicates the highest potential energy point
of the given path. The potential and kinetic energy at this barrier crossing point are
also given for these four paths.

the potential maximum barrier height for each path (for a better view see
Fig 6.2 where these points are also depicted). As we see, most path cross
the barrier at a point not closely to the transition state (the large dot at the
corner of the interface A), that is the saddle point (60.1 kcal/mol). Fig. 6.2
shows four typical, but very different pathways from Fig. 6.1. The big dot
indicates the point of barrier crossing of the corresponding path. The barrier
height and the kinetic energy at this point are also given in Fig. 6.2.

Additional interface ensemble calculations with interfaces closer to re-
gion A are needed complete the rate constant calculation with the TIS me-
thod. However, we can already draw the conclusion that the pathways of
this system and with this temperature have very different character and sel-
domly reaches their highest potential energy close to the transition state.
This implies that rate constants are not reliable when calculated within the
context of transition state theory.
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Samenvatting

Dit proefschrift gaat enerzijds over het bestuderen van chemische reacties
via computer simulaties en anderzijds draagt het ook bij aan het verbeteren
van deze methodes. Het probleem van computer simulaties is dat deze
over het algemeen "duur’ zijn. Hiermee wordt bedoeld dat de berekenin-
gen zeer lange rekentijden in beslag kunnen nemen. Zelfs op supercomput-
ers kan een naieve implementatie van een scheikundige berekening jaren
rekentijd vergen. Dit is zeker het geval voor zogenaamde ab initio simu-
laties, waarbij de krachten op iedere tijdstap via een quantum mechanische
berekening worden verkregen. Ab initio moleculaire dynamica (MD) onder-
scheidt zich hiermee van de standaard force-field MD simulaties, waarin de
krachten op de nuclei of op de moleculen worden berekend via een em-
pirische potentiaal. Dit is gewoonlijk een functie van de relatieve afstanden
en oriéntatie tussen atomen en moleculen. Er wordt hierbij vanuit gegaan
dat de kracht op een deeltje (een atoom of een molecule) beschreven kan
worden als de som van alle paar-interacties tussen dit deeltje en de an-
dere naburige deeltjes in het systeem. Deze force-fields worden gewoonlijk
gevonden door een standaard-functie te gebruiken met een paar vrije vari-
abelen die dan weer gefit kunnen worden aan experimentele data of aan de
uitkomsten van theoretische berekeningen aan kleine moleculaire clusters.
Nadat deze empirische potentialen zijn ontwikkeld, worden alle krachten
in het systeem volledig gedetermineerd door de posities van de atomen en
moleculen. Dit heeft het voordeel dat, als deze empirische potentialen een-
maal bekend zijn, er geen tijdrovende quantum mechanische berekeningen
meer hoeven worden uitgevoerd. De aanname dat de kracht afgeleid kan
worden uit de onderlinge positie binnen paren van deeltjes, leidt meestal
tot een vrij nauwkeurig resultaat. Er zijn echter situaties waarin dit minder
het geval is. Zo kan de onderlinge kracht tussen twee watermoleculen sterk
beinvloed worden door de aanwezigheid van een derde watermolecule. Een
nauwkeurige beschrijving van water vereist derhalve ook complexere force-
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fields, zoals polarizable force-fields en three-body potentials of zelfs four - body
potentials. Ab initio methoden rekenen de krachten direct goed uit doordat
ze gebaseerd zijn op een volledige berekening van de elektronenstructuur.
Er moet echter wel een prijs voor betaald worden, aangezien ab initio MD
aanzienlijk duurder is dan force-field MD. Echter, als men het proces van een
chemische reactie wil bestuderen, is ab initio MD bijna altijd noodzakelijk,
omdat force-field MD hier meestal volledig faalt. Bij het vormen en breken
van chemische bindingen vinden er namelijk grote en plotselinge veran-
deringen plaats in de elektronische structuur. Men kan derhalve onmogelijk
a priori voorspellen hoe de krachten tussen ionen veranderen gedurende
dit proces. Dit maakt het ontwerpen van accurate empirische potentialen,
die ook werken tijdens de daadwerkelijke scheikundige transformatie, een
haast onmogelijke taak. Daarnaast is de informatie over de elektronische
toestand ook zeer welkom, aangezien het zeer veel inzicht verschaft in het
ontstaan van moleculaire bindingen. Tot voor kort was het echter niet goed
mogelijk complexe systemen aan te pakken met ab initio methoden vanwege
te grote computationele kosten. Alleen berekeningen aan reacties met een
klein aantal moleculen in de gasfase behoorden daardoor tot de mogelijk-
heden. De meeste chemische reacties, in de industrie, in de natuur en in
laboratoriumexperimenten, vinden echter niet plaats in de gasfase, maar in
een oplosmiddel, zoals bijvoorbeeld water. Het is een bekend gegeven dat
chemische reacties geheel anders kunnen verlopen in oplossing dan in de
gasfase, maar voor een goede beschrijving van bijvoorbeeld vloeibaar wa-
ter zijn op zijn minst zo'n twintigtal watermoleculen vereist, hetgeen een
zeer zware berekening vergt. In 1985 kwam echter een doorbraak. Car en
Parrinello bedachten een nieuw algoritme dat deze ab initio berekeningen
vele malen deed versnellen. Dit bracht de mogelijkheid om veel grotere
systemen te bestuderen, waarin veel meer deeltjes interageren. De huidige
techniek is in staat om de dynamica van systemen met ongeveer 30 wa-
termoleculen te simuleren over een tijdspanne van zo’n tien pico (=1012)
seconden. Dit is net genoeg om chemische reacties in water goed te kunnen
bestuderen.

De hoofdvraag van het proefschrift was dan ook het onderzoeken van
het effect van water als oplosmiddel op het chemische proces en in het bij-
zonder op chemische processen met alcoholen. Water heeft een zeer unieke
structuur doordat het waterstofbruggen kan vormen. Het verkrijgt daar-
door een structuur die sterk doet denken aan een kristal. Het is een soort
van tetraédrische netwerk waarbij ieder watermolecule gemiddeld met vier
ander watermoleculen verbonden is via een waterstofbrug. Alcohol heeft
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dezelfde eigenschap als water, aangezien het een hydroxylgroep heeft, waar-
door het ook in staat is om waterstofbruggen te vormen. Dit maakt dat de
kleine alcoholen uitstekend oplosbaar zijn in water. Naast de hydroxylgroep
bestaan alcoholen echter nog uit een zogenaamde alkylgroep, die minder
interactie heeft met water en daarom ook wel hydrophoob genoemd wordt.
Door deze tegenstrijdige haat-liefde verhouding tussen alcohol en water,
hebben mengsels tussen alcoholen en water een grote wetenschappelijke
belangstelling verkregen. Naar gelang de alcoholconcentratie en het type
alcohol, bestaat er een grote verscheidenheid aan moleculaire structuren. In
ons onderzoek hebben we gekeken naar zeer verdunde oplossingen van al-
coholen, waarbij een enkel alcohol wordt omgeven door een zogenaamde
oplosschil van watermoleculen. De structuur van de eerste oplosschil van
watermoleculen rondom het alcohol is van cruciaal belang voor het bestud-
eren van chemische reacties. Het initiéren van een reactie vereist namelijk
vaak een gehele herordening van de watermoleculen in deze oplosschil.

In hoofdstuk 2 hebben we de structuur en de dynamica van deze oplo-
seigenschappen voor het kleinste alcohol, het methanol molecule, bestudeerd.
Uit onze bevindingen blijkt dat het methanol molecule niet is staat in om de
typische waterstructuur te veranderen. De hydroxylgroep van het methanol
gedraagt zich niet veel anders dan een watermolecule, doordat het water-
stofbruggen kan maken met de naburige watermoleculen. De methylgroep
blijkt klein genoeg en wordt gemakkelijk opgenomen in de open ruimtes
van dit waterstofbrug-netwerk.

Hoofdstuk 3 gaat over de oplossingsstructuur van ethanol en ethyleen.
Aangezien de hydratatie-reactie van ethyleen naar ethanol een belangrijk in-
dustrieel proces is, kan dit hoofdstuk ook gezien worden als een belangrijke
voorstudie voor deze reactie. Al zijn ethanol en ethyleen een stuk groter dan
methanol, ook hier lijkt de waterstructuur nauwelijks te veranderen. Een
belangrijke conclusie is derhalve dat de tetraédrische structuur heel flexibel
is en dat het water hydrophobe groepen gemakkelijk opneemt zonder sterk
van structuur te veranderen. Daarbij blijkt water een sterk polariserende in-
vloed te hebben op de oplosmoleculen. Zelfs het neutrale ethyleen verkrijgt
een aanzienlijk dipool moment, met zeldzame uitschieters van maar liefst
1 Debye. Deze zeldzame uitschieters worden veroorzaakt door structuren
waarbij meerdere watermoleculen samenwerken met als gevolg een zeer
sterke polariserende invloed op het ethyleenmolecule.

Hoofdstuk 4 gaat vervolgens over hydratatie /dehydratatie- reactie tussen
ethyleen en ethanol. We gebruiken hier de methode van geconstrainde dy-
namica om de reactie te forceren. Hierdoor wordt het systeem als het ware
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stapje voor stapje over de reactie- barriére heen getild, terwijl ondertussen
de hoogte van deze barriére gemeten wordt. Een nadeel van deze methode
is dat de informatie over het spontane reactie-verloop gedeeltelijk verloren
gaat. Aangezien echter slechts een stukje van de reactie wordt geforceerd en
sommige delen van de reactie spontaan verlopen, kan er toch veel over het
reactieproces geconcludeerd worden. Zo vinden wij dat het reactieproces
via het Adg3 mechanisme verloopt, waarbij twee bindingen tegelijkertijd
gevormd worden. De precieze vorming van een binding is ook niet altijd
even duidelijk. Vaak wordt er een binding toegekend louter op basis van
de afstand tussen twee atomen. We laten hier zien dat dit niet altijd opgaat
en dat er structuren zijn van dicht op elkaar gesitueerde atomen waarbij
er geen sprake is van een binding, terwijl tussen twee verder van elkaar
verwijderde atomen juist wel een binding blijkt te zijn. Specifieke analyse
van de elektronenstructuur door middel van zogenaamde Wannier analyse
laat dit zien. Bovendien blijken de gevonden waterstructuren, zoals ze zijn
gevonden in hoofdstuk 3, ook hier een zeer belangrijke invloed te hebben
op de spontane chemische processen die niet door onze constraint worden
geforceerd.

Hoofdstuk 5 was eigenlijk een niet gepland stuk onderzoek en is dus
eigenlijk een typisch geval van spin-off. Omdat de constraint methode de
reactie toch op een onnatuurlijke wijze forceert, wilde ik de transition path
sampling methode toepassen, die meer natuurlijke reactie-paden genereert.
Tijdens de bestudering van de methode kwam ik echter op nieuwe ideeén,
ter verbetering van deze methode. Dit hebben we vervolgens uitgewerkt tot
een geheel nieuwe methode, die we tot transition interface sampling hebben
gedoopt. Deze methode blijkt, afhankelijk van het te bestuderen systeem,
enkele malen sneller te zijn dan het originele transition path sampling algo-
ritme.

Tenslotte laat hoofdstuk 6 de resultaten zien waarbij ab initio MD met
transition interface sampling wordt gecombineerd om de directe (zonder kata-
lysator) gasfase-hydratatie van ethyleen te bestuderen. De meeste berekenin-
gen aan deze reactie gaan er vanuit dat transition state theory een goede be-
nadering voor deze reactie is. Dit houdt in dat er vanuit gegaan wordt
dat bijna alle paden over het laagste punt van de barriére gaan, het zoge-
naamde zadelpunt of de transitie-toestand. De reactie-paden die ik met de
path sampling methode heb gegenereerd zijn echter zeer verschillend van
elkaar, laten een zeer grillig karakter zien en gaan zelden via de transitie-
toestand naar de andere kant van de barriére. Hieruit volgt dat de in het
verleden berekende reactieconstanten voor dit systeem, die gebruik maak-
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ten van deze transitie-toestand aanname, zeer twijfelachtig zijn.

Concluderend laat dit proefschrift zien dat de invloed van het oplosmid-
del op de chemische reactie zeer belangrijk is en dat zeldzame structuren,
van waterstofbrug-gebonden watermoleculen, een sterk polariserende in-
vloed kunnen hebben, hetgeen een reactie sterk kan beinvloeden. De nieuwe
methode van transition interface sampling verbetert de oude methode van
transition path sampling aanzienlijk en kan helpen om deze reacties verder
te onderzoeken.



eh...Sorry, ...maybe I missed it,
...but what does this contribute
to the unification theory?
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